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ABSTRACT OF THE DISSERTATION 
 

Interrogating the effect of variation in trans-acting factors 

 
by 

 

Cynthia Wu 

Doctor of Philosophy in Bioinformatics and Systems Biology 

University of California San Diego, 2023 

Professor Melissa Gymrek, Chair 
Professor Alon Goren, Co-Chair 

 

Mutations in trans-acting factors such as transcription factors, chromatin regulators, 

and DNA repair genes may cause widespread transcriptomic changes or altered genome-wide 

mutation patterns leading to a variety of phenotypes with varying impact on human health. 

Functional consequences of these mutations are difficult to systematically evaluate on a large 

scale due to the many challenges of trans studies. In this dissertation, I focus on two types of 

trans-acting factors: DNA repair genes, which control genome-wide mutation signatures, and 

transcriptional regulators, which impact genome-wide expression patterns. First, I present a 

study in which we used an unbiased genome-wide scan for regulators of repeat expansion 
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propensity to identify the mismatch repair protein MSH3 as a strong trans-acting factor 

affecting germline mutation patterns in recombinant inbred mice. We found that inherited 

variants in and near Msh3 result in variable mutation patterns that are most pronounced at long 

tetranucleotide repeats. Importantly, we also demonstrate a potential evolutionary tradeoff in 

which elevated Msh3 leads to increased repeat expansions whereas Msh3 deficiency results in 

a higher rate of short insertions and deletions. Second, I introduce a novel trans-eQTL detection 

method, xQTL, which is based on a biologically plausible mixture model of target gene effects 

sizes and results in increased power compared to traditional trans-eQTL analysis approaches. 

We applied xQTL to whole brain RNA-sequencing data from a cohort of outbred rats and 

identified 45 trans-eQTL candidates. For example, we identified a strong candidate trans-eQTL 

locus overlapping Neurod4, a key neuronal transcriptional factor, which xQTL estimate to 

regulate thousands of target genes. Importantly, this study also highlights key technical 

considerations regarding treatment of technical covariates when performing trans-eQTL 

detection. Last, I introduce scBE-seq which combines a pooled, high-precision genome editing 

strategy with single-cell sequencing assays to simultaneously interrogate the effects of hundreds 

of variants affecting trans-acting factors. Overall, these works furthered our understanding of 

the molecular effects of genetic variation on trans-acting factors and extended our toolkit for 

systematically studying their potential impact on complex phenotypes.



 
1 

 

INTRODUCTION 
 

A central question in genetics is how genetic variation can impact different traits, 

ranging from molecular phenotypes to disease status. Genetic variants may affect molecular 

phenotypes, such as gene expression, in either cis or trans (Farrall 2004; Signor and Nuzhdin 

2018). In cis effects, a genetic variant influences a nearby region of the genome. For example, 

a variant nearby a gene may alter expression of that gene. On the other hand, trans effects of a 

variant impact distal regions of the genome, either on the same or different chromosomes. For 

example, a mutation in a transcription factor may result in gene expression changes in one or 

more of its target genes. In this work, we focus on the effects of mutations in trans. 

Mutations in trans-acting factors have the potential to have widespread effects. There 

are various types of trans-acting factors such as transcription factors (TFs), chromatin 

regulators (CRs), splicing factors (SFs), and DNA repair genes. Mutations disrupting these 

factors, or expression levels of these factors can lead to global transcriptomic (TFs) or 

epigenomic changes (CRs), splicing variation (SFs), or altered mutation patterns (DNA repair 

genes) (Lee and Young 2013). For example, a single transcription factor may bind to thousands 

of genomic loci (Wang et al. 2012), potentially regulating many genes nearby these binding 

sites (Spitz and Furlong 2012; Lambert et al. 2018). Similarly, mutations in DNA repair genes 

can lead to accumulation of a large number of mutations throughout the genome (“mutator 

phenotypes”) (Lipkin et al. 2000; Loeb et al. 2003; Pinto et al. 2013; Tome et al. 2013; Usdin 

et al. 2015). 

Importantly, mutations in trans-acting factors have been implicated in human disease. 

They can lead to disorders with a wide range of severities from rare Mendelian disease to 

common complex traits and cancers. For example, mutations in transcription factor HNF4A 
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cause maturity-onset diabetes of the young (Barrio et al. 2002) and mutations in the chromatin 

regulator EP300 are associated with the Mendelian disorder Rubinstein-Taybi syndrome 

(Roelfsema et al. 2005; Hamilton et al. 2016). Further, mutations in DNA repair genes MSH2 

and other mismatch proteins have been associated with Lynch syndrome (Lynch et al. 2015), 

and mutations in ERCC2 have been linked to Trichothiodystrophy and Xeroderma 

pigmentosum (Cleaver et al. 1999; Cleaver et al. 2009). Trans effects have also been associated 

with complex traits. For example, a cis-eQTL for transcription factor KLF14 have been shown 

to have widespread trans effects in adipose and act as a risk modifier for cardiometabolic traits 

(Small et al. 2011). Overall, it has been estimated that approximately 60-70% of the heritability 

of gene expression is due to trans, rather than cis, variation (Grundberg et al. 2012). 

Despite clear evidence of the importance of trans effects, identifying trans-acting 

mutations, particularly in population genetics studies, remain technically challenging and as a 

result, most such studies have focused on cis effects. For example, trans-eQTL studies are 

typically underpowered due to the large number of possible variant-gene associations to test 

which results in the multiple hypothesis burden whereas in cis-eQTL studies, the search space 

is limited to nearby genes (Huang et al. 2018). Importantly, trans effects are also generally 

weaker than cis effects (Pierce et al. 2014; Shan et al. 2019). Other factors such as known and 

unknown sources of technical variation, lack of comparable cohorts and tissues have resulted 

in false positive trans-eQTL calls and low reproducibility in human datasets (Gibson 2008; 

Innocenti et al. 2011; Stegle et al. 2012; Consortium et al. 2017).  

Previous studies have focused on detecting trans-eQTLs with various methods. A study 

used the traditional trans-eQTL detection method by testing putative gene-by-variant pairs in 
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yeast segregants and found trans-eQTL clustering at 102 hotspot loci (Albert et al. 2018). 

However, pairwise testing has less power due to the number of tests performed. Instead, 

methods have looked at various ways to evaluate one variant’s impact on all genes. Another 

study tested for association between variants and aggregate representations of expression of 

gene sets based on various co-expression methods (Kolberg et al. 2020). This approach 

identified multiple trans-eQTLs in blood cell types for humans that were replicated in other 

studies. Yet, results were highly dependent on which co-expression method was chosen for 

analysis. A different study (Brynedal et al. 2017) leveraged cross-phenotype meta-analysis 

(CPMA) (Cotsapas et al. 2011) to identify global effects of a single variant by testing if the 

association statistics from all genes for the variant departs from the expected distribution under 

the null hypothesis of no trans effects. One limitation of CPMA is that this approach is best 

suited for detecting trans-eQTLs influencing many genes and has low power to detect trans-

eQTLs with a small number of target genes which might be a more biologically plausible 

scenario. Additionally, these methods do not explicitly handle technical covariates that can 

confound true trans-eQTL signals.  

Power for detecting trans-effects can be improved by increasing sample sizes and 

reducing experimental noise (Yao et al. 2020). One of the largest human expression datasets to 

date is from the Genotype–Tissue Expression (GTEx) consortium which includes a large cohort 

of ~800 donors with RNA sequencing from comparable tissues and whole genome sequencing, 

enabling characterization of genetic effects underlying human traits and diseases (Consortium 

2020). However, many human studies with larger sample sizes are subject to environmental 

factors that are not possible to control, making it difficult to identify true genetic effects. 

Further, due to ethical reasons, samples for many tissues can only be collected postmortem. 
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However, it has been shown that different tissues have different responses and processes that 

occur over time elapsed since death (Ferreira et al. 2018). Altogether, failure to control for 

appropriate covariates, which are often unknown, can obfuscate true trans-eQTL signals. 

 Many issues present in human datasets can be addressed with model organisms. Animal 

models have allowed researchers to manipulate environmental factors to understand how they 

contribute to behaviors, traits, and diseases (Phillips and Roth 2019). Specifically, 

heterogeneity can be reduced, genetic variation can be constrained to common alleles, and 

experimental subjects can be exposed to certain conditions or substances that are not ethical to 

study with humans (Mukherjee et al. 2022). Mouse and rat are both ideal animal models due to 

the many similarities to humans in terms of anatomy and physiology (Vandamme 2014). 

Approximately 95% of genes are shared among the three species. Rodents are also relatively 

easy and cost effective to maintain and have short gestation periods and many offspring (Bryda 

2013). Various model organisms offer their own advantages and disadvantages to studying 

human phenotypes.  

 Here, we focus on two rodent cohorts which have unique advantages for the specific 

phenotypes we are studying. The BXD mouse cohort consist of strains that have been inbred 

between the C57BL/6J (B) and DBA/2J (D) strains (Ashbrook et al. 2022). This cohort is ideal 

for studying regulators of mutation processes because they can be used to study mutations that 

have accumulated over many generations under controlled settings. Heterogeneous stock (HS) 

rats are outbred and have genomes made of a patchwork of eight founder haplotypes (Munro et 

al. 2022). There are abundant datasets for HS rats and their similar genetic structure to humans 

are suitable for studying transcriptional regulators impacting genome-wide expression patterns. 
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 In this dissertation, I present three chapters that aim to further our understanding of 

trans-acting factors and their significance to specific phenotypes. I focus on two types of trans-

acting factors: DNA repair genes, which control genome-wide mutation signatures, and 

transcriptional regulators, which impact genome-wide expression patterns. In chapter 1, my 

colleagues and I performed an unbiased genome-wide scan for regulators of repeat expansion 

propensity and identified the mismatch repair protein MSH3 as a strong trans-acting factor 

affecting germline mutation patterns in recombinant inbred mice. We found that inherited 

variants in and near Msh3 result in variable mutation patterns that are most pronounced at long 

tetranucleotide repeats. Importantly, we also demonstrate a potential evolutionary tradeoff in 

which elevated Msh3 leads to increased repeat expansions whereas Msh3 deficiency results in 

a higher rate of short insertions and deletions. 

 Chapter 2 introduces xQTL, a novel trans-eQTL detection method that improves 

statistical power over traditional methods that test gene-by-variant pairs separately by jointly 

modeling effects of an individual variant across all genes. xQTL is based on a biologically 

plausible mixture model of target gene effect sizes. We applied xQTL on a whole brain RNA-

sequencing dataset from a cohort of outbred rats and identified 45 trans-eQTL candidates. For 

example, we identified a strong candidate trans-eQTL locus overlapping Neurod4, a key 

neuronal transcriptional factor, which xQTL estimate to regulate thousands of target genes. 

Importantly, this study also highlights key technical considerations regarding treatment of 

technical covariates when performing trans-eQTL detection. 

Chapter 3 presents our efforts to develop scBE-seq (single cell base editing sequencing) 

which combines a pooled, high-precision genome editing strategy with single-cell sequencing 
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assays to simultaneously interrogate the effects of hundreds of variants. Specific mutations can 

have severe health consequences, while other mutations in the same gene can have little to no 

impact. The assay aims to advance our understanding of the regulatory consequences of genetic 

variation in trans-acting regulators and provides a complementary experimental approach in 

addition to the computational approaches in Chapter 1 and 2. Furthermore, scBE-seq allows us 

to validate potential candidate mutations in trans-acting factors identified in Chapter 2 in cell 

types of interest. Here, I present my initial developments of scBE-seq and discuss its ongoing 

progress.  

 Overall, these three chapters aim to further our knowledge of the effect and our ability 

to detect and study genetic variation in trans-acting factors. Chapter 1 focuses on mutations in 

DNA repair genes, associated with genome-wide mutation signatures. Chapter 2 studies 

mutations in transcriptional regulators impacting genome-wide expression patterns. Chapter 3 

provides an experimental assay to interrogate mutations of interest in trans-acting factors which 

can be used to validate findings of Chapter 1 and 2. 
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CHAPTER 1 
 

A novel quantitative trait locus implicates Msh3 in the propensity for 
genome-wide short tandem repeat expansions in mice 

 
1.1 Abstract 

Short tandem repeats (STRs) are a class of rapidly mutating genetic elements typically 

characterized by repeated units of 1–6 bp. We leveraged whole-genome sequencing data for 

152 recombinant inbred (RI) strains from the BXD family of mice to map loci that modulate 

genome-wide patterns of new mutations arising during parent-to-offspring transmission at 

STRs. We defined quantitative phenotypes describing the numbers and types of germline STR 

mutations in each strain and performed quantitative trait locus (QTL) analyses for each of these 

phenotypes. We identified a locus on Chromosome 13 at which strains inheriting the C57BL/6J 

(B) haplotype have a higher rate of STR expansions than those inheriting the DBA/2J (D) 

haplotype. The strongest candidate gene in this locus is Msh3, a known modifier of STR 

stability in cancer and at pathogenic repeat expansions in mice and humans, as well as a current 

drug target against Huntington’s disease. The D haplotype at this locus harbors a cluster of 

variants near the 5′ end of Msh3, including multiple missense variants near the DNA mismatch 

recognition domain. In contrast, the B haplotype contains a unique retrotransposon insertion. 

The rate of expansion covaries positively with Msh3 expression—with higher expression from 

the B haplotype. Finally, detailed analysis of mutation patterns showed that strains carrying the 

B allele have higher expansion rates, but slightly lower overall total mutation rates, compared 

with those with the D allele, particularly at tetranucleotide repeats. Our results suggest an 

important role for inherited variants in Msh3 in modulating genome-wide patterns of germline 

mutations at STRs. 
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1.2 Introduction 

Studies of germline and somatic mutations have shown considerable variation across 

individuals and species in both the rate and patterns by which mutations occur (Lynch et al. 

2016). In some cases, this variation may be controlled by heritable factors influencing the 

function or expression of proteins involved in maintaining genome integrity. Indeed, genetic 

variants have been identified that disrupt DNA repair proteins (Taylor et al. 1997; Li 2008) and 

lead to “mutator” phenotypes in which affected individuals or cells accumulate specific types 

of mutations at a faster rate. Although some of these phenotypes are highly deleterious, such as 

in cancer, common genetic variation can also result in more moderate mutator phenotypes that 

are only identified upon molecular interrogation (Sasani et al. 2022). Identifying genetic factors 

controlling this variation can provide insight into mutation processes and DNA repair 

mechanisms.  

Short tandem repeats (STRs), typically consisting of repeated sequence motifs of 1–6 

bp, show rapid mutation rates that are orders of magnitude greater than those for single-

nucleotide variants (SNVs) (Sun et al. 2012). STR mutations typically result in expansions or 

contractions of one or more copies of the repeat unit. Expansion mutations are well known to 

cause a variety of disorders in humans, including Huntington’s disease, hereditary ataxias, and 

myotonic dystrophy (Hannan 2018). Further, we and others have recently implicated both small 

and large expansions and contractions at STRs in autism spectrum disorder (Trost et al. 2020; 

Mitra et al. 2021). Finally, frequent somatic mutations at STRs, referred to as microsatellite 

instability (MSI), are a hallmark of certain cancer types (Vilar and Gruber 2010).  

