
UNIVERSITY OF CALIFORNIA
RIVERSIDE

A Study of Pseudorandomness and its Applications to Coding Theory

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Sourya Roy

March 2022

Dissertation Committee:

Dr. Silas Richelson, Co-Chairperson
Dr. Amey Bhangale, Co-Chairperson
Dr. Marek Chrobak
Dr. Kevin Costello
Dr. Samet Oymak

Copyright by
Sourya Roy

2022

The Dissertation of Sourya Roy is approved:

Committee Co-Chairperson

Committee Co-Chairperson

University of California, Riverside

Acknowledgments

I would like to extend my deepest gratitude to my advisors: Silas and Amey, for their amaz-

ing support and guidance. Doing my thesis under their mentorship has been a remarkable

learning experience that I truly enjoyed. Honestly, I consider myself very fortunate to be

advised by them. I would also like to sincerely thank my other committee members : Marek

Chrobak, Kevin Costello and Samet Oymak. They all encouraged me and o↵ered valuable

advice at di↵erent stages of my PhD.

Because of Neal Young’s graduate algorithms course, I decided to do research in

theoretical computer science in the first place. I was deeply inspired by his style of teaching.

Additionally, Neal has always been a great source of support and he was available whenever

I needed to discuss anything. Thank you Neal, for everything.

I’m also extremely grateful to Prahladh Harsha(TIFR) and Shachar Lovett(UCSD).

The second chapter of this dissertation is based on a joint work with Prahladh. So Prahladh’s

help was crucial for completion of this dissertation. He gave many useful feedback on my

other projects as well. I had also many stimulating discussions with Shachar in the last two

years. He suggested many interesting research questions and gave insightful comments on

write-ups. I immensely enjoyed interacting with him.

I’m deeply indebted to my friend Sujoy Paul for all his help. I am really glad that

he was my roommate during most part of my PhD. I will always cherish his friendship and

all the joyful moments that we shared.

Special thanks to my friends in India: Saikat, Arya, Debajyoti, Wriddhi, Soham,

Satadal and others. They all have been great source of support. I would also like to thank

iv

my friends at UCR: Dripta, Miraj, Irem, Parker and Huong. Thanks should also go to

Fernando Jeronimo(Princeton) and Tushant Mittal(UChicago) for useful discussions.

Without o�ce-work related guidance from our graduate supervisor Vanda Yam-

aguchi, everything would have been lot more di�cult. Many thanks to her for all the help.

Finally, I would like to thank my family for their constant support and love.

Without them, none of this would have been possible.

Chapter one and Chapter three of this dissertation is based on joint works with

Silas Richelson. Chapter two contains a reprint of material as it appears in Proceedings of

13th Innovations in Theoretical Computer Science (ITCS) 2022. Amey Bhangale, Prahladh

Harsha, Sourya Roy. Mixing of 3-term progressions in Quasirandom Groups.

v

To my family and friends.

vi

ABSTRACT OF THE DISSERTATION

A Study of Pseudorandomness and its Applications to Coding Theory

by

Sourya Roy

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2022

Dr. Silas Richelson, Co-Chairperson
Dr. Amey Bhangale, Co-Chairperson

Pseudo-randomness is an indispensable tool in theoretical computer science. In this disser-

tation, we aim to study several questions related to pseudo-randomness and its applications

in designing codes. First, we give an alternate proof of Ta-Shma’s breakthrough result on

near-optimal binary error correcting code construction. While Ta-Shma’s original analysis

was entirely linear algebraic, our approach is more combinatorial in nature. Additionally,

using our techniques, we give an alternate proof of the expander hitting set lemma. In our

second work, we show the mixing of three term arithmetic progressions in quasi-random

groups and fully resolve a question by Gowers. Our proof is elementary and uses only basic

non-abelian Fourier analysis. Finally, we propose a generalization of locally testable codes

that are resilient against adversarial channels in a certain information theoretic sense. We

call these codes ’locally testable, non-malleable’ and give a construction of such objects.

Our construction heavily uses properties of certain pseudo-random objects called sampler

graphs and tools from low degree testing literature. This establishs a connection between

cryptographic non-malleability and polynomial codes.

vii

Contents

List of Figures xi

1 Introduction 1

2 Analyzing Ta-Shma’s Code via the Expander Mixing Lemma 5
2.1 Introduction . 5

2.1.1 Our Contribution . 7
2.1.2 Techniques: Expander Mixing Lemma and consequences 8
2.1.3 Improving the rate via s-wide replacement product walks 11

2.2 Preliminaries . 12
2.2.1 The s-wide Replacement Product . 15

2.3 Main theorem . 18
2.4 Proof of Lemma 1 . 20

2.4.1 Lemma Statement . 21
2.4.2 Key Intuition . 23
2.4.3 Bounding the "k Terms . 27
2.4.4 Bounding the �k Terms . 28

2.5 Expander Hitting Set Lemma . 30

3 Mixing of 3-term progressions in Quasirandom Groups 33
3.1 Introduction . 33
3.2 Preliminaries . 36
3.3 Proof of Theorem 4 . 42

4 Locally Testable Non-malleable Codes 47
4.1 Introduction . 47

4.1.1 Our Contributions . 48
4.1.2 Other Relevant Prior Work . 51

4.2 Defining Locally Testable Non-malleable Codes 52
4.2.1 Coding Theory Background . 52
4.2.2 The New Definition and Discussion 54
4.2.3 Fitting LTNMCs into the Coding Theory Tree 58

ix

4.3 Non-malleable PCPs . 59
4.3.1 ZK and NM for Interactive Proofs 60
4.3.2 ZK and NM for PCPs . 62

4.4 Constructing LTNMCs . 65
4.4.1 Our Outer Code and the Non-Malleable A�ne Agreement Theorem 65
4.4.2 High Level Map of the Analysis . 67
4.4.3 Proof of Theorem 4 . 72

4.5 A�ne Agreement . 74
4.5.1 Linearity Testing Background . 76
4.5.2 Proving the Claims . 77

4.6 A Locally Testable, Non-Malleable Code . 82
4.6.1 A Simple Non-malleable Code against A�ne Tampering 82
4.6.2 A LTNM Code via Composition . 86

5 Conclusions 91
5.1 Thesis Summary . 91

Bibliography 93

Appendix A 99
A.1 Sampler Graph Preliminaries . 99

A.1.1 Basic definitions and Facts . 99
A.1.2 Why Samplers Play a Role . 102
A.1.3 Incidence ⇥ Agreement Samplers . 103

A.2 Missing Proofs . 109
A.3 Global Agreement . 111

A.3.1 Proof Setup. 112
A.3.2 Proof of Lemma 6 . 114
A.3.3 Proving the Claims . 115

A.4 Sampler Replacement . 122

x

List of Figures

2.1 Illustration of s-wide random walk on A using a graph B. 16
2.2 “Ignore first step” trick. 25
2.3 Starting the Replacement Walk in the Middle. 26

4.1 A�ne agreement testing . 72

xi

Chapter 1

Introduction

Pseudorandomness is a recurring theme in theoretical computer science. Informally, we

call a combinatorial object or phenomena, pseudorandom if they resembles purely random

objects even though they emerges from processes that are either completely deterministic

or use far less randomness. Pseudorandomness has numerous applications in almost all

areas in computer science theory including approximation algorithms, circuit complexity,

cryptography etc. This dissertation contains three works in pseudorandomness and its

applications in coding theory. Though on a surface level these works may seem a bit disjoint

from each other, but at their core two closely related tools or objects from pseudorandomness

play the key role. The first one is the notion of mixing over graphs. One popular example

from theoretical computer science is Expander mixing lemma(EML) that says: if A is an

expander graph and f1, f2 : A ! R, then E(x,y)⇠A[f1(x)f2(y)] ⇡ Ex,y⇠A[f1(x)f2[y] where

(x, y) ⇠ A denotes sampling random edge (x, y) from graph A and x, y ⇠ A denotes

independently sampling x and y uniformly from the vertex set of A. The first two chapters

1

in this dissertation, revolve around these types of mixing properties. The other notion

from the pseudorandomness literature that we will use heavily in our work is the idea of

sampler graphs. Very informally, for a sampler graph A for all most every a 2 A we have

Ea0⇠N(a)[f(a
0)] ⇡ Ea0⇠A[f(a0)] for f : A! R where N(a) is the neighborhood of the vertex

a 2 A. Note that this guarantee given by sampler graphs is even stronger than the mixing

property we discussed before. We crucially use properties of such sampler graphs in chapter

three proofs. Below we briefly describe the three chapters in this dissertation.

In chapter one, we focus on deterministic construction of good binary error cor-

recting codes. Specifically, we revisit the state of the art binary code construction by

Ta-Shma[60] and give a new combinatorial proof of the construction. The main tool we

use for this is the expander mixing lemma. We demonstrate that repeated application of

EML su�ces to prove the result which contrasts the original proof that relies heavily on

intricate use of elementary linear algebra. In chapter two, We continue to explore similar

mixing phenomenon as in EML though along a di↵erent direction: arithmetic progressions

in non-abelian groups. Informally, we study the following question: is there any finite

group G such that
��Ex,y⇠G[f1(x)f2(xy)f3(xy2)]�Ex,y,z⇠G[f1(x)f2(y)f3(z)]

�� is negligible for

all bounded functions f1, f2, f3 : G! C. . This can be interpreted as mixing over 3-uniform

hyper-graphs where the vertex set is the finite group G and hyper-edges are of the form

(x, xy, xy2) for x, y 2 G. We show that such mixing indeed happens when the underlying

finite group is quasirandom(informally, these are highly non-abelian groups). Such mixing

behavior was conjectured by Gowers[43]. Previously, Tao[61] and Peluse[53] proved the

conjecture for restricted classes of quasirandom groups using tools from algebraic geome-

2

tries and representation theory respectively. We settle the conjecture in its full generality.

Moreover, our proof is completely elementary and short.

Finally, in the third chapter we describe our work on locally testable codes(LTC). Locally

testable codes are error correcting codes with fast testing algorithms which can distinguish

between codewords and strings that are far from all codewords. LTCs[42, 40] are well

studied combinatorial objects and share deep connections with probabilistically checkable

proofs(PCP)[42, 40]. In this work, we study how LTCs can be made secure against ’active

adversaries’ that are allowed to transform a transmitted codeword to another codeword

of a di↵erent message. Towards this we combine the notion of locally testable codes with

Non-malleable codes(NMCs)[37] and define locally testable, non-malleable codes (LTNMC)

as a generalization of LTCs. Informally, non-malleable codes gives the guarantee that after

decoding a tampered codeword either the original message or something completely un-

related(in some appropriate sense) is retrieved. In the same vein, LTNMCs provide the

following guarantee: : if any tampered codeword passes the local test with good probability

then it is close to a valid codeword encoding the original message or an unrelated message.

To motivate our definition, we generalize it further to a natural notion of non-malleability

(NM) for probabilistically checkable proofs. We do this by strengthening the definition of

zero-knowledge for PCPs[47].

We instantiate our definition of LTNMC by giving an explicit construction of

LTNMC in the co-ordinate wise tampering model which allows adversary to tamper each co-

ordinate of a codeword independently. We achieve this by first showing that a known locally

testable Reed-Muller-type code is also non-malleable against co-ordinate wise tampering.

3

Roughly, we show that if a tampered Reed-Muller type codeword passes the test then the

tampering function must be close to an a�ne transformation on the polynomial space of

codewords. Then we compose this polynomial code with an inner non-malleable code against

a�ne tampering to get the final LTNMC. Our proof uses makes heavy use of sampler graphs

and techniques from low degree testing literature. As additional contribution, we describe

a new (standard) non-malleable code against a�ne tampering. Our non-malleable code

against a�ne is arguably simpler than known constructions, and achieves better parameters.

4

Chapter 2

Analyzing Ta-Shma’s Code via the

Expander Mixing Lemma

2.1 Introduction

Error correcting codes (ECCs) allow a sender to encode a message so that the

receiver can recover the full message even if several codeword bits are lost or flipped during

transmission. ECCs are incredibly useful, both in theory and in practice [57, 59, 25] (and

many, many more). Formally, a binary code is a map C : {0, 1}k ! {0, 1}n which sends a

message m 2 {0, 1}k to the codeword C(m) 2 {0, 1}n. Two important parameters of a code

are the distance and rate, which are respectively measures of the code’s quality and e�ciency.

Rate is the ratio k/n, the number of message bits per codeword bit while distance refers

to the minimum fraction of coordinates (in [n]) on which two distinct codewords disagree.

One of the holy grails in coding theory is to find the best tradeo↵ between the distance

5

and rate of a binary code. It is known that codes with optimal distance � = 1/2 must

have exponentially small rate [54]. The Gilbert-Varshamov (GV) bound [39, 62] states

for any � 2 (0, 1/2), there exists a code Cn with blocklength n and distance d with rate

1�H(�)� on(1) where H(·) is Shannon’s binary entropy function. Unfortunately, this is a

probabilistic (or greedy) construction and we do not know of explicit binary codes matching

this bound. For distances � close to 1/2, the GV bound states that there exists a code with

distance (1�")/2 and rate ⌦("2). On the other hand, it is known that any code with distance

(1�")/2 must have rate O
�
"2 · log(1/")

�
[9]. Constructing an explict code matching the GV

bound even for these distance parameters is a major open problem.

A few years ago, in a breakthrough result, Ta-Shma [60] described an explicit con-

struction which got very close: he constructed a family of codes {Cn}n with rate ⌦("2+o"(1))

and distance (1�")/2. The core of his construction is an amplification procedure which in-

creases the distance of the code using certain special types of random walks on expander

graphs. Specifically, Ta-Shma encodes a message m 2 {0, 1}k as follows.

1. Use a “base code” C0 : {0, 1}k ! {0, 1}n with a good (but not optimal) rate/distance

tradeo↵, to encode message m 2 {0, 1}k into a n-bit codeword C0(m) which we will

equivalently interpret as function f : [n]! {0, 1}.

2. Identify the coordinate set [n] with the vertices of an expander graph A.1

3. Let W ⇢ At = [n]t be a special subset of the set of all t-length walks in A. Define

g : W ! {0, 1} by g(a1, . . . , at) = f(a1)� · · ·�f(at), where � is the bit XOR. Output

g 2 {0, 1}|W |.

1
We abuse notation by refering to A both as the graph and the vertex set.

6

The ingenious component in TaShma’s construction is the choice of the subset W . As

we will soon see, choosing W to be the set of all t-length walks in A does not yield an

optimal distance/rate tradeo↵. TaShma, instead, uses a derandomized subset of walks,

resulting from taking an s-wide replacement product walk on A. In the ordinary replacement

product, another expander B is chosen with |B| = deg(A) so that given a 2 A, each b 2 B

corresponds to some a0 2 N(a). A t-length replacement product walk in A chooses a random

a ⇠ A and a (t � 1)-length walk (b1, . . . , bt�1) in B and outputs the walk (a1, . . . , at) in

A where a1 = a and ai+1 is the bi-th neighbor of ai for i = 1, . . . , t � 1. Note the set

of replacement product walks in A is a proper subset of the set of all walks. The s-wide

replacement product is a parametrized version of the ordinary replacement product. We

explain the s-wide replacement product in detail in Section 2.2.

2.1.1 Our Contribution

In this note, we rederive the analysis of TaShma [60] using repeated applications

of the Expander Mixing Lemma. TaShma’s original analysis, as well as subsequent develop-

ments, convey a strongly linear algebraic viewpoint. In this writeup, we take the expander

mixing lemma as our starting point and proceed from there in a combinatorial fashion.

Thus, we demonstrate that no linear algebra is needed for the analysis of Ta-Shma’s code

beyond that which is needed to prove the expander mixing lemma. We would like to be

forthcoming and stress that our analysis is completely equivalent to Ta-Shma’s orig-

inal analysis. So if you are hoping to read about a new code with improved parameters,

you should read something else. This paper is for those researchers who have had di�culty

penetrating the intuition behind Ta-Shma’s construction. We believe that this alternate

7

perspective will appeal to a wider audience and make it easier for the scientific community

to innovate on Ta-Shma’s breakthrough work.

Our proof is the same as the original proof insofar as a random walk on a graph can

be modelled both as a random process and as a linear operator. The original analysis takes

the linear operator view, we take the random process view. In theory, the linear operator

view is convenient for quantitatively reason about random walks because it reduces the

task to understanding repeated multiplication by a fixed matrix. However, when analyzing

replacement product walks from the linear operator perspective, the adjacency matrices

of the outer and inner expander graphs have to be combined using some kind of tensor

product. The situation is worse for the s�wide replacement product since then one has to

keep track of s di↵erent tensor product matrices and the iterated matrix product needs to

alternate over these s matrices. Thus, it seems there are diminishing returns in terms of

the simplicity a↵orded by the linear operator perspective when the set of all random walks

is to be derandomized. By using the random process view, we are able to express the same

ideas in a much simpler way. This, in turn, makes it easier to see what is going on in certain

key steps of the argument.

2.1.2 Techniques: Expander Mixing Lemma and consequences

Notation. We refer to graphs by their vertex sets, and use ⇠ to indicate two vertices that

are connected by an edge. So for example, if A is a graph and a, a0 2 A are vertices, we

write a ⇠ a0 if there is an edge between a and a0. We write RW
t
A (resp. RW

t
A(a)) for the

distribution which outputs a t�length random walk in A (resp. a t�length random walk in

A which begins at a). Given distributions D and D0, D ⌘ D0 denotes that they are same.

8

In order to get a sense for our technique, let us analyze the distance amplification

procedure resulting from taking a random walk on an expander. Typically expander graphs

are defined via the second largest eigenvalue of the adjacency matrix of the graph; in this

paper we will use the following equivalent definition (similar definitions have been used in

other works, e.g., [33]).

Definition 1 We say that a graph A is a ��expander if for all f, g : A! R, the following

holds:

���Ea⇠a0
⇥
f(a) · g(a0)

⇤
� µfµg

���  ��f�g,

where µf and �f are the expectation and standard deviation of the random variable f(a)

(namely, µf = Ea
⇥
f(a)

⇤
and �2

f + µ2

f = Ea
⇥
f(a)2

⇤
, and similarly for µg and �g).

Now consider the distance amplification framework above instantiated with A

being a constant degree, d�regular ��expander, andW being the set of all t�length random

walks in A. Note that |W | = n · dt�1, and so the rate of the resulting code is O(d�t). If

A is Ramanujan (i.e., an expander with the best possible relationship between � and d)

then � ⇡ 2/
p
d which makes the rate O

�
(�/2)2t

�
. Regarding the distance, note that for

any n�bit string f : [n] ! {0, 1}, if the fraction of non-zero coordinates is 1�"
2
, then

" = �Ev⇠[n]

⇥
(�1)f(v)

⇤
. For this reason, we show that the amplification framework above

decreases bias, where

Bias(f) :=
���Ev⇠[n]

⇥
(�1)f(v)

⇤���.

The claim below shows that when W is the set of all t�length walks in A, a regular

Ramanujan expander graph with expansion �, and when Bias(f) 
p
�, then Bias(g) 

9

1

2
· (4�)t/2. It follows that if the distance of the amplified code is 1�"

2
, then the rate is

⌦("4 · 8�2t
�
. For any constant ↵ > 0, it is possible to choose parameters so that "↵  8�2t,

in which case the rate is ⌦("4+↵).

Claim 1 Let A be a regular ��expander, f : A! {0, 1} a function of bias
��Ea

⇥
(�1)f(a)

⇤�� 
p
�. For k � 1, define hk : A! R as

hk(a) := E
(a1,...,ak)⇠RWk

A(a)

h
(�1)f(a1)�···�f(ak)

i
.

Let "k :=
��Ea

⇥
hk(a)

⇤�� and �k be such that �2

k + "2k = Ea
⇥
hk(a)2

⇤
. Then for all k � 1:

"k 
1

2
· (4�)k/2; �k 

q
Ea
⇥
hk(a)2

⇤
 (4�)

k�1
2 .

We will actually prove the following slight generalization of Claim 1, which will be more

useful in our analysis later on. Note Claim 1 is recovered from Claim 2 by letting H be the

constant function which always outputs 1, and noting that "̂1 
p
� and �̂1  1.

Claim 2 Let A be a regular ��expander, f : A! {0, 1} a function of bias
��Ea

⇥
(�1)f(a)

⇤�� 
p
�, and H : A! R any function. For k � 1, let ĥk : A! [0, 1] be defined by

ĥk(a) = E
(a1,...,ak)⇠RWk

(a)

h
(�1)f(a1)�···�f(ak) ·H(ak)

i
.

Let "̂k :=
��Ea

⇥
ĥk(a)

⇤�� and �̂k such that �̂2

k + "̂2k = Ea
⇥
ĥk(a)2

⇤
. Then for k � 2,

"̂k  2k�2 · (�
k�1
2 "̂1 + �

k
2 �̂1); and �̂k 

q
Ea
⇥
ĥk(a)2

⇤
 2k�2 · (�

k�2
2 "̂1 + �

k�1
2 �̂1).

10

Proof. The key observation is that for k � 2, ĥk(a) = (�1)f(a)·Ea0⇠N(a)

⇥
ĥk�1(a0)

⇤
.

This lets us bound "̂k and �̂k in terms of "̂k�1 and �̂k�1 using the expander mixing lemma

(Definition 1) as follows:

· "̂k =
��Ea

⇥
ĥk(a)

⇤�� =
��Ea⇠a0

⇥
(�1)f(a) · ĥk�1(a0)

⇤�� 
p
�"̂k�1 + ��̂k�1;

· �̂2

k  �̂2

k + "̂2k = Ea
⇥
ĥk(a)2

⇤
= Ea

h
Ea0⇠N(a)

⇥
ĥk�1(a0)

⇤
2
i

= Ea0⇠A2a00
⇥
ĥk�1(a0) ·

ĥk�1(a00)
⇤

 "̂2k�1
+ �2�̂2

k�1
,

where a0 ⇠A2 a00 indicates that (a0, a00) is a uniform edge in A2 (a �2�expander). We have

used that the distribution which draws a ⇠ A, a0, a00 ⇠ N(a) and outputs (a0, a00) is identical

to the uniform edge distribution on A2. The claim follows by induction.

2.1.3 Improving the rate via s-wide replacement product walks

The rate of the above code is roughly "4, which is too low. In order for it to have

rate ⇡ "2, we would have needed "t  �t rather than what we got which was "t  �t/2

(actually we got something weaker, we are oversimplifying to clarify the discussion). The

recursive formulas which appeared in the proof were:

· "k  Bias(f) · "k�1 + ��k�1 
p
�"k�1 + ��k�1 (we assumed Bias(f) 

p
�);

· �k  "k�1 + ��k�1 (implied by �2

k  "2k�1
+ �2�2

k�1
).

The problem here is the bound �k  "k�1 + ��k�1, specifically the "k�1 term on the right

since we are moving from a k�th level term to a (k � 1)�th level term without gaining a

factor of �. Plugging this into the first equation gives "k 
p
�"k�1+�"k�2+�2�k�2, where

the first two terms are problematic (we are moving from level k to level k � 1 and k � 2

11

but gaining only one factor of
p
� and �, respectively). The first problematic term could

be fixed by choosing � such that Bias(f)  �; but the second problematic term cannot be

easily fixed. This phenomenon was observed in [60] where the problem is summarized by

saying “one out of every two steps works”.

A natural idea for derandomizing W is to work with a set of replacement (or zig-

zag) product walks. Unfortunately this yields no improvement as the “one out of every

two steps works” problem persists. Ben-Aroya and Ta-Shma [16] solved this problem in a

di↵erent context by using an expander graph B on a slightly larger vertex set of size ds

for s � 2, and by analyzing the resulting walk s steps at a time. This is called the s-wide

replacement product. Ta-Shma was then able to successfully argue that “s� 4 out of every

s steps work”. When interpreted in our language, this observation translates to a recursive

formula like "k  �s�4 · "k�s, where we move from a k�th level term to a (k � s)�th level

term, while gaining (s � 4) factors of �. Gaining s factors of � would have let us solve to

the optimal "k  �k, obtaining rate of ⇡ "2; gaining (s�4) factors of � lets us solve instead

to "k  �k(1�4/s) which is almost as good when s is large.

2.2 Preliminaries

Random Walks on Graphs. Let A be the vertex set of a graph. Given a, a0 2 A, we

write a ⇠ a0 if a and a0 are connected by an edge. For a 2 A, let N(a) ⇢ A denote the

neighborhood of A, i.e., N(a) := {a0 2 A : a ⇠ a0}. For an integer d � 1, we say that A is

12

d�regular if |N(a)| = d for all a 2 A. For an integer k � 1, let

RW
k
A := {(a1, . . . , ak) 2 Ak : ai ⇠ ai+1 8 i = 1, . . . , k � 1}

denote the set of k�length random walks in A. Similarly, for a 2 A, RWk
A(a) is the set of

k�length random walks inA which begin at a, so RWk
A(a) := {(a1, . . . , ak) 2 RW

k
A : a1 = a}.

We will often view RW
k
A as a distribution, where (a1, . . . , ak) ⇠ RW

k
A means that a1 ⇠ A is

drawn uniformly and then ai+1 ⇠ N(ai) is drawn for i = 1, . . . , k � 1.

Expander Graphs. Graph expansion is usually defined as the second largest eigenvalue

of the graph’s adjacency matrix,2 i.e.,

� := max
x,y?11

|hx,Myi|
|x||y| , (2.1)

where the max is over all nonzero x, y 2 R|A| � {0} which are perpendicular to the all 1s

vector 11. Our Definition 1 can be recovered from (2.1) for any f, g : A ! R by setting

x, y 2 R|A| to be xa = f(a)� µf and ya = g(a)� µg.

Cayley Graphs. Given a finite groupG and a subset U ✓ G, the Cayley graph Cayley(G,U)

has vertex set G with g ⇠ g0 i↵ g�1g0 2 U . Note that Cayley(G,U) is |U |�regular; addi-

tionally, if U is closed under inversion, then Cayley(G,U) is undirected. Cayley graphs play

a key role in many explicit constructions of expander graphs. Ta-Shma’s original construc-

tion used two Cayley graphs as explicit expander constructions. The first Cayley graph was

2
The adjacency matrix of the graph A is M 2 {0, 1}|A|⇥|A|

, where M(a, a0
) = 1 i↵ a ⇠ a0

.

13

over Fk
2
, and the second was over PGL2(Fq), the projective general linear group over a large

finite field. The use of this second Cayley graph put restrictions on some of the parameters,

which required some care in order to navigate. Subsequently to Ta-Shma’s original paper,

new constructions of expanders based on Cayley graphs have been given. We will use a new

construction, due to Alon [8], instead of the PGL2(Fq) construction as it will give us more

flexibility.

Theorem 1 We have the following expander constructions from [8] and [10], respectively.

The Outer Graph: For all integers n, d 2 N there is an explicit construction of a

d�regular Cayley graph with n · (1 + on(1)) vertices and expansion �  8
p
d
.

The Inner Graph: For all integers r, ` 2 N such that `  r/2, there exists an ex-

plicit3 construction of an undirected 22`�regular Cayley graph over Fr
2
which is a

(r � 1)2�`�expander.

