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Genome-resolved metaproteomic
characterization of preterm infant gut
microbiota development reveals species-
specific metabolic shifts and variabilities
during early life

Weili Xiong1, Christopher T. Brown2, Michael J. Morowitz3, Jillian F. Banfield2 and Robert L. Hettich4*
Abstract

Background: Establishment of the human gut microbiota begins at birth. This early-life microbiota development
can impact host physiology during infancy and even across an entire life span. However, the functional stability and
population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics
is an emerging technology for the large-scale characterization of metabolic functions in complex microbial
communities (gut microbiota).

Results: We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual
differences of metabolic functions during microbial colonization of preterm human infants’ gut. By analyzing 30
individual fecal samples, we identified up to 12,568 protein groups for each of four infants, including both human
and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the
species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%.
A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing
microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal
shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity
of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across
all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide
metabolism while conserved human proteins were related to immune response and mucosal maturation. We
identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable
across time and not individual-specific. Applying a gut-specific metabolic module (GMM) analysis, we found that
gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids) utilization
and short-chain fatty acid production.

Conclusions: Overall, this study reports species-specific proteome profiles and metabolic functions of human gut
microbiota during early colonization. In particular, our work contributes to reveal microbiota-associated shifts and
variations in the metabolism of three major nutrient sources and short-chain fatty acid during colonization of
preterm infant gut.
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Background
Microbes colonize most internal and external surfaces of
the human body and influence many aspects of human
physiology. The largest microbial community is found
in the human gastrointestinal tract (“gut”), which is
composed of up to 56 trillion microbial cells [1], com-
prising thousands of different species and five million
unique genes [2]. Microbes residing in the gut interact
with each other and the host; play important roles in
host nutrient availability through the production of vi-
tamins, short-chain fatty acids (SCFA), and amino
acids; train the immune system to tolerate commensal
bacteria; protect against pathogens; and contribute to
intestinal epithelium maturation and integrity [3]. Dys-
biosis of the gut microbiota has been linked to many
diseases, such as Crohn’s disease [4–6], diabetes [7, 8],
and autoimmune diseases [9]. The establishment of gut
microbiota begins during infancy, and emerging evi-
dence suggests that this initial colonization has lifelong
effects on human health [10]. A rapidly increasing
number of studies have focused on understanding the
establishment of the microbiota at birth, or microbiota
associations with infant health and disease.
Although originally thought to be born sterile, the

presence of microbes in placental and meconium sam-
ples has suggested that infants may be colonized by
small populations of microbes prior to birth [11]. Re-
gardless, newborn infants are exposed to large num-
bers of bacteria from the mother and the environment
at birth. Typically, the initial colonizers of the gut are
facultative anaerobes and within days or weeks there is
a shift from facultative to obligate anaerobes [12, 13].
The establishment of the microbiota is influenced by
multiple factors, including gestational age, delivery
mode, birth weight, diet and exposure to antibiotics
[14–16]. For example, the microbiota of infants born
vaginally resembles the mother’s vaginal and fecal
microbiota, whereas the microbiota of infants born by
cesarean section is more similar to the microbiota of
skin or other environments [15]. It has also been sug-
gested that C-section-delivered infants have lower
diversity gut microbial communities compared to vagi-
nally delivered infants [17]. The infant gut undergoes a
rapid increase in the abundance and diversity of micro-
bial communities during the first few weeks [18]. After
2–3 years of life, the gut microbiota become more
stable and adult-like [18]. Large variations have been
observed among different individuals and also over
time within the same individual [19]. It remains to be
determined what and how specific factors (e.g. host
genetics, environment, diet, and/or interplay between
host and microbiota) determine the path of microbiota
development, and how different paths relate to health
and disease status. This is particularly critical for
premature infants who may have a delayed and aber-
rant microbiota.
Infants born prematurely are at higher morbidity and

mortality risk due to immature organ systems that are
not properly adapted to extrauterine life [20]. These
infants are susceptible to inflammatory disorders as a
result of their poorly developed immune system and
prenatal/postnatal events that inappropriately modulate
immunity (e.g. perinatal infection and inflammation)
[14, 21]. Among premature infants, the incidence of sep-
sis and necrotizing enterocolitis (NEC) have remained
high and have been associated with aberrant gut micro-
bial colonization during first few weeks of life [22, 23].
The role of bacterial colonization in neonatal NEC has
been suggested by a number of observations, including
the identification of pneumatosis intestinalis (gas in the
bowel wall), which is most likely produced by intestinal
bacteria, occurrence of outbreaks in hospital, and reso-
lution of inflammation after treatment with antibiotics
[24–26]. Recently, Raveh-Sadka et al. analyzed gut com-
munities in a large number of premature infants during
a cluster of NEC infections. Results showed that gut
colonization was largely unique among infants and that
no single bacterial strain was shared among all infants
who developed NEC [27]. This suggests that the disease
is not caused by a single bacterial strain, but rather may
be associated with multiple deleterious bacteria that
disrupt essential activities of mutualistic microbes.
Characterization of functional activities and temporal
profiles of the gut microbiota during early colonization
may further enhance our understanding of the role of
gut microbiota in the onset of NEC.
Mass spectrometry-based metaproteomics has been