A large number of disease-focused studies have implicated proteins involved in 

mismatch repair (MMR) in regulating STR stability. For example, Lynch syndrome, which 
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results in a predisposition to colorectal and other cancer types characterized by MSI, can be 

caused by mutations that disrupt a variety of MMR proteins (Lynch et al. 2015). On the other 

hand, multiple MMR proteins (including MSH2, MSH3, MLH1, and MLH3) have been shown 

to be required for somatic expansions of CAG repeats in mice (Manley et al. 1999; López Castel 

et al. 2010; Pinto et al. 2013). Further, genome-wide association studies (GWASs) for the age 

of onset and progression of Huntington’s disease have identified mutations in MLH1 (Genetic 

Modifiers of Huntington’s Disease (GeM-HD) Consortium 2015) and MSH3 (Moss et al. 2017) 

that lead to increased somatic instability of the pathogenic trinucleotide expansion at HTT, and 

MSH3 is a current drug target for Huntington’s disease (Kingwell 2021). Taken together, these 

studies suggest a critical role of inherited variation in MMR genes in regulating patterns of STR 

mutation.  

The majority of studies of STR mutator phenotypes to date have focused on somatic 

repeat instability. However, studies of de novo STR and other mutation types have also shown 

considerable variation in germline mutation rates across individuals (Turner et al. 2017; Mitra 

et al. 2021). Although this variation is also potentially genetically controlled, this phenomenon 

is difficult to study in humans. Germline mutation rates are strongly confounded by parental 

age (Kong et al. 2012), and mutation spectra may be influenced by environmental exposures 

(Nik-Zainal et al. 2015). Further, observed mutation patterns in children result from a mixture 

of mutation processes in the maternal and paternal germline. Thus, the relevant genetic variation 

controlling germline mutations could be harbored by either of the parents and is challenging to 

study in a typical GWAS setting.  

Inbred mouse strains offer a unique opportunity to determine regulators of mutation 

processes because they can be used to study mutations that have accumulated over many 
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generations under controlled settings. Further, within each strain, offspring and both parents 

share essentially identical genomes, and thus, offspring and parental genotypes do not need to 

be considered separately. Here we focused on the BXD family (Ashbrook et al. 2021), which 

consists of strains that were generated by serial inbreeding of progeny of crosses between inbred 

C57BL/6J (B) and DBA/2J (D) strains. Strains were generated in multiple rounds (“epochs”) 

by different groups spanning several decades (Ashbrook et al. 2021), during which STR and 

other mutations have accumulated in the resulting strains. We leveraged genome-wide STR 

genotypes generated from whole-genome sequencing (WGS) of the BXD family (Ashbrook et 

al. 2022) to determine the contribution of inherited genetic variation to the number and patterns 

of new STR mutations across the genome arising during parent-to-offspring transmission. 

1.3 Results 

1.3.1 Identifying new mutations in the BXD family  

We previously built a reference set of 1,176,016 autosomal tandem repeats consisting 

of 1,154,738 STRs (repeat unit 2–6 bp) and 21,278 variable number tandem repeats (repeat unit 

7+ bp) identified from the mm10 (C57BL/6J) reference assembly, and applied GangSTR 

(Mousavi et al. 2019) to genotype these STRs using WGS of 152 strains from the BXD cohort 

(Ashbrook et al. 2022). Homopolymer repeats (repeat unit 1 bp) were excluded as we could not 

obtain reliable genotypes for those loci in this cohort, which was not generated using PCR-free 

protocols. For simplicity, we refer below to all repeats analyzed as STRs, because the majority 

have repeat units <7 bp. We used these genotypes to identify new germline STR mutations by 

comparing the genotype at each strain to that expected based on the founder haplotype at that 

region. The majority of accumulated mutations likely arose over previous generations of 

inbreeding and are expected to be homozygous as the BXD strains have been inbred for up to 
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180 generations. Although heterozygous genotypes may represent true recent mutations, they 

were removed from downstream analysis because these are likely enriched for STR genotyping 

errors. In total, we identified 18,119 unique loci (18,053 STRs and 66 VNTRs) for which at 

least one BXD strain is homozygous for an STR length that does not match the expected founder 

genotype, indicating a candidate new mutation (Fig. 1.1A; Supplemental Datasets S1–S3). 

These mutations may occur at STRs for which both founders harbored the same allele or may 

occur at STRs that were already polymorphic in the founders. Mutations are scattered 

throughout the genome and do not cluster at any particular genomic location (Supplemental 

Fig. 1.6). Most mutations identified occur at tetranucleotide STRs, which are also most highly 

represented among successfully genotyped loci (Supplemental Fig. 1.7A). Dinucleotide STRs, 

which are uniquely abundant in many rodent genomes (Srivastava et al. 2019), are 

underrepresented in our data set as a consequence of filtering due to low genotyping quality. 

We used SNP genotypes surrounding each STR to determine whether the mutation 

occurred on the parental B or D haplotypes, which enabled us to accurately determine the size 

of each mutation. We observed a slight excess of new mutations originating on B haplotypes 

(52.5%) (Supplemental Fig. 1.7B), consistent with an overall slight excess of B haplotypes 

within the family. Most mutations result in expansions or contractions of a single repeat unit 

compared with the founder, with a bias toward expansion mutations (Fig. 1.1B). Mutations of 

two or more repeat units are slightly more prevalent among dinucleotide and trinucleotide 

repeats than among tetranucleotide repeats (Supplemental Fig. 1.7C). Both trends are consistent 

with those seen in human de novo STR mutations (Sun et al. 2012; Mitra et al. 2021). Nearly 

all mutations identified result in expansion or contraction by at most five repeat units, although 

our pipeline is not optimized to identify larger expansions. 
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Observed STR mutations are consistent with the known history of generation of the 

BXD family. The BXD strains are divided into epochs, corresponding to various rounds of 

strain generation occurring from 1970 to 2014 (Ashbrook et al. 2021). Assuming, for simplicity, 

a constant mutation rate per generation, the number of candidate STR mutations is expected to 

increase with the number of generations of inbreeding (Fig. 1.1C). Although 58% of new 

mutations identified are private to a single strain, the remainder are found in two or more strains 

(Supplemental Fig. 1.8). Principal components analysis (PCA) based on genotypes at STRs for 

which we observe new mutations clearly separates strains by epoch (Fig. 1.1D), indicating that 

some STR mutations are epoch specific and arose in parental stocks ancestral to each successive 

epoch. 

1.3.2 Mapping quantitative trait loci for STR mutation phenotypes 

We wondered whether observed differences in the number and size of mutations across 

strains could be driven by genetic variation affecting DNA repair or other pathways. To this 

end, we defined several quantitative phenotypes to summarize STR mutation patterns in each 

strain. We focused on three basic characteristics. Mutation count was computed as the fraction 

of genotyped STRs with a new mutation in each strain. Notably, this does not truly represent a 

germline de novo mutation rate, because observed mutations are homozygous and therefore 

must have occurred in ancestors to present-day individuals used for sequencing. Mutation size 

was calculated as the average change in repeat unit count, computed separately for expanded 

versus contracted mutations in each strain. Expansion propensity was calculated as the fraction 

of new mutations in each strain for which the new allele is longer than the founder allele (the 

same phenotype could be defined for contraction propensity, but this is redundant as it is simply 

1 – expansion propensity). For all phenotypes, we filtered new mutations seen in more than 10 
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Figure 1.1 Characterizing new mutations in the BXD family. (A) Schematic of new mutation discovery. Each 
strain’s genome is a homozygous patchwork of segments derived from multiple generations of inbreeding of the 
descendants of the founders, C57BL/6J (B; red) and DBA/2J (D; blue). A full description of the breeding history 
for each epoch is described in Supplemental Figure S1 of Ashbrook et al. (2021). Our STR mutation discovery 
pipeline considers a fixed set of STRs discovered in the mm10 reference genome (in the example shown, B has 
six copies and D has seven copies of the repeat for a particular STR). We identify new mutations as STRs with 
repeat lengths differing from the length of the founder inferred at that genome segment. In the example, strain 
BXD3 has a mutation to eight copies that occurred on a haplotype inherited from the D founder. (B) Distribution 
of mutation sizes for each BXD epoch. The x-axis shows mutation sizes in terms of the difference in number of 
repeat units (RUs) from the founder allele. Positive sizes indicate expansions, and negative sizes indicate 
contractions. Distributions are calculated separately for strains belonging to different epochs, indicated by bar 
color. Mutations range in size from –16 to +9 RUs, but plots are restricted to ±5 because 99.9% (52,784/52,812) 
of observed mutations fall in this range. (C) Percentage of genotyped STRs with a new mutation for each strain. 
New mutations refer to any STR for which the observed allele does not match the expected founder allele. The 
average number of generations of inbreeding for strains is annotated for each epoch. Strains are sorted by 
decreasing numbers of inbreeding generations within each epoch. (D) Principal component analysis (PCA) of new 
mutations. PCA was performed on a binary matrix indicating whether each strain does or does not carry the new 
allele at each STR. The first two principal components separate strains by epoch, indicating combinations of new 
mutations are shared among strains in each group. For B–D, colors denote BXD epochs, as annotated in panel C. 
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strains, because those have likely been segregating within the BXD family on a variety of 

genetic backgrounds that differ from that of the individual in which the mutation initially arose. 

These common mutations may also represent cases in which the founder was incorrectly 

genotyped, leading to false-positive mutation calls. Because of their high mutation rates, 

recurrent mutations are expected, and so we did not restrict our analysis to mutations seen only 

once in our cohort. We further restricted analysis to strains with at least 10 observed mutations 

because mutation phenotype values are unreliable when computed over a small number of 

mutations. 

We performed genome-wide QTL mapping separately for each of these mutation 

phenotypes using R/QTL2 (Broman et al. 2019) and a set of 7,101 LD-pruned SNPs (Fig. 1.2). 

To account for population structure, R/QTL2 uses a linear mixed model with a kinship matrix 

generated using the leave-one-chromosome-out (LOCO) approach. The number of generations 

of inbreeding for each strain was used as a covariate. We determined genome-wide significance 

thresholds based on permutation analysis. QTL analysis did not identify any genome-wide 

significant loci for mutation size or mutation count. However, we identified a strong signal on 

Chr 13 (max logarithm of the odds [LOD] = 6.1) associated with expansion propensity. Strains 

with the B haplotype at this locus tend to have higher expansion propensity than those with the 

D haplotype (Fig. 1.2B,C). This trend is consistently observed when considering mutations in 

either genic or intergenic regions (Supplemental Fig. 1.9). The QTL is centered at 91.2 Mb with 

a 1.5-LOD support interval from 79.7 to 93.4 Mb, a region that encompasses several dozen 

genes (Fig. 1.2D; Supplemental Table S1). Two additional suggestive peaks were identified for 

expansion propensity on Chr 4 and Chr 17 (Supplemental Fig. 1.10). To investigate whether 

the strongest expansion propensity signal might be driven by specific types of STRs, we 
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Figure 1.2 Discovery of QTLs for STR mutation phenotypes. (A) QTL mapping results. Panels show results 
for mutation count (top), mutation size (middle), and expansion propensity (bottom). The x-axis shows the 
genomic location, and the y-axis shows the LOD score of each SNP. For mutation size, solid traces and dashed 
traces represent contraction and expansion mutations, respectively. For each panel, black indicates the phenotype 
based on all STRs; blue, the phenotype based on tetranucleotide STRs only. Dashed horizontal lines show genome-
wide significance thresholds based on permutation analyses. (B,C) Increased expansion propensity is associated 
with the B haplotype at the Chr 13 QTL. Each point represents one strain. We used SNP haplotype blocks to assign 
each strain as harboring either the B (red) or D (blue) haplotype at this locus. The y-axis denotes expansion 
propensity. Panel B shows the trend across all BXD strains, and panel C shows the trend separately for each epoch. 
Horizontal lines show median values; boxes span from the 25th percentile (Q1) to the 75th percentile (Q3). 
Whiskers extend to the minimum and maximum data points in each group. For panels B and C, annotated P-values 
are based on a two-sided z-proportion test. (D) Genes located in or near the QTL peak. The y-axis shows the QTL 
signal (LOD score) for expansion propensity at Chr 13. Black line indicates all STRs; blue line, tetranucleotide 
STRs. Shaded boxes indicate the 1.5-LOD confidence interval for all STRs (gray box) and tetranucleotides (light 
blue box). Horizontal bars denote a subset of genes near the center of the QTL peak. A full list of genes in this 
region is given in Supplemental Table S1. (E) Repeat length versus relative mutation rate. The x-axis gives the 
repeat length of each STR based on the parent haplotype at each locus in each strain. The y-axis gives the relative 
mutation rate of STRs in each bin, computed as the number of mutations divided by the total number of nonmissing 
genotype calls falling in each bin. (F) Repeat length versus expansion propensity. The x-axis is the same as in E. 
The y-axis gives the proportion of mutations observed in each bin that are expansions. For E and F, red indicates 
dinucleotides; gold, trinucleotides; and blue, tetranucleotides. Dashed lines indicate D haplotype; solid lines, B 
haplotype at the Chr 13 QTL locus. 
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repeated QTL mapping separately for each repeat unit length. The signal is strongest by far for 

tetranucleotide STRs (max LOD = 8.4; 1.5-LOD support interval, 89.4–93.4) (Supplemental 

Fig. 1.11), which are the most abundant STR type in our data set. Notably, all but tetranucleotide 

STRs have overall low mutation counts, resulting in unreliable estimates of expansion 

propensity for those categories (Supplemental Fig. 1.12). When tested individually, both di- 

and tetranucleotides showed at least nominally significant signals (two sided z-proportion test 

P = 0.038 and P = 3.7 × 1038, respectively), but trinucleotides did not (P = 0.95). 

To test whether the Chr 13 signal is influenced by our choice of filtering parameters, we 

repeated QTL mapping using a range of thresholds for the minimum number of mutations 

observed per strain and the maximum number of strains in which each new mutation was 

identified (Supplemental Fig. 1.11). Overall, the signal is robust to these filters and increases 

as we restrict analysis to successively rarer mutations. However, the signal is weaker when 

considering only private variants, which could be due to a combination of reduced power from 

lower mutation counts and enrichment of genotyping errors at private mutations. We 

additionally tested whether the observed signal replicates across BXD epochs, which were 

generated at separate times and locations and could potentially have different environmental 

exposures or epoch-specific variants driving mutator phenotypes. The Chr 13 signal is strongest 

in epoch 3b, which has the most strains and therefore is the best powered. Additionally, epochs 

1 and 3a show significant signals when tested individually (Fig. 1.2C), and the signal is 

strongest when including all epochs (Supplemental Fig. 1.13). Further, the direction of effect is 

consistent across most epochs, with the exception of later epochs for which a smaller number 

of mutations have accumulated (Fig. 1.2C). Thus, we concluded the causal variant is 
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segregating across the entire BXD family, and the QTL is not due to an epoch-specific mutation 

or environmental phenomenon. 

We then investigated genome-wide STR mutation patterns and whether these are 

influenced by the haplotype at the Chr 13 locus. For all repeat unit lengths (2–4 bp), relative 

mutation rate increases as a function of the total length of the repeat (Pearson r = 0.93, 0.94, 

0.93 for di-, tri-, and tetranucleotide loci, respectively, with P < 106 in all cases) (Fig. 1.2E; 

Supplemental Fig. 1.14), consistent with many previous observations of STR mutation patterns 

(Payseur et al. 2011; Sun et al. 2012). Tetranucleotides showed the highest overall mutation 

rates, followed by trinucleotides and dinucleotides. However, because many highly 

polymorphic dinucleotides were excluded from analysis owing to low-quality genotypes (see 

Methods), observed relative mutation rates are likely underestimated for those loci. Although 

we did not observe a genome-wide significant association between the Chr 13 signal and 

mutation count (Fig. 1.2A), we observed that longer repeats (parent repeat length, ∼>30 bp) 

tended to show higher mutation rates in strains carrying D haplotypes for the QTL. We found 

that this trend of higher mutation rates for the D alleles remains when considering only 

mutations arising on either B or D local haplotype backgrounds (Supplemental Fig. 1.14), and 

therefore, it is not biased by the fact that the B haplotype matches the mm10 reference genome. 