The Shifted Neighborhood Distribution. Let B be a Cayley graph on Fms
2

, and let

d = 2m. For any b =
�
b[1], . . . , b[s]

�
2 B ⇠= [d]s, let shift(b) =

�
b[2], . . . , b[s], b[1]

�
2 B be

the element obtained by circularly shifting the coordinates of b. Given b 2 B, the shifted

neighborhood distribution of b, denoted Ñ(b), draws u ⇠ U (the generator set of the Cayley

graph) and outputs shift(b+ u) (note b+ u is a random neighbor of b in B). It is clear that

the expansion of B is not a↵ected by using the shifted neighborhood distribution instead of

3
This Cayley graph construction is actually fully explicit, in the sense that given any vertex, the i�th

neighbor can be computed in polylogarithmic time.

14

the original neighborhood distribution. Indeed,

���E b⇠B
b0⇠Ñ(b)

⇥
f(b) · g(b0)

⇤
� µfµg

��� =
���E b⇠B

b0⇠N(b)

⇥
f(b) · g̃(b0)

⇤
� µfµg̃

���  ��f�g̃ = ��f�g,

where g̃ = g � shift; clearly (µg̃,�g̃) = (µg,�g). Let ˜RW
k
B denote the set of k�length shifted

random walks in B. We prove the following claim about ˜RW
k
B, when k is small.

Claim 3 For all k  s, the distribution that chooses (b1, . . . , bk) ⇠ ˜RW
k
B and outputs the

tuple (b1[1], b2[1], . . . , bk[1]) 2 [d]k is identical to the uniform distribution on [d]k.

Proof. It su�ces to prove the claim for k = s, since when k < s, the distri-

bution ˜RW
k
B is identical to the distribution which draws (b1, . . . , bs) ⇠ ˜RW

s
B and outputs

(b1, . . . , bk). Note that ˜RW
s
B draws u1, . . . , us�1 ⇠ U , b1 ⇠ B and outputs (b1, . . . , bs) 2 Bs,

where bi = shift(bi�1 + ui�1) for i = 2, . . . , s. This means that for all i = 1, . . . , s,

bi[1] = b1[i] +
P

j<i uj [i � j + 1] (addition over Fm
2
). Uniformity of

�
b1[1], b2[1], . . . , bt[1]

�

follows from the uniformity of b1 =
�
b1[1], . . . , b1[s]

�
⇠ [d]s.

2.2.1 The s-wide Replacement Product

Let A and B denote, respectively, the outer and inner graphs promised by Theo-

rem 1. So A is a d�regular graph on (roughly) n vertices, while B is a Cayley graph over

Fms
2

, where 2m = d, so that vertices of B are identified with s�tuples of elements in [d]:

b =
�
b[1], . . . , b[s]

�
2 [d]s. Given a 2 A, a vertex b 2 B can be identified with an s�tuple of

neighbors of a since |N(a)| = d. Define the rotation map � : A ⇥ B ! A via �(a, b) = a0

where a0 is the b[1]�th neighbor of a. Since � only depends on the first coordinate of b, we

write �(a, b̂) where b̂ is shorthand for b[1]. For any k � 1, the k�length s�wide replacement

15

walk distribution, denoted sRWk
A,B draws a ⇠ A and (b1, . . . , bk�1) ⇠ ˜RW

k�1

B , and outputs

(a1, . . . , ak) 2 Ak where a1 = a and ai+1 = �(ai, b̂i) for i = 1, . . . , k � 1. Since the graphs

A and B will be fixed throughout this paper, we write sRWk rather than sRWk
A,B. Given

a 2 A, the distribution sRWk(a) outputs a sample from sRWk conditioned on a1 = a.

Likewise, given (a, b) 2 A ⇥ B, sRWk(a, b) outputs a sample from sRWk conditioned on

(a1, b1) = (a, b). The s�wide replacement walk is shown in Figure 2.1.

/

Figure 2.1: Illustration of s-wide random walk on A using a graph B.

For our graphs A and B (specifically, since A is d�regular and B is a Cayley graph over

Fms
2
⇠= [d]s) the next fact follows immediately from Claim 3.

Fact 1 (Pseudorandomness) For all k = 1, 2, . . . , s, s + 1 and all a 2 A, sRWk(a) ⌘

RW
k
A(a).

Following Ta-Shma’s nomenclature, we will refer to the fact above as the pseudorandomness

property. This property will play a crucial role in our proofs below as it will allow us

to transform a short s�wide walk into a pure random walk on A, thus eliminating the

16

dependency on the graph B.

Local Invertibility. Since A is undirected, its edge relation is symmetric. This means

that whenever a, a0 2 A and b 2 B are such that a0 = �(a, b̂), there must exist some b̂0 2 [d]

such that a = �(a0, b̂0). In this case we say that (b̂, b̂0) are inverses with respect to the

A�edge (a, a0). Local invertibility in our context means that these inverse relations are

independent of the A edges. So, specifically, for all b̂ there exists b̂0 such that (b̂, b̂0) are

inverses with respect to all A edges. This means, for example that for all a 2 A, if you walk

to a0 = �(a, b̂) and then continue to a00 = �(a0, b̂0), then a00 = a. This property is easy to

establish in our situation because A is a Cayley graph.

Practically speaking, what this means for us is that s�wide replacement walks

can be “started in the middle”. For standard random walks, the distribution RW
k
A which

outputs (a1, . . . , ak) is identical to the distribution which first chooses ai ⇠ A randomly, and

then draws (ai, ai+1, . . . , ak) ⇠ RW
k�i+1

A (ai) and (ai, ai�1, . . . , a1) ⇠ RW
i
A(ai), outputting

(a1, . . . , ak). This follows from the regularity of A. Likewise, because of local invertibility,

the s�wide replacement walk distribution sRWk is identical to the following “start in the

middle” version which draws ai ⇠ A and bi ⇠ B, then draws (bi, . . . , bk�1) ⇠ ˜RW
k�i
B (bi)

and (bi, . . . , b1) ⇠ ˜RW
i
B(bi) (in this case the shifted neighborhood distribution needs to shift

the other way), then sets aj+1 = �(aj , b̂j) for j = i, . . . , k � 1 and aj�1 = �(aj , b̂0j) for

j = i, . . . , 2, where b̂0j is the inverse of b̂j ; finally (a1, . . . , ak) is output.

17

2.3 Main theorem

Theorem 2 For every " > 0 there exists an explicit linear code {Ck}k that has distance

� 1

2
� " and rate = ⌦("2+o(1)).

Proof. Fix k 2 N. The construction of Ck uses the following building blocks.

• The Base Code: Let C0 : {0, 1}k ! {0, 1}n0 be an explicit code of bias "0 and rate R0.

We use the construction in [9], so that R0 = O("�3

0
).

• The Outer Graph: Let A be the dA�regular Cayley graph with expansion �A. We use

the construction of Theorem 1, so that �A  8/
p
dA and |A| = n0 ·

�
1 + on0(1)

�
.

• The Inner Graph: Let B be a dB�regular Cayley graph over Fr
2
with expansion �B.

We use the construction of Theorem 1 so that �B = (r � 1) · 2�` and dB = 22` for

integers `, r 2 N such that `  r/2.

The building blocks carry several parameters which we now connect. In order to set up the

s�wide replacement product, define additional parameters s,m 2 N such that r = ms, and

let dA = 2m, so B ' [dA]s. It will be important for our analysis to have �A  �2

B; in order

to arrange this, set m = s and ` = s/5. This gives

�A 
8p
dA

= 8 · 2�m/2 =
8

2`/2
· 2�2`  (ms� 1)2 · 2�2` = �2

B,

where the final inequality holds whenever s � 2. We will also require "0  �B/2 which we

ensure by setting "0 =
s2�1

2
·2�s/5. At this point, all parameters so far have been defined in

terms of s; we will specify s later. Note that our setup allows us to use B to take s�wide

18

replacement walks in A. We now describe the code. Given x 2 {0, 1}k, Ck(x) is computed

as follows.

• Compute C0(x) 2 {0, 1}n0 , and define f : A! {0, 1} by setting

f(a) =

8
>><

>>:

C0(x)i, a = ◆(i)

0, otherwise

where ◆ : [n0] ,! A is some fixed embedding.

• Define g : sRWt ! {0, 1} by setting g(a0, . . . , at) = f(a0) � · · · � f(at). Output

g 2 {0, 1}sRWt
.

The rate of Ck is

Ratek =
k

|sRWt|
� k

|A| ·
1

|B| ·
1

dt�1

B

= ⌦("�3

0
) · 2�s2 · d�(t�1)

B = ⌦
�
s�6 · 2�s2

�
· d�(t�1)

B .

To bound the bias of Ck, we use the following lemma which is proved in the next section.

Lemma 1 (Bias Reduction of Wide Replacement Product Walks) Let integers s, t 2

N and graphs A and B be as above; so in particular A and B are �A and �B expanders with

�A  �2

B. Let f : A! {0, 1} be any function such that
��Ea

⇥
(�1)f(a)

⇤��  �B. Then

���E(a0,...,at)⇠sRWt

h
(�1)f(a0)�···�f(at)

i���  (2�B)
t(1�4/s).

19

Note that the function f : A! {0, 1} defined in the first step of computing Ck(x) satisfies

���Ea
⇥
(�1)f(a)

⇤���  2 ·
���Ei⇠[n0]

⇥
(�1)C0(x)i

⇤���  2"0  �B,

and so Lemma 1 ensures that Biask  (2�B)t(1�4/s). Putting the calculations of Rankk and

Biask together and using �B = (s2 � 1)/
p
dB gives

Ratek = ⌦
⇣
s�6 · (s2 � 1)�2t · 2�2t�s2+2s/5 · (2�B)

8t/s
⌘
· Bias2k = ⌦

⇣
s�5t · (2�B)

8t/s
⌘
· Bias2k,

where the right most equality holds whenever 6 log s  2s/5 (implied by s � 100) and

t � s2. Note, therefore, that for ⌘ 2
�
0, 1/2

�
, Ratek = ⌦

�
Bias

2+⌘
k

�
holds whenever

(2�B)t(⌘�4⌘/s�8/s)  s�5t which, if ⌘ � 24/s is implied by (2�B)⌘/2  s�5. Finally, by

plugging in �B = (s2 � 1) · 2�s/5, we see that this holds whenever ⌘s � 60 log s.

So finally, let us prove the theorem. Suppose that we are given " > 0 and ⌘ 2
�
0, 1/2

�
, and we want to construct Ck such that Biask  " and Ratek = ⌦

�
Bias

2+⌘
�
. We let

Ck be the construction defined above with s chosen large enough so that ⌘s � 60 log s; this

ensures Ratek = ⌦
�
Bias

2+⌘
k

�
as noticed above. Finally, let us choose t large enough so that

t � s2 and (2�B)t(1�4/s)  "; this ensures Biask  ", as desired.

2.4 Proof of Lemma 1

In this section we prove the key bias reduction lemma that was the core of The-

orem 4. Our proof will be by induction, just like Claim 2, so we will need to modify the

statement of Lemma 1 so it adheres to an inductive argument.

20

2.4.1 Lemma Statement

Let A and B be the graphs from Section 2.3. Write � instead of �B for the

expansion of B and recall that �A  �2. Let f : A ! {0, 1} be a function such that

��Ea
⇥
(�1)f(a)

⇤��  �. For any k � 0, define gk : A⇥B ! R by

gk(a, b) = E
(a0,...,ak)⇠sRWk

(a,b)

h
(�1)f(a0)�···�f(ak)

i
. (2.2)

Let "k =
��Ea,b

⇥
gk(a, b)

⇤�� and let �k be such that �2

k + "2k = Ea,b

⇥
gk(a, b)2

⇤
. We prove the

following.

Lemma 2 (Implies Lemma 1) Assume the above setup. For all k � 0

"k  (2�)k(1�4/s); �k  (2�)(k�2)(1�4/s).

As mentioned, we prove Lemma 2 by induction. The following two claims combine to easily

prove Lemma 2; we will prove them in Sections 2.4.3 and 2.4.4.

Claim 4 (Base Case.) Assume the above setup. For all k = 0, 1, . . . , s:

"k 
1

2
· (2�)k+1; �k  2 · (2�)k�1.

Claim 5 (Induction Step.) Assume the above setup. For all k > s:

· "k  1

2
(2�)s("k�s + 3�k�s);

· �2

k 
1

2
(2�)s�2("k�2 + ��k�1)

�
"k�s + (2 + �)�k�s

�
+ �s�k�s�k�1 + �2�2

k�1

21

Proof of Lemma 2. Claim 4 clearly establishes the base cases since 1

2
·(2�)k+1 

(2�)k(1�4/s) and 2 · (2�)k�1  (2�)(k�2)(1�4/s). For the first part of the induction step, we

have

"k  1

2
· (2�)s · ("k�s + 3�k�s) 

1

2
· (2�)s ·

h
(2�)(k�s)(1�4/s) + 3 · (2�)(k�s�2)(1�4/s)

i

= 8�4 ·
h
(2�)k(1�4/s) + 3 · (2�)(k�2)(1�4/s)

i
 2�2(4�2 + 3) · (2�)k(1�4/s)  (2�)k(1�4/s).

The bound 2�2(4�2 + 3)  1 holds because �  1/3. The second part of the induction step

is similar:

�2

k 
1

2
· (2�)s�2 · ("k�2 + ��k�1)

�
"k�s + (2 + �)�k�s

�
+ �s�k�s�k�1 + �2�2

k�1

 1

2
· (2�)2 ·

h
(2�)(k�2)(1�4/s) + �(2�)(k�3)(1�4/s)

i
·
h
(2�)k(1�4/s) + (2 + �)(2�)(k�2)(1�4/s)

i

+ �s(2�)(k�s�2)(1�4/s)(2�)(k�3)(1�4/s) + �2(2�)2(k�3)(1�4/s)

= 2�2(2�)(2k�2)(1�4/s) + 2�3(2�)(2k�3)(1�4/s) + (4�2 + 2�3)(2�)(2k�4)(1�4/s)+

+ (4�3 + 2�4)(2�)(2k�5)(1�4/s) + 24�s�4(2�)(2k�5)(1�4/s) + �2(2�)(2k�6)(1�4/s)



2�2 + 2�3 + (4�2 + 2�3) + (2�2 + �3) + 23�s�3 +

1

4

�
· (2�)(2k�4)(1�4/s)

 (2�)(2k�4)(1�4/s),

where the last bound has used 8�2 + 6�3  3/4 which holds because �  1/4.

22

2.4.2 Key Intuition

In this section we zoom in on some of the key steps in the coming proofs in order

to give extra explanations and intuitions.

s�wide Replacement Product Walks in A. Recall that a random s�wide replacement

product walk in A (i.e., a random sample from sRWk) is produced as follows:

1. choose base points (a, b) ⇠ A⇥B;

2. generate (b1, . . . , bk) 2 Bk as follows:

(i) set b1 = b;

(ii) for i � 2, draw bi ⇠ N(bi�1) and set bi = shift(bi), where shift cycles the coordi-

nates of an element of B ' [d]s, so shift
�
bi[1], . . . , bi[s]

�
=
�
bi[2], . . . , bi[s], bi[1]

�
.

3. generate and output (a0, . . . , ak) 2 Ak+1 as follows:

(i) set a0 = a;

(ii) for i � 1, set ai = �(ai�1, b̂i) where b̂i = bi[1] 2 [d] denotes the first coordinate

of bi 2 [d]s, and where � is the rotation map of A.

Pseudorandomness. As mentioned in Section 2.2, when k  s the distributions sRWk

and RW
k+1

A are identical. That is, a random k�step s�wide replacement product walk in

A is just a random (k + 1)�step random walk in A. The following is an example of how

this concept manifests itself in the next section. Let "k(a) = Eb

⇥
gk(a, b)

⇤
.

"k(a) = E
(a0,...,ak)⇠sRWk

(a)

h
(�1)f(a0)�···�f(ak)

i
= E

(a0,...,ak)⇠RWk+1
A

h
(�1)f(a0)�···�f(ak)

i

23

So, "k(a) = hk+1(a) whenever k  s, where hk+1 is the function defined and analyzed in

Claim 1. This will be used crucially later.

The Ignore First Step Trick. This refers to a key step in the proof that for all k � 1,

�2

k  Ea
⇥
"k�1(a)

2
⇤
+ �2�2

k�1
. (2.3)

This bound is useful as it reduces the task of bounding �2

k to the task of bounding Ea
⇥
"k�1(a)2

⇤
,

which will turn out to be much easier. The proof of (2.3) requires other ideas as well. Re-

call from the previous paragraph the definition of "k(a); additionally let �k(a) be such that

�k(a)2 + "k(a)2 = Eb

⇥
gk(a, b)2

⇤
.

�2

k  �2

k + "2k = Ea,b

⇥
gk(a, b)

2
⇤

= Ea,b

h
Eb0⇠N(b)

⇥
gk�1(a

0, b0)
⇤
2
i

= E a⇠A
b⇠B2b0

⇥
gk�1(a, b) · gk�1(a, b

0)
⇤
 Ea

⇥
"k�1(a)

2
⇤
+ �2Ea

⇥
�k�1(a)

2
⇤

 Ea
⇥
"k�1(a)

2
⇤
+ �2�2

k�1
.

The second line holds because gk(a, b) = (�1)f(a) · Eb0⇠N(b)

⇥
gk�1(a0, b0)

⇤
, where

a0 = �(a, b̂); the first inequality on the second line follows from the expander mixing lemma

(Definition 1) on B2 (a �2�expander); the final inequality has used Ea
⇥
�k�1(a)2

⇤
 �2

k�1

which holds because

Ea
⇥
�k�1(a)

2 + "k�1(a)
2
⇤
= Ea,b

⇥
gk�1(a, b)

2
⇤
= �2

k�1
+ "2k�1

,

24

and "2k�1
 Ea

⇥
"k�1(a)2

⇤
(Jensen’s inequality). The ignore first step trick is the reasoning

behind the final equation on the first line. The observation is that the distribution which

draws (a, b) ⇠ A⇥B and b0, b00 ⇠ N(b) and outputs (a0, b0, b00) where a0 = �(a, b̂) is identical

to the distribution which draws a0 ⇠ A and a random edge b0 ⇠B2 b00 in B2 and outputs

(a0, b0, b00). See Figure 2.2 for intuition.

/

Figure 2.2: “Ignore first step” trick.

Starting the Replacement Walk in the Middle. A useful feature of random walks on

an undirected d�regular graph is that the steps can be generated out of order. Specifically,

the vertices in a k�step random walk can be generated by choosing ai ⇠ A first for any

i 2 [k] and then drawing two walks (ai, ai+1, . . . , ak) ⇠ RW
k�i+1

A (ai), (ai, ai�1, . . . , a1) ⇠

RW
i
A(ai) and outputting (a1, . . . , ak). Replacement product walks also have this feature,

though correctly formulating it requires precision. We will use that the following distribution

is identical to sRWk for any i 2 {0, 1 . . . , k � 1}:

1. ai ⇠ A and a random edge bi ⇠ bi+1 in B; set bi+1 = shift(bi+1);

2. generate (b1, . . . , bk) 2 Bk as follows:

(i) for j � i+ 2, draw bj ⇠ N(bj�1) and set bj = shift(bj);

25

(ii) for j  i� 1, draw bj ⇠ N(bj+1) and set bj = shift
�1(bj);

3. generate and output (a0, . . . , ak) 2 Ak+1 as follows:

(i) for i � i+1, set ai = �(ai�1, b̂i) where b̂i = bi[1] 2 [d] denotes the first coordinate

of bi 2 [d]s, and where � is the rotation map of A;

(ii) for j  i � 1, set aj = ��1(aj+1, b̂j) where ��1(a, b̂) = �(a, b̂0) where b̂0 is the

local inverse of b̂.

An example of how this is used is the first step of the bound for "k when k > s:

"k =

����E(a0,...,ak)⇠sRWk

h
(�1)f(as) · (�1)f(a0)�···�f(as) · (�1)f(as)�···�f(ak)

i����

=

����Eas⇠A
bs⇠bs+1

h
(�1)f(as) · ~gs(as, bs) · gk�s(as, bs+1)

i����,

where ~gs(a, b) indicates that the repalcement walk is drawn in the “backwards” fash-

ion according to Steps 2(ii) and 3(ii) above. Equivalently, ~gs(a, b) is the expectation of

(�1)f(a0)�···�f(as) over (a0, . . . , as) ⇠ sRWs conditioned on (as, bs) = (a, b).

Figure 2.3: Starting the Replacement Walk in the Middle.

26

2.4.3 Bounding the "k Terms

In this section we bound the "k terms in Claims 4 and 5, thereby proving half of

each claim. We bound the �k terms in the next section.

The Base Case. This follows directly from the pseudorandomness property, and the

analysis already done in Section 2.1.2 (Claim 1). Specifically, when k  s, we have

"k =
���Ea

⇥
"k(a)

⇤��� =
���Ea

⇥
hk+1(a)

⇤��� 
1

2
· (2�)k+1,

where "k(a) = hk+1(a) by pseudorandomness (hk+1 is the function defined in Claim 1).

The Induction Step. Fix k > s. We have

"k =

����Ea⇠A
b⇠b0

h
(�1)f(a) · ~gs(a, b) · gk�s(a, b

0)
i���� 

����Ea⇠A

h
(�1)f(a) · ~"s(a) · "k�s(a)

i����+ ��s�k�s,

where the equality holds by starting the replacement walk in the middle, and the inequality

is the expander mixing lemma (Definition 1) on B. We are using the shorthand ~"s(a) for

Eb

⇥
~gs(a, b)

⇤
, and we have used Cauchy-Schwarz to bound the standard deviation terms,

just as we did in the computation in the “ignore first step trick” paragraph in Section 2.4.2.

Specifically,

Ea
⇥

~�s(a) · �k�s(a)
⇤

p

Ea[~�s(a)2]
p

Ea[�k�s(a)2]  ~�s�k�s = �s�k�s.

27

By pseudorandomness, (�1)f(a) · ~"s(a) = (�1)f(a) · hs+1(a) = Ea0⇠N(a)

⇥
hs(a0)

⇤
= Ea0⇠N(a)

⇥
"s�1(a0)

⇤
, and so we get the desired bound on "k via the expander mixing lemma on A, as

follows:

"k 
���Ea⇠a0

⇥
"s�1(a) · "k�s(a

0)
⇤���+ ��s�k�s  "s�1"k�s + �2�s�1�k�s + ��s�k�s

 1

2
(2�)s("k�s + 3�k�s).

2.4.4 Bounding the �k Terms

The Base Case. We have already noted that when 1  k  s, "k�1(a) = hk(a) by

pseudorandomness. Thus, Ea
⇥
"k�1(a)2

⇤
= Ea

⇥
hk(a)2

⇤
 (2�)2k�2, by Claim 1. It follows

from the first step trick that �2

k  (2�)2k�2 + �2�2

k�1
, which implies �k  (2�)k�1 + ��k�1.

Iterating this bound gives

�k  �k�1 ·
�
2k�1 + 2k�2 + · · ·+ 2 + 1

�
 2 · (2�)k�1.

The Induction Step. Fix k > s. As mentioned in the “ignore first step trick” paragraph

in Section 2.4.2, �2

k  Ea
⇥
"k�1(a)2

⇤
+�2�2

k�1
holds and so it su�ces to bound Ea

⇥
"k�1(a)2

⇤
.

By starting the replacement walk in the middle, we get

Ea
⇥
"k�1(a)

2
⇤
= Eas�1⇠A

bs�1⇠bs

h
(�1)f(as�1) · gk�s(as�1, bs) ·G(as�1, bs�1)

i
,

where G : A ⇥ B ! R is defined by G(a, b) := E(a0,...,as�1)

⇥
(�1)f(as�1)�···�f(a0) · "k�1(a0)

⇤
,

where the expectation is over (a0, . . . , as�1) drawn as follows:

28

· set bs�1 = b; for 1  i  s� 2, draw bi ⇠ N(bi+1) and then set bi = shift
�1(bi);

· set as�1 = a; for 0  i  s� 2 set ai = ��1(ai+1, b̂i+1).

The expander mixing lemma (Definition 1) on B gives

Ea
⇥
"k�1(a)

2
⇤
 Ea

h
(�1)f(a) · "k�s(a) · µG(a)

i
+ ��k�s�G,

where µG := Ea,b

⇥
G(a, b)

⇤
, µG(a) := Eb

⇥
G(a, b)

⇤
and �G is such that �2

G+µ2

G = Ea,b

⇥
G(a, b)2

⇤
.

By pseudorandomness, µG(a) = E(a0,...,as�1)⇠RWs
A(a)

⇥
(�1)f(a0)�···�f(as�1) · "k�1(as�1)

⇤
=

ĥs(a), where ĥs : A ! R is given by ĥs(a) = E(a1,...,as)⇠RWs
A

⇥
(�1)f(a1)�···�f(as) · "k�1(as)

⇤
.

Note this is the function defined in Claim 2, instantiated with H(a) = "k�1(a). We have

(�1)f(a) · µG(a) = Ea0⇠N(a)

⇥
ĥs�1(a0)

⇤
, and so by the expander mixing lemma on A and

Claim 2 we have

Ea
⇥
"k�1(a)

2
⇤
 Ea⇠a0

⇥
"k�s(a) · ĥs�1(a

0)
⇤
+ ��k�s�G

 "k�s · 2s�3(�s�2 · "̂1 + �s�1�̂1) + �2�k�s · 2s�3(�s�3"̂1 + �s�2�̂1) + ��k�s�G,

where "̂1 and �̂1 are the notations from Claim 2. In our case, "̂1 = Ea
⇥
(�1)f(a) · "k�1(a)

⇤
=

"k�2, and �̂1 =
p

Ea["k�1(a)2]� "̂2
1


q
Ea,b[gk�1(a, b)2]� "̂2

1
=

q
�2

k�1
+ "2k�1

� "2k�2


�k�1. We have used Jensen’s inequality and that "k�2 � "k�1. Using these values and

remembering the bound �2

k  Ea
⇥
"k�1(a)2

⇤
+ �2�2

k�1
gives

�2

k 
1

2
(2�)s�2("k�2 + ��k�1)("k�s + ��k�s) + ��k�s�G + �2�2

k�1
. (2.4)

29

This is almost the required bound except we still need to simplify �G. For this purpose, let us

add a parameter to our notation for G, writing Gs�1 instead of G, since it is an expectation

over a length (s� 1) “backwards” replacement walk. For r  s� 1, let µr := Ea,b

⇥
Gr(a, b)

⇤
,

let µr(a) := Eb

⇥
Gr(a, b)

⇤
and ⌧r such that ⌧2r +µ2

r = Ea,b

⇥
Gr(a, b)2

⇤
. We need to bound⌧s�1.

By the ignore first step trick and expander mixing lemma on B2,

⌧2s�1  Ea,b

⇥
Gs�1(a, b)

2
⇤
= Ea⇠A

b⇠B2b0

h
Gs�2(a, b) ·Gs�2(a, b

0)
i
 Ea

⇥
µs�2(a)

2
⇤
+ �2⌧2s�2.