widely used to characterize the proteome of microbial
communities and has emerged as a valuable tool in in-
vestigating the gut microbiota [12, 28, 29]. In particular,
coupling genome-resolved community metagenomics
with proteomics allows us not only to explore functional
roles of microbial communities in the gut ecosystem,
but also to link specific metabolic functions to microbial
community members. We have recently described an en-
hanced metaproteomic approach for the microbiome
characterization of infant fecal samples [30]. Here, we
employed the approach and expanded our analysis to a
total of 30 fecal samples collected during the first
3 months of life of four premature infants, one of
which developed NEC. By integrating metaproteomics
with metagenomics, we identified temporal and inter-
individual variations in community protein abundance,
determined conserved metabolic functions of both hu-
man host and gut microbiota, and revealed functional
differences of gut communities in the metabolism of
nutrients and short-chain fatty acids during microbial
colonization of the premature infant gut.
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Results and discussion
Samples and metaproteomic measurements
Thirty fecal metaproteomes from four preterm infants
(03, 19, 21, and 23) collected over the first 3 months
after birth were examined by a shotgun metaproteo-
mic approach (each sample was measured in tech-
nical duplicate). One of the four infants (infant 19)
developed a case of sepsis and another infant (infant
21) developed necrotizing enterocolitis (NEC) (see
Materials and Methods and Additional file 1 for more
details). These samples were collected as part of a
prior genome-resolved metagenomics study (Raveh-
Sadka et al.) [31], and metaproteomic measurement
resulted in an average of 108,763 spectra and 17,754
peptides per sample. To alleviate the ambiguity asso-
ciated with shared peptides, identified proteins were
clustered into protein groups (see Materials and
Methods for more details). Human and microbial
proteins were both monitored, providing a total of
12,568 (9318 microbial and 3250 human), 9665 (7397
microbial and 2268 human), 7091 (6349 microbial
and 742 human), and 11,649 (10,330 microbial and
a

Fig. 1 Number of human and microbial protein groups identified (a) and r
counts are normalized by the number of total collected spectra and averag
1319 human) protein groups across all time points
for infants 03, 19, 21, and 23, respectively (Additional
file 2 and Fig. 1). In general, the measuring depth of
human proteins decreased with time as microbial
proteins became more dominant and abundant, with
approximately 200 human protein groups being iden-
tified at later time points. Despite the overall trend
towards decreased representation of human proteins,
variations were observed over time. For example, dra-
matic decreases of microbial proteins from the sec-
ond sample collected on day of life (DOL) 21 (21_2)
of infant 03, and DOL 26 of infant 19. Interestingly,
the decrease observed at DOL 26 of infant 19 coin-
cided with antibiotics use, suggesting that the treat-
ment effectively suppressed the microbiota. However,
the decrease noticed at DOL 21_2 of infant 03 might
be related to an unmatched database, as a metagen-
ome was only available for the first sample collected
on DOL 21. Major microbiota changes occurring be-
tween samples would make our constructed database
less relevant to the second sample, which could have
led to fewer microbial protein identifications.
b

elative abundance of human/microbial spectra (b) over time. Spectral
ed between duplicate runs
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Varying metaproteome coverage of studied infant gut
communities
One of the most important considerations for metapro-
teomic experiments is the biodiversity and the inherent
biological dynamic range within the environment being
analyzed. The number of organisms present and their
relative abundance directly affect proteome coverage. A
typical 24-h LC-MS/MS experiment identifies a few
thousand proteins regardless of sample complexity, due
to the constrained dynamic range and duty cycle of the
mass spectrometer. Therefore, more complex communi-
ties yield lower average proteome coverage per organ-
ism, and species with higher abundance or activity tend
to have a larger percentage of the proteome that can be
detected. By integrating strain-resolved metagenomics
with deep metaproteomic measurements, we were able
to characterize organism-specific proteome coverage
across time, as shown in Additional file 3. Since not all
predicted proteins are expressed under one condition
and the genome size varies among organisms, a typical
proteome analysis of a single microbial isolate can iden-
tify approximately 50 to 80% of the predicted proteins
[32, 33]. Preterm infant gut microbial communities har-
bor less diversity than other more complex communities
(e.g. human adult gut and soil microbiota) and generally
contain a limited number of highly abundant organisms.
Here, in total, up to 45% (e.g. Propionibacterium sp. in
DOL 13 of infant 21) of the predicted proteins for an in-
dividual organism could be measured and identified.
The distribution of different proteome coverage for spe-
cies/strains in each sample was displayed in Fig. 2, with
Fig. 2 Boxplot comparing organism-specific proteome coverage across sampl
the organism having the highest proteome coverage is listed and represented
the species/strain having the highest proteome coverage
listed. During early time points, the gut communities
were dominated by one or two species (i.e., the outlier
with the highest proteome coverage, which is repre-
sented as an open circle), and thus proteomes of most
other species had low coverage (represented as tight box
width). Advancing DOL correlated with a broader distri-
bution of proteome coverage across organisms, indicat-
ing that a greater range of bacteria became abundant/
active during the colonization process. However, we no-
ticed that distributions of proteome coverage for com-
munities from infant 21 were less skewed and variable as
compared to other infants, possibly due to the lower
species richness in the gut microbiome of this infant.