Stratifying by repeat unit sequence showed that AGAT repeats have the highest mutation rates 

across both groups. AGAT, AAAC, AAAT, and ACAT repeats have significantly higher 

mutation rates in strains with the D haplotype (two-sided z-proportion test P < 0.05) 

(Supplemental Fig. 1.15), with trends in the same direction for the majority of other repeat unit 

sequences. 
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We further examined expansion propensity as a function of repeat length. The rate of 

expansion is negatively associated with total repeat length (Pearson r = –0.60, –0.47, –0.66 and 

P = 0.019, 0.054, 0.0052 for di-, tri-, and tetranucleotides) (Fig. 1.2F), indicating longer repeats 

have a higher tendency to contract relative to shorter repeats. Consistent with the association 

signal for expansion propensity described above, we found mutations at tetranucleotide STRs 

in strains with the B haplotype at the Chr 13 QTL have a higher probability to be expansions 

across a broad range of repeat lengths (Fig. 1.2F; Supplemental Fig. 1.14). We also observed a 

suggestive signal in the expansion propensity QTL region for contraction size (Fig. 1.2A) and 

found that contraction mutations tend to be larger for strains with the B Chr 13 QTL haplotype, 

whereas the size of expansion mutations is similar between groups (Supplemental Fig. 1.14). 

Stratifying by repeat unit sequence shows that AGAT and AAAT repeats show the most 

significant differences in repeat expansion propensity between strains with the B versus D 

haplotype (two-sided z-proportion test P < 0.05), but suggestive trends in the same direction 

are observed for most other repeat units (Supplemental Fig. 1.15). 

Finally, we investigated whether the observed expansion propensity signal might be 

driven primarily by mutations arising in either the maternal or paternal germline by comparing 

the patterns of STR mutations on autosomes versus the two sex chromosomes. Intuitively, if 

the signal is driven primarily by mutations in the female germline, we would expect to see no 

impact on Chr Y for which all mutations are paternal germline derived, but a stronger signal on 

Chr X for which two-thirds of mutations are expected to be maternal. In contrast, if the signal 

is driven by the paternal germline, we would expect to see the strongest signal for Chr Y 

mutations and the weakest signal for Chr X. A total of 1,228 mutations at 666 unique STRs 

were identified on Chr X and Chr Y. For all scenarios tested, expansion propensity was 
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significantly higher for strains with the B versus D haplotype of the Chr 13 QTL, irrespective 

of chromosome (Supplemental Fig. 1.16). Although the magnitude of this trend is strongest for 

Chr Y, the difference between B and D is not statistically significant (two-sided z-proportion 

test P > 0.05) for both sex chromosomes. However, this analysis may be underpowered owing 

to the smaller number of mutations on sex chromosomes. Overall, our results are suggestive of 

a paternal origin effect, but other parent of origin scenarios cannot be ruled out. 

1.3.3 Analysis of candidate variants disrupting protein-coding genes 

We next sought to characterize the QTL on Chr 13 for expansion propensity identified 

above. We first searched for variants predicted to impact gene function that fall within the QTL 

1.5-LOD support interval for the tetranucleotide signal. We identified 5,982 SNPs/indels and 

214 STRs overlapping protein-coding genes. We additionally performed pangenome analysis 

to identify 3,698 large structural variants (SVs; 50 bp < SV < 10 kbp) (Supplemental Fig. 1.17). 

To reduce the search space, we removed rare variants (nonmajor-allele fraction < 0.15) and 

variants only weakly associated with the expansion propensity phenotype (model P-value > 5 

× 104 ). We used the Ensembl Variant Effect Predictor (VEP) (McLaren et al. 2016) to annotate 

the predicted impact (modifier, low, moderate, or high) of the 5,250 variants that remained after 

filtering (Supplemental Tables S1–S3; Supplemental Fig. 1.18). 

Based on previous studies of STR instability in cancer (Lynch et al. 2015) or modifiers 

of repeat expansion disorders (Wheeler and Dion 2021), we hypothesized that the observed 

STR mutator phenotype might be driven by variation in DNA repair genes. Of the genes in the 

QTL region, four are known to be involved in processes related to DNA repair: Xrcc4 

(nonhomologous end joining to repair double-strand breaks), Ssbp2 (DNA damage response), 

Atg10 (autophagy mediated effect) (Demirbağ -Sarikaya et al. 2021), and Msh3 (involved in 
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MMR), which has been widely implicated in STR stability (Dragileva et al. 2009; Boland and 

Goel 2010; Tomé et al. 2013a). 

Of DNA repair genes in this region, Ssbp2 contains only variants marked as modifiers 

by VEP, which are unlikely to impact protein function directly, and Xrcc4 contains multiple 

variants predicted to have low or moderate impact (Supplemental Table S2). Atg10 has a more 

extensive variant profile with two moderate impact missense variants predicted as tolerated by 

SIFT (Sim et al. 2012), one low impact synonymous variant, and a multiallelic coding sequence 

insertion (Supplemental Table S2), with a common allele resulting in an in-frame insertion 

(rs230013535) and a rarer allele causing a frameshift. Closer inspection of the frameshift allele 

revealed that all four strains carrying the allele are heterozygous and have lower genotype 

quality scores than other strains at the locus, suggesting this allele is a variant calling artifact 

and unlikely to explain the QTL signal. 

Msh3 contains the most variants with effects predicted by VEP, including one splice, 

four missense, and three synonymous mutations within protein-coding exons (although after 

normalizing for transcript length, Xrcc4 contains slightly more variants per base pair) 

(Supplemental Table S1). Most of these are located within a variant-dense region in the 5′ end 

of the gene near the mismatch recognition domain (Supplemental Fig. S13; Supplemental Table 

S2; Fig. 1.3A) and have been previously shown to be associated with expansion propensity of 

CAG repeats in an HTT trans-gene (Tomé et al. 2013a). One of the missense variants 

(rs48140189) is predicted by SIFT to be deleterious within a truncated transcript but is tolerated 

within both canonical transcripts. In addition to impactful variants within protein-coding 

transcripts, we also identified three variants of interest mapping to a nonsense-mediated decay 

(NMD) transcript of Msh3 (ENSMUST00000190393). One of these is a 387 bp insertion, 
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corresponding to an IAPLTR2a retrotransposon (Thompson et al. 2016), in C57BL/6J 

compared with DBA/2J (Supplemental Fig. 1.19). The insertion spans nearly the entirety of 

exon 5 of the NMD transcript and falls in an intron between exons 4 and 5 of the canonical 

transcript (Supplemental Fig. 1.19B; Fig. 1.3B). The other two variants are adjacent to the 

IAPLTR2a insertion and could plausibly be driven by mapping artifacts in this region owing to 

the high density of nonuniquely mapped reads at retrotransposon elements. We further 

examined other SVs within each gene that passed the association and allele frequency criteria 

regardless of their impact predicted by VEP (Supplemental Table S4). Although Atg10 and 

Ssbp2 harbor several large (>50 bp) SVs with similarly large LOD scores, neither of these is 

predicted to overlap with any meaningful feature. 

Finally, we identified several variants in proteins not involved in DNA repair that were 

predicted to have high impact (Supplemental Table S3). Two frameshift mutations were found 

in Cmya5, a gene primarily involved in muscle- and cardiac-related phenotypes (Lu et al. 2022) 

and thus unlikely to be related to an STR mutator phenotype. We additionally identified a stop 

loss mutation in Zcchc9, which encodes a zinc finger–containing protein that can bind DNA or 

RNA (Zhou et al. 2008). Although we cannot rule out the impact of this mutation, there is 

currently no known link between this gene and STR stability. 

1.3.4 Expansion propensity QTL colocalizes with multiple cis-eQTLs 

We next wondered if the QTL for expansion propensity might also be mediated through 

cis-regulatory variants affecting expression of genes in this region. To this end, we compiled 

54 publicly available gene expression microarray data sets encompassing 30 tissues 

(Supplemental Table S5), with sample sizes ranging from 11–79 strains. Notably, these data 

sets were acquired using multiple microarray platforms, under different experimental  
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Figure 1.3 Variants predicted to impact Msh3. (A) Summary of variants overlapping Msh3. The top panel shows 
the canonical protein-coding transcript of Msh3 (purple) and protein domains (orange rectangles) obtained from 
Pfam (Mistry et al. 2021). The bottom panel shows the location (mm10; x-axis) of variants and their association 
with the expansion propensity phenotype (–log10 P-values; y-axis). Variants are colored by their impact predicted 
by VEP: red indicates high; blue, moderate; green, low; gray, modifier). (B) Summary of variants in the variant-
dense 5′ region of Msh3. Top and bottom panels are the same as in A. The middle panel shows a histogram of read 
coverage as visualized using the Integrative Genomics Viewer (Robinson et al. 2011). Colored bars denote the 
fraction of reads at each position with mismatches from the reference, which is based on C57BL/6J. Gray denotes 
matches to the reference. In both panels, rare variants are excluded (non-major-allele fraction < 0.15). The –log10 

(P-value) threshold distinguishes variants associated with the expansion propensity phenotype (model P-value ≤ 5 
× 104).  
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conditions and across a range of tissues. Overall, we find that Ssbp2 is among the most highly 

expressed genes within the QTL region; Msh3 has average expression; and Atg10 and Xrcc4 

are expressed slightly below average (Supplemental Fig. 1.20). For downstream analyses, we 

restricted to 40 expression data sets with at least 30 strains. We found that the subset of BXD 

strains included in each of these expression data sets was in most cases sufficient to reproduce 

the expansion propensity QTL signal originally identified using all 152 strains, indicating the 

relevant causal variant(s) of interest are likely segregating in each of those subsets 

(Supplemental Fig. 1.21). 

For each of these 40 expression data sets, we performed a separate expression QTL 

(eQTL) analysis for 25 protein-coding genes for which expression levels are available in at least 

half of the data sets (Supplemental Fig. 1.22). We considered only probes not overlapping SNPs 

for comparing gene expression levels and used the number of variants per probe as a covariate 

in eQTL mapping to avoid confounding the true variability with differences in probe 

hybridization efficiency. Notably, this excluded a large number of probes for Msh3 because 

many overlap multiple SNPs in the highly variable 5′ end of the gene (Supplemental Fig. 1.23). 

We then ranked genes by the proportion of data sets in which the maximum eQTL LOD 

exceeded the permutation-based threshold for significance (Supplemental Fig. 1.24). We 

observed robust eQTL signals for Ssbp2 and for Atg10 in 29 and 18 data sets, respectively. We 

also found eQTL signals for Xrcc4 and Msh3, albeit in a smaller number of data sets: six and 

four, respectively (Fig. 1.4A; Supplemental Fig. 1.25A). The eQTL for Atg10 shows the most 

consistent colocalization with the QTL peak across data sets (Supplemental Fig. 1.25A). 

However, eQTLs for most genes in the region are strongly colocalized with the QTL (Fig. 1.4A; 
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Supplemental Fig. 1.26), making it difficult to prioritize a single causal gene based on the eQTL 

signal alone. 

We further examined the eQTL signal at Msh3, given its previously reported role in 

STR stability (Campregher et al. 2012; Flower et al. 2019). In all tissues with a significant 

eQTL for Msh3, we observed a consistent direction of effect, with higher Msh3 expression for 

strains carrying the B haplotype associated with increased expansion propensity (Fig. 1.4B; 

Supplemental Fig. 1.25B). Detailed analysis of the Msh3 eQTL shows that the signal is 

strongest when considering probes and variants in the 5′ end, even after adjusting for 

hybridization efficiency owing to SNPs in this region (Methods; Supplemental Fig. 1.27). This 

result is consistent with previous studies in humans, in which increased MSH3 expression 

driven by polymorphism in the 5′ end of the gene was associated with increased somatic 

instability at the trinucleotide repeat involved in Huntington’s disease (Flower et al. 2019). 

Notably, Dhfr, which shares a promoter with Msh3, did not show a strong eQTL signal in the 

expression data sets tested (Supplemental Fig. 1.24). 

Finally, we examined tissue-specific expression of each of the candidate DNA repair 

genes using the Bgee (Bastian et al. 2021) database (Supplemental Table S6). Although STR 

mutations here were assessed from spleen- and tail-derived DNA, we assume the majority result 

from transmission events along the germ lineage and, therefore, likely arose in tissues related 

to reproduction. Msh3 is most highly expressed in reproductive (oocytes and spermatocytes) 

and zygotic tissues. On the other hand, Atg10, which is also near the QTL center, is most highly 

expressed in heart structures, which are unlikely to be relevant for germline mutations. Ssbp2 

is expressed in a variety of tissues, and Xrcc4 is expressed in spermatocytes and oocytes. 

However, variants overlapping Xrcc4 have lower LOD scores for association with expansion 
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Figure 1.4 The Chr 13 expansion propensity QTL colocalizes with eQTLs for multiple DNA repair genes. 
(A) Colocalization of expansion propensity and eQTL signals. Colored traces denote eQTL LOD scores. Each line 
shows the expression data set with the strongest eQTL for that gene. eQTL LOD scores were adjusted for multiple 
hypothesis testing for each gene based on the number of probes tested. The gray shaded box shows the 1.5-LOD 
support interval for the expansion propensity QTL based on tetranucleotide STRs. (B) Distribution of gene 
expression for strains with B versus D haplotypes. Panels show gene expression for each gene for strains assigned 
the B (red) versus D (blue) haplotypes at the QTL locus. Data shown are aggregated across all GeneNetwork data 
sets with a significant eQTL for each gene. Distributions per data set are shown in Supplemental Figure S20. 
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propensity than variants overlapping Msh3 or Atg10 (Fig. 1.2D; Supplemental Fig. 1.18). 

Overall, given its known role in STR stability and the high density of variants with predicted 

impact overlapping its mismatch recognition domain, our results provide compelling evidence 

for Msh3 as the gene driving this QTL. 

1.4 Discussion 

Genetic variation impacting proteins involved in DNA repair processes have the 

potential to drive genome-wide variation in mutation rates and patterns across individuals of a 

species, both in the context of disease but also across healthy individuals. Identifying these 

determinants may give insights into disease risk or progression and could improve population-

genetic models of mutations. Recombinant inbred strains such as those in the BXD family have 

accumulated mutations over dozens of generations of inbreeding, offering a unique opportunity 

to map genetic determinants of these “mutator phenotypes.” Here, we performed QTL mapping 

for three quantitative STR mutator phenotypes and identified a robust QTL on Chr 13 for 

expansion propensity in mice. The QTL region encompasses dozens of protein-coding genes, 

including Msh3, an important component of the DNA MMR machinery (Li 2008). We also 

identified two additional modest association peaks for the same phenotype (Supplemental Fig. 

1.10). One of these overlaps a different MMR gene on Chr 17, Msh5, whose role in repeat 

expansions is less well studied. We did not identify signals at other genes well known to be 

involved in repeat stability, such as Pms2 (Narayanan et al. 1997). This may be because of a 

lack of segregating functional variants in other relevant genes in this cohort or because of a lack 

of power to capture certain mutation events such as large expansions. 