We have already seen that µs�2(a) = ĥs�1(a), and so by Claim 2 and our computation of "̂1

and �̂1 above, ⌧2s�1
 (2�)2s�6("k�2+��k�1)2+�2⌧2s�2

, which implies ⌧s�1  (2�)s�3("k�2+

��k�1) + �⌧s�2. Iterating this bound (and using ⌧0  �k�1) gives

⌧s�1  �s�3("k�2+��k�1)(2
s�3+2s�4+· · ·)+�s�1⌧0  2·(2�)s�3("k�2+��k�1)+�s�1�k�1.

Plugging this into (2.4) gives the desired bound:

�2

k 
1

2
(2�)s�2("k�2 + ��k�1)

�
"k�s + (2 + �)�k�s

�
+ �s�k�s�k�1 + �2�2

k�1
.

2.5 Expander Hitting Set Lemma

Just for fun, we include a new proof of the classical expander hitting set lemma.

Lemma 3 Let A be a ��expander, and let S ⇢ A be a set of size |S| = ⇢|A|. Then for all

30

t � 1,

Pr
(a1,...,at)⇠RWt

h
ai 2 S 8 i = 1, . . . , t

i
 ⇢ ·

�
⇢+ �(1� ⇢)

�t�1
.

Proof. Let S : A ! {0, 1} be the indicator function of S. For k � 1, define

gk : A! R by

gk(a) = Pr
(a1,...,ak)⇠RWk

(a)

h
ai 2 S 8 i = 1, . . . , k

i
.

Let "k := Ea
⇥
gk(a)

⇤
and �k be so �2

k + "2k = Ea
⇥
gk(a)2

⇤
. Our proof is by induction on t;

it is clear that the lemma holds in the base case. For k � 2, note that gk(a) = S(a) ·

Ea0⇠N(a)

⇥
gk�1(a0)

⇤
holds, and so

�2

k + "2k = Ea
⇥
gk(a)

2
⇤
= E a⇠A

a0,a00⇠N(a)

h
S(a) · gk�1(a

0) · gk�1(a
00)
i
= "2k�1.

We have used that S(a)2 = S(a) holds for all a 2 A, and that choosing a ⇠ A and then

two (k � 1) length walks starting at a is identical to simply choosing a random walk of

length (2k � 1). Now, fix t � 2 and k, ` � 1 such that t = k + `. We have

"t = E
(a1,...,at)⇠RWt

h
S(a1) · · · S(at)

i
= Ea⇠a0

⇥
gk(a) · g`(a0)

⇤
 "k"` + ��k�`


q
"2k + ��2

k ·
q

"2` + ��2

` =
q
(1� �)"2k + �"2k�1 ·

q
(1� �)"2` + �"2`�1

where the last inequality on the first line is the expander mixing lemma on A and the first

inequality on the second line is Cauchy-Schwarz. Note that if 2k � 1 < t then we can use

31

induction to bound the terms on the right hand side:

(1� �)"2k + �"2k�1  ⇢ ·
�
⇢+ �(1� ⇢)

�
2k�2 ·

⇥
(1� �)⇢+ �

⇤
= ⇢ ·

�
⇢+ �(1� ⇢)

�
2k�1

.

Therefore, if t is even, we can set k = ` = t/2 to obtain "t  ⇢ ·
�
⇢+�(1�⇢)

�t�1
, as desired.

This does not fully work if t is odd since if we set k =
⌃
t/2

⌥
and ` =

⌅
t/2

⇧
, then 2k� 1 = t

and so we cannot use induction to bound "2k�1. However, we can bound "k, "`, "2`�1 by

induction; this gives

"2t 
⇣
(1� �)⇢2

�
⇢+ �(1� ⇢)

�
2k�2

+ �"t
⌘
·
⇣
⇢
�
⇢+ �(1� ⇢)

�
2`�1

⌘
= 2A · "t +B,

where A = �⇢
2
·
�
⇢+�(1� ⇢)

�t�2
and B = (1��)⇢3

�
⇢+�(1� ⇢)

�
2t�3

. Collecting the terms

in this way allows us to proceed by completing the square. We get "t  A+
p
A2 +B and

we complete the proof by showing that A +
p
A2 +B = ⇢

�
⇢ + �(1 � ⇢)

�t�1
. For this last

calculation, set the shorthand � := ⇢+ �(1� ⇢). We have

A+
p
A2 +B = ⇢ · �t�2 ·


�

2
+

r
�2

4
+ ⇢(1� �)�

�
= ⇢ · �t�1,

where the final equation holds because � = �/2 +
p
�2/4 + ⇢(1� �)�, which is verified by

a simple calculation.

32

Chapter 3

Mixing of 3-term progressions in

Quasirandom Groups

3.1 Introduction

In this work, we revisit a conjecture by Gowers [43] about mixing of three term

progressions in quasirandom finite groups. Gowers initiated the study of quasirandom

groups while refuting a conjecture of Babai and Sós [14] regarding the size of the largest

product-free set in a given finite group. A finite group is said to be D-quasirandom for a

positive integer D if all its non-trivial irreducible representations are at least D-dimensional.

The quasirandomness property of groups can be used to show that certain ”objects” related

to the group ”mix” well. For instance, the quasirandomness of the group PSL2(Fq) can be

used to give an alternate (and weaker) proof [29] that the Ramanujan graphs of Lubotzky,

Philips and Sarnak [51] are expanders.

33

Gowers proved that for anyD-quasirandom groupG and any three subsetsA,B,C ⇢

G satisfying |A| · |B| · |C| � |G|3/D, there exist x 2 A, y 2 B, z 2 C such that x ·y = z. More

generally, he proved that the number of such triples (x, y, z) 2 A⇥B⇥C such that x ·y = z

is at least (1 � ⌘)|A| · |B| · |C|/|G| provided |A| · |B| · |C| � |G|3/⌘2D. In other words the

set of triples of the form (x, y, xy) mix well in a quasirandom group. Gowers’ proof of this

result was the inspiration and the first step towards the recent optimal inapproximability

result for satisfiable kLIN over non-Abelian groups [18]. After proving the well-mixing of

triples of the form (x, y, xy) in quasirandom groups, Gowers conjectured a similar statement

for triples of the form (x, xy, xy2). More precisely, he conjectured the following statement:

Let G be a D-quasirandom group and f1, f2, f3 : G! C such that kfik1  1, then

���Ex,y⇠G
⇥
f1(x)f2(xy)f3(xy

2)
⇤
�

Y

i=1,2,3

Ex⇠G
⇥
fi(x)

⇤��� = oD(1) , (3.1)

where the expression oD(1) goes to zero as D increases.

When D is small, one hope to bound the left-hand side expression above by any

meaningful quantity. Consider G to be the Abelian group Z/nZ which is 1-quasirandom

and set fi = 1B for all i 2 [3] where B = {1, . . . , b�nc} for any � 2 (0, 1/3). It is easy to

observe that the first term in the left-hand side of (3.1) is ⌦(�2) while the second term is

�3. A more interesting example is when the group is Sn. In this case, let fi = 1Bi , where

B1 = An, B2 = Snand B3 = SN \ An. Now, the f 0

is have density 1/2, 1, 1/2 respectively.

Note that there in no 3-term progression in (B1, B2, B3) and therefore the first term in the

left-hand side of (3.1) is 0. Although Sn is a non-Abelian group, it does have a non-trivial

representation of dimension 1. Thus the conjecture essentially asks if the group is very ”non-

34

Abelian” (more precisely, is D-quasirandom for large D), then do these counterexamples

go away.The conjecture can be naturally extended to k-term progressions and product of k

functions for k > 3. However, in this note we will focus on the three term case.

For the specific case of 3-term progressions, Tao [61] proved the conjecture for the

group SLd(Fq) for bounded d using algebraic geometric machinery. In particular, he proved

that the left-hand side expression in (3.1) can be bounded by O(1/q1/8) when d = 2 and

Od(1/q
1/4) for larger d. Tao’s approach relied on algebraic geometry and was not amenable

to other quasirandom groups. Later, Peluse [53] proved the conjecture for all non-Abelian

finite simple groups. She used basic facts from non-Abelian Fourier analysis to prove that

the left-hand side expression in (3.1) can be bounded by
P

1 6=⇢2Ĝ 1/d⇢ where Ĝ represents

the set of irreducible unitary representation of G and d⇢ the dimension of the irreducible

representation ⇢. This latter quantity is the Witten zeta function ⇣G of the group G minus

one and can be bounded for simple finite quasirandom groups using a result due to Liebeck

and Shalev [50, 49].

In this paper, we show that a slight variation of Peluse’s argument can be used

to prove the conjecture for all quasirandom groups with better error parameters. More

surprisingly, the proof stays completely elementary and short. Specifically, we prove the

following statement:

Theorem 4 Let G be a D-quasirandom finite group, i.e, its all non-trivial irreducible rep-

resentations are at least D-dimensional. Let f1, f2, f3 : G! C such that kfik1  1 then

���Ex,y⇠G
⇥
f1(x)f2(xy)f3(xy

2)
⇤
�

Y

i=1,2,3

Ex⇠G
⇥
fi(x)

⇤��� 
✓

2p
D

◆ 1
4

.

35

The only tools that we use the prove the theorem are: the Cauchy-Schwarz inequality and

basic non-abelian Fourier analysis.

3.2 Preliminaries

We begin by recalling some basic representation theory and non-Abelian Fourier

analysis. See the monograph by Diaconis [30, Chapter 2] for a more detailed treatment

(with proofs).

We will be working with a finite group G and complex-valued functions f : G !

C on G. All expectations will be with respect to the uniform distribution on G. The

convolution between two function f, h : G! C, denoted by f ⇤ h, is defined as follows:

(f ⇤ h)(x) := Ey[f(xy
�1)h(y)].

For any p � 1, the p-norm of any function f : G! C is defined as

kfkpp := Ex[|f(x)|p].

For any element g 2 G, the conjugacy class of g, denoted by C(g), refers to the

set {x�1gx|x 2 G}. Observe that the conjugacy classes form a partition of the group G. A

function f : G! C is said to be a class function if it is constant on conjugacy classes.

For any b 2 G we use �bf(x) := f(x) · f(xb). For any set S ⇢ G, µS : G ! R

denotes the scaled density function |G|

|S|1S . The scaling ensures that Ex[µS(x)] = 1.

Given a complex vector space V , we denote the vector space of linear operators on

36

V by End(V). This space is endowed with the following inner product and norm (usually

referred to as the Hilbert-Schmidt norm):

For A,B 2 End(V), hA,BiHS := Trace(A⇤B) and kAk2HS := hA,AiHS = Trace(A⇤A).

This norm is known to be submultiplicative (i.e, kABkHS  kAkHS · kBkHS).

Representations and Characters: A representation ⇢ : G ! End(V) is a homomor-

phism from G to the set of linear operators on V for some finite-dimensional vector space V

over C, i.e., for all x, y 2 G, we have ⇢(xy) = ⇢(x)⇢(y). The dimension of the representation

⇢, denoted by d⇢, is the dimension of the underlying C-vector space V . The character of a

representation ⇢, denoted by �⇢ : G! C, is defined as �⇢(x) := Trace(⇢(x)).

The representation 1: G ! C satisfying 1(x) = 1 for all x 2 G is the trivial

representation. A representation ⇢ : G ! End(V) is said to reducible if there exists a non-

trivial subpsace W ⇢ V such that for all x 2 G, we have ⇢(x)W ⇢ W . A representation

is said to be irreducible otherwise. The set of all irreducible representations of G (upto

equivalences) is denoted by Ĝ.

For every representation ⇢ : G! End(V), there exists an inner product h·, ·iV over

V such that every ⇢(x) is unitary (i.e, h⇢(x)u, ⇢(x)viV = hu, viV for all u, v 2 V and x 2 G).

Hence, we might wlog. assume that all the representations we are considering are unitary.

The following are some well-known facts about representations and characters.

Proposition 1 1. The group G is Abelian i↵ d⇢ = 1 for every irreducible representation

⇢ in Ĝ.

37

2. For any finite group G,
P

⇢2Ĝ d2⇢ = |G|.

3. [orthogonality of characters] For any ⇢, ⇢0 2 Ĝ we have: Ex

h
�⇢(x)�⇢0(x)

i
= 1[⇢ = ⇢0].

Definition 2 (quasirandom groups) A non-Abelian group G is said to be D-quasirandom

for some positive integer D if all its non-trivial irreducible representations ⇢ satisfy d⇢ � D.

Any group G having a non-trivial Abelian subgroup is 1-quasirandom. For in-

stance, the symmetric group Sn is 1-quasirandom, while the alternating group An is ⌦(n)-

quasirandom. The special linear group SL2(Fp) for prime p is (p � 1)/2-quasirandom. If

G,G0 are D-quasirandom, so is G⇥G0.

Non-Abelian Fourier analysis: Given a function f : G ! C and an irreducible repre-

sentation ⇢ 2 Ĝ, the Fourier transform is defined as follows:

f̂(⇢) := Ex[f(x)⇢(x)].

The following proposition summarizes the basic properties of Fourier transform that we will

need.

Proposition 2 For any f, h : G! C, we have the following

1. [Fourier transform of trivial representation]

f̂(1) = Ex[f(x)].

2. [Convolution]

[f ⇤ h(⇢) = f̂(⇢) · ĥ(⇢).

38

3. [Fourier inversion formula]

f(x) =
X

⇢2Ĝ

d⇢ · hf̂(⇢), ⇢(x)iHS.

4. [Parseval’s identity]

kfk22 =
X

⇢2Ĝ

d⇢ · kf̂(⇢)k2HS.

5. [Fourier transfrom of class functions] For any class function f : G ! C, the Fourier

transform satisfies

f̂(⇢) = c · Id⇢

for some constant c = c(f, ⇢) 2 C. In other words, the Fourier transform is a scaling

of the Identity operator Id⇢.

The following claim (also used by Peluse [53]) observes that the scaled density

function µgC(g) has a very simple Fourier transform since it is a translate of the class

function µC(g)

Claim 6 For any g 2 G and ⇢ 2 Ĝ we have:

µ̂gC(g)(⇢) =
�⇢(g)

d⇢
· ⇢(g)

where C(g) refers to the conjugacy class of g. Moreover, kµ̂gC(g)k2HS
= |�⇢(g)|2

d⇢

39

Proof. We begin by observing that

µ̂gC(g)(⇢) = Ex
⇥
µgC(g)(x) · ⇢(x)

⇤

= Ex
⇥
µgC(g)(gx) · ⇢(gx)

⇤

= Ex
⇥
µgC(g)(gx) · ⇢(g) · ⇢(x)

⇤

= ⇢(g) · Ex
⇥
µC(g)(x) · ⇢(x)

⇤

= ⇢(g) · µ̂C(g)(⇢).

On the other hand, as µC(g) is a class function, we have µ̂C(g)(⇢) = c · Id⇢ for some constant

c 2 C. The constant c can be determined by taking trace on either side of c · Id⇢ = µ̂C(g) =

Ex[µC(g)(x) · ⇢(x)] and noting that Trace(⇢(x)) = �⇢(g) as follows:

c · d⇢ = Ex
⇥
µC(g)(x) · �⇢(g)

⇤
= Ex

⇥
µC(g)(x)

⇤
· �⇢(g) = �⇢(g).

Hence, c = �⇢(g)
d⇢

and µ̂gC(g) =
�⇢(g)
d⇢

· ⇢(g). Lastly we have,

kµ̂gC(g)k2HS =

����
�⇢(g)

d⇢
· ⇢(g)

����
2

HS

=
|�⇢(g)|2

d2⇢
· Trace (⇢(g)⇤ · ⇢(g))

=
|�⇢(g)|2

d2⇢
· d⇢ (By unitariness of ⇢(g))

=
|�⇢(g)|2

d⇢
.

The key property ofD-quasirandom groups that we will be using is the following inequality

40

due to Babai, Nikolov and Pyber, the proof of which we provide for the sake of completeness.

Lemma 5 ([13]) If G is a D-quasirandom group and f1, f2 : G! C such that either f1 or

f2 is mean zero then

kf1 ⇤ f2k2 
1p
D

· kf1k2 · kf2k2.

Proof.

kf1 ⇤ f2k2 =
X

⇢2Ĝ

d⇢k\f1 ⇤ f2(⇢)k2HS

=
X

⇢2Ĝ

d⇢kf̂1(⇢) · f̂2(⇢)k2HS


X

⇢2Ĝ

d⇢kf̂1(⇢)k2HS · kf̂2(⇢)k2HS (By submultiplicativity of norm)

=
X

1 6=⇢2Ĝ

d⇢kf̂1(⇢)k2HS · kf̂2(⇢)k2HS (By mean zeroness)

 1

D
·
X

1 6=⇢2Ĝ

d2⇢kf̂1(⇢)k2HS · kf̂2(⇢)k2HS (By D-quasirandomness)

 1

D

0

@
X

1 6=⇢2Ĝ

d⇢kf̂1(⇢)k2HS

1

A ·

0

@
X

1 6=⇢2Ĝ

d⇢kf̂2(⇢)k2HS

1

A

 1

D
· kf1k22 · kf2k22 .

The following is a simple corollary of Theorem 5.

Corollary 1 If G is D-quasirandom; f : G! C has zero mean and kfk1  1 then

Eb

⇥
|Ex�bf(x)|

⇤
 1p

D
.

41

Proof. Let f 0(x) := f(x�1). We have,

Eb

⇥
|Ex�bf(x)|

⇤
= Eb

⇥
|Exf(x)f(xb)|

⇤

= Eb

h��Exf
0(x�1)f(xb)

��
i

= Eb

h
|f 0 ⇤ f(b)|

i

 Eb

h
|f 0 ⇤ f(b)|2

i
1/2

(By Cauchy-Schwarz inequality)

= kf 0 ⇤ fk2

 1p
D

· kf 0k2 · kfk2 (By Theorem 5)

 1p
D
. (Since kfk2  kfk1  1).

3.3 Proof of Theorem 4

The following proposition is where we deviate from Peluse’s proof [53]. We give

an elementary proof for every quasirandom group while Peluse proved the same result for

simple finite groups using the result of Liebeck and Shalev [50, 49] to bound the Witten

zeta function ⇣G for simple finite groups.

Proposition 3 Let G be a D-quasirandom group. Let f : G ! C such that kfk1  1,

E[f] = 0 and fb is the mean zero component of the function �bf (i.e., fb(x) = �bf(x) �

Ex[�bf(x)]). Then

Eg,b

���Ex
⇥
�bf(x) · (fg�1bg ⇤ µg�1C(g�1))(x)

⇤���
�
 1p

D
.

42

Proof. Let us denote the expression on the L.H.S. as �. We use simple manipulations and

previously stated facts to simplify the expression.

�2  Eg,b

⇣
k�bfk2

⌘
·
⇣
kfg�1bg ⇤ µg�1C(g�1)k2

⌘�2
(By Cauchy-Schwarz inequality)

 Eg,b


kfg�1bg ⇤ µg�1C(g�1)k2

�
2

(Since k�bfk2  1)

 Eg,b


kfg�1bg ⇤ µg�1C(g�1)k22

�
(By Cauchy Schwarz inequality)

= Eg,b

 X

1 6=⇢2Ĝ

d⇢ · kf̂g�1bg(⇢) · µ̂g�1C(g�1)(⇢)k2HS

�

(By Parseval’s identity & f̂g�1bg(1) = 0)

 Eg,b

 X

1 6=⇢2Ĝ

d⇢ · kf̂gbg�1(⇢)k2HS · kµ̂g�1C(g�1)(⇢)k2HS

�
(By submultiplicativity of norm)

= Eg,b

 X

1 6=⇢2Ĝ

kf̂g�1bg(⇢)k2HS · |�⇢(g)|2
�

(By Claim 6)

=
X

1 6=⇢2Ĝ

Eg

h
|�⇢(g)|2 · Eb

h��f̂gbg�1(⇢)
��2
HS

ii
.

Now using the fact that gbg�1 is uniformly distributed in G for a fixed g and a

uniformly random b in G, we can simplify the above expression as follows.

43

�2 
X

1 6=⇢2Ĝ

Eg

h
|�⇢(g)|2 · Eb

h��f̂b(⇢)
��2
HS

ii

=
X

1 6=⇢2Ĝ

Eb

h��f̂b(⇢)
��2
HS

i
· Eg

h
|�⇢(g)|2

i

=
X

1 6=⇢2Ĝ

Eb

h��f̂b(⇢)
��2
HS

i
(By orthogonality of �⇢)

= Eb

h X

1 6=⇢2Ĝ

��f̂b(⇢)
��2
HS

i
.

Finally, we use the fact that all the terms in the summation are non-negative and

the group G is a D-quasirandom group.

�2  1

D
· Eb

h X

1 6=⇢2Ĝ

d⇢ ·
��f̂b(⇢)

��2
HS

i

=
1

D
· Eb

h
kfbk22

i
(By Parseval’s identity)

 1

D
, (Because kfbk22  1).

The proof of this lemma is similar to the proof of the BNP inequality (Theorem 5). The

key di↵erence being that we have a complete characterization of the Fourier transform of

µgC(g) from Claim 6 which we use to give a sharper bound.

We are now ready to prove the main Theorem 4. This part of the proof is similar

to the corresponding expression that appears in the paper of Peluse [53], which is in turn

inspired by Tao’s adaptation of Gowers’ repeated Cauchy-Schwarzing trick to the nonebelian

setting. We, however, present the entire proof for the sake of completeness.

44

Proof of Theorem 4. Let us denote the L.H.S. of the expression by ⇥f1,f2,f3 .

Without loss of generality we assume E[f3] = 0. Now we have,

⇥4

f1,f2,f3 =
���Ex,y

⇥
f1(x)f2(xy)f3(xy

2)
⇤���

4

=
���Ex,z

⇥
f1(xz

�1)f2(x)f3(xz)
⇤���

4

(Change of variables: x xy, z y)


���Ex,z1,z2

⇥
f1(xz

�1

1
)f1(xz

�1

2
)f3(xz1)f3(xz2)

⇤���
2

(Cauchy-Schwarz over x; kf2k1 = 1 and expansion)

=
���Ey,z,a

⇥
f1(y)f1(ya)f3(yz

2)f3(yza
�1z)

⇤���
2

(Change of variables: y xz�1

1
, z z1, a z1z

�1

2
)

=
���Ey,z,a

⇥
�af1(y) ·�z�1a�1z f3(yz

2)
⇤���

2


���Ey,a,z1,z2

⇥
�z�1

1 a�1z1
f3(yz

2

1) ·�z�1
2 a�1z2

f3(yz
2

2)
⇤���,

(Cauchy-Schwarz over y, a; kf1k1  1).

Now, using the following change of variables, z z1, x yz2
1
, b z�1

1
a�1z1, g z�1

1
z2

, we get

⇥4

f1,f2,f3 
���Ex,b,z,g

⇥
�b f3(x) ·�g�1bg f3(xz

�1gzg)
⇤���

=

����Ex,b,g

h
�b f3(x) · Ez[�g�1bg f3(xz

�1gzg)]
i����

=

����Ex,b,g

h
�b f3(x) · Ea[�g�1bg f3(xa

�1) · |G|
|C(g�1)|1g�1C(g�1)(a)]

i����

=

����Ex,b,g

h
�b f3(x) · Ea[�g�1bg f3(xa

�1) · µg�1C(g�1)(a)]
i����

=

����Ex,b,g

h
�b f3(x) ·�g�1bg f3 ⇤ µg�1C(g�1)(x)

i����.

45

The second equality follows because after g, x, b have been fixed we only use z to compute

z�1gz and the map that takes z 2 G to z�1gz 2 C(g) is surjective where each member in

the range has preimage of size |G|

|C(g�1)
| = |Centralizer(g)|. We now separate the function

�g�1bg f3 from its the mean zero part as follows: Let �g�1bg f3 = f 0

g�1bg + fg�1bg where

f 0

g�1bg = Ex[�g�1bg f3(x)] and fg�1bg(x) = �g�1bg f3(x)� f 0

g�1bg.

⇥4

f1,f2,f3 
����Ex,b,g

h
�b f3(x) · (fg�1bg + f 0

g�1bg) ⇤ µg�1C(g�1)(x)
i����

 Eb,g

���Ex
⇥
�b f3(x) · fg�1bg ⇤ µg�1C(g�1)(x)

⇤���
�

+ Eb,g

���Ex
⇥
�b f3(x) · f 0

g�1bg ⇤ µg�1C(g�1)(x)
⇤���
�

 1p
D

+ Eb,g

h��Ex
⇥
�b f3(x)

⇤�� · kf 0

g�1bg ⇤ µg�1C(g�1)k1
i

(Using ?? 3 to bound the first expectation)

=
1p
D

+ Eb,g

h��Ex
⇥
�b f3(x)

⇤�� · |f 0

g�1bg|
i

 1p
D

+ Eb

h��Ex
⇥
�b f3(x)

⇤��
i

(Using |f 0

g�1bg|  1)

 2p
D

, (By corollary 1 and kf3k1  1).

46

Chapter 4

Locally Testable Non-malleable

Codes

4.1 Introduction

A coding scheme is a pair
�
{Enc}k, {Dec}k

�
of function ensembles where Enc :

�k ! �n is a possibly randomized encoder, Dec : �n ! �k [{?} is the decoder and

Dec
�
Enc(m)

�
= m holds with probability 1 for all m 2 �k. We say x 2 �n is a valid

codeword if x = Enc(m) for some m 2 �k (and some choice of randomness for Enc). The

quantity k/n is called the rate of the code. Given x,y 2 �n, the distance between x and

y is Pri⇠[n]

⇥
xi 6= yi

⇤
. The distance of the code is the minimum distance between any

two distinct valid codewords. When a code’s distance is bounded away from zero, one

can try to design decoding-type algorithms with extra features such as error-correcting or

local decoding/testing capabilities. In this paper we will focus on locally testable codes

47

(LTCs). These are codes for which there is a Test algorithm which reads a small number

of symbols and decides if a given string is close to some, or far from every, valid codeword.

The requirement is that Test should reject an input string with probability proportional to

its distance from the nearest codeword. We study what happens in a general tampering

model where the adversery applies a tampering function f to a transmitted codeword. Is

it possible to make LTCs resilient to such attacks? What type of security guarantees can

we hope to obtain in this scenerio? What can be said about f if codewords tampered by f

pass the test with good probability?

Dziembowski, Pietrzak and Wichs asked similar questions in the realm of error-

correcting codes, which led to their influential definition of non-malleable codes (NMCs) [37].

Since their introduction, NMCs have found numerous applications in cryptography [7, 26,

44, 2, 19], pseudorandomness [21, 24], and complexity [34]. NMCs provide security against

a family F of tampering functions1 by guaranteeing that if a transmitted codeword is tam-

pered by any f 2 F , then the resulting decoded message is either the original untampered

message (such is the case if f is the identity function) or else is independent of the original

message. So for example, it should not be possible to tamper by f 2 F and modify a

codeword encoding m to a codeword encoding m+ 1.