Temporal shifts in microbial activity
To further investigate the activity of microbial community
members, the proteomic data was matched to genomes
previously reconstructed for microbial community mem-
bers by Raveh-Sadka et al. [31] (Fig. 3). The vast majority
of proteins (>99%) were unambiguously assigned to a spe-
cific species/strain, but proteins belonging to closely re-
lated strains (e.g. Klebsiella oxytoca and Klebsiella oxytoca
II in infant 19; Bifidobacterium longum and Bifidobac-
terium breve in infant 23), or identical proteins from
different species were indistinguishable. Proteins were
identified from 25, 18, 12, and 29 different species/strains
for infants 03, 19, 21, and 23 respectively, showing that
microbiomes of infant 19 and 21 were less complex. We
resolved proteins from several phages, identifying a few
structural proteins and a majority of unknown-function
es. Day of life (DOL) of each infant is shown on the x-axis. For each sample,
as open circles. Only near-complete assembled genomes are included



a b

c d

Fig. 3 Taxonomic shifts in infants a 03, b 19, c 21, and d 23 based on protein abundance. Relative abundance of microbial community is based
on assigning proteomic data to constructed metagenomes. Shannon diversity index is used to characterize species diversity (both abundance
and evenness of the species present) and calculated from the relative abundance of proteins at the species level
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proteins. In addition, a low abundance of proteins from
Candida albicans were identified in infant 23. Microbial
composition was largely different between infants, and
Enterococcus faecalis was the only species that was shared
by all infants. However, a number of species were com-
mon between the twins 19 and 21, such as Staphyloccoc-
cus aureus, Enterobacter cloacae, Klebsiella oxytoca, and
Haemophilus parainfluenzae, suggesting that the gut
microbiome may be impacted by host genetics or ex-
posure to the same environment. The environmental
impact might be less relevant because infant 23 was co-
hospitalized with the twin infants but was not colonized
by the abovementioned species. In addition to the re-
markable inter-individual variation, the relative protein
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abundance and species diversity (Shannon index) of the
microbial community within each infant also varied dra-
matically during the early colonization phase. Intriguingly,
apparent differences were observed between the genomic
and proteomic patterns on certain DOLs (genomic results
have been shown in a prior study [31]), suggesting a few
species that are more active in spite of low abundance,
such as Streptococcus lutetiensis in DOL 25 of infant 03,
Clostridium sp. in DOL 56 of infant 19, and Propionibac-
terium sp. in DOL 13 of infant 21. In this last sample, Pro-
pionibacterium sp. accounted for almost 70% relative
abundance in the proteome measurement while its DNA
sequence reads only comprised of 15% of the community.
These findings could have significant impacts on our un-
derstanding of the balance between microbial population
structure and dominant metabolic activities.
Moreover, we analyzed different samples collected on

the same DOL (pairs 15_1 and 15_2; 21_1 and 21_2 of
infant 03, Fig. 3a), to investigate whether the microbiome
is stable within a day. Database searching of samples 15_2
and 21_2 was conducted based on metagenomes from dif-
ferent fecal samples collected on the same DOL (15_1 and
21_1, respectively). For both pairs, distributions of micro-
bial protein abundance showed different patterns between
the two samples. On DOL 15, the microbiota composition
remained almost the same but the most active species
shifted from Enterococcus faecalis to Propionibacterium
sp. in the later fecal sample. However, on DOL 21, a new
dominant colonizer—Clostridium sp. appeared, which
greatly changed the community composition in the sec-
ond sample. A Pearson correlation of r = 0.9 was found
between samples on DOL 15 while the correlation be-
tween samples on DOL 21 was r = 0.53, indicating that the
gut microbiome changed greatly within a day, although
the cause of the shift was not apparent. The variance was
less likely due to a technical issue, as it was observed that
Clostridium sp. stayed relatively abundant until DOL 25.
So it was more likely that Clostridium sp. colonized and
developed rapidly on late DOL 21, resulting in significant
changes in the microbiome. The finding of a shift in
Fig. 4 Venn diagram of microbial EggNOGs (a) and human protein groups
EggNOGs and 3250, 2268, 742, and 1319 human proteins are identified in i
community activity is not surprising considering a re-
cent study that also recognized rapid and reproducible
alterations of human adult gut microbiome by dietary
interventions [34].