Definitively identifying a single causal gene or variant in the QTL locus identified is 

challenging in the BXD family, which harbors long unbroken haplotypes spanning several 
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megabases (Ashbrook et al. 2021). The abundance of literature evidence regarding the role of 

Msh3 in STR stability in other contexts, as well as the high density of variants in or near the 

key region of the protein important for recognizing mismatched DNA, strongly suggests it as a 

causal gene for this locus. However, we could not rule out a role for other genes in this region. 

In particular,  Atg10 falls closest to the center of the QTL peak, and eQTL signals for Atg10 are 

most consistently colocalized with the QTL. We additionally identified multiple protein-coding 

variants and an SV overlapping this gene. However, Atg10 has only been indirectly connected 

with DNA repair through the autophagy system (Gomes et al. 2017). Further, whereas Msh3 is 

most highly expressed in spermatocytes and oocytes, where germline mutations are likely to 

arise, Atg10 is most highly expressed in the heart and other structures less likely to be related 

to a mutator phenotype. We additionally identified high impact mutations in two genes not 

known to be involved in DNA repair (Cmya5 and Zcchc9), but it is unclear how those would 

contribute to an STR mutator phenotype. 

Msh3 is well known to be involved in regulating STR stability. Msh3 is one of multiple 

homologs of the Escherichia coli MutS MMR protein, which recognizes mismatched bases in 

DNA that arise during DNA replication (Usdin et al. 2015). In mice and other eukaryotes, MutS 

proteins form two different heterodimers. MSH2 and MSH6 form MutSalpha, which primarily 

recognizes base substitutions and small insertion/deletion loops (IDLs) (Li 2008). MSH2 and 

MSH3 form MutSbeta, which recognizes long IDLs (Gupta et al. 2011), which often arise due 

to misalignment of strands at STR regions. Model organism studies have shown that both 

MutSbeta proteins MSH3 and MSH2 (Manley et al. 1999; López Castel et al. 2010), but not 

MutSalpha protein MSH6 (van den Broek et al. 2002), are required for the formation of 

pathogenic repeat expansions (Dragileva et al. 2009; Tomé et al. 2013a). This may result from 
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MSH3 stabilizing hairpin structures formed at repeats rather than repairing them (Mirkin 2007). 

On the other hand, germline defects in both MutSalpha proteins, but not MSH3 (Huang et al. 

2001), are implicated in Lynch syndrome, a common cause of hereditary colon cancers 

characterized by high rates of MSI (Lynch et al. 2015). However, somatic mutations disrupting 

MSH3 are often found in cancers showing MSI (Boland and Goel 2010). Specifically, MSH3 

deficiency has been linked to a type of MSI termed elevated microsatellite alterations at selected 

tetranucleotide repeats (EMAST) and to lower levels of MSI at dinucleotide repeats (Haugen 

et al. 2008; Campregher et al. 2012). 

Naturally occurring sequence variants in Msh3 have been shown to act as modifiers of 

the stability of CAG repeats in both mice and humans. Tomé et al. (2013a) identified multiple 

missense mutations in inbred mouse strains, including all four missense mutations between 

DBA/2J and C57BL/6J in exons 3 and 7 of Msh3 identified in this study. They hypothesize that 

one of these, T321I, may destabilize the protein in DBA/2J. Consistent with our findings of 

increased Msh3 expression and expansion propensity associated with B versions of Msh3, they 

showed that the C57BL/6J MSH3 protein variant is more highly expressed than the DBA/2J 

variant and is associated with increased CAG expansions compared with the MSH3 variant in 

BALB/cByJ mice, which share those same missense mutations with DBA/2J. Although we only 

considered RNA transcript levels here, which do not necessarily reflect protein levels, it was 

previously shown that Msh3 transcript levels do reflect protein levels in mice (Tomé et al. 

2013b). In humans, inherited variants in MSH3 have been reported to modify the age of onset 

of Huntington’s disease (Wheeler and Dion 2021) and X-linked dystonia-parkinsonism (Laabs 

et al. 2021), presumably through modifying repeat stability, and MSH3 is a current drug target 

of interest for Huntington’s disease (Kingwell 2021). Further, a polymorphism in the 5′ end of 
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MSH3 has been associated with increased MSH3 expression and somatic instability of the 

trinucleotide repeat implicated in Huntington’s disease (Flower et al. 2019). 

Whereas previous studies of Msh3 as a modifier of STR stability have focused on 

somatic variation at a small number of disease-associated loci, we report a novel association 

between sequence variants in Msh3 and genome-wide germline mutation patterns at STRs. Our 

results suggest that in addition to these roles affecting somatic STR instability in disease, 

common mutations affecting Msh3 may contribute to biases in mutation patterns in the germline 

at the hundreds of thousands of short STRs across the genome. The major signal identified was 

an association of the C57BL/6J version of Msh3 with a higher propensity for STRs to expand. 

This association remained across a broad range of repeat lengths considered and was strongest 

for tetranucleotide STRs. On the other hand, we also found a modest increase in mutation rates 

in strains with the DBA/2J Msh3 haplotype across all repeat unit lengths tested (2–4 bp), which 

was most prominent for longer repeats (parent allele length, >∼30 bp). The expansion 

propensity and mutation rate results suggest a tradeoff in which too little Msh3 may result in an 

MMR deficiency (as seen in EMAST) (Campregher et al. 2012), whereas increased Msh3 

activity results in more MMR activity but biases mutations toward expansions (as previously 

observed at the Huntington’s disease and other repeats (Fig. 1.5; Wheeler and Dion 2021). 

Similar to previous findings in inbred mice (Tomé et al. 2013a), we find evidence that 

both protein-coding sequence variants, as well as Msh3 expression levels, could collectively 

contribute to the increased expansion propensity in mice harboring the B versus D haplotypes 

at this locus (Fig. 1.5). In addition to multiple protein-coding variants that have been previously 

reported (Tomé et al. 2013a), our analyses revealed a 387 bp indel near the 5′ end of the gene 

and falling between exons 4 and 5, which encode the DNA mismatch recognition domain. This 
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Figure 1.5 Schematic overview of proposed mechanisms for the expansion propensity QTL. BXD mice 
carrying the B haplotype (right) at the Chr 13 QTL locus tend to have higher Msh3 expression than those carrying 
the D haplotype (left). The B and D Msh3 variants also differ by four missense mutations (amino acid letter changes 
and positions are shown), as well as an intronic 387 bp LTR insertion only present on B (note the gene is not drawn 
to scale). MSH3 and MSH2 form the heterodimer MutSbeta, which recognizes strand misalignments, such as those 
formed by STRs (repeat units shown in green), across the genome during DNA replication. Mice with the D 
haplotype have slightly increased mutation rates, particularly at longer tetranucleotides, whereas mice with the B 
haplotype have reduced mutation rates but an increased propensity toward expansion mutations. 
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indel is owing to a partial intracisternal A particle (IAP) LTR insertion in C57BL/6J, which is 

missing in DBA/2J and many other classic mouse strains (Supplemental Fig. 1.28). IAP LTRs 

are one of the few active retrotransposon families in the mouse genome (Wang et al. 2019). 

Two of the most well-studied variants in mice have arisen through IAP LTR insertion: agouti 

viable yellow (Duhl et al. 1994) and Axin fusion (Vasicek et al. 1997). Although IAP LTR 

elements are typically heavily methylated (Walsh et al. 1998), the element at this locus is a 

member of the IAPLTR2a group. This group is overrepresented among hypomethylated LTRs 

(Ekram and Kim 2014), harbors transcription factor binding sites which can potentially 

contribute to regulation of nearby genes (Shimosuga et al. 2017), and has been shown to induce 

alternative splicing of nearby exons (Wang et al. 2019). Finally, this IAP element also forms an 

exon of a noncanonical transcript of Msh3, although it remains unclear if the NMD transcript 

is relevant to the expansion propensity phenotype. Although these sequence variants and the 

IAP could plausibly be causal drivers of the expansion propensity phenotype, we note 

experimental validation of individual causal genes or variants for this phenotype is challenging: 

The STR mutation phenotypes measured here are based on mutations that have arisen over 

decades of inbreeding and would not be evident in genome-edited cell lines or animals observed 

for a small number of generations. 

Importantly, our study focused on germline mutations arising during parent-to-offspring 

transmission. Somatic mosaicism could not be assessed here, as we did not have available 

sequencing from different tissues of the same animal. Additionally, detecting somatic instability 

from a single WGS data set remains a difficult bioinformatics challenge and an important topic 

of future methods development. Notably, we do not directly assess parent-to-offspring mutation 

events as we focus on mutations that have already drifted to homozygosity in a particular strain. 
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Thus, the observed mutation sizes could have arisen as a result of numerous expansion and 

contraction mutations over time in some cases. This also means it is not possible to determine 

whether a particular mutation arose in the maternal or paternal germline. Although comparison 

of mutation patterns on sex chromosomes versus autosomes could give insight into a potential 

parent of origin effect, our analysis to assess this was underpowered owing to the low total 

number of observed sex chromosome mutations. It is known that germ lineages experience 

different processes of DNA metabolism compared with somatic tissues that differ between 

maternal and paternal lineages, and that these processes can alter STR mutation patterns 

(Pearson 2003). Our results are suggestive of a paternal effect, but future work is needed to 

more definitively assess this. Msh3 is highly expressed in both male and female reproductive 

tissues, and we did not identify evidence of sex-specific expression patterns in other tissues. 

Thus, it is possible it could play a role in regulating STR mutations arising in both but is stronger 

in the male germline, in which frequent mitosis events present more opportunities for STR 

mutations to arise. 

The fact that naturally occurring polymorphisms in the 5′ end of Msh3 are associated 

with similar phenotypes in both humans and mice raises intriguing evolutionary implications 

and suggests polymorphism at this locus may confer a selective advantage. It is worth 

highlighting the interesting tradeoff noted above: Loss of Msh3 may protect against expansions 

but, on the other hand, can result in MMR deficiencies, as seen in human cancers (Adam et al. 

2016). On the other hand, increased Msh3 expression can result in an increase of harmful 

expansions but could potentially protect against cancer. Interestingly, there is a significantly 

reduced prevalence of cancer among patients affected by Huntington’s disease and other repeat 

expansion disorders (Lucá et al. 2013; McNulty et al. 2018). Finally, it is possible that there is 
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an advantage to keeping around a locus that promotes STR variability in general as a source of 

new and potentially adaptive changes upon which evolution can act (Kashi and King 2006). 

Although we did not assess the functional consequences of the new STR mutations, previous 

work has shown a role of STR variation in affecting gene expression and other phenotypes 

across multiple species (Vinces et al. 2009; Quilez et al. 2016; Fotsing et al. 2019). Leveraging 

the extensive phenotype information available for the BXD strains to perform detailed studies 

of the effects of STR variation on phenotype represents a rich area of future study.  

In summary, our study reveals a novel QTL for STR mutation patterns, providing a 

striking example of the influence of inherited variants on germline mutation properties. Beyond 

Msh3, additional modifiers for both STR and other mutator phenotypes are likely to exist in 

humans or in other model organism data sets. We anticipate that further investigation of these 

mutation modifiers will provide new insights into mutation processes both in health and disease. 

1.5 Methods 

1.5.1 WGS and variant calling in the BXD cohort 

Genome-wide STR and SNP genotypes for males from 152 RI strains and the two BXD 

founders, C57BL/6J (B) and DBA/2J (D), were previously generated from WGS data based on 

the 10x Chromium system (see “Data access”). The origin tissues for the samples were spleen 

and tail. For clarity, the STR genotyping process is summarized below.  

We used Tandem Repeats Finder (Benson 1999) to identify regions within the mm10 

mouse reference genome predicted to harbor STRs with repeat unit lengths up to 20 bp. We 

used GangSTR (Mousavi et al. 2019) to genotype the reference STR loci in 152 BXD strains 

and the two founder strains, C57BL/6J and DBA/2J. The 10x Chromium workflow requires a 

large amount of PCR amplification, which can introduce significant “stutter” errors in repeat 
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copy number at STR regions, particularly at dinucleotide repeats (Ashbrook et al. 2022). To 

reduce the effects of these stutter errors, we first used HipSTR (Willems et al. 2017) to perform 

per-locus stutter estimation. We then called GangSTR separately on each strain using our STR 

reference panel, trimmed and dedupped reads, and per-locus stutter error probabilities as input. 

A custom build of GangSTR was used to handle unequal read lengths present in the BXD 

Chromium data (https:// github.com/gymreklab/GangSTR/tree/fix_read_length). STR 

genotypes for each strain were filtered using dumpSTR (Mousavi et al. 2021) v1.0.0 with the 

options ‐‐min-call-DP 20 ‐‐max-callDP 1000 ‐‐min-call-Q 0.9 ‐‐filter-badCI ‐‐require-support 

2 ‐‐readlen 128 to remove genotype calls with insufficient read depth, read support, or quality 

scores. Calls were then merged into a single multisample VCF file containing maximum 

likelihood diploid genotypes for each STR in each strain. The merged VCF was further filtered 

to remove (1) STRs overlapping known segmental duplication regions in the mm10 reference 

based on the mm10.genomicSuperDups table obtained from the UCSC Table Browser 

(Karolchik et al. 2004), (2) STRs with calls in less than 50 unfiltered strains, (3) STRs with no 

variation in repeat number across all strains, and (4) STRs for which variants from the mm10 

reference were only observed in heterozygous genotypes. Full details of the genotyping pipeline 

are described by Ashbrook et al. (2022). STR genotyping was performed here for Chr X and 

Chr Y using an identical pipeline as for autosomes, with the exception that we required a 

minimum DP of 10 (rather than 20) due to the lower coverage on the sex chromosomes.  

Epoch labels and number of generations of inbreeding were obtained from 

Supplemental Table S1 of Ashbrook et al. (2022). For epoch 7 strains (BXD221–BXD227), 

which followed a more complex breeding structure, we used the number of inbreeding 

generations after mating two previously inbred parental BXD strains. 



36 
 

1.5.2 SNP marker maps for founder inference and interval mapping  

We prepared a marker-by-strain matrix of founder labels (B vs. D) for BXD strains 

using SNP genotypes at 7,124 autosomal LD-pruned markers published on GeneNetwork 

(http://gn1.genenetwork.org/webQTL/main.py?FormID=sharinginfo&GN_AccessionId=600). 

For SNPs not directly genotyped from WGS in the BXD, we chose the next closest SNP based 

on genomic distance that was <500 kbp away. In a small number of cases, the closest SNP was 

the same for multiple markers, in which case a single marker/SNP combination was retained 

producing a final list of 7,101 markers. R/QTL2 (Broman et al. 2019) version 0.24 was used to 

calculate founder genotype probabilities suitable for QTL mapping using the “calc_genoprob” 

function with default parameters. We then generated a complete list of SNP founder labels with 

maximum marginal probabilities using the “maxmarg” function with “minprob” parameter set 

to 0.5. Founder labels at individual markers were used to find start and stop positions of 

haplotype blocks using a connected components clustering approach (R tidygraph) (R Core 

Team 2021; https://cran.r-project.org/web/packages/tidygraph/index.html). 