4.1.1 Our Contributions

LTCs and NMCs are both generalizations of error-correcting codes along di↵erent

axes. In this work we combine the notions and define locally testable, non-malleable codes

1
No security can be obtained if F is the set of all functions, since in this case f could decode the original

codeword, tamper the underlying message arbitrarily and then re-encode.

48

(LTNMCs). Roughly speaking, these are LTCs which have the following non-malleability

guarantee: any tampered codeword which passes the test with good probability is close to

a valid codeword which either encodes the original message, or else encodes an unrelated

message. The new definition appears in Section 4.2 and the remainder of the paper is

devoted to discussing, motivating and instantiating the new primitive.

Motivating LTNMCs. LTCs generalize ECCs by adding extra functionality, while NMCs

generalize ECCs by adding extra security. For this reason, it is an interesting challenge to

try to achieve both notions simultaneously. However, we believe that NMLTCs are well

motivated and we give two possible connections as evidence.

1. Non-malleable interactive proofs [35] have been studied extensively in cryptography

as a strengthening of zero-knowledge (ZK) interactive proofs (IPs). ZK for probabilis-

tically checkable proofs (PCPs) was defined and constructed in [47]and subsequently

used for applications in hardness of approximation [46, 38]. To our knowledge, no def-

inition of non-malleable PCPs has been given, but the notion certainly makes sense

and could also give applications in hardness of approximation. In Section 4.3 we

define a notion of non-malleability for PCPs by strengthening the existing notion of

ZK, analogously to how one obtains NM for IPs by strengthening ZK for IPs. Our

definition of LTNMCs is essentially the “combinatorial” analogue of NMPCPs, just

as LTCs are combinatorial analogues of PCPs. The new definition of non-malleability

for PCPs might be of independent interest.

2. Another motivation for the study of LTNMCs is for building standard NMCs. While

NMCs need not inherently have good distance, many constructions do [37, 4, 3, 6, 5].

49

Moreover, the decoding algorithms in these works all contain a test subroutine and

decoding only occurs if the test passes (if the test fails, the decoder outputs ?). The

proofs of non-malleability begin by categorizing the functions which pass the test,

and then proceed to prove non-malleability against each such category of tampering

functions. LTNMCs explicitly incorporate such a test, and could provide a useful

abstraction for designing better NMCs in the future.

Constructing LTNMCs. We instantiate our new notion by proving that a Reed-Muller-

type code is non-malleable against the family of coordinate-wise tampering function, i.e.,

against an adversery that tampers each coordinate of the codeword independently. Our

construction has three main parts.

1. We prove that when the Reed-Muller-type LTC of Raz and Safra [55] (i.e., the “planes

table” which is the set of restrictions of the message polynomial on every 3-dimensional

a�ne sub-spaces of the ambient space) is tampered by a coordinate-wise tampering

function then either the tampered codeword is far from a valid codeword (and so

fails the local test with high probability) or else is close to a valid codeword which

encodes an a�ne function of the original message. In NMC terminology, we show that

the planes table is a (locally testable) non-malleable reduction from coordinate-wise

tampering to a�ne tampering.

2. We describe an elementary construction of a (standard) NMC against the family of

a�ne tampering functions. Such codes were previously known [4, 1, 22], but our

construction is much simpler those in prior work. When the message space is large,

50

our construction is more e�cient than the one in [4, 1] as our encoding algorithm

does not require drawing large random primes. Our code achieves a better rate/error

tradeo↵ than the construction of [22].

3. We combine the codes from the above points into a concatenated code, obtaining

a LTNMC against coordinate-wise tampering via a composition theorem for Reed-

Muller-type codes. The local test of our composed code works by decoding a symbol

of the outer code and checking validity using the inner code. This idea has been used

previously to analyze the composition of LTCs and PCPs [12].

Theorem 3 (Main Construction.) There exists an explicit locally testable, non-malleable

code against an adversery who tampers each coordinate of the codeword independently.

In order to streamline the introduction of the new definition, we have deferred the “technical

overview” where we give a high level view of the construction until Section 4.4.

4.1.2 Other Relevant Prior Work

Non-Malleable Codes. Since the introduction of non-malleable codes in 2010 [37], an

immense research e↵ort has focused on giving constructions which are secure against richer

classes of tampering functions, and with better rate [36, 4, 3, 21, 48, 15] (and many, many

more). Our work uses some of the machinery developed in this area. In particular, our

main definition of a LTNMC is inspired by the definition of a NM reduction in [3], which

both simplifies and generalizes the original definition in [37].

51

Sampler-Based Decoding. Our work fits into a recent line of work on sampler-based

decoding [45, 52, 17, 31, 32] (and more). In these works, sampling properties of a code’s

index set are exploited in order to give non-trivial decoding algorithms. Our work builds

on techniques developed in these papers in order to “decode” a coordinate-wise tampering

function which respects codeword proximity, to a small list of a�ne functions.

Locally Decodable Non-Malleable Codes. A few works combine the notions of local

decodability with non-malleability [27, 20, 28]. These works give constructions of non-

malleable codes which admit local decode/update subroutines. Our work di↵ers in several

ways from these. First, the codes in these works achieve super-constant locality, whereas our

main construction achieves constant locality. More significantly, the constructions in prior

work achieve local decodeability and updateability by separately encoding each element of

the message, so they do not support a local test of proximity to a valid codeword. Finally,

the techniques di↵er significantly; our techniques are similar to those used in the LTC

literature.

4.2 Defining Locally Testable Non-malleable Codes

4.2.1 Coding Theory Background

Throughout this section k 2 N is fixed, and (Enc,Dec) is a coding scheme for

messages in �k. Recall this means Enc : �k ! �n is possibly randomized, Dec : �n !

�k [{?}, and Dec
�
Enc(m)

�
= m holds with probability 1 for all m 2 �k. Given y 2 �n,

we write dist(y) for the minimum of dist(x,y) = Pri⇠[n]

⇥
xi 6= yi

⇤
over all valid codewords

52

x. We write agr(y) for the maximum of Pri⇠[n]

⇥
xi = yi

⇤
over all valid codewords x (so

agr(y) + dist(y) = 1 8 y).

Definition 3 (LTCs) Fix " > 0 and q 2 N. We say that (Enc,Dec), is a (q, ")�locally

testable code if there exists a distribution T supported on the set of q�local functions from

�n to {0, 1} (i.e., functions which read q coordinates from their input) such that the following

hold:

1. 8 m 2 �k, EEnc(m),T

⇥
Test(Enc(m))

⇤
= 1;

2. 9 a constant c > 0 st if y 2 �n has ET

⇥
Test(y)

⇤
� ", then agr(y) � c · ET

⇥
Test(y)

⇤
.

Point 1, sometimes called completeness, says that valid codewords always pass the test.

Point 2, sometimes called soundness, says that any y 2 �n which passes the test with good

probability must have non-negligible agreement with some valid codeword. The next defini-

tion enhances the soundness requirement by demanding that for every y 2 �n, almost all of

y’s test passing probability comes from its agreement with a short list of valid codewords.

Definition 4 (List-Decoding for LTCs) Fix " > 0 and q, ` 2 N. We say that (Enc,Dec)

is a (q, ", `)�list decodeable LTC if there exists a q�local distribution T (i.e., every test

function in the support of T is q�local) such that the following two points hold:

1. 8 m 2 �k, EEnc(m),T

⇥
Test(Enc(m))

⇤
= 1;

2. 8 y 2 �n 9 a list Ly = {x(1), . . . ,x(`)} ⇢ �n of valid codewords of size |Ly|  ` such

that

PrT
h
Test(y) = 1 & yI /2 {x(j)

I : x(j) 2 Ly}
i
 ",

53

where I ⇢ [n] with |I| = q are the coordinates read by Test.

Non-malleable codes [37] (NMCs) provide meaningful security guarantees even in situa-

tions where error correction is impossible. Intuitively, (Enc,Dec) is non-malleable against a

tampering family F ⇢ {f : �n ! �n} if for all f 2 F and m 2 �k, the distribution

Tamperf (m) :=
�
Dec � f � Enc

�
(m)

(randomness over Enc) is either equal to, or independent of, m. In order to define this

formally let Gtrivial ⇢
�
g : �k ! �k [{?}

consist of all constant functions as well as the

identity. These are the trivial message tampering functions. Intuitively, (Enc,Dec) is non-

malleable against F if tampering codewords by any f 2 F tampers the underlying message

by functions in Gtrivial.

Definition 5 (Non-Malleable Codes) Fix " > 0 and let F ⇢ {f : �n ! �n} be a family

of tampering functions. We say that (Enc,Dec) is "�non-malleable against F if for all

f 2 F there exists a distribution Sf on Gtrivial such that for all m 2 �k,

�
�
Tamperf (m), Sf (m)

�
 ",

(� denotes statistical distance) where Sf (m) draws g ⇠ Sf and outputs g(m) 2 �k [{?}.

4.2.2 The New Definition and Discussion

In order to define LTNMCs we need to redefine the set of trivial tampering func-

tions so that they map codewords to codewords. Let Gtrivial ⇢
�
g : �n ! �n

consisting of

54

all constant functions as well as the identity. We will also need to redefine the tampered

distribution so it makes sense in the context of LTNMCs. Given f 2 F , T a q�local

distribution and m 2 �k, Tamperf,T (m) is the distribution on Supp(T) ⇥ �q which draws

x ⇠ Enc(m), Test ⇠ T and outputs
�
Test, f(x)I

�
where I ⇢ [n] with |I| = q are the

coordinates read by Test.

Definition 6 (LTNMCs) Fix " > 0, ` 2 N and let F ⇢ {f : �n ! �n} be a family of

tampering functions. We say (Enc,Dec) is a locally testable, non-malleable code against F

if there exists a q�local distribution T such that the following three points hold:

1. for all m 2 �k, EEnc(m),T

⇥
Test(Enc(m))

⇤
= 1;

2. for all f 2 F there exists a distribution Sf on Supp(T)⇥�q such that for all m 2 �k,

�
�
Tamperf,T (m), Sf

�
 ".

3. for all f 2 F there exists Lf = {g(1), . . . , g(`)} ⇢ Gtrivial of size |Lf | = ` such that for

all m 2 �k,

Prx⇠Enc(m),T

h
Test

�
f(x)

�
= 1 & f(x)I /2

�
g(j)I (x) : g(j) 2 Lf

 i
 ",

where I ⇢ [n] with |I| = q are the coordinates read by Test.

The following remarks attempt to justify several aspects of the definition.

1. Intuition for Understanding Points 2 and 3: Note that point 2 is local in nature,

promising that the view of the tampered codeword seen by the testing procedure does

55

not depend on the original encoded message. This ensures that the testing procedure

cannot operate di↵erently given tampered encodings of di↵erent original messages. So in

particular, the chance that the tampered codeword passes the test is the same regardless

of the message inside the original codeword. Point 3 is more interesting as it ensures

that a global property of the tampered codeword is independent of the original message.

Specifically, if the tampered codeword’s chances of passing the test are high due to good

agreement with a list of valid codewords, then this agreement list does not depend on the

original message.2

2. The logic behind the trivial tampering functions: The idea that the “trivial”

tampering functions are constants and the identity is standard to non-malleability. The

reasoning is that there are two resources the tampering adversary has at its disposal to make

f(x) pass the test with probability 1. The first is if the tampering adversary completely

ignores the incoming codeword, overwriting whatever it receives with a constant: f(x) = x̃

for all x 2 �n. Though f(x) can be made to pass the test with probability 1 in this case

(e.g., if x̃ is a valid codeword), this adversary is not performing a mauling attack since the

tampered codeword does not depend on the original codeword. The tampering adversary

is not content with simply destroying the ability for the sender to communicate with the

receiver; this would be too easy. Instead, the adversary’s goal is to, by tampering, obtain a

codeword which is correlated in some way with the original.

The second option which is always available to the tampering adversary is to use

2
Readers who are familiar with non-malleable interactive proofs from cryptography might recognize point

2 as requiring that the transcript of the tampered protocol can be simulated without the witness of the

original protocol (this usually follows trivially from zero-knowledge of the original protocol), while point 3 is

analogous to requiring that the witness used in the tampered protocol is independent of the original witness.

56

the identity function, which amounts to acting as an honest channel between the sender and

receiver. In this case also, f(x) passes the test with probability 1 since f(x) = x, a valid

codeword. However, the goal of non-malleability is not to rule out this behavior, rather it

is to show that the only meaningful option for the tampering adversary is to play honestly

and avoid tampering altogether. If desired, security against a passive adversary can often

be obtained via other means.

3. The requirement that f(x)I 2 {g(j)(x)I : g(j) 2 Lf}: List decoding soundness

guarantees in the “high soundness regime” for LTCs typically have a “unique decoding”

flavor. For example, a common type of statement is: if y 2 �n has ET

⇥
Test(y)

⇤
� 1 � "

then there exists a unique valid codeword x 2 �n such that agr(x,y) � 1� "0. In the “low

soundness regime”, when all we know is that ET

⇥
Test(y)

⇤
� ", it is not possible to obtain

such a strong conclusion. For example, y can ensure ET

⇥
Test(y)

⇤
� " by agreeing with 1/"

di↵erent valid codewords, each on about n" coordinates. In our case, the tampering function

can likewise alternate between 1/" di↵erent g 2 Gtrivial, agreeing with each on roughly an

"�fraction of inputs. Additionally, the tampering function can alternate at the coordinate

level, agreeing with each of the g’s at an "�fraction of coordinates on all inputs. By forcing

f(x)I 2 {g(j)(x)I : g(j) 2 Lf} whenever Test
�
f(x)

�
= 1 we are essentially saying that if f

passes the test then it must be alternating among the trivial tampering functions of Lf in

these fashions.

57

4.2.3 Fitting LTNMCs into the Coding Theory Tree

In this section, we briefly discuss how LTNMCs relate to nearby items in the coding

theory tree and we also mention a few naive attempts at building LTNMCs by combining

known coding objects.

First, it is clear that any LTNMC is also a LTC. On the other hand, LTNMCs

do not seem to immediately give NMCs. Essentially, this is because the tester for LTNMC

does not distinguish between the case when the tampered codeword is valid and when it

is very close but not equal to a valid codeword. Thus, the definition 6 does not prevent

”selective bot attacks” where the probability of decoding failure varies very slightly with

the message. For example, a tampering function might be able to tamper an encoding of

m = 0 to a valid codeword, and an encoding of m = 1 to a valid codeword except with a

single incorrect symbol. In this case the tester will not notice the di↵erence, but a decoding

algorithm will have to output 0 in one case and ? in the other.

In the other direction, NMCs also do not readily give LTNMC because they might

not be locally testable. One might try composed a NMC with an outer LTC to obtain a

code with a local tester and (hopefully) some non-malleability properties. However, in order

to show that the concatenated code is non-malleable, one basically has to show that if the

outer LTC is tampered, the resulting tampering on the inner NMC is precisely what it is

secure against. Thus, this requires the outer LTC to already have some non-malleability

guarantees.

One notable exception to this is the case of linear (or a�ne) tampering. If an

LTC has an encoding algorithm which is linear and the inner NMC is non-malleable against

58

a�ne tampering, then the composed code will be a LTNMC against a�ne tampering as

well, since an a�ne attack on the outer code translates (by linearity) to an a�ne attack on

the inner one.

4.3 Non-malleable PCPs

In Section 4.2 we approached the definition of LTNMCs from the perspective of

unifying LTCs and NMCs. In this section, we re-approach LTNMCs from a completely

di↵erent angle. This time we use the the standard cryptographic notions of zero-knowledge

(ZK) and non-malleability (NM) for interactive proofs in order to define a notion of non-

malleability for PCPs. In the IP setting, NM is a strengthening of ZK to handle the case of

an active adversary who is able to tamper protocol messages. We begin with the definition

of ZK PCPs due to Kilian, Petrank and Tardos [47] and modify it so it can deal with an

active adversary. When our new definition of NM PCPs is relaxed to the setting of LTCs

we recover our Definition 6 from Section 4.2.

The main takeaway from this exercise in definition tracing is that Definition 6 is

the right way to formulate non-malleability for LTCs. The new definition we give for NM

PCPs might also be of some independent interest. However, we stress that we do not give

a construction of a NM PCP, nor do we give an application to hardness of approximation.

These are both left for future work.

59

4.3.1 ZK and NM for Interactive Proofs

All interactive proofs will take place between a prover P and verifier V . Both P

and V will share a common input x and P will use an additional secret input w to prove that

x 2 L for some language L. Throughout the interaction, P and V will exchange messages

according to the protocol description, obtaining a final transcript ⌧ . At the end, V outputs

a bit indicating whether or not it accepted P ’s proof; P gives no output.

Definition 7 (Interactive Proof System) Let " > 0. We say that a protocol hP, V i

satisfying the above syntax is an interactive proof system for a language L if the following

completeness and "�soundness properties hold.

Completeness: For all (x,w) such that w is a witness to x 2 L, if P and V follow

the protocol specifications and if P uses (x,w) as input then E
⇥
V (x, ⌧)

⇤
= 1.

Soundness: For all x /2 L, and for all adversarial P ⇤ who possibly deviate from the

protocol specifications, E
⇥
V (x, ⌧)

⇤
 ".

Definition 8 (Zero-Knowledge for IPs [41]) Let " > 0. We say that the interactive

proof system hP, V i is "�zero-knowledge if for all e�cient adversarial V ⇤ who possibly

deviate from the protocol and for all (x,w) such that w witnesses x 2 L, there exists an

e�ciently sampleable distribution S
V ⇤
x which outputs a “simulated transcript” ⌧ such that

for all e�cient distinguishers D,

����Pr⌧⇠RV ⇤
(x,w)

h
D(⌧) = 1

i
� Pr⌧⇠SV ⇤

x

h
D(⌧) = 1

i����  ",

60

where R
V ⇤

(x,w)
is the “real” distribution which outputs ⌧ , the transcript of interaction obtained

when V ⇤ interacts with an honest prover using inputs (x,w).

The Setup for Non-Malleability. Non-malleability for IPs involves an adversarial

“man-in-the-middle” M⇤ who plays in two protocol executions, one where it plays “on

the left” as the verifier against an honest P using input (x,w) and one where it plays “on

the right” as the prover against an honest verifier using input x̃ 6= x (of M⇤’s choice). For

non-malleability, we redefine the real distribution R
M⇤

(x,w)
as the distribution which outputs

(⌧, x̃, w̃, ⌧̃) obtained as follows:

· ⌧ is the transcript of the left protocol where P uses input (x,w);

· x̃ is the statement used in the right protocol;

· ⌧̃ is the transcript of the right protocol where V uses input x̃;

· if V (x̃, ⌧̃) = 1 then w̃ is a witness to x̃ 2 L (which exists with probability 1 � " by

soundness).

Definition 9 (Non-Malleability for IPs [35]) Let " > 0. We say that the interactive

proof systemhP, V i is "�non-malleable if for all e�cient adversarial M⇤, there exists an

e�ciently sampleable distribution S
M⇤
x which outputs (⌧, x̃, w̃, ⌧̃) such that for all e�cient

distinguishers D,

����PrRM⇤
(x,w)

h
D(⌧, x̃, w̃, ⌧̃) = 1

i
� PrSM⇤

x

h
D(⌧, x̃, w̃, ⌧̃) = 1

i����  ".

Note Definition 9 requires that M⇤’s view during the protocols (⌧, ⌧̃) can be simulated

61

without knowledge of w. This actually holds whenever hP, V i is zero-knowledge, and is

analogous to Point 2 of Definition 6. Additionally, Definition 9 requires that the witness

w̃ that M⇤ is using to prove x̃ 2 L can also be simulated without w. This is analogous to

Point 3 from 6.

4.3.2 ZK and NM for PCPs

Probabilistically checkable proofs (PCPs) also take place between a prover P and

verifier V , except the syntax is di↵erent from above. Here, P uses (x,w) where w witnesses

x 2 L to (non-interactively) produce the PCP transcript ⌧ 2 �n. Given ⌧ , V draws Test ⇠ T

from a q�local distribution and outputs Test(x, ⌧) (Test can read all of x but queries ⌧ in

only q places).

Definition 10 (Probabilistically Checkable Proof System [11]) Let " > 0 and ` 2

N. We say that the protocol above is a probabilistically checkable proof system if the

following completeness and "�soundness properties hold.

Completeness: For all (x,w) such that w is a witness to x 2 L, if P and V follow

the protocol specifications and if P uses (x,w) as input then ET

⇥
Test(x, ⌧)

⇤
= 1.

Soundness: For all x /2 L, and for all ⌧ 2 �n (possibly adversarially computed), there

exists L⌧ = {⌧ (1), . . . , ⌧ (`)} ⇢ �n of size |L⌧ |  ` such that

PrT
h
Test(⌧) = 1 & ⌧I /2 {⌧ (j)I : ⌧ (j) 2 L⌧}

i
 ".

The adversaries in the definitions of ZK and NM for PCPs are modeled as decision

62

trees of bounded depth. Let Fr
dt denote the set of decision trees of depth at most r.

Definition 11 (Zero-Knowledge for PCPs [47]) Let " > 0 and r 2 N. We say that

a PCP system is "�zero-knowledge if for all depth r decision trees f 2 Fr
dt, there exists a

distribution S
f
x on �r such that

�
�
R
f
(x,w)

, Sfx
�
 ",

where R
f
(x,w),T draws a random PCP ⌧ 2 �n for proving x 2 L using w, and then outputs

the r coordinates of ⌧ which f reads.

Remark. In order to make the adversary as strong as possible, we model it as a depth r

decision tree so it can make its r queries to ⌧ adaptively. Since checking the proof requires

reading q coordinates, ZK is only interesting when r � q since in this case the adversary

reads enough of the proof to verify its validity, though by ZK is unable to learn anything

else about the witness (other than that it exists).

Setup for Non-Malleability. Similar to non-malleability for IPs, here the man-in-the-

middle adversary receives a proof ⌧ proving x 2 L using witness w and computes a new

statement x̃ 6= x and proof ⌧̃ = f(⌧) that x̃ 2 L using some f 2 Fr
dt.

Definition 12 (Non-Malleability for PCPs) Let " > 0 and `, r 2 N. We say that a

PCP system with q�local test distribution T is (", `)�non-malleable if the following two

points hold:

1. for every depth r decision tree f 2 Fr
dt, there exists a distribution S

f
x,T on Supp(T)⇥�q

63

such that for all (x,w) and proof ⌧ that x 2 L using w,

�
�
R
f
(x,w),T , S

f
x,T

�
 ",

where R
f
(x,w),T is the distribution which draws Test ⇠ T and outputs (Test, ⌧̃I), where

I ⇢ [n] with |I| = q are the coordinates read by Test.

2. for every x 2 L and f 2 Fr
dt, there exists a list Lf,x = {⌧̃ (1), . . . , ⌧̃ (`)} ⇢ �n of size

|Lf |  ` such that

PrT
h
Test(⌧̃) = 1 & ⌧̃I /2

�
⌧̃ (j)I : ⌧̃ (j) 2 Lf,x

 i
 ",

where ⌧̃ = f(⌧) and I ⇢ [n] with |I| are the coordinates read by Test.

Remark. Note the syntactic di↵erences and the similarities between Definitions 12 and

9. In both definitions, it is required that the adversary’s view and witness used in the

right protocol execution are independent of the witness used in the left. In Definition 12

these requirements are separated into two points whereas in Definition 9 there is a single

requirement. The reason for this is that in the IP setting, the view and right witness have

to be generated together since all parties must be e�cient, and the right witness might not

be e�ciently computable given the right view. We do not have this constraint in the PCP

setting so we can consider the requirements on the adversary’s view and witness separately.

This is convenient as the list-decoding-type PCP syntax for soundness is more complicated

than soundness in IPs. Finally, note that Definition 12 is remarkably similar to Definition 6

64

from Section 4.2. The main di↵erences are that in Definition 6 we relax the requirement that

the tampering function is a decision tree, instead letting it be any function from a prescribed

tampering family F . Second, in Definition 6 we have to allow for the case when f is copying

the codeword; this is impossible in Definition 12 because we require the statements proved

on the left and right to be di↵erent: x̃ 6= x. This leads to us using the trivial tampering

family Gtrivial in Definition 6 but not in Definition 12.

4.4 Constructing LTNMCs

4.4.1 Our Outer Code and the Non-Malleable A�ne Agreement Theorem

Notations Let F be a finite field, and let k � 4 and d � 2 be dimension and degree

parameters, respectively. We denote by A the set of a�ne 3-planes in Fk, and C = Fk.

Given c 2 C, we write A(c) for the set of planes a 2 A which contain c. Let � and �A

be, respectively, the sets of k-variate and 3-variate polynomials over F of degree at most

d; let �C = F. Given a polynomial � 2 � and a plane a 2 A, we will write ↵ = �|a 2 �A

the 3-variate restriction of � to a. Likewise, we write � = �|c 2 F for the evaluation of � at c.

As discussed in the introduction, our final code will be the concattenation of an outer and

an inner code. The outer code is a polynomial-based code of Reed-Muller type. The core

of the construction is showing that any coordinate-wise tampering of the outer code which

passes the local test with good probability corresponds to tampering the codeword (and

underlying message) according to an a�ne transformation. The inner code is a (standard)

non-malleable code against a�ne tampering. We combine the two using a composition

65

theorem to get a non-malleable code against coordinate-wise tampering.

Outer Code. The outer code is a version of the “planes table” code of [55].

• Enc(m): For m 2 F, draw � ⇠ � such that �(0) = m and output {�|a}a2A 2 �|A|
A . We

will often write codewords as
�
(a,↵)

a2A

with the understanding that ↵ = �|a.

• Dec
�
{(a,↵)}a2A

�
: Given

�
(a,↵)

a2A

, find � 2 � such that (a,↵) = (a,�|a) for all a 2 A.3

If such � exists, output m = �(0), otherwise output ?.4

• Test
�
{(a,↵)}a2A

�
: Draw c ⇠ C, a, a0 ⇠ A(c); read (a,↵) and (a0,↵0), and output 1 if

↵|c = ↵0|c (↵|c denotes the evaluation of ↵ at c), 0 otherwise.

Codeword Tampering. We consider the family of coordinate-wise tampering function

F :=
�
{fa}a2A

��fa : �A ! �A

Given {fa}a 2 F , and a codeword {(a,↵)}a, we write the tampered codeword as

{(a, ↵̃)}a, with the understanding that (a, ↵̃) = (a, fa(↵)) for all a 2 A.

The following theorem is the technical core of the entire construction.

Theorem 4 (Non-Malleable A�ne Agreement) Fix " = |F|�O(1). Suppose {fa}a2A 2

F is such that

Pr�,(c,a,a0)

h
Test

�
{(a, ↵̃)}a

�
= 1

i
� ",

3
Such �, if it exists, can be found in time poly

�
|F|

�
by interpolation.

4
As written, decoding runs in time poly(|F|), which is exponential in the message length. However, local

decoding algorithms exist which run in time poly
�
�, log |F|, 1/�

�
and output m (or a list containing m) with

probability 1� 2
��

whenever the input is within distance � of a valid encoding of m. See for example [58].