Temporal and individual variabilities of infant gut
metaproteome profiles
As discussed above, the microbial composition and pro-
portions not only vary dramatically during the early
colonization phase but also can be remarkably different
among infants, and therefore we employed the strategy
of annotating identified proteins by orthologous groups
to determine the presence and abundance of different
proteins across samples. By using the recently updated
EggNOG orthologous database [35], annotations were
obtained for over of 85% microbial genes and 98% of
identified microbial proteins. In total, 4214, 3519, 3442,
and 4744 non-redundant microbial EggNOGs were
assigned for metaproteomes of infant 03, 19, 21, and 23
respectively (Fig. 4a). Among all identified microbial
EggNOGs, 1868 (26%) were commonly identified in all
four infants. The highest number of unique EggNOGs
(1629, 22.5%) was found in infant 23. When considering
samples collected at multiple time points within an infant,
1249 EggNOGs were found in at least half of the samples,
but only 81 were present across all 30 samples (Additional
files 4 and 5), showing large dissimilarity of these prote-
ome profiles. The common 81 EggNOGs mainly partici-
pate in carbohydrate transport using bacteria-specific
phosphotransferase system (PTS), carbohydrate metabol-
ism including glycolysis, pentose phosphate pathway and
galactose degradation, energy production involving ethanol
production and glycerol degradation, amino acid (e.g.
glutamate, arginine and glycine) metabolism, nucleotide
metabolism, transcription, translation and chaperonin-
assisted protein folding, revealing a conserved functional
profile of gut microbiota. In addition, 547 human proteins
(15%) were commonly identified in four infants, but only
57 proteins were detected across all samples (Fig. 4b and
Additional file 4). Unlike essential microbiome functions
(b) in all four infants. A total of 4214, 3519, 3442, and 4744 microbial
nfants 03, 19, 21, and 23 respectively
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which mainly support cell growth and maintenance, these
common host proteins in the gut included proteins related
to lipid and protein digestion, antibacterial activity, innate
immune response, and gut mucosal barrier development
and protection (Additional file 5). Notably, as essential
components in the infant innate immunity, intestinal bar-
rier and immune factors were present at all times. These
factors might constantly fine-tune the activities of the mi-
crobial community in order to maintain the homeostatic
balance between the developing gut microbiota and the
host environment [36].
To further assess the correlation of studied metapro-

teome profiles, Spearman’s rank correlations with hier-
archical clustering were applied, and seven clusters were
identified (Fig. 5). Typically, samples collected from adja-
cent time points of the same infant were highly correlated,
but not all samples clustered by individual. Intriguingly,
samples from different infants (DOL 11 of infant 03 and
DOL 26 of infant 19) collected after antibiotics treatment
Fig. 5 Correlation plot with hierarchical clustering of microbial EggNOGs. S
each mass spectrometric measurement. Sample names are composed of th
(run). The color of sample names indicates different infants. Rows are hiera
clusters are highlighted by colored boxes
clustered together (cluster 4). This might be related
to an abundance of E. faecalis occurring in both samples
after antibiotics use. Potential antibiotic resistance pro-
teins identified in E. faecalis were analyzed by CARD [37]
and shown in Additional file 6. Additionally, we found
that the microbiota seemed to be restored after antibiotic
treatment in infant 19, as samples taken before and after
antibiotics treatment clustered together (DOL 20 and 31),
but not with the sample from the administration period
(DOL 26). As mentioned above, a number of bacterial
species were shared by twin infants 19 and 21. Microbial
proteomes from the two infants were also closely related
(cluster 1). A recent study has revealed a subject-specific
and stable gut metaproteome in human adults [38]. How-
ever, our observations showed that during infancy, the
proteome was less individualized and more unstable as
compared with that observed in human adults. Infant age,
genetic background and antibiotics use are likely to be
major determinants for the microbiota development in
hown is a correlation matrix plot showing the spearman correlation of
e infant number (b), day of life (d) and the measurement number
rchically clustered using complete linkage clustering and the seven



a

b

Fig. 6 Tri-plot representation of the gut communities in the exploitation
of three major energy sources (a) and the metabolism of short-chain
fatty acids (b). For each metabolic category/trait (e.g. carbohydrate/lipid/
amino acid degradation and propionate/butyrate/acetate metabolism),
the abundance was defined as summed protein abundances of GMMs
associated with the category divided by the number of GMMs in
that category. Shown tri-plot representation is based on the relative
abundance of the three defined categories. The dashed lines give an
example of the proportions of carbohydrate, lipid and amino acid
degradation for the sample DOL13 of infant 21. Each corner triangle
labeled with one-letter category name (e.g. amino acid (A); lipid (L);
carbohydrate (C); propionate (P); butyrate (B); acetate (A)) represents
dominant proteomic investment in that particular metabolic category.
Day of life (DOL) is shown on each sample/dot
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neonates. Among conserved functional groups identified
in adults from the previous study, formate acetyltransfer-
ase, glutamate dehydrogenase, and three glycolytic en-
zymes were also conserved in infants studied in our study.
However, enzymes involved in the production of butyrate
(butyryl-CoA dehydrogenase) and vitamin B12 (sirohydro-
chlorin cobaltochelatase) were conserved in human adults
but only found in a portion of infant samples, suggesting
that the infant intestinal microbiota is variable and
has not stabilized for these functions during the early
colonization.
In order to further investigate proteins that distinguish