1.5.3 Identifying and phasing new STR mutations  

We identified candidate STR mutations as STR genotypes in BXD strains not matching 

genotypes in either of the two founder strains. In cases in which one or both founders were not 

directly genotyped, we first inferred missing STR calls in founders (below). We intersected 

each candidate new mutation with haplotype blocks inferred from SNPs to assign each mutation 

as occurring on the B versus D haplotype. STRs falling in a gap between blocks were assigned 

to the nearest block. We excluded new variants in which either the BXD or founder strain was 

heterozygous, which likely indicates either poor quality STR genotypes or incomplete 

inbreeding at that locus. Finally, we excluded strain BXD194, in which we found an outlier 
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number of new mutations (more than twofold higher than other strains in the same epoch) from 

downstream analyses.  

1.5.4 Inferring missing founder STR genotypes  

We used R/QTL2 to infer missing founder STR genotypes from genotypes observed in 

BXD strains. First, we imputed founder labels (B or D) for each STR genotype in the BXD 

strains. For the subset of loci at which both founder strains were genotyped and did not share a 

common allele, we could unambiguously assign B or D genotype labels to each genotyped BXD 

strain. BXD strains with genotypes not matching either founder were assigned missing labels. 

For the remaining polymorphic loci missing at least one founder genotype, we could not directly 

infer the founder label and initially set all genotypes at those loci to missing values. We used 

the R/QTL2 “interp_map” function to interpolate linkage distances between STRs from 

physical and genetic SNP marker maps at the 7,101 LD-independent markers described above. 

We then used R/QTL2 functions “calc_genoprob” followed by “maxmarg” to impute missing 

founder labels. Then, for each STR with a missing founder genotype, we determined the 

distribution of repeat lengths in strains inferred to have the corresponding founder label at that 

locus. If at most one de novo genotype was present at the locus and if the majority of BXD 

strains had the founder genotype, the founder was inferred to have the modal allele. Otherwise, 

the locus was removed from downstream analysis. 

1.5.5 Characterization of new STR mutations  

We performed PCA to characterize sharing of new mutations across strains. We 

constructed a strain-by-locus matrix of indicator values indicating the presence (one) or absence 

(zero) of a new STR genotype in each strain at each locus. We then performed PCA using the 

builtin “prcomp” function in R with centering but without scaling.  
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1.5.6 Computing STR mutator phenotypes  

We calculated three separate mutator phenotypes for each strain. Mutation count was 

calculated as the number of STRs with new mutations divided by the number of successfully 

genotyped loci in that strain. Mutation size was calculated as the average difference in repeat 

count between the new genotype and the founder genotype at each mutation. Mutation size was 

computed separately for expansion and contraction mutations. Expansion propensity was 

calculated as the fraction of new mutations in each strain for which the RI genotype was longer 

than the founder genotype. Unless otherwise noted, we removed STR mutations seen in more 

than 10 strains, as those likely do not represent new mutations. 

1.5.7 QTL mapping for STR mutator phenotypes  

QTL mapping for each mutator phenotype was performed based on the set of LD-pruned 

SNPs described above using a linear mixed model approach implemented in R/QTL2. Each 

phenotype was analyzed separately. We used the “calc_kinship” function to prepare a strain 

relatedness matrix using the leave-one-chromosome-out (LOCO) method. In addition to 

supplying a vector of phenotype values, genotype probabilities, and kinship matrices, we also 

input a vector of the number of inbreeding generations as a covariate. We used “scan1perm” to 

calculate permutation-based genome-wide significance thresholds based on 100 permutations. 

For each QTL analysis performed, strains with fewer than 10 total new mutations were excluded 

from analysis because they produce noisy mutator phenotype values.  

1.5.8 Variant annotation  

The initial set of variants for annotation analysis contained 66,017 SNPs and 1,040 

STRs genotyped previously in the BXD cohort (Ashbrook et al. 2022) and located between the 

boundaries of the confidence interval for the QTL on Chr 13. We additionally obtained 
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genotypes for 8,649 SVs based on pangenome analysis (see below). After filtering for variants 

within protein-coding genes in the QTL region based on the GENCODE M25 release gene 

annotations, 35,031 SNPs, 576 STRs, and 4,135 SVs remained. SVs <50 bp were removed, 

leaving 983 SVs. After filtering for only segregating variants and removing variants in which 

more than half the strains had a missing value, 5,982 SNPs, 214 STRs, and 733 SVs remained. 

The non-major-allele frequency was calculated for each variant as the proportion of alleles at 

the locus that were not the most abundant allele after removing strains with missing genotypes. 

We used VEP (McLaren et al. 2016) v103.1 with the Ensembl cache v102 to predict the impact 

of each variant. VEP assigns one of four IMPACT ranks (high, moderate, low, and modifier) 

along with predicted consequences to each variant overlapping a transcript or a regulatory 

feature. The strength of association between the genotype at each variant and the expansion 

propensity phenotype was taken as the one-sided P-value of the F-statistic for an ANOVA 

model with genotype as a categorical predictor variable using R. Twenty-four SV loci were 

filtered out because of not returning an association value, for a final count of 9,103 SNPs, 160 

STRs, and 959 SVs. There was an average of 4.3 transcripts and 10.5 regulatory features per 

gene, for a total of 328 features and 25,746 variant-feature pairs. The variant-feature pair with 

the most severe impact and consequence was selected among variants predicted to have 

multiple consequences and/or impacts on protein features. 

1.5.9 Pangenome analysis of SVs  

The BXD pangenome for Chr 13 was built from data of 148 strains (four strains were 

excluded because of poor assembly quality) using haploid assemblies of 10x reads obtained by 

Supernova (Weisenfeld et al. 2017). To restrict the analysis to Chr 13, haploid assemblies were 

mapped against the GRCm38/mm10.fa reference genome using wfmash v.0.6.0 
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(https://github.com/waveygang/ wfmash; https://doi.org/10.5281/zenodo.6949373). Only 

assemblies mapping to Chr 13 were used to build the pangenome with pggb (Garrison et al. 

2023) v0.2.0 using the following combination of parameters: pggb-0.2.0 -i chr13.pan+ref.fa.gz 

-o chr13.pan+ref -t 48 -p 98 -s 100,000 -n 140 -k 229 -O 0.03 -T 20 -U -v -L -Z. 

Regions of the pangenome with depth < 10× were removed using odgi (Guarracino et 

al. 2022). Variant calling from the pangenome was performed with vg (v1.35.0-59-ge5be425c6) 

(Garrison et al. 2018) using the following combination of parameters: vg-e5be425 deconstruct 

-t 16 -P REF -e -a -H “#” graph.gfa > graph.vcf.  

The variant call set was processed to remove missing data, sites where alleles are 

stretches of Ns, homozygous reference genotypes, and variants <50 bp and >10 kbp before 

normalization and decomposition using BCFtools (Bonfield et al. 2021) under standard 

parameters. The resulting VCF file was visualized using bandage v0.8.1 (Wick et al. 2015).  

Reference and alternate allele sequences for SVs were extracted from the resulting 

variant call file using “bcftools query.” Each alternate sequence was then aligned to the 

reference using the Needleman–Wunsch global pairwise alignment implemented in the 

“pairwiseAlignment” function from the Biostrings v2.60.1 R package. This allowed for 

splitting complex SV sequences spanning multiple kilobases into smaller individual 

insertions/deletions for variant effect analysis. We removed singleton variants and those <50 

bp in length. 

1.5.10 eQTL analysis  

We generated a list of 264 expression data set files available from GeneNetwork’s 

interplanetary file system (IPFS) using the “lftp” tool. Of these, 242 data sets contained BXD 

strain data. Some GeneNetwork data sets do not reflect the nomenclature change of the 
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BXD24/BXD24_Cep sister strains. To avoid ambiguity and standardize strain names with 

newer data sets, BXD24 and BXD24a were relabeled as BXD24_Cep and BXD24, respectively, 

in the data sets GN267, GN373, GN385, GN410, and GN414, which contained expression 

values for both of these strains. Similarly, BXD24a was relabeled as BXD24 in the data sets 

GN274, GN275, GN302, GN308, GN325, GN374, GN375, GN387, and GN702. Probe 

information and per-strain gene expression values were extracted into separate tables of a 

sqlite3 database to facilitate querying. Probes with missing genomic location information were 

removed. Finally, probe coordinates were converted from the mm9 to the mm10 reference using 

the UCSC Genome Browser liftOver tool (Hinrichs et al. 2006), and probes that failed 

remapping to the new reference were discarded.  

Each GeneNetwork data set represents a distinct processing configuration of data 

generated from an experimental study. Processing steps include signal intensity normalization, 

strain and probe filtering, rescaling, and correction of batch effects. Multiple data sets may be 

available for studies in which both gene- and exon-level data have been collected. Further, study 

data may be split up into multiple data sets according to the sex of the animals or by treatment 

group such as diet or drug exposure. To avoid overcounting, we selected a single representative 

data set using a heuristic approach to make the selection based on strength of signal and 

processing conditions. Exon-level data were preferred to gene-level data due to increased probe 

density. More recently reprocessed data sets were preferred to older ones. Data from control 

groups were preferred to data from experimentally treated groups. Combined male and female 

data were preferred to sex-specific data. Data sets with more strains were preferred to data sets 

with fewer strains. A summary of selected and available data sets for each study is available in 

Supplemental Table S5.  
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We then queried expression values for all probes falling within the expansion propensity 

QTL region on Chr 13 in each data set. GN227 lacked probe data in this region and was 

excluded. Probe mapping information was either taken directly from the GeneNetwork data set 

or queried from Ensembl’s BioMart data mining tool release 102 using the biomaRt (Durinck 

et al. 2009) R package. Unmapped probes were removed from analysis. We then checked 

whether probe coordinates were contained within the start and stop positions of each probe’s 

corresponding gene and removed those that did not. For each Affymetrix probeset representing 

a collection of probes, we used the UCSC (Kent et al. 2002) BLAT tool to find the matching 

genomic location of individual probe sequences. We discarded probe sets in which any 

contained probe did not match within the coordinates of its assigned gene. We then used probe 

coordinates to calculate the number of segregating variants that each probe overlapped using 

the “bedtools intersect” command available from the BEDTools (Quinlan 2014) package. 

Additionally for each probe, we calculated the number of variants at which each strain differed 

from the mm10 reference, which represents the number of mismatches an array probe would 

be expected to have when hybridizing with a DNA library sample from a given strain. We then 

performed eQTL mapping on Chr 13 using the same set of LD-independent loci and kinship 

matrix. The covariate vector from the QTL mapping was supplemented with the number of 

expected hybridization mismatches for each probe/strain combination to account for the 

expected differences in hybridization efficiency. The number of strains per data set ranged from 

11 to 79. For comparison, we remapped the mutation propensity phenotype using only strains 

available in each of the gene expression data sets. Monoallelic markers conditioned on the 

subset of strains available in each expression data set were removed. 
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Notably, it is common for multiple microarray probes (probe sets) to target the same 

gene, especially for exon-based microarrays. We observed high variability for gene expression 

measurements between probes targeting the same gene in a given data set. To limit the rate of 

false eQTL signal discovery, we applied the Benjamini–Hochberg multiple hypothesis testing 

correction (Benjamini and Hochberg 1995) to the vector of peak LOD values for each gene–

data set pair. We selected a representative probe for each gene having the highest adjusted peak 

LOD value within the expansion phenotype QTL region on Chr 13 for gene-level analysis. For 

visualization of eQTL traces, LOD values at each marker were scaled by the ratio of the peak 

adjusted LOD to the peak LOD for each gene. 

1.5.11 Genomic data for classic mouse strains  

Read alignment BAM files for the common laboratory mouse strains—129S1/SvImJ, 

NZO/HlLtJ, NOD/ShiLtJ, CAST/EiJ, PWK/ PhJ, A/J, and WSB/EiJ—were downloaded from 

the Mouse Genomes Project ftp server hosted at ftp://ftp-mouse.sanger.ac .uk/current_bams. 

Variant call files for these strains were similarly queried from ftp://ftp-

mouse.sanger.ac.uk/current_snps.  

1.5.12 Tissue-specific expression of DNA repair genes  

Tissue-specific expression of Msh3 and other DNA repair genes (Supplemental Table 

S6) was obtained from the Bgee database (Bastian et al. 2021), accessed on November 7, 2022. 

1.6 Data access  

WGS data and genotype calls for 152 strains from BXD were generated previously 

(Ashbrook et al. 2022) and are available on the European Nucleotide Archive (ENA; 

https://www.ebi.ac.uk/ ena/browser/home) under accession number PRJEB45429). STR 

genotypes are available on the European Variation Archive (EVA; https://www.ebi.ac.uk/eva/) 
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under accession number PRJEB61080. The set of new mutations and STR loci included in this 

analysis are available in Supplemental Datasets S1–S3. Workflow and analysis scripts are 

available at GitHub (https:// github.com/gymreklab/BXD-STR-Mutator-Manuscript) and as 

Supplemental Code. 
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1.7 Supplementary Figures 

 
 
Figure 1.6 Localization of new autosomal mutations at STRs. Each dot represents a single STR for which at 
least one new mutation was observed. The size of each dot scales with the number of strains for which a mutation 
was observed at that locus. Loci at which more than 10 new mutations were identified were filtered. Dot sizes 
range from 1-10 mutations. Plots were made with the karyoploteR (Gel and Serra 2017) package. 
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Figure 1.7 Summary of new STR mutations in BXD. A. Distribution of repeat unit lengths. The number of new 
mutations at STRs with each repeat unit length (bp) is shown (left=all genotyped STRs, middle=all STR loci 
passing initial filtering, right=all STRs with new mutations). B. Distribution of the founder haplotypes for new 
mutations. Bars show the number of new STR mutations occurring on “B” (red) vs. “D” (blue) founder haplotypes. 
C. Distribution of mutation sizes for each repeat unit length. The x-axis shows mutation sizes in terms of the 
difference in number of repeat units (RU) from the founder allele. Positive sizes indicate expansions and negative 
sizes indicate contractions.  
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Figure 1.8 Distribution of the number of strains carrying the new allele at each of the STRs for which at 
least one new mutation was identified. Singleton mutations, seen only in a single strain, are shown in blue. 

 

Figure 1.9 Expansion propensity phenotype at the Chr 13 QTL for mutations in genic vs. intergenic regions. 
Each point represents one strain. We used SNP haplotype blocks to assign each strain as harboring either the B 
(red) or D (blue) haplotype at the Chr 13 locus. The y-axis denotes expansion propensity computed based on STR 
mutations occurring in either genic (A) or intergenic (B) regions. 
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Figure 1.10 Genes located in or near the modest QTL peaks for expansion propensity. The y-axis shows the 
QTL signal (LOD score) for expansion propensity. Black line=all STRs, blue line=tetranucleotide STRs only. 
Horizontal bars denote genes near the center of the QTL peak. Genes known to be involved in DNA repair are 
highlighted. The peak on Chr 4 does not overlap any known DNA repair genes. There are 76 genes shown for the 
Chr 4 region and 371 genes shown for the Chr 17 region. 

SXSSlePeQWaU\ Fig. 4

GHQHV ORFDWHG LQ RU QHDU WKH PRGHVW Q7L SHDNV IRU H[SDQVLRQ SURSHQVLW\. The \-a[iV
VhRZV Whe QTL VigQal (LOD VcRUe) fRU e[SaQViRQ SURSeQViW\. Black liQe=all STRV, blXe
liQe=WeWUaQXcleRWide STRV RQl\. HRUi]RQWal baUV deQRWe geQeV QeaU Whe ceQWeU Rf Whe QTL Seak.
GeQeV kQRZQ WR be iQYRlYed iQ DNA UeSaiU aUe highlighWed. The Seak RQ chURPRVRPe 4 dReV
QRW RYeUlaS aQ\ kQRZQ DNA UeSaiU geQeV.