66

where the probability is over � ⇠ �, and c ⇠ C, a, a0 ⇠ A(c),5 and where
�
(a,↵)

a
=

�
(a,�|a)

a
, and

�
(a, ↵̃)

a
=
�
(a, fa(↵))

a
. Then there exists an a�ne map T : �! � such

that

Pr�,a
⇥
↵̃ = T(�)|a

⇤
= ⌦(").

4.4.2 High Level Map of the Analysis

In this section we describe, from a high level, how to prove Theorem 4, , which

is where most of the new ideas are required. Before diving into this, however, we briefly

mention the steps required to use Theorem 4 to get a complete analysis for a LTNMC

against coordinate-wise tampering. The first step is strengthening Theorem 4 from giving

an “agreement guarantee” to giving a stronger “list-decoding guarantee”. Specifically, we

can use Theorem 4 2 to show that for any {fa}a 2 F , there exists a short list of a�ne maps

{T(1), . . . ,T(l)} which explain nearly all of the test-passing probability. This part is mostly

standard. d. For example, it is analogous to how one strengthens the agreement guarantee

for the planes table LTC to a list decoding guarantee. The main theorem for the outer code

is the following, it is proven assuming Theorem 4 in Appendix A.3.

Theorem 5 ((Non-Malleability of the Outer Code) Fix " = |F|�O(1) and l = 4/". .

Suppose {fa}a 2 F is such that

Pr�,(c,a,a0)

h
Test

�
{(a, ↵̃)}a

�
= 1

i
� ",

where the probability is over � ⇠ �, and c ⇠ C, a, a0 ⇠ A(c),6 and where
�
(a,↵)

a
=

5
Equivalently this probability is over m ⇠ F, {(a,↵)} ⇠ Enc(m) and over (c, a, a0) the randomness of Test

6
Equivalently this probability is over m ⇠ F, {(a,↵)} ⇠ Enc(m) and over (c, a, a0) the randomness of Test

67

�
(a,�|a)

a
, and

�
(a, ↵̃)

a
=
�
(a, fa(↵))

a
. Then there exists a list L{fa} = {T(1), . . . ,T(l)}

of a�ne maps T
(j) : �! � of size at most |L{fa}|  l such that

Pr�,(c,a,a0)

h
↵̃|c = ↵̃0|c & ↵̃ /2 {T(j)

�
�
�
|a} : T(j) 2 L{fa}

i
= O(")

. The second step is to construct the “inner code”. For this we will use a new elementary

construction of a (standard) NMC against a�ne tampering. As mentioned in the introduc-

tion, prior constructions for non-malleable codes against a�ne tampering are known[4, 1, 22]

7] but our construction is much simpler. When the message space is large, our construc-

tion is more e�cient than the one in [4, 1] 15] as our encoding algorithm does not require

drawing large random primes. Our code achieves a better rate/error tradeo↵ than the

construction of [22].]. The inner code construction and analysis appears in Section4.6.1.

1. The final step is a composition theorem to combine the outer and inner codes into a

concattenated code which is non-malleable against coordinate-wise tampering. This part

appears in Section4.6.2.

Proving Theorem 2. Proving Theorem4 involves essentially analyzing a new low-degree

test, similar to the planes table which was analyzed in[55, 17]. In the setting of those works,

each plane is labeled with a low degree polynomial (defined on the plane) such that the

intersections agree with non-negligible probability. In our work, each plane a 2 A is labeled

with a function fa : �A ! �A mapping low-degree polynomials to low-degree polynomials

with the following modified agreement guarantee: if c 2 a\a0 and ↵|c = ↵0|c then with good

probability ↵̃|c = ↵̃0|c where (↵̃, ↵̃0) = (fa(↵), f 0a(↵
0)). Unsurprisingly, the analysis of this test

68

borrows significantly from the analysis of the analysis of the basic planes table. However,

several new ideas are needed as well. At a very high level (and slighly inaccurately), the

ideas from the planes table analysis (specifically the analysis of[17]) lets us move from a

non-negligible agreement guarantee, namely Pr�,(c,a,a0)

h
Test

�
{(a, ↵̃)}a

�
= 1

i
� ", to a high

agreement guarantee on a small but non-negligible fraction of planes. . This moves us

from the low soundness regime to the high soundness regime which is much easier. We

then use new ideas to complete the analysis. We describe this further momentarily. We

briefly mention that the low-to-high soundness conversion method of [17] 7] uses crucially

the sampling properties of the incidence “planes vs points” graph. Due to the di↵erences

in our setting we need to use the sampling properties of the “incidence⇥agreement” graph

which we establish. More information about this part appears in appendixA.1.

Finally, we walk through the proof of the a�ne agreement theorem assuming we

are in the high soundness regime. As mentioned, this is where the bulk of our new ideas are

needed. Suppose for the moment that {fa}a 2 F is such that the test passes with probability

1, instead of with probability " (we will show how to remove this assumption below). If this

is the case then for all � 2 �, there exists �̃ 2 � such that ↵̃ = �̃|a for all a 2 A. So in this

case, {fa}a defines a map F : � ! �, via F (�) = �̃. We must show that F is a�ne. The

key point is that because {fa} acts coordinate-wise on {(a,↵)}a, it must be that for every

a 2 A, if �,�0 2 � are such that �|a = �
0|a then F (�)|a = F (�0)|a. . So in words, F maps

polynomials which agree at a to polynomials which agree at a for all a 2 A. We show that

such F must be a�ne.

69

In order to illustrate how this proof works, let us simplify the situation by changing the

parameters. Instead of working with F : �! � , where � is the set of degree d polynomi-

als, let us assume instead that F maps linear polynomials to linear polynomials, and has

the following modified property: for all c 2 C, F maps polynomials which agree at c to

polynomials which agree at c. Now, suppose we fix three points c, c1, c2 on a line ine in our

space and draw eight random field elements �, �0, �00, �000, �1, �01, �2, �
0
2
. Now, we draw four

random m linear polynomials such that 1) first polynomial evaluates to �, �1, �02 at c, c1, c2

2 respectively. 2) second polynomial evaluates �0, �0
1
, �0

2
at c, c1, c2 3) third polynomial eval-

uates to �00, �1, �2 4) fourth polynomial evaluates to �000, �0
1
, �2 at c, c1, c2 . These lines are

graphed in Figure 4.1 on the left. . Note, that, �, �0, �00, �000 share the linear relationship

� � �0 = �00 � �000. By modified property of F , these four lines are mapped to four other

lines which share the same intersecting structure (the right side of Figure4.1. This forces

the same linear relationship �̃ � �̃0 = �̃00 � �̃000 to hold on the right. It follows that that

c-th co-ordinate function of F is a�ne. . The same argument shows that every coordinate

function of F is a�ne, from which it follows that F itelf is a�ne.

We now discuss the first part: how to get the above ideas to work assuming just

that the test passes with non-negligible probability " instead of probability 1. The first point

is that we don’t actually need to assume that the test passes with probability 1, everything

we discussed above works if the test passes with probability 1 � � for su�ciently small �.

The key is to show that if the test passes with probability " then there are small subsets

�0 ⇢ � and A
0 ⇢ A of non-negligible weight such that, conditioned on � 2 �0 and a, a0 2 A

0

70

, the test passes with very high probability 1� �. Theorems of this type have been proven

before in the context of LTCs and PCPs, however, our situation is a bit di↵erent because

our test chooses � ⇠ � , whereas usually in LTCs, � is fixed and only (c, a, a0) are chosen.

It is useful to cast our situation in the same terminology as standard low-degree

theorems. We think of the tampering function data {fa}a as assigning the 3-variate low-

degree polynomial ↵̃ = fa(↵) to the plane/polynomial pair (a,↵). Thus {fa}a is a a

planes/polynomials table, i.e., it is like the planes table from [55] which assigns a poly-

nomial to each plane, except that the index set now consists of all plane/polynomial pairs.

In [55] it is shown that for any planes table which passes the test with probability " ,

the incidence graph7 splits into “near cliques” of weight roughly " , where the test passes

with high probability whenever both planes chosen belong to the same clique. Recently,

several works [45, 52, 17, 31, 32]prove similar theorems for various types of tables where

they appeal only to the sampling structure of the incidence graph. Thus, the first part

of our proof of the non-malleable a�ne agreement theorem works by demonstrating that

the incidence⇥agreement graph is a good sampler; then we use the machinery developed in

prior work to get our result. The incidence⇥agreement graph is the graph whose vertices

are pairs (a,↵) and where
�
(a,↵), (a0,↵0)

�
2 E i↵ a \ a

0 2 C and if ↵|a\a0 = ↵0|a\a0 see

appendix A.3 for formal proofs.

7
The graph whose vertices are the planes, and edges indicate that the two planes intersect in a point.

71

Figure 4.1: A�ne agreement testing

4.4.3 Proof of Theorem 4

Notation. We have already defined A and C to be the sets of 3�planes and points over

Fm for a finite field F, and we have already let �, �A be the sets of m�variate and 3�variate

polynomials of degree at most d, also �C = F. For convenience we define A = A ⇥ �A and

C = C⇥�C. We have already defined A(c) as the set of planes a 2 A which contain c. Now,

given (c, �) 2 C we similarly define A(c) to be the set of (a,↵) 2 A such that c 2 a and

↵|c = �.

Theorem 4 (Restated). Fix " = |F|�O(1). Suppose {fa}a2A 2 F is such that

Pr�,(c,a,a0)

h
Test

�
{(a, ↵̃)}a

�
= 1

i
� 6",

where the probability is over � ⇠ �, and c ⇠ C, a, a0 ⇠ A(c),8 and where
�
(a,↵)

a
=

�
(a,�|a)

a
, and

�
(a, ↵̃)

a
=
�
(a, fa(↵))

a
. Then there exists an a�ne map T : �! � such

8
Equivalently this probability is over m ⇠ F, {(a,↵)} ⇠ Enc(m) and over (c, a, a0) the randomness of Test

72

that

Pr�,a
⇥
↵̃ = T(�)|a

⇤
= ".

In this section, we separate the proof into two parts by stating two lemmas which combine

to immediately prove the theorem.

Proof of Theorem 4. Suppose " = |F|�⌦(1) is chosen so it satisfies Lemmas 6

and 7, below. Let {fa}a 2 F be such that

Pr�,(c,a,a0)

⇥
↵̃|c = ↵̃0|c

⇤
� 6". (4.1)

By Lemma 6 below, there exists a function h : C! �C such that

Pr(a,�)⇠A⇥�

h
Prc⇠C(a)

⇥
↵̃|c = �̃

⇤
� 1� ⇣

i
� 2", (4.2)

where �̃ = h(c), a = (a,�|a), and where ⇣ = |F|�⌦(1) is specified precisely in Section A.3.

By Lemma 7, there exists an a�ne map T : �! � such that

Pr(a,�)⇠A⇥�

h
↵̃ = T(�)|a

i
� ". (4.3)

Lemma 6 (Global Agreement) There exists " = |F|�⌦(1) such that whenever {fa}a 2 F

is such that (4.1) holds, there exists h : C! �C such that (4.2) holds.

Lemma 7 (A�ne Agreement) There exists " = |F|�⌦(1) such that whenever {fa}a 2 F

and h : C ! �C are such that (4.2) holds, there exists an a�ne T : � ! � such that (4.3)

73

holds.

Lemma 6 is proved in Appendix A.3 using a sampler-based decoding argument similar to

ones which have appeared in several recent works. Lemma 7 is proved in Section 4.5. Most

of the ideas involved in this proof, including the new linearity test which is analyzed are

new to this work.

4.5 A�ne Agreement

In this section we prove Lemma 7, restated in an expanded form below. We begin

here by reducing Lemma 7 to Claims 7, 8 and 9, which we will prove in Section 4.5.2 after

gathering some background on linearity/low-degree tests in Section 4.5.1. Recall that a

function T : �! � is a�ne if there exists u 2 F and �0 2 � such that T(�) = u · �+ �0.

Lemma 7 (Restated). Suppose {fa}a ⇢ {f : �A ! �A}, h : �C ! �C and G ⇢ A⇥ � are

such that |G| � 2" · |A⇥ �|, and

Pr(a,�)⇠G
c⇠C(a)

⇥
�̃ ⇠ ↵̃

⇤
� 1� ⇣, (4.4)

where (", ⇣) are as in Lemma 6. Then there exists an a�ne map T : �! � such that

Pr(a,�)⇠G

h
↵̃ = T(�)

��
a

i
� 1/2.

Claim 7 Let
�
", ⇣, {fa}, h,G

�
be as in the hypothesis of Lemma 7, so that (4.4) holds. Then

there exist a�ne maps {Tc}c2C with Tc : �C ! �C such that Prc⇠C

⇥
�̃ = Tc(�)

⇤
� 1 � ⇠7

74

holds, where ⇠2
7
:= 32(d+ 1)(⇣ + �).

Claim 8 Let
�
", ⇣, {fa}, h,G

�
be as in the hypothesis of Lemma 7, so that (4.4) holds, and

let {Tc} be the family of a�ne maps promised by Claim 7. For each c 2 C, let uc, vc 2 F

be the scalars defining Tc, so Tc(�) := uc · � + vc. Then there exists u 2 F such that

Prc⇠C
⇥
uc = u

⇤
� 1� ⇠8, where ⇠8 := (d+ 2)(⇣ + �) + 4⇠7 + 2/|F|.

Claim 9 Let
�
", ⇣, {fa}, h,G

�
be as in the hypothesis of Lemma 7, so that (4.4) holds, and

let {Tc} be the family of a�ne maps promised by Claim 7, with Tc(�) := uc · � + vc,

as in Claim 8. Then there exists �0 2 � such that Prc⇠C
⇥
vc = �0(c)

⇤
� 1 � ⇠9, where

⇠2
9
:= 8(d+ 3)2(⇣ + ⇠7 + ⇠8).

Proof of Lemma 7 Assuming Claims 7, 8 and 9. Let
�
", ⇣, {fa}, h,G

�
be

as in the hypothesis of Lemma 7, so that (4.4) holds, and let {Tc} be the family of a�ne

maps promised by Claim 7. Define the a�ne map T : �! � by T(�) := u · �+ �0, where

u 2 F and �0 2 � are the quantities guaranteed by Claims 8 and 9, respectively. We have

3

4
 Pr(a,�)⇠G

c⇠C(a)

h
�̃ ⇠ ↵̃ & �̃ = Tc(�) & uc = u & vc = �0(c)

i
 Pr(a,�)⇠G

c⇠C(a)

h
↵̃|c = T(�)|c

i
.

This follows from (4.4), Claims 7, 8, 9 and the sampling of A⇥�
�
C. We have used the loose

bound 1/4  (⇣ + ⇠7 + ⇠8 + ⇠9 + �) where ⇣ > 0 (resp. ⇠7, ⇠8, ⇠9) are the quantities from the

statement of Lemma 7 (resp. Claims 7, 8, and 9), and � > 0 is the sampling parameter. It

follows that Pr(a,�)⇠G

⇥
↵̃ = T(�)|a

⇤
� 1/2, since whenever ↵̃ and T(�)|a agree on half of the

c 2 C(a), they must be equal as they are both low degree. The lemma follows.

75

4.5.1 Linearity Testing Background

In this section we state three facts which we use in the next section to prove the

claims. Throughout this section we use notations consistent with the rest of the paper.

Additionally, in this section we use B as the set of lines in Fk and �B is the set of univariate

polynomials over F of degree at most d. Recall T : �C ! �C is a�ne if there exist coe�cients

u, v 2 F such that T(x) = u · x + v for all x 2 �C. The first fact is standard and can be

proved using linear algebraic methods.

Fact 2 (Linear Dependence of Polynomial Evaluations) Suppose |F| � d + 2. For

any b 2 B and distinct c0, . . . cd+1 2 C(b), there exist non-zero coe�cients r0, r1, . . . , rd+1 2

F such that for all � 2 �B,
d+1X

i=0

ri · �|ci = 0.

The second and third facts are proved in [56]. The second fact gives a su�cient condition

for a function f : Fk ! F being close to a multivariate low-degree polynomial.

Fact 3 (Robust Characterization of Low-Degree Functions) Fix  > 0 such that

  1

2(d+2)2
. If f : C! F is such that

Prb⇠B

h
9 � 2 �B st Prc⇠C(b)

⇥
f(c) = �|c

⇤
� 1� 

i
� 1� ,

then there exists � 2 � such that Prc⇠C
⇥
f(c) = �(c)

⇤
� 1� 2(d+ 3).

Fact 4 (Testing A�ne Maps over Large Fields in High Soundness Regime) Fix  >

76

0 such that   1

18
. If f : �C ! �C is such that

Prx,y,z⇠�C

h
f(x) + f(y + z) = f(x+ y) + f(z)

i
� 1� ,

then there exists an a�ne T : �C ! �C such that Prx⇠�C

⇥
f(x) = T(x)

⇤
� 1� 2.

4.5.2 Proving the Claims

In this section we restate and prove the claims used to prove Lemma 7.

Notation. Throughout this section, we assume {fa}a ⇢ {f : �A ! �A}, h : �C ! �C and

G ⇢ A ⇥ � with |G| � 2" · |A ⇥ �| are such that (4.4) holds. Namely, we assume that the

hypotheses of Lemma 7. We also use �̃ = h(c) throughout.

Claim 7 (Restated). There exist a�ne maps {Tc}c2C such that Prc⇠C

⇥
�̃ = Tc(�)

⇤
�

1� ⇠7.

Proof. Consider the following distribution, D on C⇥�3

C. Ultimately, the output

of D is just uniform, however the internal choices of D help in our analysis. D works as

follows:

1. draw b ⇠ B and distinct c0, c1, . . . , cd+1 ⇠ C(b); let r0, . . . , rd+1 2 F be the coe�cients

guaranteed by Fact 2;

2. draw �0
0
, �1

0
, . . . , �0d , �

1

d ⇠ �C; let ci,k = (ck, �ik), and �̃ik = h(ci,k) for i = 0, 1 and

k = 0, . . . , d;

77

3. for i, j 2 {0, 1}, let �i,j 2 �B be the unique polynomial that agrees with �i
0
at c0 and

�jk at ck for all k = 1, . . . , d; let bi,j = (b,�i,j);

4. for i, j 2 {0, 1}, draw (ai,j ,�i,j) ⇠ G(bi,j) and set ↵̃i,j = fai,j (�
i,j |ai,j) and �̃i,j = ↵̃i,j |b;

5. let (�̃, �̃0, �̃00, �̃000) =
�
h(cd+1, �), h(cd+1, �0), h(cd+1, �00), h(cd+1, �000)

�
, where

(�, �0, �00, �000) =
⇣
�0,0|cd+1 ,�

1,0|cd+1 ,�
0,1|cd+1 ,�

1,1|cd+1

⌘
;

here �|c denotes the evaluation of the polynomial � at the point c;

6. output (c, x, y, z) = (cd+1, �, �0 � �, �00).

Note that the output of D is uniform on C ⇥ �3

C. Indeed, cd+1 drawn in Step 1 is uniform

since B
�
C is biregular. Moreover, given any fixed �1

1
, . . . , �1k , �

00 varies uniformly as �0
0
does.

Then, given any fixing of (�0
0
, �1

1
, . . . , �1k), � varies uniformly as (�0

1
, . . . , �0k) does. Finally,

given any fixing of �0
0
and (�0

1
, �1

1
, . . . , �0k , �

1

k), �
0 varies uniformly as �1

0
does.

Now, let E be the event: �̃i
0
⇠ �̃i,j ⇠ �̃jk 8 (i, j, k) 2 {0, 1}2⇥ {1, . . . , d}, where the

�̃i
0
, �̃i,j , and �̃jk are the internal values drawn during steps 2 and 4. By the assumptions of

Lemma 7 and the sampling of A ⇥ �
�
B, we have Prb,c,(a,�)

⇥
�̃ ⇠ ↵̃

⇤
� 1 � ⇣ � �, where the

probability is over b ⇠ B, c ⇠ C(b), (a,�) ⇠ G(b). It follows from the union bound that

PrD
⇥
E
⇤
� 1� ⇠2

7
/8 (substituting ⇠2

7
= 32(d + 1)(⇣ + �)), since each (bi,j , ci,0, ai,j ,�i,j) and

(bi,j , cj,k, ai,j ,�i,j) are, individually, drawn in this way for each (i, j, k) 2 {0, 1}2⇥{0, . . . , d}.

We complete the proof by showing that whenever the sampling of (c, x, y, z) ⇠ D

is such that E occurs, it holds that h(c, x) + h(c, y + z) = h(c, x + y) + h(c, z). Together

78

with Fact 4, this implies that there is a family of a�ne maps {Tc}c2C such that

Prc⇠C


Pr�⇠�C

⇥
�̃ = Tc(�)

⇤
� 1� ⇠7

2

�
� 1� ⇠7

2
,

which implies the claim.

So it su�ces to show that

� � �0 = �00 � �000 and �̃ � �̃0 = �̃00 � �̃000

both hold whenever E occurs (the first equality always holds, the second holds whenever E

occurs). This follows from Fact 2. The first equality holds since the �i,j are low-degree and

for all (i, j, k), �i
0
and �jk are the evaluations of �i,j at c0 and ck, respectively. Thus Fact 2

gives

r0 · �00 +
✓Pd

k=1
rk · �0k

◆
+ rd+1 · � = 0; r0 · �10 +

✓Pd
k=1

rk · �0k
◆
+ rd+1 · �0 = 0;

r0 · �00 +
✓Pd

k=1
rk · �1k

◆
+ rd+1 · �00 = 0; r0 · �10 +

✓Pd
k=1

rk · �1k
◆
+ rd+1 · �000 = 0,

which simplifies to � � �0 = �00 � �000 since rd+1 6= 0. Likewise, for the second equality, the

�̃i,j are low degree and when E occurs, the �̃i
0
and �̃jk are the evaluations of �̃i,j at c0 and

ck. As above, this implies �̃ � �̃0 = �̃00 � �̃000.

Claim 8 (Restated). Let {Tc} be the family of a�ne maps promised by Claim 7; for

each c 2 C, let Tc(�) := uc · � + vc for uc, vc 2 F. Then there exists u 2 F such that

Prc⇠C
⇥
uc = u

⇤
� 1� ⇠8, where ⇠8 = (d+ 2)(⇣ + �) + 4⇠7 + 2/|F|.

79

Proof. We prove that Prc,c0⇠C
⇥
uc = uc0

⇤
� 1� ⇠8 which su�ces since

Prc,c0⇠C
⇥
uc = uc0

⇤
=
X

u2F

p
2

u  max
�
pu : u 2 F

,

where pu := Prc⇠C
⇥
uc = u

⇤
is shorthand. As in the previous proof, we describe a distribution

D0 on C
2:

1. draw b ⇠ B and distinct c0, c1, . . . , cd+1 ⇠ C(b); let r0, . . . , rd+1 2 F be the coe�cients

guaranteed by Fact 2; let u0, ud+1 2 F denote the linear terms of Tc0 and Tcd+1 ,

respectively;

2. draw �0
0
, �1

0
, �k ⇠ �C for k = 1, . . . , d; let ci,0 = (c0, �i0) for i = 0, 1 and ck = (ck, �k)

for k = 1, . . . , d; let �̃i
0
= h(ci,0) and �̃k = h(ck);

3. for i 2 {0, 1}, let �i 2 �B be the unique polynomial that agrees with �i
0
at c0 and �k

at ck for all k = 1, . . . , d; let bi = (b,�i);

4. for i 2 {0, 1}, draw (ai,�i) ⇠ G(bi) and set ↵̃i = fai(�
i|ai) and �̃i = ↵̃i|b;

5. let (�̃, �̃0) =
�
h(cd+1, �), h(cd+1, �0)

�
, where (�, �0) =

�
�0|cd+1 ,�

1|cd+1

�
;

6. output (c, c0) = (c0, cd+1).

Note that D0 outputs two random points on a random line, which is within statistical

distance 2/|F| of uniform on C
2. Let E0 be the event:

1. �̃i
0
⇠ �̃i ⇠ �̃k 8 (i, k) 2 {0, 1}⇥ {1, . . . , d}; and

2. (�̃0
0
, �̃1

0
, �̃, �̃0) =

�
Tc0(�

0

0
),Tc0(�

1

0
),Tcd+1(�),Tcd+1(�

0)
�

80

The first condition occurs with probability at least 1 � (d + 2)(⇣ + �); as in the proof

of Claim 7, this follows from (4.4), the sampling of A ⇥ �
�
B, and a union bound. The

second condition occurs with probability at least 1 � 4⇠7, by Claim 7. Upon substituting

⇠8 = (d+ 2)(⇣ + �) + 4⇠7 + 2/|F|, we get Pr(c,c0)⇠C2

⇥
E0
⇤
� PrD0

⇥
E0
⇤
� 2/|F| � 1� ⇠8. As in

the proof of Claim 7, Fact 2 gives

r0 · (�00 � �10) + rd+1 · (� � �0) = 0 = r0 · (�̃00 � �̃10) + rd+1 · (�̃ � �̃0).

Substituting (�̃0
0
� �̃1

0
) = u0 ·(�00��1

0
) and (�̃� �̃0) = ud+1 ·(���0) gives rd+1(ud+1�u0)(��

�0) = 0 which means ud+1 = u0 since rd+1 6= 0 and � 6= �0. Thus, Prc,c0⇠C
⇥
uc = uc0

⇤
� 1�⇠8.

Claim 9 (Restated). Let {Tc} be the family of a�ne maps promised by Claim 7. Then

there exists �0 2 � with Prc⇠C
⇥
Tc(0) = �0(c)

⇤
� 1� ⇠9, where ⇠2

9
= 8(d+ 3)2(⇣ + ⇠7 + ⇠8).

Proof. Let v : C! F as a function mapping c 7! vc = Tc(0). Let ⇠ := ⇠9
2(d+3)

. We

will show that

Prb⇠B

h
9 �̃0 2 �B st Prc⇠C(b)

⇥
vc = �̃0|c

⇤
� 1� ⇠

i
� 1� ⇠. (4.5)

The claim then follows from Fact 3. Towards establishing (4.5), note that

Pr(a,�)⇠G
b⇠B(a)
c⇠C(b)

⇥
vc = �̃|c � u · �|c

⇤
� 1� (⇣ + ⇠7 + ⇠8) � 1� ⇠(⇠ � �),

where � = �|b and �̃ = ↵̃|b; we have used ⇠(⇠ � �) � ⇠2/2 = ⇣ + ⇠7 + ⇠8. This follows

81

immediately from (4.4) and Claims 7 and 8. By an averaging argument,

Pr(a,�)⇠G
b⇠B(a)

h
Prc⇠C(b)

⇥
vc = �̃0|c

⇤
� 1� ⇠

i
� 1� ⇠ + �,

where �̃0 = �̃ � u · �. The bound (4.5) now follows from the sampling of A⇥ �
�
B.

4.6 A Locally Testable, Non-Malleable Code

In this section, we give a construction of a locally testable non-malleable code

against coordinate wise tampering. We take the outer code, (ELTNM,DLTNM,TLTNM) from

section 4.4 and compose it with a new non-malleable code, (Ea↵ ,Da↵), against a�ne tam-

pering to get the final code.