metaproteome clusters, proteins with significantly different
abundances between clusters were identified (Additional
file 7). Notably, cluster 5 was the most distinguishable
cluster, having the longest distance from it to other clus-
ters. An abundance of proteins involved in carbohydrate
metabolism were identified in cluster 5, for example, ABC
transporter proteins (likely for sugars), beta-galactosidase
and galactose-1-phosphate uridylyltransferase participating
in the degradation of lactose, and xylulose-5-phosphate/
fructose-6-phosphate phosphoketolase acting as a key en-
zyme in the “Bifid shunt” pathway. The “Bifid shunt” in
which carbohydrates are fermented via phosphoketolase is
a unique process in Bifidobacteria. Samples (DOL 34 and
50 of infant 23) clustered in cluster 5 had a dominance of
Bifidobacterium breve in both communities. Interestingly,
this infant 23 is the only infant with dominant obligate an-
aerobic Bifidobacterium. Therefore, cluster 5 was clearly
distinct from other metaproteome clusters, possibly due to
the distinct carbohydrate utilization of Bifidobacterium.

Metabolic profiles in association with shifts in microbial
communities
To assess the diversity and stability of metabolic functions
across these communities, a recently developed gut-specific
framework was applied to infer species-associated GMMs
(gut metabolic modules) for our dataset [39]. A total of 104
GMMs were inferred for all infants, with module coverage
higher than 0.556 (55.6%) (the optimal coverage cutoff is
inferred during module prediction), and the temporal
abundances of all microbial members that participate in
the module were determined (Additional file 8).

Modules associated with carbohydrate, amino acid, and
lipid metabolism
We assessed infant gut communities in the exploitation
of three major energy sources (carbohydrate, amino acid,
and lipid) across time. All measured communities were
found to use all three types of nutrients, but the relative
abundance of saccharolytic (carbohydrate degradation),
proteolytic (amino acid degradation), and lipolytic (lipid
degradation) fermentation modules varied among com-
munities (Fig. 6a, Additional file 8). Among four infants,
a larger separation in the utilization of nutrients was
identified in infant 03 over time, while samples from the
same infant were closely clustered for the other three
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infants. This is likely due to the longer sampling period
covered for infant 03.
Intriguingly, gut communities associated with infant

03 exhibit high levels of lipolytic fermentation at early
time points and shifted towards dominant proteolytic
fermentation over time. The availability of genome
sequences reconstructed from matched metagenomes
enabled us to determine the contribution of specific
species to these functions. Enterococcus faecalis was
dominant in the community over DOL 11 to 15 and
contributed significant protein abundance to glycerol
degradation through expression of glycerol dehydrogen-
ase and dihydroxyacetone kinase. The source of glycerol
may have been the complete digestion of breast milk tri-
glycerides via host pancreatic lipase and breast milk-
derived bile salt-stimulated lipase [40], which were both
identified in the samples. Thereby, free glycerol can be
utilized by gut bacteria and converted to the glycolysis
intermediate dihydroxyacetone phosphate, potentially
for ATP production. On DOL 18, the proportional con-
tribution of bacteria to amino acid degradation began
to increase, mainly contributed by Enterbacteriales sp.
For example, aspartate aminotransferase and aspartate
ammonia-lyase were both identified, allowing the con-
version of L-aspartate to oxaloacetate and fumarate,
respectively. Both products can be further consumed
via entering the TCA cycle. Starting from DOL 21,
glutamate degradation was observed and became rela-
tively abundant, which was contributed by Clostridium
sp. and Escherichia coli. We identified glutamate
decarboxylase A and B in E. coli, which were required
for the degradation of L-glutamate to 4-aminobutanoate.
4-Aminobutanoate can be further degraded by 4-
aminobutyrate aminotransferase and succinate-
semialdehyde dehydrogenase (both were also identi-
fied in E. coli) to TCA intermediate succinate. The
action of all above four proteins, known as “GABA
shunt,” channels glutamate into the TCA cycle [41].
Increased tryptophan degradation via tryptophanase
was also identified in E. coli during the time after
DOL 25, which can produce indole, pyruvate, and am-
monium. While ammonium can be used as a nitrogen
source and indole can act as a signal molecule, pyru-
vate can be redirected into the TCA cycle.
The trend towards increased protein utilization ob-