49 
 

 

Figure 1.11 Evaluating robustness of the Chr 13 association signal for expansion propensity. In each panel, 
the x-axis denotes the repeat class (from left to right: all STRs, and including only STRs with a repeat unit length 
of 2-6bp). Within each class in each panel, the x-axis denotes genomic location on Chr 13 and the y-axis denotes 
logarithm of the odds (LOD). The max LOD is annotated for each class. Each row denotes a different threshold 
for the minimum number of new STR mutations for a strain to be included in the analysis (strain filtering). Each 
column denotes a different threshold for filtering the maximum number of strains a particular new STR mutation 
could be observed in (frequency filtering). Dashed horizontal lines represent permutation thresholds for genome-
wide significance in each class. Overall, strain filtering has little effect whereas frequency filtering indicates the 
association signal is restricted to relatively new mutations. In all cases, tetranucleotides, the largest STR class in 
our dataset, show the strongest signal. 
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Figure 1.12 Distribution of expansion propensity for each strain for different repeat classes. Expansion 
propensity was computed separately considering only STRs with repeat units of a specified length (black=all 
STRs; red=dinucleotides; gold=trinucleotides; blue=tetranucleotides; green=pentanucleotides; 
purple=hexanucleotides). 

 

 

Figure 1.13 Expansion propensity QTL mapping in each BXD epoch. We repeated QTL mapping separately 
using only strains in each epoch and including only tetranucleotide loci. Each row represents a different epoch. In 
each row, the x-axis denotes genomic location and the y-axis denotes LOD score. Permutation based thresholds 
are shown as dashed horizontal lines. 
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Figure 1.14 Overview of STR mutation patterns. In each panel, the x-axis gives the founder repeat length, based 
on the inferred founder haplotype at each STR locus (see Methods). Each row shows a different mutation metric, 
and each column is for a different repeat unit length (left=dinucleotides, middle=trinucleotides, 
right=tetranucleotides). In each panel, dark lines indicate patterns in strains which inherited the B haplotype at the 
Chr 13 QTL locus and shaded lines indicate patterns in strains with the D haplotype. Solid lines show data for 
STRs inherited on a local B haplotype and dashed lines are for STRs inherited on a D haplotype (e.g. as in the toy 
example in Fig. 1.1A). Rows, starting from the top, show the following metrics: (1) Total number of mutations 
observed in each category, (2) Relative mutation rate, computed as the number of mutations divided by the number 
of non-missing genotype calls in each category, (3) Expansion propensity of mutations in each category, (4) Mean 
size of expansion mutations, and (5) Mean size of contraction mutations. 
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Figure 1.15 Mutation patterns stratified by repeat unit and haplotype at the Chr 13 QTL peak. In each panel, 
the x-axis denotes repeat units. Dark red=B haplotype and dark blue=D haplotype at the Chr 13 peak. ** denotes 
p<0.05 after Bonferroni correction and * denotes nominal two-sided z-proportions test nominal p<0.05. Top: The 
y-axis gives the total number of mutations observed for each repeat unit. Middle: The y-axis denotes relative 
mutation rate computed as the average number of mutations per strain divided by the total number of genotyped 
loci in each category. Bottom: The y-axis gives the percent of mutations for each repeat unit that are expansions.
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Figure 1.16 Mutation patterns by haplotype at the Chr 13 QTL peak for autosomes, Chr X, and Chr Y. In 
each panel, the x-axis denotes the chromosome type STR mutations occur on: autosomes, X, or Y. Dark red=B 
haplotype and dark blue=D haplotype at the Chr 13 peak. Top: The y-axis gives the total number of mutations 
observed for each category, after filtering mutations occurring in more than 10 strains. Bottom: The y-axis gives 
the percent of mutations for each repeat unit that are expansions. Bottom plots are annotated with the p-value from 
a two-sided z-proportions test. ** denotes p<0.05 after Bonferroni correction and * denotes nominal p<0.05. Left 
plots are computed based on all STRs, and right plots are computed based only on tetranucleotide STRs. 

 
 

Figure 1.17 Features of the SVs discovered from pangenome analysis of Chr 13. A. Allele frequency spectrum 
of the 3,698 SVs with length >50bp and <10kbp in a region encompassing the QTL of interest on Chr 13. B. 
Distribution of the length of insertions and deletions. C. Bandage (Wick et al.) representation of the candidate 
region on Chromosome 13 (mm10, chr13:92,345,000-92,351,498) containing the 387bp insertion found in the 66 
mice with the C57BL/6J background for that region. 
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Figure 1.18 Annotation and selection of impactful variants within genes in the Chr 13 QTL for expansion 
propensity. For plots in A and C, the x-axis gives the genomic coordinate and the y-axis gives the association (-
log10 p-value). Each dot represents a variant, and variants are colored by their impact predicted by VEP (red=high, 
blue=moderate, green=low; gray=modifier). A. VEP-annotated variants across the entire QTL region. Most 
annotated variants are located in intronic regions and have a predicted “modifier” impact. Weakly associated 
variants were removed from further analysis using a threshold of 3.3 on the association statistic (dashed horizontal 
line) as suggested on the GeneNetwork website (http://gn1.genenetwork.org/glossary.html). Filled dots represent 
common and empty circles represent rare variants based on the threshold identified in panel B. B. Distribution of 
non-major allele frequencies. Rare variants with an artificially strong association statistic due to overleveraging 
of outliers were removed using a threshold (dashed vertical line) on non-major allele frequency. C. Detailed view 
of VEP-annotated variants. Views are shown for genes known to be involved in DNA repair (Xrcc4, Atg10, 
Ssbp2, Msh3) or genes for which high-impact variants were detected (Cmya5, Zcchc9). 
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Figure 1.19 Detailed view of annotated variants within Msh3. In A and B, top panels show transcript 
annotations, colored by transcript type. In bottom panels, the x-axis gives the genomic coordinate and the y-axis 
gives the -log10 p-value of each variant for association with expansion propensity. Variants are colored by VEP-
predicted impact. Filled dots represent common and empty circles represent rare variants based on the threshold 
identified in the previous figure. Plots are the same as those in Fig. 1.3, but include additional transcript annotations 
and rare variants. A. Shows the entire length of Msh3, whereas B. zooms in on the variant-dense 5’ region. High-
impact rare variants overlap a 387bp LTR insertion in the “B” haplotype and likely represent variant calling 
artifacts. 
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Figure 1.20 Overall gene expression levels for genes within the QTL region. Boxplots show distributions of 
normalized gene expression levels for each of the protein coding genes within the QTL confidence interval for 
tetranucleotides. Each gene is shown in a separate panel. Distributions are ordered by GeneNetwork dataset id (x-
axis) and panels are ordered by the median gene expression level across all datasets (solid horizontal line). 
GeneNetwork datasets are normalized using a “2z+8” method (Freeman et al. 2011). The expected average value 
of 8 is shown as a dashed horizontal line. 
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Figure 1.21 Summary of expansion propensity QTL signal detection using strains available in each gene 
expression dataset. The top panel shows the number of strains included in each expression dataset. Datasets are 
sorted in decreasing order by the number of strains per dataset. The dashed line indicates the minimum strain-per-
dataset cutoff of 30 strains. We performed QTL analysis for expansion propensity using the subset of strains 
available in each expression dataset. The bottom panel shows peak LOD (black points) for each dataset. Gray 
dashes show the permutation-based significance threshold computed separately for each dataset. Blue bars in the 
top panel indicate the subset of strains available in that expression dataset was sufficient to reproduce the QTL for 
expansion propensity. 

 

Figure 1.22 Availability of gene expression data for genes within the expansion propensity QTL. The grid 
indicates which protein-coding genes had gene expression values in which GeneNetwork datasets. The bottom 
panel shows those with values in at least 50% of the representative microarray datasets (x-axis) selected from 
GeneNetwork. 
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Figure 1.23 Probe-level analysis of eQTL signals at Msh3. The top panel annotates Msh3 transcripts. In the 
bottom panel, each dot represents a single microarray probe. The x-axis gives the position of each probe. The y-
axis gives the maximum LOD score across all datasets for each probe. Probes are colored by the number of 
segregating SNPs overlapping the probe coordinates. Probes not overlapping SNPs are shown in gray. Probes near 
the 5’ end of Msh3 showed the strongest eQTL signals. However the majority of those overlap SNPs, which could 
lead to biased expression measurements and were filtered from gene expression analysis.
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Figure 1.24 Summary of gene eQTL signals for genes contained within the QTL peak 1.5-LOD support 
interval for the expansion propensity phenotype. eQTL mapping was performed for each probe corresponding 
to a gene within the region of interest compiled across all GeneNetwork datasets. The maximum LOD value is 
shown for each gene (columns) in each dataset (rows, grouped by tissue). Genes are ordered from left-to-right 
according to the number of datasets in which the peak LOD eQTL value exceeded the permutation based threshold 
in that dataset. The vertical black line denotes the top 10 genes. While a single dataset is available for most tissues 
(primary y-axis), multiple independent datasets are available for others. GeneNetwork dataset ids are shown on 
the right y-axis. 
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Figure 1.25 eQTL signals for DNA repair genes within the expansion propensity QTL. A. Comparison of 
expansion propensity and eQTL signals. LOD scores for expansion propensity are shown in black. Colored 
traces denote eQTL LOD scores. A separate line is shown for each expression dataset. B. Distribution of gene 
expression for strains with “B” vs. “D” haplotypes. Panels show gene expression at DNA-repair related genes 
for strains assigned the “B” (red) vs. “D” (blue) haplotypes at the Chr 13 expansion propensity locus. Each column 
denotes a different GeneNetwork expression dataset (Supplemental Table 5). Datasets are ranked by the 
difference in expression between strain groups. Only datasets where a significant eQTL was identified are shown. 
The far right column shows data aggregated across expression datasets. 
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Figure 1.26 Co-localization of eQTL and expansion propensity signals. A. Correlation between the lead 
QTL and eQTL SNPs for each gene. For each gene, we chose the dataset with the strongest eQTL (based on 
LOD score) for each gene. The y-axis gives the Pearson correlation between genotypes of the lead QTL SNP and 
the lead eQTL SNP for each gene. B. Co-localization across all datasets with an eQTL for each gene. The y-
axis value is the same as in A, but with a different dot for each gene expression dataset with a significant eQTL. 
For both A and B, in left panels the lead SNP is based on the QTL signal computed across all strains, whereas in 
the middle panels it is based on a QTL signal recomputed using the subset of strains available for each expression 
dataset. The right panels show the correlation between the lead SNP for the QTL signal based on all vs. the subset 
of strains. C. Correlation of QTL and eQTL traces for each gene. For each gene in each expression dataset with 
a significant eQTL, we computed the correlation between QTL and eQTL LOD scores. Green dots are computed 
using the main QTL signal, whereas for orange dots the QTL signal was recomputed using the subset of strains 
available for each expression dataset. 
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Figure 1.27 Detailed analysis of eQTL signals at Msh3. Left panels show the location of each microarray probe 
(x-axis) and the maximum LOD score across all variants for association with that probe. Colors represent different 
GN datasets. Right panels show the location of each variant (x-axis) and the best -log10 p-value across all Msh3 
probes. Colors denote different microarray probes. Bottom panels show zoomed-in views denoted by the gray 
rectangles in top panels, which contain both the probes and variants with the strongest eQTL signals near the 5’ 
end of Msh3. 

 

Figure 1.28 Visualization of next-generation sequencing data for classic mouse strains at the 5’ end of Msh3. 
Top tracks show gene annotations. The middle track denotes the location of the IAP LTR element described in the 
main text. Bottom tracks show sequencing coverage in classic mouse strains. Colored bars indicate sequence 
variants compared to the mm10 reference genome, which is based on C57BL6/J. Strains 129S1/SvImJ and WSB 
have similar haplotypes in this region to DBA (“D”), whereas NOD is similar to C57BL6/J. Coverage profiles 
suggest strains DBA, 129S1/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ do not have the IAP LTR insertion 
present in the reference genome. The visualization was created using the Integrative Genomics Viewer (IGV). 
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CHAPTER 2 

xQTL: A mixture-model for identification and characterization  

of trans-eQTLs 

2.1 Abstract 
While thousands of cis expression quantitative trait loci (cis-eQTLs) have been reliably 

identified, consistently replicating trans-eQTL effects has proven to be challenging due to 

insufficient statistical power, lack of comparable tissues and cohorts, and putative false positive 

associations. Here, we present xQTL, a novel trans-eQTL method based on mixture models 

which infers the total number of target genes of a variant, and has improved power compared 

to alternative methods. We implemented xQTL and another existing trans-eQTL detection 

technique (CPMA) in an easy to use software package. Our package also includes an extensive 

simulation framework we developed to benchmark xQTL against existing methods. Using our 

simulation framework, we show that widely used correction techniques such as PCA or PEER 

remove effects of true trans-eQTLs along with technical variation. We applied xQTL on a 

publicly available yeast expression dataset. We identify 367 unique variants acting as trans-

eQTLs at FDR 5% and show that the top 3 hotspots of trans-eQTLs are predicted to affect over 

half of the yeast transcriptome. xQTL analysis on RNA-sequencing from the brain hemisphere 

of 339 HS rats identified dozens of candidate trans-eQTLs. The xQTL method and simulation 

framework provide important resources for future trans-eQTL studies.  

The xQTL package (including our simulation framework) can be found here: 

https://github.com/cynthiaewu/trans-eQTL 
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2.2 Introduction 

Expression quantitative trait loci (eQTLs), or genetic variants that are associated with 

variation in gene expression, are thought to be major drivers of complex traits and human 

disease (Consortium et al. 2020). The majority of eQTL studies have focused on cis-eQTLs, for 

which the genetic variant is nearby the target gene. On the other hand, trans-eQTLs, for which 

the genetic variant and associated target gene(s) are not in close physical proximity on the 

genome, are thought to be important drivers of expression level variation and disease risk 

(Westra et al. 2013), but are far more challenging to analyze. Trans-eQTL analyses are typically 

severely underpowered due to the large number of putative gene-by-variant pairs resulting in a 

high multiple hypothesis burden. Additionally, trans effects are generally weaker than cis 

effects (Shan, 2019; Albert and Kruglyak 2015; Consortium et al. 2017) , and therefore, require 

larger sample sizes and stronger effects to detect compared to cis-eQTLs. Further, technical 

sources of noise, which are often unknown, can create substantial variation in expression 

datasets and lead to many false positive eQTL calls (Stegle et al. 2012). Finally, multiple 

eQTLs, both in cis and trans, can affect the same genes which obfuscates signals and adds to 

the difficulty of identifying individual trans-eQTLs. Thus, most identified trans-eQTLs have 

not been consistently replicated across studies due to the insufficient statistical power, lack of 

comparable tissues and cohorts, and potential false positive associations (Consortium et al. 

2017). 