4.6.1 A Simple Non-malleable Code against A�ne Tampering

We begin with a new constant rate, non-malleable code against a�ne tampering.

This result is not new, several prior works [4, 23, 48, 22] give such codes, however, our

construction is considerably simpler than those prior.

Notations. Let F be a finite field and K/F a degree 3 extension, so K = F[x]
��

p(x)
�
for

an irreducible cubic polynomial p(x) = x3 � e2x2 � e1x � e0. Thus K is a 3-dimensional

F�vector space with basis {1,�,�2}, where � 2 K is a root of p(x). The ‘multiplication by

82

�’ map F3 ! F3 is linear, specified over this basis by the matrix

⌃ =

2

6666664

0 0 e0

1 0 e1

0 1 e2

3

7777775
2 F3⇥3.

Our code makes use of an "�high entropy encoding, (E,D), with codeword space F, such that

for all m, c⇤, Prc⇠E(m)

⇥
c = c⇤

⇤
 ". Such codes can be trivilally constructed by appending

a message with a random string of length log
�
1/"

�
.

Construction. Let (E,D) be an "�high entropy code with message space M and code-

word space F, and let m 2M.

• Ea↵(m): Draw r ⇠ F;w ⇠ E(m) and output w + r · � + wr · �2 2 K.

• Da↵(c): Parse c = c0 + c1 · � + c2 · �2; if c0 · c1 = c2, output m = D(c0); if not, output ?.

Theorem 6 Fix " > 0, and let (E,D) be an "�high entropy code with message space M

and codeword space F. Then (Ea↵ ,Da↵) is a (2"+ 2/|F|)�non-malleable code against a�ne

tampering functions.

Proof. Fix an a�ne map f given by f(x) = sx + t where s, t, x 2 K and fix

any message m 2 M. Parse s = s0 + s1 · � + s2 · �2 and t = t0 + t1 · � + t2 · �2. To

prove the theorem, we exhibbit a trivial tampering function gf (i.e., either constant or

the identity) such that the tampering distribution
�
Da↵ � f � Ea↵

�
(m) outputs gf (m) with

probability at least 1�2"�2/|F|. The trivial function gf is f if f is either the identity or a

constant function mapping to a valid codeword, and is the constant ? function otherwise.

83

Specifically, if (s, t) = (1, 0), gf is the identity; if s = 0 and t0 · t1 = t2, gf is the constant

function mapping everything to t; otherwise gf is the constant ? function. The key point,

is that for all m 2M, the distribution f
�
Ea↵(m)

�
draws w ⇠ E(m), r ⇠ F and outputs

S

2

6666664

w

r

wr

3

7777775
+

2

6666664

t0

t1

t2

3

7777775
=

2

6666664

t0 + s0w + e0s2r + (e0s1 + e0e2s2)wr

t1 + s1w + (s0 + e1s2)r + (e1s1 + s2e0 + s2e1e2)wr

t2 + s2w + (s1 + e2s2)r + (s0 + e2s1 + s2e22 + s2e1)wr

3

7777775
=:

2

6666664

C0(w, r)

C1(w, r)

C2(w, r)

3

7777775
,

where S 2 F3⇥3 is the ‘multiplication by s’ matrix: S = s0 ·11+s1 ·⌃+s2 ·⌃2. In the above,

we have defined bilinear (i.e., of the form a+bx+cy+dxy) polynomials C0,C1,C2 2 F[x, y].

Note that if C0(x, y) ·C1(x, y) 6⌘ C2(x, y) as polynomials, then C0(w, r) ·C1(w, r) = C2(w, r)

holds with probability at most 2"+ 2/|F|, in which case
�
Da↵ � f � Ea↵

�
(m) = ? with high

probability. This follows immediately from Schwartz-Zippel and the low entropy property of

(E,D). Therefore, in order to prove the theorem, it su�ces to show that if C0(x, y)·C1(x, y) ⌘

C2(x, y) holds, then either s = 0 or (s, t) = (1, 0). We assume C0(x, y) · C1(x, y) ⌘ C2(x, y)

holds, and we prove the following three items:

1. either s1 = 0 or s2 = 0;

2. s1 = 0, s2 = 0;

3. if s1 = s2 = 0 then either s0 = 0 or s0 = 1 and t0 = t1 = t2 = 0.

The third point is easiest: if C0(x, y) · C1(x, y) ⌘ C2(x, y) and s1 = s2 = 0 then plugging

gives

(t0 + s0x) · (t1 + s0y) = t2 + s0xy,

84

from which it follows that either s0 = 0 or s0 = 1 and ti = 0 for all i = 0, 1, 2. To prove the

first point, note that if C0(x, y) ·C1(x, y) ⌘ C2(x, y), then s0 · s1 = 0 (since the x2 coe�cient

in C2 is zero). If s1 = 0 we are done; if s0 = 0 then e0e1s22 = 0 (since y2 coe�cient in C2 is

zero), which implies e1s2 = 0 since e0 6= 0 (else p(x) is reducible). If s2 = 0 we are done;

if e1 = 0 then e2
0
s2
2
= 0 (since xy2 coe�cient in C2 is zero). Again, e0 6= 0 so s2 = 0 so the

first point follows.

Finally, for the second point, assume s1 = 0. Then s0s2 · (e0 + e1e2) = 0 since

the coe�cient of x2y = 0 in C2. Note e0 6= �e1e2 since otherwise p(x) is reducible: p(x) =

(x� e2)(x2 � e1). However, if s0 = 0 then, as shown in the proof of the first point, s2 = 0;

therefore s1 = 0 implies s2 = 0. Conversely, if s2 = 0 then e0s0s1 = 0 (coe�cient of xy2

in C2 is zero), so s0s1 = 0. If s0 = 0 then e0s21 = 0 (coe�cient of x2y in C2 is zero). Thus

s2 = 0 implies s1 = 0, and we are done.

Remark. In our LTNM code in the next section, we will use (Ea↵ ,Da↵) to encode a

random w 2 F and so the high entropy encoding is not necessary. The precise claim we

use is stated below. The proof is the same as above since if C0(x, y) · C1(x, y) 6⌘ C2(x, y) as

polynomials, then C0(w, r) · C1(w, r) = C2(w, r) holds with probability at most 4/|F| over

w, r ⇠ F.

Claim 10 Let f : K ! K be a�ne of the form f(x) = sx + t for s, t 2 K such that s 6= 0

and (s, t) 6= (1, 0). Then Prw,r⇠F

h
Da↵

�
f(w + r · � + wr · �2)

�
6= ?

i
 4/|F|.

85

4.6.2 A LTNM Code via Composition

Composition Overview. The local test of our main construction from Section 4.4 passes

whenever codewords are tampered by a coordinate-wise a�ne function. Thus, in order to

use our main construction to build a fully LTNM code, we must modify the test in such a

way so that it fails whenever a non-trivial a�ne tampering function is used. We do this in

two steps. First, we modify the local tester so that it locally decodes a specified polynomial

evaluation. Second, the tester checks that the evaluation recovered is a valid codeword of

(Ea↵ ,Da↵), if not it outputs ?. Essentially, the reason this works is that the local decoder

will output ? unless the codeword is tampered with an a�ne function, in which case the

evaluation recovered is an a�ne function of the original evaluation. If the original evaluation

is a random valid codeword of (Ea↵ ,Da↵) then by Claim 10, the recovered evaluation is a

valid codeword only if the a�ne tampering function is trivial.

Notations. As in the previous section, let K/F be a degree 3 extension with F�basis

{1,�,�2}. Let k � 5 and d � 2. As in the rest of the paper, let A be the set of 3�planes

in Fk and C = Fk. In this section, we use B and Ā to denote the set of lines and 4�planes

respectively(note, the second usage is di↵erent from rest of the paper where we used Ā to

denote A⇥ �A). Let p = (1, 0, . . . , 0) 2 Fk.

Construction. Let Ea↵() denote the procedure which draws w, r ⇠ F, and outputs the

value w + r · � + wr · �2 2 K; let Da↵ be the decoding algorithm from the previous section.

Let m 2 K be a message.

• Enc(m): Draw v ⇠ Ea↵(); and � ⇠ � such that �(0) = m and �(p) = v; output

86

�
(a,�a)

a2A

.

• Dec
�
{(a,↵)}a2A

�
: Find � 2 � such that (a,↵) = (a,�|a) for all a 2 A. If such � exists,

and if Da↵
�
�(p)

�
6= ?, output m = �(0), otherwise output ?.

• Test
�
{(a,↵)}a2A

�
: Draw b ⇠ B(p), c1, c2, c3 ⇠ C(b), c, c0 ⇠ C, a1 ⇠ A(c, c1), a2 ⇠

A(c, c0, c2), a3 ⇠ A(c0, c3). Read (a1,↵1), (a2,↵2), (a3,↵3) and do the following.

1) Check that ↵1|c = ↵2|c and ↵2|c0 = ↵3|c0 ; if not output 0; if so use interpolation

to recover � 2 �B, the unique degree 2 polynomial such that �|ci = ↵i|ci for

i = 1, 2, 3; let v = �|p.

2) If Da↵(v) 6= ?, output 1; otherwise output 0.

Theorem 7 Let `, " as in theorem 5. Then the code (Enc,Dec,Test) above is a (`, "0)�locally

testable, non-malleable code against F , the family of coordinate-wise tampering functions

where "0 = O("1/2).

Proof. Fix a tampering function f = {fa}a 2 F . Let G be the family of a�ne

maps. We prove that (Enc,Dec,Test) is LTNMC by showing conditions of Definition 6

holds. The first condition is trivial. It is also not di�cult to see that the distribution Sf

that draws m0 ⇠ K and outputs Tamperf,T (m
0) satisfies the second condition. Therefore, it

remains to exhibit a list Lf ⇢ Gtrivial of size at most |Lf |  ` such that val  O("1/2) where

val := Pr�,rand

h
Test passes & (↵̃1, ↵̃2, ↵̃3) /2

��
ha1(�|a1), ha2(�|a2), ha3(�|a3)

�
: {ha}a 2 Lf

 i
,

where ↵̃i = fai(�|ai). In the course of the proof of Theorem 5 from Section 4.4.2(see

87

appendixA.2), a similar list L0f ⇢ G of size at most |L0f |  ` was constructed such that

Pr�,(c,a1,a2)

h
↵̃1|c = ↵̃2|c & (↵̃1, ↵̃2) /2

��
ga1(�|a1), ga2(�|a2)

�
: {ga}a 2 L

0

f

 i
 ",

where this probability is over � ⇠ � and c ⇠ C, a1, a2 ⇠ A(c). Our list Lf ⇢ H is the set of

trivial {ga}a 2 L
0

f . The quantity val can now be bounded

val  Pr�,rand
⇥
E1 _E0

1 _E2 _E3

⇤

for the following events:

E1: ↵̃1|c = ↵̃2|c & (↵̃1, ↵̃2) /2
��

ga1(�|a1), ga2(�|a2)
�
: {ga}a 2 L

0

f

;

E0
1
: ↵̃2|c0 = ↵̃3|c0 & (↵̃2, ↵̃3) /2

��
g
0
a2(�|a2), g

0
a3(�|a3)

�
: {g0a}a 2 L

0

f

;

E2: the {ga}a, {g0a}a 2 G which agree with f from E1 and E0
1
are distinct and such that

ga2(�|a2) = g
0
a2(�|a2);

E3: the same {ga}a 2 G results from E1 and E0
1
; this {ga}a 2 G is non-trivial, but the

a�ne check passes: Da↵(ṽ) 6= ?.

The marginal distribution on a2 from rand is uniform, so Pr�,rand
⇥
E2

⇤
= O

�
|F|�1

�
. By

Claim 10, Pr�,rand
⇥
E3

⇤
 4/|F|. We prove Pr�,rand

⇥
E1

⇤
 "1/2 +O

�
|F|�1

�
. The same holds

for E0
1
, and the result follows. Towards bounding Pr�,rand

⇥
E1

⇤
, note that drawing � ⇠ �

uniformly, rather than uniformly subject to �(0) = m and �(p) = v changes the probability

88

by at most O
�
|F|�1

�
. Therefore, in the calculation below, we assume � ⇠ �. We have

Pr�,rand
⇥
E1

⇤
2
= E�,c⇠C,a2⇠A(c)

h
Pra1⇠rand(c,a2)

⇥
E1

⇤i2
 E�,c,a2

h
Pra1⇠rand(c,a2)

⇥
E1

⇤
2
i

 E�,c,a2

h
Pra1,a3⇠rand(c,a2)

⇥
↵̃1|c = ↵̃2|c = ↵̃3|c & (↵̃1, ↵̃2, ↵̃3) /2 L

0

f

⇤i
+O(|F|�1),

where “(↵̃1, ↵̃2, ↵̃3) /2 L
0

f” is shorthand for

(↵̃1, ↵̃2, ↵̃3) /2
��

ga1(�|a1), ga2(�|a2), ga3(�|a3)
�
: {ga}a 2 L

0

f

and the O(|F|�1) term in the second line accounts for the case when there are {ga}a, {g0a}a 2

L
0

f such that ga2(�|a2) = g
0
a2(�|a2) holds. Note that if ↵̃1 = ga1(�|a1), and ↵̃2 6= ga2(�|a2),

then ↵̃1|c = ↵̃2|c occurs with probability O
�
|F|�1

�
. It follows that

Pr�,rand
⇥
E1

⇤
2  Pr �,c,a2

a1,a3⇠rand(c,a2)

h
↵̃1|c = ↵̃3|c & (↵̃1, ↵̃3) /2 L

0

f

i
+O

�
|F|�1

�
.

Therefore, it su�ces to show that for all c 2 C, the distribution which draws a2 ⇠ A(c),

a1, a3 ⇠ rand(c, a2) and outputs (a1, a3) is within statistical distance O
�
|F|�1

�
of uniform on

A(c)2. The distribution rand(c, a2) draws c2 ⇠ C(a2), c1 ⇠ C(b), where b is the line through

p and c2, and outputs a1 ⇠ A(c, c1). This is equivalent to drawing c1 ⇠ C(a2) and outputting

a1 ⇠ A(c, c1), where a2 is the 4�plane containing a2 and p. Thus the distribution which

draws a2 ⇠ A(c) and then a1, a3 ⇠ rand(c, a2), outputting (a1, a2, a3) can be equivalently

described by drawing a1, a3 ⇠ A(c), ci ⇠ C(ai) for i = 1, 3, a2 ⇠ A(c, p, c1, c3) (i.e., a random

4�plane containing c, p, c1, c3), a2 ⇠ A(c, a2) and outputting (a1, a2, a3). In the previous

89

calculation we have ignored error terms of size O
�
|F|�1

�
. Thus the marginal distribution

on (a1, a3) is O
�
|F|�1

�
�close to uniform on A(c), and the result follows.

90

Chapter 5

Conclusions

5.1 Thesis Summary

Over the last few decades many di↵erent notions of pseudorandomness and pseu-

dorandom objects have been studied. One important example of such objects is the notion

of expander graphs which has found many applications in theoretical computer science. Re-

cently, Ta-Shma[60] constructed binary codes based on random walks on expander graphs,

that achieves almost optimal rate-bias trade-o↵. The proof of his construction uses linear

algebra in a elementary but intricate manner. As our first work in this dissertation, we give

an alternate proof of Ta-Shma’s[60] construction using only repeated applications of the

expander mixing lemma. Our proof is more combinatorial and arguably simpler compared

to Ta-Shma’s original analysis. Additionally, we showed that our techniques can be used

to give an alternate proof of the expander hitting set lemma. In our second chapter, we

proved a new mixing result that roughly says: in certain non-abelian groups, a random

three term progression tuple behaves like a random tuple whose each element is sampled

91

independently randomly. Our result resolved a more than a decade old conjecture in addi-

tive combinatorics, by Gowers[43]. As an immediate consequence of our result, it follows

that there are finite groups in which all three term progression free subsets are small. In

our third work, we proposed a new code. This code is called locally testable, non-malleable

code(LTNMC). Informally, LTNMCs come with e�cient testing algorithms that gives the

following guarantee: if any tampered codeword passes the test with high probability then

it must be encoding either the original message or a statistically unrelated one. We gave a

construction of such code in a popularly studied adversary model. Along the process, we

also gave a new and e�cient non-malleable code against a�ne tampering functions.

92

Bibliography

[1] Divesh Aggarwal. A�ne-evasive sets modulo a prime. Inf. Process. Lett., 115(2):382–
385, 2015.

[2] Divesh Aggarwal, Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey,
and Manoj Prabhakaran. Optimal computational split-state non-malleable codes. In
Eyal Kushilevitz and Tal Malkin, editors, Theory of Cryptography - 13th International
Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II,
volume 9563 of Lecture Notes in Computer Science, pages 393–417. Springer, 2016.

[3] Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej Obremski. Non-
malleable reductions and applications. In Rocco A. Servedio and Ronitt Rubinfeld,
editors, Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of
Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 459–468. ACM,
2015.

[4] Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable codes from
additive combinatorics. In David B. Shmoys, editor, Symposium on Theory of Com-
puting, STOC 2014, New York, NY, USA, May 31 - June 03, 2014, pages 774–783.
ACM, 2014.

[5] Divesh Aggarwal, Nico Döttling, Jesper Buus Nielsen, Maciej Obremski, and Erick
Purwanto. Continuous non-malleable codes in the 8-split-state model. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
pages 531–561. Springer, 2019.

[6] Divesh Aggarwal and Maciej Obremski. Inception makes non-malleable codes shorter
as well! IACR Cryptology ePrint Archive, 2019:399, 2019.

[7] Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, and Manoj Prab-
hakaran. Explicit non-malleable codes against bit-wise tampering and permutations. In
Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, pages 538–557, 2015.

[8] Noga Alon. Explicit expanders of every degree and size. Combinatorica, pages 1–17,
2021.

93

[9] Noga Alon, Jehoshua Bruck, Joseph Naor, Moni Naor, and Ron M Roth. Construction
of asymptotically good low-rate error-correcting codes through pseudo-random graphs.
IEEE Transactions on information theory, 38(2):509–516, 1992.

[10] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple construction of
almost k-wise independent random variables. Random Struct. Algorithms, 3(3):289–
304, 1992.

[11] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; A new characteri-
zation of NP. In 33rd Annual Symposium on Foundations of Computer Science, Pitts-
burgh, Pennsylvania, USA, 24-27 October 1992, pages 2–13. IEEE Computer Society,
1992.

[12] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteri-
zation of NP. J. ACM, 45(1):70–122, 1998.

[13] László Babai, Nikolay Nikolov, and László Pyber. Product growth and mixing in finite
groups. In Proc. 19th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA),
pages 248–257, 2008.

[14] László Babai and Vera T. Sós. Sidon sets in groups and induced subgraphs of Cayley
graphs. Eur. J. Comb., 6(2):101–114, 1985.

[15] Marshall Ball, Dana Dachman-Soled, Siyao Guo, Tal Malkin, and Li-Yang Tan. Non-
malleable codes for small-depth circuits. In Mikkel Thorup, editor, 59th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October
7-9, 2018, pages 826–837. IEEE Computer Society, 2018.

[16] Avraham Ben-Aroya and Amnon Ta-Shma. A combinatorial construction of almost-
ramanujan graphs using the zig-zag product. SIAM Journal on Computing, 40(2):267–
290, 2011.

[17] Amey Bhangale, Irit Dinur, and Inbal Livni Navon. Cube vs. cube low degree test. In
Christos H. Papadimitriou, editor, 8th Innovations in Theoretical Computer Science
Conference, ITCS 2017, January 9-11, 2017, Berkeley, CA, USA, volume 67 of LIPIcs,
pages 40:1–40:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

[18] Amey Bhangale and Subhash Khot. Optimal inapproximability of satisfiable k-LIN
over non-abelian groups. In Proc. 53rd ACM Symp. on Theory of Computing (STOC),
pages 1615–1628, 2021.

[19] Nishanth Chandran, Vipul Goyal, Pratyay Mukherjee, Omkant Pandey, and Jalaj
Upadhyay. Block-wise non-malleable codes. In Ioannis Chatzigiannakis, Michael
Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Col-
loquium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, volume 55 of LIPIcs, pages 31:1–31:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2016.

94

[20] Nishanth Chandran, Bhavana Kanukurthi, and Srinivasan Raghuraman. Information-
theoretic local non-malleable codes and their applications. IACR Cryptology ePrint
Archive, 2015:1056, 2015.

[21] Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable extractors and codes,
with their many tampered extensions. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pages 285–298, 2016.

[22] Eshan Chattopadhyay and Xin Li. Non-malleable codes and extractors for small-
depth circuits, and a�ne functions. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 1171–1184. ACM, 2017.

[23] Eshan Chattopadhyay and David Zuckerman. Non-malleable codes against constant
split-state tampering. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 306–315.
IEEE Computer Society, 2014.

[24] Eshan Chattopadhyay and David Zuckerman. Explicit two-source extractors and re-
silient functions. In Proceedings of the forty-eighth annual ACM symposium on Theory
of Computing, pages 670–683, 2016.

[25] Lijie Chen, Ce Jin, and R Ryan Williams. Hardness magnification for all sparse np
languages. In 2019 IEEE 60th Annual Symposium on Foundations of Computer Science
(FOCS), pages 1240–1255. IEEE, 2019.

[26] Sandro Coretti, Yevgeniy Dodis, Björn Tackmann, and Daniele Venturi. Non-malleable
encryption: Simpler, shorter, stronger. In Theory of Cryptography - 13th International
Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part I,
pages 306–335, 2016.

[27] Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Locally de-
codable and updatable non-malleable codes and their applications. In Yevgeniy Dodis
and Jesper Buus Nielsen, editors, Theory of Cryptography - 12th Theory of Cryptog-
raphy Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings, Part
I, volume 9014 of Lecture Notes in Computer Science, pages 427–450. Springer, 2015.

[28] Dana Dachman-Soled, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Locally de-
codable and updatable non-malleable codes and their applications. J. Cryptology,
33(1):319–355, 2020.

[29] Giuliana Davido↵, Peter Sarnak, and Alain Valette. Elementary Number Theory, Group
Theory and Ramanujan Graphs. London Mathematical Society Student Texts. Cam-
bridge University Press, 2003.

[30] Persi Diaconis. Group representations in probability and statistics, volume 11 of IMS
Lecture Notes Monogr. Ser. Institute of Mathematical Statistics, 1998.

95

[31] Irit Dinur, Prahladh Harsha, Tali Kaufman, Inbal Livni Navon, and Amnon Ta-Shma.
List decoding with double samplers. In Timothy M. Chan, editor, Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pages 2134–2153. SIAM, 2019.

[32] Irit Dinur, Prahladh Harsha, Tali Kaufman, and Noga Ron-Zewi. From local to robust
testing via agreement testing. In Avrim Blum, editor, 10th Innovations in Theoretical
Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego, Califor-
nia, USA, volume 124 of LIPIcs, pages 29:1–29:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2019.

[33] Irit Dinur and Tali Kaufman. High dimensional expanders imply agreement expanders.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS),
pages 974–985. IEEE, 2017.

[34] Yevgeniy Dodis, Abhishek Jain, Tal Moran, and Daniel Wichs. Counterexamples to
hardness amplification beyond negligible. In Theory of Cryptography Conference, pages
476–493. Springer, 2012.

[35] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-malleable cryptography (extended
abstract). In Proceedings of the 23rd Annual ACM Symposium on Theory of Comput-
ing, May 5-8, 1991, New Orleans, Louisiana, USA, pages 542–552, 1991.

[36] Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-malleable codes
from two-source extractors. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part II, volume 8043 of Lecture Notes in
Computer Science, pages 239–257. Springer, 2013.

[37] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. J.
ACM, 65(4):20:1–20:32, 2018.

[38] Uriel Feige and Joe Kilian. Zero knowledge and the chromatic number. In Steven
Homer and Jin-Yi Cai, editors, Proceedings of the Eleveth Annual IEEE Conference on
Computational Complexity, Philadelphia, Pennsylvania, USA, May 24-27, 1996, pages
278–287. IEEE Computer Society, 1996.

[39] E. N. Gilbert. A comparison of signalling alphabets. The Bell System Technical Journal,
31(3):504–522, 1952.

[40] Oded Goldreich. Short locally testable codes and proofs: A survey in two parts. In
Property testing, pages 65–104. Springer, 2010.

[41] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their
validity and a methodology of cryptographic protocol design (extended abstract). In
27th Annual Symposium on Foundations of Computer Science, Toronto, Canada, 27-29
October 1986, pages 174–187. IEEE Computer Society, 1986.

96

[42] Oded Goldreich and Madhu Sudan. Locally testable codes and pcps of almost-linear
length. Journal of the ACM (JACM), 53(4):558–655, 2006.

[43] William Timothy Gowers. Quasirandom groups. Comb. Probab. Comput., 17(3):363–
387, 2008.

[44] Vipul Goyal, Omkant Pandey, and Silas Richelson. Textbook non-malleable commit-
ments. In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 1128–1141,
2016.

[45] Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. New direct-product
testers and 2-query pcps. SIAM J. Comput., 41(6):1722–1768, 2012.

[46] Joe Kilian and Moni Naor. On the complexity of statistical reasoning (extended ab-
tract). In Third Israel Symposium on Theory of Computing and Systems, ISTCS 1995,
Tel Aviv, Israel, January 4-6, 1995, Proceedings, pages 209–217. IEEE Computer So-
ciety, 1995.

[47] Joe Kilian, Erez Petrank, and Gábor Tardos. Probabilistically checkable proofs with
zero knowledge. In Proceedings of the Twenty-Ninth Annual ACM Symposium on the
Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 496–505, 1997.

[48] Xin Li. Improved two-source extractors, and a�ne extractors for polylogarithmic en-
tropy. In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer
Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey,
USA, pages 168–177. IEEE Computer Society, 2016.

[49] Martin W Liebeck and Aner Shalev. Character degrees and random walks in finite
groups of Lie type. Proc. Amer. Math. Soc., 90(1):61–86, 2004.

[50] Martin W Liebeck and Aner Shalev. Fuchsian groups, coverings of Riemann surfaces,
subgroup growth, random quotients and random walks. Journal of Algebra, 276(2):552–
601, 2004.

[51] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combina-
torica, 8(3):261–277, 1988.

[52] Dana Moshkovitz. Low-degree test with polynomially small error. Computational
Complexity, 26(3):531–582, 2017.

[53] Sarah Peluse. Mixing for three-term progressions in finite simple groups. Math. Proc.
Cambridge Philos. Soc., 165(2):279–286, 2018.

[54] Morris Plotkin. Binary codes with specified minimum distance. IRE Transactions on
Information Theory, 6(4):445–450, 1960.

[55] Ran Raz and Shmuel Safra. A sub-constant error-probability low-degree test, and a sub-
constant error-probability PCP characterization of NP. In Frank Thomson Leighton

97

and Peter W. Shor, editors, Proceedings of the Twenty-Ninth Annual ACM Symposium
on the Theory of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 475–484.
ACM, 1997.

[56] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with
applications to program testing. SIAM J. Comput., 25(2):252–271, 1996.