served in infant 03 was not identified in other infants.
Microbes from infants 19 and 21 remained relatively
stable in the fermentation of these three substrates
(carbohydrates, amino acids, and lipids), except slightly
increased carbohydrate degradation observed during
late time points in infant 19. This was mostly driven by
Klebsiella oxytoca II on DOLs 31 and 38, and Clostrid-
ium sp. II on DOL 56. A high abundance of beta-
galactosidase and alpha-galactosidase were identified
in Klebsiella oxytoca II, hydrolyzing lactose and meli-
biose into galactose and glucose. While glucose can
directly be utilized via glycolysis, galactose requires
five enzymes to be converted into the more metabolic-
ally versatile D-glucopyranose 6-phosphate: galactose-
1-epimerase, galactokinase, galactose-1-phosphate uridy-
lyltransferase, UDP-glucose 4-epimerase, and phospho-
glucomutase, which were all detected in Klebsiella
oxytoca II. All proteins mentioned above except alpha-
galactosidase were also identified in Clostridium sp. II.
Among the four infants, the gut microbiota of infant
23 presented the highest proportion of carbohydrate
fermentation proteins, primarily related to lactose, gal-
actose, and melibiose degradation. These functions
were mostly contributed by Klebsiella pneumoniae on
DOLs 15 to 21 and Bifidobacterium breve on DOLs 34
and 50.
However, we did not observe clear associations be-

tween macronutrient utilization and clinical outcome,
mode of delivery, feeding regimen, or gestational age at
delivery. It is important to note that the composition of
human milk can vary substantially between mothers
and between time points [42]. Since each infant in the
study received breast milk, it is possible that this factor
could have sharply impacted the variability of gut mi-
crobial metabolism.

Modules associated with short-chain fatty acid (SCFA)
metabolism
SCFAs, primarily acetate, propionate, and butyrate are
major end-products of human milk oligosaccharide
(HMO) fermentation by intestinal microbiota. We further
explored acetate, propionate, and butyrate metabolism in
all measured samples (Fig. 6b, Additional file 8) and found
a majority of communities predominantly invested in the
metabolism of propionate.
Two different pathways were inferred for propionate

production (Additional file 9): the succinate pathway
and the propanediol pathway. The succinate pathway
utilizes succinate as a substrate and employs succinyl-CoA
synthetase, methylmalonyl-CoA mutase, methylmalonyl-
CoA epimerase, and methylmalonyl-CoA carboxytrans-
ferase to convert succinate to propionyl-CoA. All these
enzymes were identified and mainly found in species of
Propionibacterium for all infants. The propanediol
pathway is characterized by the conversion of propio-
naldehyde to propionyl-CoA via CoA-dependent pro-
pionaldehyde dehydrogenase as a marker enzyme. This
pathway also involves lactaldehyde reductase and
propanediol dehydratase, responsible for conversion of
L-lactaldehyde to propionaldehyde. The propanediol
pathway was primarily found in Klebsiella pneumoniae
of infants 03 and 23 and in Klebsiella oxytoca of infants
19 and 21. The production of propionate in these
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organisms was further supported by the identification
of fucose degradation pathway in the same organism. L-fu-
cose is a major component of glycosylated mucin proteins
in the intestinal epithelium and oligosaccharides in human
milk [43, 44]. L-fucose isomerase, L-fuculokinase, and L-
fuculose phosphate aldolase, enzymes needed to degrade
L-fucose to L-lactaldehyde, were all detected in above
Klebsiella genus that were able to further convert L-lactal-
dehyde to propionate.
Although most communities exhibited dominant pro-

pionate metabolism, samples from DOL 21 of infant 03,
DOL 56 of infant 19, and DOL 21 of infant 23 showed
relatively high levels of butyrate metabolism. Two differ-
ent pathways are possible for butyrate production in gut
bacteria, but the butyrate kinase pathway was the major
one observed in these communities, which employed
crotonyl-CoA reductase, phosphotransbutyrylase and
butyrate kinase to convert crotonoyl-CoA to butyrate
(Additional file 9). This pathway was primarily found in
Clostridium species, including Clostridium sp. of infant
03, Clostridium difficile and Clostridium II sp. of infant
19, Clostridium sporogenes of infant 21, and Clostridium
sp. and Clostridium perfringens of infant 23.
Acetate can be produced by converting acetyl-CoA to

acetate via phosphate acetyltransferase and acetate kin-
ase. As opposed to propionate and butyrate production
that were mainly controlled by a few organisms in these
communities, many organisms were able to produce
acetate (Additional file 9). We noticed that samples with
very low complexity, either collected from early time
points (DOL 11, 12, and 13 of infant 03; DOL 12 of in-
fant 19) or after antibiotics treatment (DOL 26 of infant
19), showed dominant acetate metabolism, possibly be-
cause microbes that have the capacity to produce butyr-
ate and propionate have not colonized or have been
removed during the time and thus acetate production
became relatively predominant. Two samples (DOL 34
and 56) from infant 23 also had relatively high abun-
dance of acetate metabolism enzymes, mainly contrib-
uted by Bifidobacterium breve. In premature infants,
high level of fecal acetate has been associated with in-
creased Bifidobacteria [45].