Previous studies have focused on detecting trans-eQTLs with various methods. Albert, 

Bloom, et al. 2018 (Albert et al. 2018) detected trans-eQTLs clustering at 102 hotspot loci in 

yeast segregants by testing putative gene-by-variant pairs. However, in species with larger 

genomes, such as humans, pairwise testing is less powerful due to the large number of 



67 
 

hypothesis tests. Another study (Kolberg et al. 2020) utilized an alternative approach that tests 

for association between variants and aggregate representations of expression of gene sets based 

on various co-expression methods. This approach identified multiple trans-eQTLs in blood cell 

types for humans that were replicated in other studies. Yet, results were highly dependent on 

which co-expression method was chosen for analysis. A different study (Brynedal et al. 2017) 

leveraged cross-phenotype meta-analysis (CPMA) (Cotsapas et al. 2011) to identify global 

effects of a single variant by testing if the association statistics from all genes for the variant 

departs from the expected distribution under the null hypothesis of no trans effects. One 

limitation of CPMA is that this approach is best suited for detecting trans-eQTLs influencing 

many genes and has low power to detect trans-eQTLs with a small number of target genes. 

Further, to our knowledge these methods have not been packaged as software tools for 

community use and thus remain inaccessible to the majority of researchers. 

Here, we introduce xQTL, a novel trans-eQTL detection method that improves power 

over pairwise methods by jointly modeling the effects of an individual variant across all genes. 

The xQTL package additionally implements previous trans-eQTL detection methods for 

comparison. xQTL’s model is similar to that employed by CPMA, but uses a more biologically 

plausible mixture model of effect sizes. Importantly, this enables us to infer the total number of 

target genes of a variant and improves power in many scenarios compared to CPMA. We 

additionally develop a novel open-source simulation framework to benchmark performance of 

xQTL against existing methods (CPMA and pairwise gene-by-variant analysis) and apply 

xQTL to a publicly available yeast expression dataset with 1012 meiotic segregants. We 

replicated 3 hotspots of trans-eQTLs which xQTL predicted to affect over half of the yeast 
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transcriptome. Last, we performed xQTL analysis on RNA-sequencing from the brain 

hemisphere of 339 HS rats and identified dozens of candidate trans-eQTLs. 

2.3 Results 

2.3.1 xQTL identifies trans-eQTLs with global effects  

We developed xQTL, a method for detecting trans-eQTLs with effects on a large 

number of target genes (Fig. 2.1A). The premise of xQTL is that the p-values of association 

statistics for all genes of a variant of interest comes from two distinct distributions: one for the 

target genes and another for the non-target genes. If the variant is not a trans-eQTL, all -log(p-

values) of association statistics will come from non-target genes, following a single exponential 

distribution. However, if the variant is a trans-eQTL, the p-values will be a mixture coming 

from two distinct distributions. xQTL attempts to fit this mixture distribution to learn the 

relative proportion of null vs. non-null (target) genes for each candidate trans-eQTL and outputs 

a likelihood ratio statistic (Q) which can be used to rank candidate trans-eQTLs and obtain the 

statistical significance of each candidate based on comparison to an empirical null distribution 

derived from permutation testing (Methods).  

To evaluate xQTL, we developed a detailed framework to simulate expression datasets 

for a given sample size with a range of trans-eQTL effects (Methods). Our framework enables 

varying the effect size distribution and number of target genes for each trans-eQTL. It further 

models gene-gene correlation and can simulate effects of technical covariates such as those 

captured by PEER factors (Stegle et al. 2012). We used our framework to evaluate the power 

of xQTL in addition to multiple methods previously used to detect trans-eQTLs with various 

properties (Fig. 2.1B-C). We focused on two classes of methods. First, pairwise methods test 

for association between all possible SNP-phenotype pairs. If analyzing m SNPs and expression 
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measurements for n phenotypes, pairwise methods will perform m*n total hypothesis tests. 

Second, joint methods consider the distribution of association statistics with all phenotypes for 

a particular SNP and aim to identify individual SNPs with global effects affecting a large 

number of target genes, rather than to identify specific SNP-gene pairs. Joint methods perform 

one test per SNP, and so only perform m total tests. xQTL falls into this second category. We 

additionally benchmark against the published CPMA method (Brynedal et al. 2017), which 

models p-values of association statistics for a particular trans-eQTL using a single non-null 

distribution, rather than as a mixture of null and non-null effects as in xQTL. 

We first examined a baseline case without modeling gene-gene correlation or technical 

covariates. As expected, all methods show increasing power to detect trans-eQTLs as a function 

of effect size and sample size (Fig. 2.1B). For downstream analyses, we focus on results for 

500 simulated individuals, similar to sample sizes for widely available expression datasets. At 

this sample size, naive pairwise methods are severely underpowered to detect all but the 

strongest effects. On the other hand, joint methods are best for detecting SNPs affecting 100 or 

more target genes, with at least modest effect sizes. In cases when the number of target genes 

and/or β effect size are very large (e.g. β>0.2 and t>100), both xQTL and CPMA are able to 

detect nearly all simulated trans-eQTLs as expected. On the other hand, our simulations show 

that xQTL outperforms CPMA for cases where the number of target genes and/or the effect size 

(β) are modest (Supplementary Fig. 2.7; Fig. 2.1C). We additionally evaluated xQTL’s inferred 

t using the simulation framework. We observed that in scenarios where xQTL has sufficient 

power (t>~1% of target genes) the inferred t closely aligns with the simulated t for across a 

range of effect sizes (Fig. 2.1D). We subsequently conducted another round of simulations, 

modeling extensive gene-gene correlation. We found that p-values based on an empirical null  
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Figure 2.1 Simulation heatmap to benchmark xQTL. A. Trans-eQTLs can affect expression of one or more 
target genes. β denotes effect sizes. We focus on two classes of trans-eQTL detection methods. Left: pairwise 
methods test all possible SNP-gene pairs; Right: joint methods perform a single test for each SNP by considering 
all association statistics for that SNP together. Both CPMA and xQTL are joint methods and based on the sample 
by gene matrix which contains expression values for each gene and sample. xQTL assumes association statistics 
can be approximated by a mixture distribution consisting of two distributions, one for the target genes and another 
for the null (non-target) genes. B. The simulation heatmap shows the trans-eQTL detection method with highest 
power for detecting trans-eQTLs with varying number of target genes and effect size. The color represents the 
method with highest power: blue=Matrix-eQTL, red=xQTL, purple=tie between xQTL and Matrix-eQTL. xQTL 
has increased power over xQTL to detect trans-eQTLs with small number of target genes and β effect size. C. The 
power of xQTL, CPMA, and Matrix-eQTL is shown for three different effect sizes: β effect size = 0.02, 0.2, 0.1. 
x-QTL has the best power to detect these trans-eQTL except in the case of small effect sizes. D. The x-QTL 
inferred t is closely aligned with the actual simulated t for various β effect sizes except for the cases where the 
actual t is very small. 
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were well calibrated but were inflated when using a theoretical null distribution that does not 

take gene-gene correlation into account. (Supplementary Fig. 2.8). 

2.3.2 PEER correction removes true trans-eQTL effects 

We considered the effects of technical covariates, which in real data might be introduced 

through unknown sources during sample preparation and/or sequencing and are often the 

primary source of variation in raw gene expression datasets. These unknown factors are 

commonly adjusted for by using PEER factor analysis (Stegle et al. 2012), or Principal 

Components Analysis (PCA) which identify major directions of variation that can be regressed 

out before downstream analyses. Failure to control for these major sources of variation can 

result in a large number of false positive eQTL signals. On the other hand, PEER adjustment 

could theoretically regress out true signals due to individual eQTLs affecting many target genes. 

To evaluate the tradeoff of adjusting for PEER or PCA, we performed a round of 

simulations with trans-eQTLs of varying effects and noise. Other simulation parameters such 

as sample size and number of genes are based on those available in the rat dataset described 

below. The first set of simulations include 10 eQTLs with strong global effects (β=0.5 for 1,000 

target genes out of 13,000 genes). xQTL easily detects all eQTLs when no PC adjustments are 

made. However, after including top expression PCs as covariates, no significant eQTLs are 

detected (Fig. 2.2A). Further inspection of the first 10 PCs shows they are driven by the true 

eQTLs, whereas PCs 11-20 capture statistical noise. For the second round of simulations, we 

included 20 PEER factors as technical covariates in the expression dataset in addition to 10 

eQTLs and adjusted for 20 expression PCs while running xQTL. Our analysis demonstrates 

that xQTL could identify true strong eQTLs when performing PC adjustment only if the 

strength of effects of the eQTLs are sufficiently large compared to the effect sizes of the  
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Figure 2.2 Tradeoff of trans-eQTL analyses with or without PC adjustment. The Manhattan plots represent 
various simulation and PC adjustment scenarios. The x-axis corresponds to the 10,000 simulated SNPs. The 10 
simulated trans-eQTLs are located at each 1,000 intervals, starting from 0. The y-axis represents the CPMA and 
xQTL scores of the SNP. The heatmaps plot the -log(pvalue) of pairwise association testing of SNP and PCs. The 
x-axis represents the first 20 PCs of the expression dataset. The y-axis corresponds to 20 SNPs. SNPs 1-10 are the 
simulated trans-eQTLs and SNPs 11-20 are null SNPs. A. No PEER factors were simulated. Left: In the trans-
eQTL analysis without PC adjustment, we can identify the 10 simulated trans-eQTLs. In the run with PC 
adjustment, we cannot identify the simulated trans-eQTLs. Right: The heatmap shows the top 10 PCs correspond 
to the 10 trans-eQTLs. PCs do not correspond to null SNPs. B. 20 PEER factors were simulated. Left: In the trans-
eQTL analysis without PC adjustment, we cannot identify the simulated trans-eQTLs. In the run with PC 
adjustment, we can identify the 10 simulated trans-eQTLs. Right: The heatmap shows PCs 14-20 correspond to 
the 10 trans-eQTLs. PCs do not correspond to null SNPs. 
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technical covariates (Fig. 2.2B). However, performing association testing separately for the PCs 

could identify which were driven by strong eQTLs vs. which were likely capturing technical 

variation. Therefore, for downstream analysis on real data we perform two parallel analyses: 

association testing on top expression PCs to identify major trans-eQTLs with global effects, 

and xQTL on PC-adjusted expression data to capture remaining trans-eQTL signals while 

reducing the impact of false positive signals potentially driven by technical covariates.  

2.3.3 Validation of xQTL performance using yeast dataset  

To evaluate xQTL on real data, we obtained a yeast expression dataset consisting of 

1,012 yeast segregants for which extensive trans-eQTL effects had been previously identified. 

The dataset consists of association statistics for 5,643 genes and 11,530 variants. Visualization 

of the pairwise association statistics shows the expected pattern of multiple trans-eQTL 

hotspots, as was observed by the authors of the original study (Albert et al. 2018) (Fig. 2.3A, 

bottom). 

Next, we applied CPMA and xQTL on the yeast dataset. Both are joint methods which 

look at the global effects of each variant across all genes. xQTL and CPMA both identify 367 

unique variants acting as trans-eQTLs at FDR 5%. Many of these trans-eQTLs can be found in 

three eQTL hotspots on chrVII, chrXII and chrXIV. These three eQTL hotspots correspond to 

the thick vertical bands seen in the authors’ and our eQTL map, obtained from the pairwise 

trans-eQTL method. This demonstrates that all three trans-eQTL detection methods were able 

to identify strong trans-eQTL hotspots, regardless of the type of tool used (Fig. 2.3A, bottom 

and center).  
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Figure 2.3: Application of xQTL, CPMA, and Matrix eQTL on yeast data. A. Bottom: - a map of Matrix 
eQTL values shows the genomic positions of each eQTL (x-axis) against the genomic positions of the genes whose 
expression they influence (y-axis). Strong diagonal band, indicating local eQTLs, and vertical bands, showing 
trans-eQTL hotspots that match the previous observation (Albert et al. 2018). Center: Map of xQTL and CPMA 
values shows high scoring trans-eQTLs are identified by both xQTL and CPMA. The trans-eQTL hotspots are 
highlighted by vertical shaded lines. Top: A map representing the xQTL proportion target genes (t) for the top 
15% of xQTL scoring variants. These trans-eQTLs are predicted to affect over half of the transcriptome and are 
aligned with the trans-eQTL hotspots (shaded boxes). B. The histogram shows that xQTL predicts that most 
variants affect a small proportion (0-10%) of the genes in the yeast dataset. Note that xQTL predicts some variants 
to affect most of the yeast genes. 
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xQTL reports a predicted t value, the proportion of target genes a variant might have, 

for every variant. As expected, most predicted t values are small (0-10%), indicating most 

variants have effects on only a small number of genes (Fig. 2.3B). On the other hand, variants 

falling within the top 3 trans-eQTL hotspots were predicted to affect over half of the 

transcriptome (Fig. 2.3A, top).  Altogether, this analysis of a dataset derived from an eukaryotic 

organism provides a demonstration of the ability of xQTL to capture trans-QTLs signals as 

well as the inference of the total number of genes impacted by the variant.  

2.3.4 Genome-wide detection of trans-eQTLs in outbred rats 

We utilized heterogeneous stock (HS) rats for trans-eQTL analysis. HS rats are derived 

from eight genetically diverse inbred founder strains and have been outbred for an average of 

80 generations. As a result, their genomes are random mosaics of the eight founder haplotypes. 

Since these rats have been bred in controlled conditions, noise from environmental factors, 

which are prevalent in human datasets, is expected to be substantially reduced. Further, the 

breeding structure of this cohort has resulted in large LD blocks, reducing the total number of 

tests needed to perform genome-wide association testing albeit at the cost of fine-mapping 

precision. Overall, the relatively high rate of genetic diversity, large block size, and lack of 

environmental factors of HS rats makes it better powered than human cohorts of comparable 

size for eQTL mapping (Munro et al. 2022).  

We performed xQTL analysis on RNA-sequencing from the brain hemisphere of 339 

HS rats. After filtering, 13,182 protein-coding brain-expressed genes remained. In parallel, we 

obtained genotype calls based on whole genome-sequencing. To reduce the set of variants to 

those expected to either influence protein function or alter expression levels of a potential trans-

regulator, we restricted the analysis to variants within exons or within +/-3kb of the  
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Figure 2.4 Cisregress removes the effects of cis-eQTLs. Plots represent a map of Matrix eQTL values showing 
the genomic positions of each eQTL (x-axis) against the genomic positions of the genes whose expression they 
influence (y-axis). The size of the dot corresponds to the strength of association of each SNP-gene pair. A. Matrix-
eQTL was applied to the expression dataset without regressing out cis effects. A diagonal band representing cis-
eQTLs is visible along with vertical trans bands. B.  The effects of the top 10 cis-eQTLs from each gene were 
regressed out of the expression dataset before applying Matrix-eQTL. The diagonal band of cis-eQTLs is not 
present while the vertical bands of trans-eQTLs are still present. 
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transcription start site (TSS) of a protein coding gene. After filtering and LD-pruning, 11,002 

variants remained. Further, to reduce variability in gene expression driven by cis-eQTLs which 

could impact power to detect trans effects, we performed cis-eQTL analysis with Matrix-eQTL 

and regressed out the effects of the top 10 cis-eQTLs from each gene (Methods; Fig. 2.4). 

Our simulation analyses above demonstrated a tradeoff between correcting for technical 

variation in expression (which can remove true trans-eQTL signals) vs. not correcting (which 

can result in false positive associations) (Fig. 2.2). Therefore, we ran xQTL in two settings, 

with and without adjusting for expression PCs as covariates. In all cases, we adjusted for sex 

and genotype PCs. We observed 156 and 45 LD-independent trans-eQTL signals with and 

without controlling for expression PCs (at FDR 15%). Similar to our simulation analysis, top 

trans-eQTL signals from the analysis without adjustment corresponded to top expression PCs, 

(Fig. 2.5) supporting the hypothesis that expression PCs in some cases are likely capturing 

heritable variation.  