[57] Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[58] Madhu Sudan. Decoding of reed solomon codes beyond the error-correction bound. J.
Complexity, 13(1):180–193, 1997.

[59] Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without
the xor lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

[60] Amnon Ta-Shma. Explicit, almost optimal, epsilon-balanced codes. In Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 238–251,
2017.

[61] Terrence Tao. Mixing for progressions in nonabelian groups. Forum of Mathematics,
Sigma, 1:e2, 2013.

[62] R. R. Varshamov. Estimate of the number of signals in error correcting codes. Docklady
Akad. Nauk, S.S.S.R., 117:739–741, 1957.

[63] Avi Wigderson and David Zuckerman. Expanders that beat the eigenvalue bound:
explicit construction and applications. In S. Rao Kosaraju, David S. Johnson, and
Alok Aggarwal, editors, Proceedings of the Twenty-Fifth Annual ACM Symposium on
Theory of Computing, May 16-18, 1993, San Diego, CA, USA, pages 245–251. ACM,
1993.

[64] David Zuckerman. Randomness-optimal oblivious sampling. Random Struct. Algo-
rithms, 11(4):345–367, 1997.

98

Appendix A

A.1 Sampler Graph Preliminaries

A.1.1 Basic definitions and Facts

Definition 13 (Biregularity) Let A/B be a bipartite graph and fix ⌘ > 0. We say that

A/B is ⌘�biregular if the distribution which draws a ⇠ A, b ⇠ B(a), and outputs (a, b)

is within statistical distance ⌘ of the distribution which gives the same output by drawing

b ⇠ B, a ⇠ A(b).1

Biregularity ensures that for any B0 ⇢ B of size |B0| = � · |B|, the expectation (over a ⇠ A)

of Prb⇠B(a)[b 2 B0] is close to �. We say that A/B is sampling if a concentration bound

holds.

Definition 14 (Sampler Graph [64]) Fix ", � > 0. We say that the bipartite graph A/B

is (", �)�sampling if for all subsets B0 ⇢ B of size |B0| = � · |B|,

Pra⇠A

���Prb⇠B(a)

⇥
b 2 B0

⇤
� �

��� > "

�
 �.

1
This is related to the usual notion of biregularity; specifically, if A/B is biregular in the usual sense,

then it is 0�biregular in the sense of Definition 13.

99

Double Samplers. A triple (A,B,C) is called a double sampler if B/C is sampling and

for all c 2 C, A(c)/B(c) is sampling. Double samplers have been used implicitly in several

works prior to their formalization in [33]. We use them implicitly in this work as well. The

construction in [33] is of a double sampler of linear size (i.e., |A| ⇡ |B| ⇡ |C|) based on high-

dimensional expanders. The double samplers used in this work are built from elementary

means and are not linear size (our double samplers have |A| � |B| � |C|). Importantly,

a random object in our parameter regime is a double sampler with good probability, while

this is not true in the linear size regime.

Fact 5 (Properties of Samplers) Suppose A/B is ⌘�biregular and (", �)�sampling. We

have the following.

1. For any ⇢ > 0 and f : B ! [0, 1],

Pra⇠A

���Eb⇠B(a)

⇥
f(b)

⇤
� Eb⇠B

⇥
f(b)

⇤��� > "+ 2⇢

�
 �/⇢.

2. For any ⇢ > 0, B/A is
�
⇢, 2("+ � + ⌘)/⇢

�
�sampling.

3. For any B0 ⇢ B of size |B0| = � · |B| with � > ",

�
⇣�

(a, b) : b⇠B0
a⇠A(b)

,
�
(a, b) : a⇠A

b⇠B0
(a)

 ⌘
 � + ⌘/",

where B0(a) denotes the distribution which draws b ⇠ B(a) and outputs if b 2 B0, else

resamples (or if B(a) \B0 = ;, B0(a) outputs an arbitrary b 2 B).

The facts above are all well-known. See, for example, [64, 45, 17] for proofs of points 1, 2,

100

and 3, respectively.

Fact 6 (Extending Sampling via Biregularity) Fix ", "0, �, �0, ⌘ > 0. Suppose A/B/C

are such that B(a)
�
C(a) is ⌘�biregular and C(a, b) = C(b) for all a 2 A and b 2 B(a).

The following hold.

1. If B/C is ("0, �0)�sampling and A/B is ⌘�biregular, then A/C is (", �)�sampling,

where � � "�1 · (2⌘ + "0 + �0).

2. If A
�
B is ("0, �0)�sampling and B

�
C is ⌘�biregular, then A

�
C is (", �)�sampling,

where " � 3"0 + 2⌘ and � � �0/"0.

Proof. Assume A/B/C are such that for all a 2 A, B(a)
�
C(a) is ⌘�biregular, and

also that C(a, b) = C(b). Let C 0 ⇢ C be a subset of size |C 0| = � · |C|. By ⌘�biregularity,

���Prc⇠C(a)(c 2 C 0)� �
��� 

���Eb⇠B(a)

⇥
Prc⇠C(b)(c 2 C 0)

⇤
� �

���+ ⌘

holds for all a 2 A. Now, let val := Pra⇠A
⇥
|Prc⇠C(a)(c 2 C 0) � �| > "

⇤
be the quantity we

have to bound. For the first point we have

val  "�1 ·
✓

E a⇠A
b⇠B(a)

h��Prc⇠C(b)(c 2 C 0)� �
��
i
+ ⌘

◆
 "�1 · (2⌘ + "0 + �0),

by Markov’s inequality, the ⌘�biregularity of A/B and the ("0, �0)�sampling of B/C. For

the second point we have

val  Pra⇠A

���Eb⇠B(a)

⇥
�(b)

⇤
� Eb⇠B

⇥
�(b)

⇤��� > "� 2⌘ � 3"0
�
 �0/"0,

101

where �(b) := Prc⇠C(b)(c 2 C 0). We have used the ⌘�biregularity of B/C to say that

Eb⇠B

⇥
�(b)

⇤
is in � ± ⌘, and the ("0, �0)�sampling of A/B combined with the first point of

Fact 5.

Fact 7 (Replacement Product) Let ", "0, �, �0 > 0 be such that � · (" � 5"0) � 2�0/"0.

Suppose A/B/C is such that:

• A/C, B/C and B(a)
�
C(a) are 0�biregular for all a 2 A; and

• A/C and A(c)
�
B(c) are ("0, �0)�sampling for all c 2 C.

Then A/B is (", �)�sampling.

The replacement product was originally proved in [63] in the context of seeded randomness

extractors (which are equivalent to sampler graphs). We give the proof ported over to the

language of samplers in Appendix A.4 for completeness.

A.1.2 Why Samplers Play a Role

Here we briefly discuss how sampler graphs serve as an important component in

our analysis. We begin by recalling the ’plane vs plane’ low degree testing model from

PCP literature [55, 17]. In this model, a test algorithm gets oracle access to a ‘planes’

table where to each plane, a 2 A, the table contains a polynomial, ↵, defined on that

plane. Then the test algorithm’s task is to decide if the table is close to any global low

degree polynomial �. The final step is then to prove an agreement theorem that says if

the test passes with good probability, then there exists a polynomial that agrees with the

table on many planes. In literature, these agreement theorems are proven using essentially

102

two ingredients: sampling properties of planes and facts about low degree polynomials.

Now, its easy to see that our tampering and testing model is very similar to the ‘plane vs

plane’ model. The only di↵erence is that in our model as we are looking at coordinate-

wise tampering fa(↵) = ↵̃, we have a ‘plane⇥polynomial table’ where to (a,↵) the table

contains a polynomial ↵̃. Thus, to prove an agreement theorem in our setting, we wind up

using sampling of ’planes⇥polynomials’ [see section A.1.3 below] and the same facts about

polynomials.

A.1.3 Incidence ⇥ Agreement Samplers

Sampler graphs play a big role in the proofs. In this section we list all the graphs

whose sampling will be used, and various properties of sampler graphs. All of the graphs

are what we call “incidence ⇥ agreement” graphs, such as A/C from last section. We begin

with some notation.

Notation. Recall F is a finite field, k � 4, d � 2, A is the set of 3�planes in Fk, C = Fk,

� and �A are the sets of k�variate and 3�variate polynomials of degree at most d over F,

respectively, �C = F. This defines an incidence ⇥ agreement bipartite graph A/C where

A = A ⇥ �A, C = C ⇥ �C and the edge relation is “incidence ⇥ agreement”: a = (a,↵) ⇠

(c, �) = c i↵ c 2 a and ↵|c = �. For r = 1, 2, let Br denote the set of a�ne r�dimensional

planes in Fk, let �Br be the set of r�variate polynomials of degree at most d over F, and

let Br = Br ⇥ �Br . At various points during the proof, we will use that A/Br/C is a double

sampler. The incidence ⇥ agreement edge relation extends naturally to A/Br, Br/C, and

B2/B1. For example, if a = (a,↵) 2 A and b = (b,�) 2 B2, then a ⇠ b i↵ b ⇢ a and ↵|b = �.

103

We begin by listing the incidence ⇥ agreement samplers we will need in the re-

mainder of the paper and proving they are sampling. In the claim statement below, A(c),

for c 2 C, denotes the set of a 2 A such that a ⇠ c. In the proof which follows, we use A(c)

to mean either this set, or the uniform distribution on this set; in all cases, our intention

should be clear from the context.

Claim 11 The following graphs are all O
�
|F|�1

�
�biregular and

�
12 · |F|�1/15, |F|�1/15

�
�

sampling:

(1) B1

�
C (2) A(c)

�
B2(c) 8 c 2 C (3) A

�
C (4) A(c, c0)

�
C

(5) A
�
C
2

(6) A(c)
�
C
2 8 c 2 C (7) A⇥ �

�
C (8) B2(c)

�
C

(9) A(c)/B1(c)⇥ B1(c) (10) A⇥ �
�
B1 (11) A(b)

�
C

Proof. It is easy to see that all of the graphs in the Claim statement are

O
�
|F|�1

�
�biregular, as per Definition 13. By symmetry, graphs (1), (2), (3), (5), (7),

(10) are actually 0�biregular. The others have a slight error introduced by the fact, for

example, that the distribution which draws a ⇠ A(c) and outputs a random element of

C(a) is more likely to output c than c
0 6= c. However, an easy calculation shows that the

statistical distance between the required distributions is O
�
|F|�1

�
; the same is true for all

examples in the list. The rest of the proof is divided into two stages. First, we use a pair-

wise independence argument to show that B1/C, B2/C, A(b1)
�
B2(b1) for all b1 2 B1 and

B2(c)
�
B1(c), A(c)

�
B1(c) for all c 2 C are (|F|�1/5, |F|�3/5)�sampling. Then we reduce the

sampling of every graph above to the sampling of these five.

We phrase the pairwise independence argument for a generic bipartite graph A/B.

The key feature we need involves a set X which parametrizes the neighborhoods B(a) for

104

all a 2 A. Given x 2 X and a 2 A, we write the x�th neighbor of a as a(x) 2 B, so

X parametrizes neighborhoods as B(a) = {a(x) : x 2 X} for all a 2 A. The property

we require is that for all x1 6= x2 2 X, the random variable
�
a(x1), a(x2)

�
(randomness

over a ⇠ A) is uniform on B2. For B1/C, X = F since C(b) is parametrized by the points

on the line b. Likewise, for B2/C, X = F2. For A(b1)
�
B2(b1),the neighborhood B2(b1, a)

is paramterized by all possible planes in a through b1, so we have |X| = |F| + 1. For

B2(c)
�
B1(c), X = F [{1}, since B1(c, b2) is parametrized by all possible slopes of a line

in b2 through c. Finally, for A(c)/B1(c) the neighborhood B1(c, a) is paramterized by all

possible lines in a through c, so we have |X| = |F|2 + |F| + 1 . In all cases, independence

follows from the fact that for every b1 2 B, the distribution which draws a ⇠ A(b1) and

outputs b2 ⇠ B(a) \ {b1} is the uniform distribution on B.

So now, let A/B be a bipartite graph which satisfies the pairwise independent

parametrized neighborhood property described above. Let B0 ⇢ B be a subset of size |B0| =

� · |B|. For b 2 B, let 11B0(b) indicate whether b 2 B0 or not, and let 1̂1B0(b) := 11B0(b)� �.

Note Eb⇠B

⇥
1̂1B0(b)

⇤
= 0. Finally, define f : A ! [0, 1] by f(a) := Eb⇠B(a)

⇥
1̂1B0(b)

⇤
. We will

show Ea⇠A
⇥
f(a)2

⇤
 |F|�1. This su�ces by Markov’s inequality:

Pra⇠A

���Prb⇠B(a)

�
b 2 B0

�
� �

��� > |F|�1/5

�
 Pra⇠A

h
f(a)2 > |F|�2/5

i
 |F|2/5 · Ea⇠A

⇥
f(a)2

⇤
.

We use the pairwise independence property to conclude:

Ea⇠A
⇥
f(a)2

⇤
= Ea⇠A

h
Ex1,x2⇠X

⇥
1̂1B0

�
a(x1)

�
· 1̂1B0

�
a(x2)

�i

 1

|X| + Eb1,b2⇠B

h
1̂1B0(b1) · 1̂1B0(b2)

i
=

1

|X| .

105

For the reductions in the second phase, we use the generic facts about samplers

stated in Section A.1.1. Since B2/C and B2(c)
�
B1(c) for all c 2 C are each

�
|F|�1/5, |F|�3/5

�
�

sampling, B1/C and B2/B1 are both
�
7 · |F|�1/5, |F|�1/5

�
�sampling (we have already shown

sampling of B1/C with better parameters, sampling of B2/B1 follows from Fact 7. We

have also shown that A(b1)/B2(b1) for all b1 2 B1 and A(c)/B1(c) for all c 2 C are both

�
|F|�1/5, |F|�3/5

�
�sampling. This fact combined with Fact 7 proves sampling of A(c)/B2(c)

for all c 2 C. The first point of Fact 6 says that any time we have Z such that Z/B1 or

Z/B2 is O
�
|F|�1

�
�biregular, then Z/C or Z/B1 is

�
3 · |F|�1/15, 3 · |F|�2/15

�
�sampling. This

proves the sampling of all graphs except for (5), (6) and (9): A/C
2
and A(c)

�
C
2
for all

c 2 C, so it remains to prove sampling of these. Note A(c)
�
B1 for all c 2 C and A/B1 are

�
3 · |F|�1/15, 3 · |F|�2/15

�
-samplers, since A(c)

�
B2 and A/B2 are O

�
|F|�1

�
�biregular. Thus

we can use the second point Fact 6 to get
�
12·|F|�1/15, |F|�1/15

�
�sampling of graphs (5) and

(6) because B1/C
2
is O

�
|F|�1

�
�biregular. Sampling of A(c)/B1(c) ⇥ B1(c) 8 c 2 C follows

similarly.

Notational Conventions and Example Use. Our proofs in the next sections rely

heavily, and often implicitly, on the fact that the graphs of Claim 11 are samplers, and

on the properties of sampler graphs stated in Fact 5. To facilitate readability, from here

on, we reserve the quantity � > 0 for the loss introduced any time a sampling argument is

used. As an example of how this looks in the body of the paper, let C
0 ⇢ C be a set with

|C0| � � · |C|, and let E be some event. Then we might deduce: E
c,c0⇠C

0
⇥
Pra⇠A(c,c0)(E)

⇤
�

Ea⇠A

⇥
Pr

c,c0⇠C
0
(a)

(E)
⇤
� �, “because of the sampling of A

�
C
2
.” Formally, we are using the

third point of Fact 5, the fact that A
�
C
2
is ⌘0�biregular, ("0, �0)�sampling with � > "0 and

106

that � � �0 + ⌘0/"0.

Setting the Sampling Parameter. In the example use mentioned above, ⌘0 = O
�
|F|�1

�

and "0, �0 = O
�
|F|�1/15

�
. Thus, � = O

�
|F|�1/15

�
is su�cient for � � �0 + ⌘0/"0 to hold. In

general, each sampler property use will put a lower bound on �, and so we simply set �

large enough so that they all hold. Explicitly, � = 3 · |F|�1/60 is su�cient for our purposes.

We conclude this section with a claim listing two sampler-based facts which will be useful

in the calculations in the next section.

Claim 12 Let the notations be as above, and let � = 3 · |F|�1/60 and ⌘ = O
�
|F|�1

�
. Let

C
0 ⇢ C be a subset of size |C0|/|C| � 12 · |F|�1/15. We have the following.

1. 8
>>>>>>>>>><

>>>>>>>>>>:

(c, b, c0)

�����

a ⇠ A

c ⇠ C(a)

c
0 ⇠ C

0
(a)

b ⇠ B2(a, c, c0)

9
>>>>>>>>>>=

>>>>>>>>>>;

⇡�

8
>>>>>><

>>>>>>:

(c, b, c0)

�����

c ⇠ C

b ⇠ B2(c)

c
0 ⇠ C

0
(b)

9
>>>>>>=

>>>>>>;

,

where in the first distribution b = (b,↵|b), where a = (a,↵).

2. 8
>>>>>>>>>><

>>>>>>>>>>:

(a, b, c0)

�����

a ⇠ A

c ⇠ C(a)

c
0 ⇠ C

0
(a)

b ⇠ B2(c, c0)

9
>>>>>>>>>>=

>>>>>>>>>>;

⇡�

8
>>>>>><

>>>>>>:

(a, b, c0)

�����

c
0 ⇠ C

0

b ⇠ B2(c0)

a ⇠ A(b)

9
>>>>>>=

>>>>>>;

,

where in the first distribution b = a|b.

107

In both (1) and (2) above, ⇡� denots that the two distributions are within statistical distance

� of one another.

Proof. For the first part, we have

8
>>>>>><

>>>>>>:

a ⇠ A

c ⇠ C(a)

c
0 ⇠ C

0
(a)

9
>>>>>>=

>>>>>>;

⇡�/3

8
>>>>>><

>>>>>>:

c
0 ⇠ C

0

a ⇠ A(c0)

c ⇠ C(a)

9
>>>>>>=

>>>>>>;

⇡⌘

8
>>>>>><

>>>>>>:

c
0 ⇠ C

0

b ⇠ B2(c0)

c ⇠ C(b)

9
>>>>>>=

>>>>>>;

⇡�/3

8
>>>>>><

>>>>>>:

b ⇠ B2

c
0 ⇠ C

0
(b)

c ⇠ C(b)

9
>>>>>>=

>>>>>>;

,

where each distribution outputs (c, b, c0) and where b = a|b for b ⇠ B2(a, c, c0) is implied

in the first two distributions. The first relation follows from sampling of A/C; the second

follows from the ⌘�biregularity of B2(a, c0)
�
C(a) for all a 2 A and c

0 2 C(a), and the

0�biregularity of A(c0)
�
B(c0) for all c0 2 C; the third follows from the sampling of B2/C.

Finally, the last distribution is identical to the desired distribution on the right of point 1

because of the 0�biregularity of B2/C. We work similarly for the second point:

8
>>>>>><

>>>>>>:

a ⇠ A

c ⇠ C(a)

c
0 ⇠ C

0
(a)

9
>>>>>>=

>>>>>>;

⇡�/2

8
>>>>>><

>>>>>>:

c
0 ⇠ C

0

a ⇠ A(c0)

c ⇠ C(a)

9
>>>>>>=

>>>>>>;

⇡⌘

8
>>>>>><

>>>>>>:

c
0 ⇠ C

0

a ⇠ A(c0)

b ⇠ B2(a, c0)

9
>>>>>>=

>>>>>>;

⌘

8
>>>>>><

>>>>>>:

c
0 ⇠ C

0

b ⇠ B2(c0)

a ⇠ A(b)

9
>>>>>>=

>>>>>>;

,

where each distribution outputs (a, b, c0) and where b = a|b (as above, b ⇠ B2(a, c, c0) is

implicit in the first two distributions). We have used the sampling of A/C, ⌘�biregularity of

B2(a, c0)
�
C(a) for all a 2 A and c

0 2 C(a), and 0�biregularity of A(c0)
�
B2(c0) for all c0 2 C.

108

A.2 Missing Proofs

We first recall the theorems.

Theorem 5 (Restated). (Non-Malleability of the Outer Code) Fix " = |F|�O(1)

and l = 4/". . Suppose {fa}a 2 F is such that

Pr�,(c,a,a0)

h
Test

�
{(a, ↵̃)}a

�
= 1

i
� ",

where the probability is over � ⇠ �, and c ⇠ C, a, a0 ⇠ A(c),2 and where
�
(a,↵)

a
=

�
(a,�|a)

a
, and

�
(a, ↵̃)

a
=
�
(a, fa(↵))

a
. Then there exists a list L{fa} = {T(1), . . . ,T(l)}

of a�ne maps T
(j) : �! � of size at most |L{fa}|  l such that

Pr�,(c,a,a0)

h
↵̃|c = ↵̃0|c & ↵̃ /2 {T(j)

�
�
�
|a} : T(j) 2 L{fa}

i
= O(")

Theorem 4 (Restated). Fix " = |F|�O(1). Suppose {fa}a2A 2 F is such that

Pr�,(c,a,a0)

h
Test

�
{(a, ↵̃)}a

�
= 1

i
� ",

where the probability is over � ⇠ �, and c ⇠ C, a, a0 ⇠ A(c),3 and where
�
(a,↵)

a
=

�
(a,�|a)

a
, and

�
(a, ↵̃)

a
=
�
(a, fa(↵))

a
. Then there exists an a�ne map T : �! � such

that

Pr�,a
⇥
↵̃ = T(�)|a

⇤
= ⌦(").

2
Equivalently this probability is over m ⇠ F, {(a,↵)} ⇠ Enc(m) and over (c, a, a0) the randomness of Test

3
Equivalently this probability is over m ⇠ F, {(a,↵)} ⇠ Enc(m) and over (c, a, a0) the randomness of Test

109

Proof of Theorem 5 Assuming Theorem 4. Let " be as in Theorem 4 above and fix

f = {fa}a 2 F . We will show that there exists Lf ⇢ G of size at most ` such that

Pr�,(c,a,a0)

h
↵̃|c = ↵̃0|c & (↵̃, ↵̃0) /2

��
ga(↵), ga0(↵

0)
�
: {ga}a 2 Lf

 i
< 6", (A.1)

where (↵̃, ↵̃0) =
�
fa(↵), fa0(↵0)

�
for (↵,↵0) =

�
�|a,�|a0

�
, and where � ⇠ �.4 Towards this

end, let Lf :=
�
{ga}a 2 G : Pr(�,a)⇠�⇥A

⇥
↵̃ = ga(↵)

⇤
� "/2

.

Small List Size. Assume for contradiction that |Lf | � ` = 4/"+1, and so contains a set

�
{g1a}a, . . . , {g`a}a

. By inclusion-exclusion,

1 � Pr(�,a)⇠�⇥A

h
↵̃ 2

�
g
i
a(↵) : i = 1, . . . , `

 i

� ` · "
2
�

X

1i<j`

Pr�,a

h
g
i
a(↵) = g

j
a(↵)

i
> 2�

✓
`

2

◆
·
✓

1

|�| +
d

|F|

◆
.

The last inequality used `" > 4, and the bound on Pr�,a
⇥
g
i
a(�|a) = g

j
a(�|a)

⇤
from point 2

above. The right hand side simplifies to 2� o(1) > 1, a contradiction.

Proximity Implies List Decoding. Suppose {fa} is such that (A.1) does not hold.

Define {f 0a}a 2 F as follows: f
0
a(↵) = fa(↵), unless fa(↵) = ga(↵) for some {ga}a 2 Lf in

which case f
0
a(↵) outputs a random ↵̃ /2

�
ga(↵) : {ga}a 2 Lf

. Note

Pr�,(c,a,a0)

⇥
f
0

a(↵)|c = f
0

a0(↵
0)|c

⇤
� 6"

4
as noted in point 3 above, the di↵erence in probability caused by drawing � ⇠ � such that �(0) = m

instead is negligible.

110

since (A.1) does not hold. Therefore, by Theorem 4, there exists an a�ne T : � ! � such

that Pr�,a
⇥
f
0
a(�|a) = T(�)|a

⇤
� ". Thus Pr�,a

⇥
fa(�|a) = T(�)|a

⇤
� "� `/|�A| � "/2, and so

the coordinate-wise version of T is in Lf . This is a contradiction since by construction, for

every {ga}a 2 Lf , f 0a(↵) 6= ga(↵) holds for all a 2 A and ↵ 2 �A.

A.3 Global Agreement

In this section we prove Lemma 6, restated below in a quantitative form.

Lemma 6 (Restated). Suppose " � F�1/1000, and fix parameters ⌘ = |F|�9/10, � =

3 · |F|�1/60, and ⌧ = O
�
�/"6 + ⌘/"11

�
. Suppose {fa}a ⇢ {f : �A ! �A} is such that

Pr�,(c,a,a0)

h
↵̃|c = ↵̃0|c

i
= 6" (A.2)

where the probability is over � ⇠ �, c ⇠ C, a, a0 ⇠ A(c), and where (↵̃, ↵̃0) =
�
fa(�|a), fa0(�|a0)

�
.

Then there exists a set G ⇢ A⇥� of size at least |G| � 2" · |A⇥�| and a function h : C! �C

such that: Pr(a,�)⇠G
c⇠C(a)

⇥
�̃ ⇠ ↵̃

⇤
� 1�⇣, where �̃ = h(c,�|c) and ⇣ := "�2 ·(⌧+�)+"�1 ·(⌘+�).

Remark 8 Many di↵erent parameters are introduced during the course of our analysis

which are all O
�
|F|�1

�
. We encourage the reader to think of two levels of parameters: level

one consists of " only; all other parameters are in level 2 and are much smaller. The level

two parameters are each defined to be smaller than "c for some constant c = O(1) which

arises during our analysis. So in the above theorem, for example, in order for ⌧ to be level

2, it must be that � ⌧ "6 and ⌘ ⌧ "11; additionally, for ⇣ to be level 2, ⌧ ⌧ "2 is required.

We remark that the analysis prioritizes modularity and succinctness, rather than optimizing

111

constants. As a result, the small constant 1/1000 is suboptimal.

We begin by introducing the notation and ideas needed to prove Lemma 6 in Section A.3.1.

The actual proof appears in Section A.3.2, conditioned on two claims which we state in

Section A.3.1 and prove in Section A.3.3.

A.3.1 Proof Setup.

Notations. In this section B denotes the set of 2�dimensional planes in Fk, and �B is

the set of 2�variate polynomials over F of degree at most d, and B = B ⇥ �B. The sets

A,C,� are as usual. We will take advantage of the sampling properties of the triple A/B/C.

When considering two polynomials whose domains intersect, we write ⇠ to indicate that

they agree on the intersection. For example, given ↵̃, ↵̃0 2 �A defined on a, a0 2 A(c) we

write ↵̃ ⇠ ↵̃0 if ↵̃|c = ↵̃0|c.