Conclusions
In this study, we conducted a metagenome-informed
metaproteomic analysis of 30 gut communities from
four human preterm infants, allowing us to characterize
species-specific gut microbial functional variations be-
tween infants during the critical first few weeks of life.
The use of sample-matched, genome-resolved metage-
nomics databases enabled us to identify an average of
2606 microbial protein groups with up to 45% proteome
coverage obtained for the most dominant species in each
community, and further to reconstruct species-specific
metabolic functions and pathways. We found that the
pattern of community relative protein abundance varied
substantially among individual infants and over the
time course, but generally the community began with
colonization of facultative anaerobes, such as Entero-
coccus and Klebsiella, followed by the emergence of some
obligate anaerobes, for example, Clostridium, Bifido-
bacterium, and Bacteroides. While rapid shifts in the
infant gut microbiome were observed, conserved meta-
bolic pathways were identified, largely associated with
microbial cell growth and maintenance. The roles of
environmental factors in the early life gut microbiota
development are still poorly understood. As opposed to
human adults, the infant gut exhibited unstable and
individual-unspecific gut metaproteomes, possibly as a
result of infant gut microbiota ecosystem being imma-
ture/underdeveloped and thus susceptible to disruption
by environmental factors. Our data showed a few ob-
servations where antibiotics altered the gut metapro-
teome, but future research is needed to describe the
effect of antibiotics on the infant gut microbiota. Given
different patterns in the gut communities, our results
further revealed species-related metabolic shifts and
variations of the infant gut microbiota, particularly in
the nutrient exploitation and SCFAs metabolism.

Methods
Sample collection
Fecal samples were collected from four preterm infants
(03, 19, 21, and 23) over the first 3 months after birth.
All samples were collected as part of a prospective
cohort study of premature infants with and without
necrotizing enterocolitis. The four infants in this study
represent four of the first infants within the overall co-
hort to undergo metagenomics sequencing that also had
remaining fecal samples with enough biomass to permit
proteomic analysis. The specific samples selected for
proteomics were selected on the basis of completeness
of bacterial genomes assembled by metagenomics
(Raveh-Sadka et al.) [31] in order to enable genome-
resolved proteomic analysis. Infant 03 was a healthy pre-
term infant. Infants 19 and 21 were two infants from
triplets, among which, 19 developed severe sepsis, but
not NEC, while 21 developed NEC and died from NEC
totalis. Infant 23 was co-hospitalized with infants 19 and
21, who was healthy aside from mild lung disease. Stool
samples were collected on day of life (DOL) 11–86 as
available. For the infant 03, samples were collected twice
on days 15 (15_1 and 15_2) and 21 (21_1 and 21_2).
Additional medical details of four infants were described
in a prior study [31] and Additional file 1. Subjects were
enrolled and samples were collected according to a re-
search protocol approved by The University of Pittsburgh
Institutional Review Board (PRO10090089).
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Sample preparation
~0.3 g raw fecal material was prepared by the indirect
enrichment method, as previously detailed with modifi-
cations [30]. In brief, raw fecal material was passed
through a 20-μm vacuum filter followed by centrifuga-
tion to enrich microbial cells. Collected microbial cells
were lysed by sodium dodecyl sulfate (SDS) with sonic-
ation. One milligram of crude protein extract was then
precipitated by trichloroacetic acid (TCA) and washed
with ice-cold acetone. Pelleted proteins were re-
solubilized in 8 M urea and sonically disrupted to fully
solubilize the protein pellet. Denatured proteins were
reduced with 5 mM dithiothreitol (DTT), cysteines
blocked with 20 mM iodoacetamide (IAA) and digested
into peptides with sequencing grade trypsin. The
digested samples were then adjusted to 200 mM NaCl,
0.1% formic acid (FA), and filtered through a 10-kDa
cutoff spin column filter to collect the tryptic peptides.

2D LC-MS/MS measurement
For each sample, obtained peptide samples (50 μg) were
analyzed via 22-h MudPIT two-dimensional (2D)
nanospray LC-MS/MS system on LTQ-Orbitrap Elite
(ThermoFisher Scientific, San Jose, CA). As previously
described [46], peptides were separated/eluted in 11
steps (each lasting ~2 h) with an increasing amount of
salts (ammonium acetate) followed by organic gradients
in each step. Mass spectra were acquired in data-
dependent mode: full scans were acquired at 30-k reso-
lution (1 microscan) in the Orbitrap, followed by CID
fragmentation of the 20 most abundant ions (1 micro-
scan). Monoisotopic precursor selection was enabled.
Unassigned charge and charge state +1 were rejected.
Dynamic exclusion was enabled with a mass exclusion
width 10 ppm and exclusion duration 30 s. Technical
replicates (duplicates) were performed for each sample.

Peptide and protein identification
Protein databases were constructed for each individual
infant by combining proteins predicted from sequenced
metagenome (see Raveh-Sadka et al. [31] for more
details) collected on multiple days, human protein se-
quences (NCBI RefSeq_2011), and common contami-
nants. All MS/MS spectra were searched with the
Myrimatch version 2.1 algorithm against the con-
structed protein database and filtered with IDPicker.
Peptide modifications including a static cysteine modi-
fication (+57.02 Da), an N-terminal dynamic carbamy-
lation modification (+43.00 Da), and a dynamic
oxidation modification (+15.99) were included in all
searches. A decoy database consisting of reverse protein
sequences was appended to the target database to cal-
culate false discovery rates (FDR). Peptide identifica-
tions were filtered by maintaining at least two distinct
peptides per protein and a 2% peptide spectrum match-
level FDR to achieve confident peptide identifications
(FDR <1%). For protein inference, proteins were
grouped base on 90% amino acid sequence identity for
human proteins and 100% identity for microbial pro-
teins, as previously described [47]. Spectral counts were
balanced between shared proteins, and normalized by
total numbers of all collected MS/MS in each run.

Data analysis
EggNOG annotations were obtained using EggNOG
database v4.5 via eggNOG-mapper with HMM search
mode [35]. Venn diagram was generated using an on-
line tool VENNY 2.1 (http://bioinfogp.cnb.csic.es/tools/
venny/index.html). The EdgeR package [48] was used
to calculate significantly different protein abundances
between clusters via quasi-likelihood negative binomial
generalized log-linear model (glmQLFTest). The data-
set was normalized based on scaling factors for library
sizes, which were determined using a trimmed mean of
M values (TMM) between samples. The correlation plot
was built using the corrplot package after sorting based
on hierarchical clustering. KEGG Orthology (KO) an-
notations for each protein sequence were assigned by
KEGG Automatic Annotation Server (KASS) using
GHOSTX search and the SBH (single-directional best
hit) method [49]. Gut metabolic modules (GMMs) and
tri-plot representations were inferred and visualized
from an online tool GOmixer, specifically for gut meta-
omics data analysis [39, 50].

Additional files

Additional file 1: Medical information of infants. (XLSX 9 kb)

Additional file 2: Protein groups and spectral counts identified in all
metaproteomic measurements. (XLSX 4908 kb)

Additional file 3: Organism-specific proteome coverage across time
series of (a) infant 03, (b) infant 19, (c) infant 21, and (d) infant 23. The
percentage of proteome identified is calculated for each organism by
assigning peptides to proteins predicted from metagenomics data.
Sample with day of life (DOL) is shown on the x-axis, and “total” column
includes proteins identified across time series. (PDF 39 kb)

Additional file 4: Frequencies of microbial EggNOGs and human
protein groups identified across all samples. 81 microbial EggNOGs and
57 human protein groups are identified in all 30 samples. (PDF 92 kb)

Additional file 5: Conserved EggNOGs and human protein groups
determined in studied gut metaproteomes. (XLSX 17 kb)

Additional file 6: Potential antibiotic resistance proteins in E. faecalis
analyzed by CARD. (XLSX 26 kb)

Additional file 7: Proteins associated with metaproteome clusters.
Shown are top 25 most significantly different protein groups between
each metaproteome cluster pair comparison with p-value less than 0.01.
Metaproteome clusters are indicated by colored boxes on top of the
heatmap. Sample names at the bottom are composed of the infant number
(b), day of life (d) and the measurement number (run). (PDF 2441 kb)

Additional file 8: Gut metabolic modules (GMMs) and abundance
inferred from studied gut communities. (XLSX 100 kb)
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Additional file 9: Metabolic pathways for propionate, butyrate and
acetate formation by representative bacterial species/strains in human
preterm infant gut. Species/strains with all enzymes (shown by EC number)
in the pathway identified are listed below. The color indicates in which
infant the species/strain is identified. (6.2.1.5: succinyl-CoA sythetase; 5.4.99.2:
methylmalonyl-CoA mutase; 5.1.99.1: methylmalonyl-CoA epimerase; 2.1.3.1:
methylmalonyl-CoA carboxyltransferase; 1.1.1.77: lactaldehyde reductase;
4.2.1.28: propanediol dehydratase; 1.2.1.87: propionaldehyde dehydrogenase;
2.3.1.222: phosphate propanoyltransferase; 2.7.2.15: propionate kinase;
2.3.1.9: acetyl-CoA C-acetyltransferase; 1.1.1.157: 3-hydroxybutyryl-CoA
dehydrogenase; 4.2.1.17: enoyl-CoA hydratase; 1.3.8.1: crotonyl-CoA
reductase; 2.3.1.19: phosphotransbutyrylase; 2.7.2.7: butyrate kinase;
2.3.1.8: phosphate acetyltransferase; 2.7.2.1: acetate kinase). (PDF 44 kb)
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