We say that (c, �, �̃) is good if Pr(a,�)

⇥
↵̃ ⇠ �̃] � 4", where the probability is over a ⇠ A(c)

and � ⇠ �(c). We say c = (c, �) is good if there exists �̃ such that (c, �, �̃) is. Note that

Prc⇠C

⇥
c good

⇤
� 2". To see this, let pc,�,�̃ := Pr(a,�)

⇥
↵̃ ⇠ �̃]. Then (A.2) gives

6" = Ec⇠C

"
X

�̃

pc,�,�̃ · Pra0⇠A(c)

⇥
↵̃0 ⇠ �̃

⇤
#
 Ec⇠C

h
max
�̃

�
pc,�,�̃

 i
.

We have used that
P

�̃ Pra0⇠A(c)

⇥
↵̃0 ⇠ �̃

⇤
= 1 for all c.

Local Functions. Let h0 : C! �C be the randomized function which sends c = (c, �) to

a random �̃ such that (c, �, �̃) is good if such �̃ exists, and to an arbitrary �̃ 2 �C if not.

For c 2 C, let gc : B(c)! �B be the randomized function where gc(b) is the distribution on

112

�B which draws a ⇠ A(b) such that ↵̃ ⇠ h0(c), and outputs �̃ = ↵̃|b. Additonally, we define

ĝc : B1(c)! �B1 as follows: for l = (l,�) 2 B1(c) the distribution gc(l) draws a ⇠ A(l) such

that ↵̃ ⇠ h0(c), and outputs �̃ = ↵̃|l. Note that, here we are denoting an element of B1 as

l = (l,�).

Definition 15 (Well-Defined) Let ⌘ = |F|�9/10. We say:

1. gc is well-defined if: Pr b⇠B(c)
a,a0⇠A(b)

h
↵̃ ⇡ ↵̃0

���↵̃ ⇠ h0(c) ⇠ ↵̃0

i
� 1 � ⌘, where ↵̃ ⇡

↵̃0 indicates that ↵̃|b = ↵̃0|b

2. ĝc is well-defined if: Pr l⇠B1(c)
a,a0⇠A(l)

h
↵̃ ⇡ ↵̃0

���↵̃ ⇠ h0(c) ⇠ ↵̃0

i
� 1 � ⌘, where ↵̃ ⇡

↵̃0 indicates that ↵̃|l = ↵̃0|l

Previous work [45, 17] refers to the good c 2 C for which gc is well-defined as excellent ; the

fact that the excellent points comprise a non-negligible fraction of C is a crucial component

of the proofs in these papers. We require one extra property from our specialized subset of C

which simplifies the remainder of our proof greatly. The following is proved in Section A.3.3.

Claim 13 There exists a set C
0 ⇢ C such that the following hold: 1) |C0| � "3|C|; 2) every

c 2 C
0
is good and such that both gc and ĝc are well-defined; 3)

Pr
c,c0⇠C

0

h
Pra⇠A(c,c0)

⇥
h0(c) ⇠ ↵̃ ⇠ h0(c

0)
⇤
� "5

i
� 1� �,

where � := �/"3 + �/"6 + ⌘/"11.

Intuitively, the extra property captured by (3) demands that the set of excellent points can

be partitioned into large sets of mutually compatible points; the set C
0
is any member of

this partition.

113

The Global Function. Let h : C ! �C be the randomized function where h(c) draws

b ⇠ B(c), c0 ⇠ C
0
(b) and outputs �̃|c where �̃ = gc0(b). The following is also proved in

Section A.3.3.

Claim 14 We have Pr
(c,b,c0)

⇥
h(c) ⇠ �̃

⇤
� 1�⌧ , where ⌧ :=

�
�+2"�5(⌘+�)+2�

�
, �̃ = gc0(b)

and the probability is over c ⇠ C, b ⇠ B(c), c0 ⇠ C
0
(b).

A.3.2 Proof of Lemma 6

Notational Convention. Let h0, h : C ! �C be the functions defined in Section A.3.1.

In this section if we write �̃ when working with c 2 C, it should be understood that �̃ = h(c).

We will always refer to h0(c) explicitly.

Proof. Suppose (", {fa}) are such that (A.2) holds; let C
0 ⇢ C be the set guar-

anteed by Claim 13. We define G to be the set of (a,�) 2 A ⇥ � such that Pr
c⇠C

0
(a)

⇥
↵̃ ⇠

h0(c)
⇤
� ". We have,

E(a,�)⇠A⇥�

h
Pr

c⇠C
0
(a)

⇥
↵̃ ⇠ h0(c)

⇤i
� E

c⇠C
0

h
Pr a⇠A(c)

�⇠�(c)

⇥
↵̃ ⇠ h0(c)

⇤i
� � � 3"

We have used the sampling of A⇥ �
�
C for the first inequality, and that all c 2 C

0
are good

for the second (and 4"� � � 3"). It follows that |G| � 2"|A⇥ �|. Thus, it remains to prove

that Pr(a,�),c

⇥
�̃ ⇠ ↵̃

⇤
� 1� ⇣, where the probability is over (a,�) ⇠ G, c ⇠ C(a) and where

�̃ = h(c,�|c), where h is the global function defined in Section A.3.1.

114

So let p := Pr(a,�),c

⇥
�̃ ⇠ ↵̃

⇤
be the probability we are trying to bound. We have

p � Pr(a,�)

b,c,c0

⇥
�̃ ⇠ �̃ ⇠ ↵̃

��↵̃ ⇠ h0(c
0)
⇤
� Pr(a,�)

b,c,c0

⇥
�̃ ⇠ �̃

��↵̃ ⇠ h0(c
0)
⇤
�Pr(a,�)

b,c,c0

⇥
�̃ 6⇠ ↵̃

��↵̃ ⇠ h0(c
0)
⇤
,

where the probabilities are over (a,�) ⇠ G, c ⇠ C(a), c0 ⇠ C
0
(a), b ⇠ B(a, c, c0), and where

�̃ = gc0(b), for b = (b,�|b). We conclude by bounding both probabilities on the right;

denoted RHS1 and RHS2, respectively. We have

1� RHS1 = Pr(a,�)⇠G
b,c,c0

⇥
�̃ 6⇠ �̃

��↵̃ ⇠ h0(c
0)
⇤


Pr(a,�),b,c,c0
⇥
�̃ 6⇠ �̃

⇤

min(a,�)2G

�
Pr

c0⇠C
0
(a)

⇥
↵̃ ⇠ h0(c0)

⇤

 "�2

2
· Pra⇠A

b,c,c0

⇥
�̃ 6⇠ �̃

⇤
< "�2 ·

⇣
Pr c⇠C

b⇠B(c)

c0⇠C
0
(b)

⇥
�̃ 6⇠ �̃

⇤
+ �

⌘
 "�2 · (⌧ + �).

The first inequality on the second line used the definition of G and that |G| � 2" · |A ⇥ �|;

the second used Claim 12, point 1; and the last used Claim 14. Finally,

RHS2  "�1

2
· Pr a⇠A

c0⇠C
0
(a)

b⇠B(c0,a)

⇥
�̃ 6⇠ ↵̃

��↵̃ ⇠ h0(c
0)
⇤

 "�1 ·
✓
max
c02C

0

n
Prb⇠B(c0)

a⇠A(b)

⇥
�̃ 6⇠ ↵̃

��↵̃ ⇠ h0(c
0)
⇤o

+ �

◆
 "�1

�
⌘ + �

�
.

We have used Claim 12 point 2 and the fact that gc0 is well-defined for all c0 2 C
0
. The

result follows.

A.3.3 Proving the Claims

Starting Assumption and Notational Conventions. Throughout this section, we

assume the hypotheses of Lemma 6, namely (", {fa}) are such that Pr�,(c,a,a0)

⇥
↵̃ ⇠ ↵̃0

⇤
= 6"

115

(i.e., such that (A.2) holds). Let h0, h : C! �C be the functions defined in Section A.3.1. In

this section if we write �̃ when working with c 2 C, it should be understood that �̃ = h0(c).

We will refer to h(c) explicitly (note, this is opposite to the convention of Section A.3.2).

Given c, c0 2 C set µc, p(c), r(c) and q(c, c0) to:

Pr a⇠A(c)
�⇠�(c)

⇥
�̃ ⇠ ↵̃

⇤
; Prb⇠B(c)

a⇠A(b)

⇥
�̃ ⇠ ↵̃

���̃ ⇠ ↵̃
⇤
; Pr l⇠B1(c)

a⇠A(l)

⇥
�̃ ⇠ ↵̃

���̃ ⇠ ↵̃
⇤
; Pra⇠A(c,c0)

⇥
�̃ ⇠ ↵̃ ⇠ �̃0

⇤
.

In Section A.3.1 we called c 2 C such that µc � 4" good. Also for c 2 C we defined local

functions gc : B(c)! �B, ĝc : B1(c)! �B1 and said that gc was well-defined if p(c) � 1� ⌘

and ĝc was well-defined if r(c) � 1�⌘ , where ⌘ = |F|�9/10. In the remainder of this section

we prove three claims; the first two combine to prove Claim 13, the last is Claim 14.

Claim 15 There exists a set C
0

0 ⇢ C such that the following hold: 1) |C0

0| � "|C|; 2) µc � 4"

for every c 2 C
0

0; 3) p(c) � 1� ⌘; 4) r(c) � 1� ⌘ for every c 2 C
0

0.

Proof. Let C
0

0 ⇢ C be the set of c 2 C for which µc � 4" and p(c) � 1 � ⌘

(i.e., c 2 C
0

0 if c is good and such that gc is well-defined). We bound |C0

0| using three

observations. First, as noted in Section A.3.1, Prc⇠C

⇥
µc � 4"

⇤
� 2". Second, for all c 2 C

such that µc � 4":

Pr b⇠B(c)
a,a0⇠A(b)

⇥
↵̃ ⇠ �̃ ⇠ ↵̃0

⇤
= Eb⇠B(c)

h
µc(b)

2

i
� Prb⇠B(c)

h��µc(b)� µc

��  "
i
· 9"2 � "2,

where µc(b) := Pra⇠A(b)

⇥
↵̃ ⇠ �̃

⇤
is shorthand. We have used the sampling of A(c)

�
B(c) to

(crudely) lower bound Prb⇠B(c)

⇥
|µc(b)�µc|  "

⇤
. Similarly, using sampling of A(c)/B1(c) we

116

get Pr l⇠B1(c)
a,a0⇠A(l)

⇥
↵̃ ⇠ �̃ ⇠ ↵̃0

⇤
� "2. Now, Event1 be: Pr b⇠B(c)

a,a0⇠A(b)

h
↵̃ 6⇡ ↵̃0 & ↵̃ ⇠ �̃ ⇠ ↵̃0

i
> ⌘"2

and Event2 to be the same event except over the distribution l ⇠ B1(c) and a, a0 ⇠ A(l). By

Markov’s inequality and Schwartz-Zippel:

Prc⇠C

h
Event1

i
+ Prc⇠C

h
Event2

i
 2d

⌘"2|F| .

Putting these together gives

|C0

0|
|C|

� Prc⇠C

⇥
µc � 4"

⇤
� Prc⇠C

h
Event1

i
� Prc⇠C

h
Event2

i

� 2"� 2d

⌘"2|F| � ".

Claim 13 (Restated). There exists a set C
0 ⇢ C such that the following hold: 1) |C0| �

"3|C|; 2) µc � 4" for every c 2 C
0
; 3) p(c) � 1 � ⌘ for every c 2 C

0
; 4) Pr

c,c0⇠C
0
⇥
q(c, c0) �

"5
⇤
� 1� �, where � := �/"3 + (2�/+ ⌘)/"11.

Proof. By Claim 15 it su�ces to construct a large subset of C
0

0 such that the fourth

property holds. For this purpose, we equip C
0

0 with a graph structure: c, c0 2 C
0

0 are adjacent

if q(c, c0) � "2. Our final set C
0
will be the neighborhood, N(c0) :=

�
c 2 C

0

0 : q(c, c0) � "2

of some c
0 2 C

0

0. In order for this to work, c0 should satisfy: 1)
��N(c0)

�� must be large; 2)

Prc,c00⇠N(c0)[q(c, c
00) < "5] must be small. We show there exists such a c

0 2 C
0

0. Specifically

we prove

117

1. E
c,c0⇠C

0
0

⇥
q(c, c0)

⇤
� 3"2; and

2. Pr
c0⇠C

0
0

c,c00⇠N(c0)

h
q(c, c00) � "5

���|N(c0)| > "3|C|
i
� 1� �.

It follows from the first point that Pr
c0⇠C

0
0

⇥
|N(c0)| � "3|C|

⇤
> "2 (using |C0

0| � "|C|). Thus,

the two points together guarantee the existence of some c
0 2 C

0

0 such that |N(c0)| � "3|C|

and Prc,c00⇠N(c0)

⇥
q(c, c00) � "5

⇤
� 1� �. Setting C

0
= N(c0) for such a c

0 2 C
0

0 completes the

proof. So it remains to establish the above two bounds.

For the first, we have

E
c,c0⇠C

0
0

⇥
q(c, c0)

⇤
� Ea⇠A

h
Pr

c⇠C
0
0(a)

⇥
�̃ ⇠ ↵̃

⇤
2
i
� � � Ea⇠A

h
Pr

c⇠C
0
0(a)

⇥
�̃ ⇠ ↵̃

⇤i2
� �

� E
c⇠C

0
0

⇥
µc
⇤
2 � 3� � 16"2 � 3� � 3"2.

We have used the sampling of A
�
C
2
, Jensen’s inequality, the sampling of A

�
C, and the fact

that µc � 4" for all c 2 C
0

0. Establishing the second bound is more involved. Towards this

end, we define three quantities, shorthanded as val1, val2, val3; each is a function of (c, c0, c00):

• val1 :=
���Pra0⇠A(c,c0,c00)

⇥
�̃ ⇠ ↵̃0 ⇠ �̃00

⇤
� q(c, c00)

���;

• val2 := E l⇠B1(c,c0)

l
00
⇠B1(c00,c0)

���Pra0⇠A(l,l
00
)
[�̃0 ⇠ ↵̃0]� µc0

���
�

• val3 := Pr l⇠B1(c,c0)
a0⇠A(l,c00)

a⇠A(l)

⇥
↵̃ 6⇡ ↵̃0

��↵̃ ⇠ �̃0 ⇠ ↵̃0
⇤
+ Pr

l
00
⇠B1(c,c0)

a0⇠A(l
00
,c)

a⇠A(l
00
)

⇥
↵̃0 6⇡ ↵̃00

��↵̃0 ⇠ �̃0 ⇠ ↵̃00
⇤
.

We show that each vali is small with very high probability over (c, c0, c00) drawn as fol-

lows: c
0 ⇠ C

0

0 such that |N(c0)| � "3|C|, c, c00 ⇠ N(c0). These bounds will be used in the

118

computation which follows. We have

Pr(c,c0,c00)
⇥
val1 > �

⇤
 "�3 · max

c,c002C

⇢
Prc0⇠C

���Ea0⇠A(c,c0,c00)

⇥
f1(a

0)
⇤
� Ea0⇠A(c,c00)

⇥
f1(a

0)
⇤��� > �

��
,

where f1(a0) = 1 if �̃ ⇠ ↵̃0 ⇠ �̃00, 0 otherwise. Thus Pr(c,c0,c00)
⇥
val1 > �

⇤
 �/"3, by the

sampling of A(c, c00)/C for all c, c00 2 C. Likewise, for val2, we have

Pr(c,c0,c00)
⇥
val2 > 2"5

⇤
= "�6max

c02C

n
Pr
c,c00

h
val2 � 2"5

⇤o

= "�11max
c02C

⇢
E
l,l

00
⇠B1(c0)

h��Pr
a0⇠A(l,l

00
)
[�̃0 ⇠ ↵̃0]� µc0

��
i�

It follows Pr(c,c0,c00)
⇥
val2 > 2"5

⇤
 2�/"11 from the sampling of A(c0)/B1(c0) ⇥ B1(c0) for all

c
0 2 C and the function f2(a0) = 1 i↵ �̃0 ⇠ ↵̃0. Finally,

Pr(c,c0,c00)
⇥
val3 > 2"5

⇤
 "�6 · max

c02C
0
0

n
Prc,c00⇠C

⇥
val3 > 2"5

⇤o
 "�11

2
· max
c02C

0
0

n
Ec,c00⇠C

⇥
val3

⇤o

=
"�11

2
· max
c02C

0
0

n
2 ·

�
1� p(c0)

�o
 ⌘/"11.

Now we show how these values figure into deriving the bound we need. The key point is that

they let us bound q(c, c00) in terms of q(c, c0) · q(c0, c00) ·µc0 , which is large when c, c00 2 N(c0)

119

and c
0 2 C

0

0. We have:

q(c, c00) = Pra0⇠A(c,c00)

⇥
�̃ ⇠ ↵̃0 ⇠ �̃00

⇤
� Pra0⇠A(c,c0,c00)

⇥
�̃ ⇠ ↵̃0 ⇠ �̃00

⇤
� val1

� Pra0⇠A(c,c0,c00)
a⇠A(l)

a00⇠A(l
00
)

⇥
�̃ ⇠ ↵̃ ⇠ �̃0 ⇠ ↵̃00 ⇠ �̃00 & ↵̃ ⇡ ↵̃0 ⇡ ↵̃00 & �̃0 ⇠ ↵̃0

⇤
� val1

� Pra0⇠A(c,c0,c00)
a⇠A(l)

a00⇠A(l
00
)

⇥
�̃ ⇠ ↵̃ ⇠ �̃0 & �̃0 ⇠ ↵̃0 & �̃0 ⇠ ↵̃00 ⇠ �̃00

⇤
� val1 � val3

= q(c, c0) · q(c0, c00) · µc0 � quantity

� q(c, c0) · q(c0, c00) · µc0 � val1 � val2 � val3 � 4"5 � val1 � val2 � val3.

Where quantity is Ea,a00
⇥

�̃⇠↵̃⇠�̃0 · �̃00⇠↵̃00⇠�̃0(Pr
a0⇠A(l,l

00
)
[�̃0 ⇠ ↵̃0] � µc0

�⇤
� val1 � val3. In

the probability subscript in the second line, l and l
00
are the restrictions of a0 to the lines

spanned by (c, c0) and (c0, c00), respectively. The result follows:

Pr
c0⇠C

0
0

c,c00⇠N(c0)

h
q(c, c00) � "5

���|N(c0)| > "3|C|
i
� Pr(c,c0,c00)

h
val1 + val2 + val3  3"5

i
� 1� �.

Claim 14 (Restated). We have

Pr c⇠C
b1⇠B(c)

c01⇠C
0
(b1)

⇥
h(c) ⇠ �̃1

⇤
� 1� ⌧,

where �̃ = gc0(b), and where ⌧ :=
�
� + 2"�5(⌘ + �) + 2�

�
. Recall h(c) is the distribution on

�C which draws b
0

2 ⇠ B(c), c0
2
⇠ C

0
(b2) and outputs gc02

(b2)|c.

120

Proof. We show Pr
(c,c01,c

0
2,b1,b2)

⇥
�̃1 ⇠ �̃2

⇤
� 1 �

�
� + 2"�5(⌘ + �)

�
, where the

probability is over c ⇠ C, c0
1
, c0

2
⇠ C

0
, b1 ⇠ B(c, c0

1
), b2 ⇠ B(c, c0

2
) and where �̃1 ⇠ �̃2 means

that gc01(b1) and gc02
(b2) agree at c. The result then follows by the sampling of B(c)/C for

all c 2 C. We have

Pr
(c,c01,c

0
2,b1,b2)

h
�̃1 ⇠ �̃2

i
� E

c01,c
0
2⇠C

0


Pr

(c,b1,b2)
a⇠A(l1,l2)

h
�̃1 ⇠ ↵̃ ⇠ �̃2

����̃01 ⇠ ↵̃ ⇠ �̃02

i�
.

where l1 = (l1,�1), l1 = line spanned by c, c0
1
and �1 = �1|l1 ; similary l2 = (l2,�2) with

l2 = line (c, c0
2
) and �2 = �2|l2 . Let val := Pr

(c,b1,b2,a)

⇥
�̃1 ⇠ ↵̃ ⇠ �̃2

���̃0
1
⇠ ↵ ⇠ �̃0

2

⇤
be

shorthand for the quantity inside the expectation. We have

val � 1�

Pr

(c,b1,b2,a)

h
�̃1 6⇠ ↵̃

����̃01 ⇠ ↵̃ ⇠ �̃02

i
+ Pr

(c,b1,b2,a)

h
�̃2 6⇠ ↵̃

����̃01 ⇠ ↵̃ ⇠ �̃02

i�

� 1� 1

q(c0
1
, c0

2
)
·

Pr c⇠C,b1⇠B(c,c01)

a⇠A(l1,c02)

h
�̃1 6⇠ ↵̃

����̃01 ⇠ ↵̃
i
+ Pr c⇠C,b⇠B(c,c02)

a⇠A(c01,l2)

h
�̃2 6⇠ ↵̃

����̃02 ⇠ ↵̃
i�

By definition of C
0
, we have Pr

c01,c
0
2⇠C

0
⇥
q(c0

1
, c0

2
) < "5

⇤
 � and also

E
c01,c

0
2⇠C

0

h
Pr c⇠C,b1⇠B(c,c01)

a⇠A(l1,c02)

⇥
�̃1 6⇠ ↵̃

���̃01 ⇠ ↵̃
⇤i
 max

c012C
0

n
Pr c⇠C,b1⇠B(c,c01)

a⇠A(l1)

⇥
�̃1 6⇠ ↵̃

���̃01 ⇠ ↵̃
⇤
+ �

o

= max
c012C

0

n
Pr c⇠C,l1⇠B1(c,c01)

a,a00⇠A(l1)

⇥
↵̃ 6⇡ ↵̃0

���̃01 ⇠ ↵̃
⇤
+ �

o

= max
c012C

0

�
1� p(c01) + �

 ⌘ + �.

We have used the sampling of A(l)/C for all l 2 B1, and that p(c0
1
) � 1 � ⌘ since c

0
1
2 C

0
.

121

The result follows:

E
c01,c

0
2⇠C

0
⇥
val

⇤
�
�
1� �

�
·
�
1� 2"�5(⌘ + �)

�
� 1�

�
� + 2"�5(⌘ + �)

�
.

A.4 Sampler Replacement

In the body we used the following fact with ("0, �0) = (", �) and ⇢ = ⇣ = ".

Fact 7 (Restated). Let ", �, "0, �0, "⇤, �⇤, ⇢, ⇣ > 0 be such that �⇤("⇤ � " � "0 � 2⇢ � ⇣) �

�0/⇣ + �/⇢. Suppose A/B/C is such that:

• A/C, B/C and B(a)
�
C(a) are 0�biregular for all a 2 A; and

• A/C is (", �)�sampling and A(c)
�
B(c) is ("0, �0)�sampling for all c 2 C.

Then A/B is ("⇤, �⇤)�sampling.

Proof. Fix ", �, "0, �0, "⇤, ⇢, ⇣ > 0 and A/B/C as in the statement. Let B0 ⇢ B

be a set of size |B0| = � · |B|, and let A0 ⇢ A be the set of a 2 A such that
��Prb⇠B(a)(b 2

B0)� �
�� > "⇤, let ⌫ = |A0|/|A|. We must show that ⌫ 

�
�0/⇣ + �/⇢

��
("⇤ � "� "0 � 2⇢� ⇣).

We have

"⇤ < Ea⇠A0

h��Prb⇠B(a)(b 2 B0)� �
��
i
 Ea⇠A0

���Ec⇠C(a)

⇥
Prb⇠B(a,c)(b 2 B0)

⇤
� �

���
�

 E a⇠A0
c⇠C(a)

���Prb⇠B(a,c)(b 2 B0)� �(c)
���
�
+ Ea⇠A0

���Ec⇠C(a)

⇥
�(c)

⇤
� Ec⇠C

⇥
�(c)

⇤���
�
,

where for c 2 C, �(c) := Prb⇠B(c)(b 2 B0). We have used the biregularity of B(a)
�
C(a)

122

for all a 2 A and that Ec⇠C
⇥
�(c)

⇤
= �, which follows from biregularity of B/C. Let RHS1

and RHS2 be the two expectations on the right hand side of the equation above. We bound

RHS1 and RHS2 separately. Note,

RHS2  "+ 2⇢+ ⌫�1 · Pra⇠A

���Ec⇠C(a)

⇥
�(c)

⇤
� Ec⇠C

⇥
�(c)

⇤��� > "+ 2⇢

�
 "+ 2⇢+ ⌫�1 · �/⇢.

Thus, it su�ces to show that RHS1  ⇣ + "0 + ⌫�1 · �0/⇣. Let C 0 ⇢ C be the set of c 2 C

such that Pr a⇠A0
c0⇠C(a)

(c0 = c) < ⇣/|C|. Clearly, Pr a⇠A0
c⇠C(a)

(c 2 C 0) < ⇣. Also, whenever c /2 C 0,

we have

⌫ · ⇣  ⌫ · |C| · Pr a⇠A
c0⇠C(a)

⇥
c0 = c

��a 2 A0
⇤
= Pr c0⇠C

a⇠A(c0)

⇥
a 2 A0

��c0 = c
⇤
= Pra⇠A(c)

⇥
a 2 A0

⇤
.

We have used the biregularity of A/C. This gives

RHS1 < ⇣ + "0 +max
c/2C0

(
Pra⇠A(c)

���Prb⇠B(a,c)(b 2 B0)� �(c)
��� > "0

��
Pra⇠A(c)(a 2 A0)

)

 ⇣ + "0 + ⌫�1 · �0/⇣,

and the result follows.

123

	List of Figures
	Introduction
	Analyzing Ta-Shma's Code via the Expander Mixing Lemma
	Introduction
	Our Contribution
	Techniques: Expander Mixing Lemma and consequences
	Improving the rate via Lg-wide replacement product walks

	Preliminaries
	The Lg-wide Replacement Product

	Main theorem
	Proof of Lemma 1
	Lemma Statement
	Key Intuition
	Bounding the Lg Terms
	Bounding the Lg Terms

	Expander Hitting Set Lemma

	Mixing of 3-term progressions in Quasirandom Groups
	Introduction
	Preliminaries
	Proof of the main Theorem

	Locally Testable Non-malleable Codes
	Introduction
	Our Contributions
	Other Relevant Prior Work

	Defining Locally Testable Non-malleable Codes
	Coding Theory Background
	The New Definition and Discussion
	Fitting LTNMCs into the Coding Theory Tree

	Non-malleable PCPs
	ZK and NM for Interactive Proofs
	ZK and NM for PCPs

	Constructing LTNMCs
	Our Outer Code and the Non-Malleable Affine Agreement Theorem
	High Level Map of the Analysis
	Proof of Theorem 4

	Affine Agreement
	Linearity Testing Background
	Proving the Claims

	A Locally Testable, Non-Malleable Code
	A Simple Non-malleable Code against Affine Tampering
	A LTNM Code via Composition

	Conclusions
	Thesis Summary

	Bibliography
	Appendix
	Sampler Graph Preliminaries
	Basic definitions and Facts
	Why Samplers Play a Role
	Incidence Agreement Samplers

	Missing Proofs
	Global Agreement
	Proof Setup.
	Proof of Lemma 6
	Proving the Claims

	Sampler Replacement