For the run without controlling for PCs, we investigated the gene ontology (GO) 

processes of five top scoring trans-eQTL candidates identified by xQTL (Fig. 2.6). We 

performed a separate GO analysis for the positive and negative " target genes for each 

candidate. Enriched categories were different for the upregulated and downregulated 

categories. For each candidate, either the upregulated or downregulated category passes the 

FDR threshold of 0.05. As expected, the processes that passes FDR threshold are brain related. 

However, we observed that brain processes differ among these top-scoring variants. For 

example, for the chr4 candidate, the brain processes are related to morphogenesis while the 

brain processes are related to synaptic signaling for the chr7 candidate. 
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Figure 2.5 xQTL reveals trans-eQTL candidates. The Manhattan plots represent two different xQTL runs: 
with and without adjusting for expression PCs as covariates. The x-axis corresponds to the eQTL position. The 
y-axis represents the CPMA and xQTL scores of the SNP. The green line represents FDR of 15%. A. The xQTL 
run did not include expression PCs as covariates. We observe 45 LD-independent trans-eQTL signals at FDR of 
15%. B. The xQTL run included expression PCs as covariates. We observe 156 LD-independent trans-eQTL 
signals at FDR of 15%.  
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Figure 2.6 Overview of top-scoring trans-eQTL candidates. The middle plot represents a map of Matrix 
eQTL values showing the genomic positions of each eQTL (x-axis) against the genomic positions of the genes 
whose expression they influence (y-axis). The size of the dot corresponds to the strength of association of each 
SNP-gene pair. We include five top scoring trans-eQTL candidates identified by xQTL. For each candidate, the 
GO processes for the positive and negative ! target genes are shown. The dark blue processes passed FDR 
threshold of 0.05.  
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2.4 Discussion  

Trans-eQTL have been notoriously difficult to detect due to the many challenges of 

studying these variants. We developed xQTL, a novel trans-eQTL detection method that 

improves the power to detect trans-eQTLs over existing methods and is packaged together 

with a simulation framework as a publicly available toolkit. The idea behind xQTL is that the 

p-values of association statistics for all genes of a particular variant originate from a mixture 

of two distributions: genes that are targeted and ones that are not targeted by the variant. A 

key additional feature of xQTL is that our tool allows inference of the number of target genes 

for a particular trans-eQTL, and thus provides key biological information for these loci. This 

for instance can enable prioritizing the study of trans-acting modulators hosting a trans-eQTL 

according to the number of genes xQTL predicts are impacted by each regulator.  

We additionally developed a simulation framework that allowed us to analyze various 

properties such as the number of target genes and β effect size of a trans-eQTL. The framework 

also enables the inclusion of the effects of gene correlation and covariates in simulated datasets. 

We used our simulation framework to benchmark xQTL against CPMA and observed improved 

power to detect trans-eQTL with low number of targets or small β effect size. Further, by using 

our simulation framework, we were able to determine the types of trans-eQTL each detection 

method is more suitable for and the trans-eQTLs we are still underpowered to detect. Lastly, 

using our simulation framework we also showed that above a threshold of minimal number of 

target genes, xQTL can accurately infer the number of genes targeted by a particular trans-

eQTL. 

We also analyzed the tradeoff of adjusting for PEER factors or PCs in trans-eQTL 

analyses. PEER or PCs adjustment are done to consider the effects of technical covariates that 
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might be present in expression datasets. Failures to control for these sources of variation could 

results in false eQTL signals. However, on the other hand, adjusting for these factors could also 

remove true trans-eQTL effects. We demonstrate this tradeoff in our simulations and show that 

separate association testing for the PCs can allow us to distinguish which PCs are capturing 

trans-eQTL signals vs technical variation.  

To evaluate the performance of xQTL, we used well studied cis- and trans-eQTL yeast 

datasets (Albert et al. 2018) and applied Matrix eQTL, CPMA, and xQTL. xQTL was able to 

replicate known trans-eQTL hotspots in this model organism and accurately estimate the 

number of target genes.  

Last, we utilized RNA-sequencing from the brain hemisphere of 339 HS rats. We 

regressed out the effects of cis-eQTLs on the expression dataset which could obfuscate trans-

eQTL signals. Next, we applied xQTL in two runs, with and without PC adjustment and identify 

dozens of trans-eQTL candidates.  

2.5 Methods 

2.5.1 Overview 

We develop xQTL, a novel trans-eQTL detection method that helps address existing 

challenges of detecting trans-eQTLs. We first describe the regression model to detect pairwise 

gene-by-variant associations, then introduce the xQTL mixture model which jointly models all 

gene-by-variant associations for a particular variant. 

2.5.2 Linear model for a single gene-by-variant pair 

  Here, for the sake of clarity, we consider the simplistic case where there is only a single 

SNP to explain the components used in the model. The model can be extended to include 
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multiple SNPs when working with realistic datasets. We assume the following linear model to 

represent the association between genotype at a single SNP with expression of genes 1...m: 

 

	$ = &" + () + *	 (eq. 1) 

Where:	 

• $ is a + × - matrix of expression levels where Yij gives the expression of gene j in 

individual i. Expression values are assumed to follow a standard normal distribution. 

• & = (/!, /", … /#)$ is an n dimensional vector of SNP genotypes for the SNP in 

individuals 1 through n. Genotypes for diploid organisms such as humans are encoded 

as 0, 1, 2, according to the count of the minor allele. For haploid organisms, genotypes 

are encoded as -1 (minor allele) or 1 (major allele). 

• " = ("!, "", … "%) is an m dimensional vector of the effect sizes of the SNP on genes 

1..m. 

• C is a + × 3 matrix of covariates, where c is the number of covariates. Typical covariates 

include sex, age, or technical sources of variation as measured by PEER factors (Stegle 

et al. 2012). 

• ) is a 3 × - matrix of effect sizes where )&' gives the effect of covariate i on gene j. 

• * is a + × - matrix of error terms and represents variation in Y not explained by 

genotypes or covariates. Each row of * is modeled as a multivariate normal distribution 

with mean 0 and - ×- variance-covariance matrix Σ. In the case of no gene-gene 

correlation, Σ is set to the - ×- identity matrix. 
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2.5.3 xQTL model 

xQTL analyzes the effects of an individual SNP jointly across all genes simultaneously. 

Under the null hypothesis that a SNP is not associated with expression of any gene, association 

statistics (-log p-values) of gene-by-SNP effects are expected to be exponentially distributed 

with 5=1. On the other hand, if a SNP is associated with expression of a large number of genes, 

this distribution will depart from the null, with 5>1.  

CPMA, a related method that serves as the basis for xQTL, models association statistics 

using a single distribution and detects variants for which 5!=1. This model assumes all genes 

are targets of the variant of interest, whereas in practice a single trans-eQTL likely only targets 

a subset of the transcriptome (Ratnapriya et al. 2019). Instead, xQTL models regression 

association statistics (-log p-values, denoted as a below) as a mixture of two distinct 

distributions (Fig. 2.1, above) corresponding to target and non-target genes: 

Pr89 = 9&:;, <=> = ;Pr89 = 9&:< = <=> + (1 − ;)AB(9 = 9&|< = 1)  (eq. 2) 

Where: 9& is the ith association statistic, t is the proportion of all genes that are target genes, 1/	

<= is the mean association statistic for target genes, and Pr89 = 9&:< = <=> = <=D()*+!. If the 

variant is not a trans-eQTL, t=0, and the above model is equivalent to the null model in CPMA.  

By modeling effects as a mixture of null and non-null effects, xQTL has sensitivity to 

detect a broader range of trans-eQTLs, especially those affecting only a modest percentage of 

all genes in the transcriptome. Further, a key property of our model is that it can estimate the 

proportion of target genes (t) of a trans-eQTL, a feature not enabled by alternative frameworks 

including CPMA. The ability to estimate the number of target genes impacted by a trans-eQTL 

can be useful in understanding multiple biological systems and in studying molecular 
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mechanisms of key trans-acting factors. For instance, some trans-eQTL hotspots may impact 

thousands of targets, whereas other trans-eQTLs may target only dozens of other genes 

(Kolberg et al. 2020). Additionally, previous reports show that the number of genomic loci 

bound by different transcription factors and chromatin regulators can be highly divergent (Ram 

et al. 2011; Garber et al. 2012). We envision that t will allow predicting the impact of genetic 

variants in trans-acting modulators such as transcription factors, chromatin regulators, splicing 

factors, or genes involved in signal transduction cascades. 

2.5.4 Fitting the mixture model 

xQTL fits the mixture model above to obtain maximum likelihood estimates for and t 

using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (Fletcher 1994) based on the 

likelihood function: 

Pr89!, 9", … 9%:;, <=> = ∏ ;Pr89 = 9&:< = <=> + (1 − ;)AB(9 = 9&|< = 1)%
&,!  (eq. 3) 

It then obtains a test statistic S using a likelihood ratio test: 

F = −2H+
-./9!, 9", … 9%00, < = 11
-.29!, 9", … 9%3;̂, < = <=4

  (eq. 4) 

To obtain a significance value for S, we utilize a similar method to that used by CPMA 

described previously (Brynedal et al. 2017). CPMA derives an empirical null distribution by 

simulating test statistics to recapitulate observed gene-gene correlations. The resulting null 

distribution is used to obtain an empirical p-value on our observed xQTL statistic. Trans-eQTLs 

are detected with this second-level significance testing (Donoho et al. 2004). The addition of 

the parameter t for xQTL increases the computational burden to obtain the test statistic. 

However, this is negligible compared to the resources necessary in deriving an empirical null 
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for both CPMA and xQTL. Having an accurate empirical null distribution is highly important 

and gives an advantage over evaluating t directly from association statistics which can allow 

for many false positive target genes. 

2.5.5 Simulation framework 

  Our framework simulates expression data for a set of m genes in n individuals based on 

a single causal SNP using the linear model above. It takes as input the sample size, number of 

genes, minor allele frequency (f) of the SNP, number of target genes, and effect sizes. Effect 

sizes can be set to a constant value for all genes, or alternatively drawn from a normal 

distribution with a specified standard deviation. Users may additionally input custom gene-gene 

correlation matrices (Σ) to model the realistic gene co-regulation patterns (default identity 

matrix), a custom set of covariates (default none), and values for the number of genes (default 

15,000). SNP genotypes for each individual are drawn from a binomial distribution with 2 trials 

and probability of success f (default f=0.5). The expression value matrix Y is then simulated 

based on the linear model described above. 

2.5.6 Simulated datasets 

For our simulations, we consider the effect of a single trans-eQTL on m genes with n 

samples. Unless otherwise specified, we set m=15,000 and n=500. We vary the number of target 

genes and the effect size ". For non-target genes, 	" is set to 0. 	β
 
was set to a constant non-

zero value for all target genes. For each simulation, we additionally simulate data for 99 null 

SNPs with β=0 for all genes. 

We varied the number of target genes to range from 5-15000 (ranging from 0.03 to 

100% of all total genes). Effect sizes varied from 0.01 (weak effects) to 1 (strong effects). SNP 

minor allele frequencies were set to f=0.5. We also tested effect sizes and SNP minor allele 
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frequencies drawn from a normal distribution and found that doing so does not have a major 

impact on the comparison of trans-eQTLs detection methods. Thus, we chose a fixed effect 

size and SNP minor allele frequencies to simply demonstrate the difference in power of trans-

eQTL detection methods. For each simulated scenario of a specific trans-eQTL, we used 100 

replicates.  

To account for the extensive correlation between expression of pairs of genes observed 

in real datasets (Langfelder and Horvath 2008), we used scipy.stats.random_correlation to 

create a random gene-gene correlation matrix Σ to use in our simulations. 

As covariates, we simulated technical variation due to unknown sources, based on a 

simulation technique previously published in the manuscript describing the PEER method 

(Stegle et al. 2012). We include 10 PEER factors in our simulations to demonstrate the effect 

technical covariates have on trans-eQTL detection methods. The model includes factor levels H 

and factor weights w for each simulated PEER factor: 

L56 = M6 ∗ O5 + ∑ Q57 ∗ R76 + S56
89
7,8  with i = 1, …, n samples, j = 1, …, m genes, k = 1, …, p 

factors 

Factor levels Hik for factor k were drawn from N(0, 0.6). Factor weights wkj of factor k 

for gene j were drawn from N(0, T"k), where T"k ∼ 0.8(Γ(2.5, 0.6))2 which gives a heavy-

tailed weight distribution. We utilize the PEER method (Stegle et al. 2012) to account for these 

factors in our datasets.  

We utilized our simulation framework to evaluate the effects of adjusting for PEER 

factors or PCs on trans-eQTL detection. We simulated a case with no PEER factors and a case 

with 20 PEER factors. For both cases, our simulated datasets have 13,000 genes, 10,000 SNPs, 
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and 345 samples. Out of the 10,000 SNPs, 10 are simulated eQTLs with effect size β=0.5 on 

1,000 target genes 

2.5.7 Power analysis 

For each trans-eQTL scenario, we generated 100 simulated datasets, each with a single 

trans-eQTL. We determined the significant snps with the p-value threshold of 0.05/10,000 tests 

assuming 10,000 tested SNPs. In practice the p-value threshold will depend on the number of 

SNPs in a particular dataset. We then calculated the power to detect trans-eQTLs in the 100 

simulated datasets for each scenario. We evaluated the power of 3 trans-eQTL detection 

methods: Matrix eQTL, CPMA, and xQTL and determined which method works best for each 

scenario.  

2.5.8 Yeast dataset  

Association statistics for yeast SNP-gene pairs were obtained from Albert, Bloom, et al. 

2018 (Albert et al. 2018). This included 1012 meiotic segregants generated (Bloom et al. 2013) 

from a cross between the prototrophic yeast laboratory strain BY (MATa; derived from a cross 

between BY4716 and BY4700) and the prototrophic vineyard strain RM (MATα hoΔ::hphMX4 

flo8Δ::natMX4 AMN1-BY; derived from RM11-1a). The authors obtained RNA-seq data for 

5,720 genes and genotypes at 11,530 variant sites.  

2.5.9 Rat dataset  

RNA-sequencing from the brain hemisphere of 339 heterogeneous stock (HS) 

outbred rats were obtained from the RatGTeX portal (https://ratgtex.org/) The expression 

dataset consisted of TPM values of 32,576 genes. We filtered 398 genes in segmental 

duplication regions; 17,241 genes with variance > 0, variance < 50,000, IQR < 0, median > 0, 

and max_tpm > 2; 1,125 non-protein coding genes; 24 highly correlated genes; 606 genes with 
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high heterozygosity, leaving us with 13,182 genes. We then quantile normalized the expression 

dataset. Genotype calls consisted of 6,621,609 variants. We filtered 10,144 variants in 

segmental duplication regions; 3,604,659 variants not in TSS +/-3kb or exons of protein coding 

genes; and 162,666 variants from LD pruning. We are left with 11,002 variants. 

2.5.10 Trans-eQTL identification  

A separate linear regression analysis was performed for each SNP–gene pair. We used 

Matrix eQTL (Shabalin 2012) to obtain the p-values for the association statistics for each SNP-

gene pair. We then applied CPMA to obtain a CPMA statistic and xQTL to obtain a xQTL 

statistic for each SNP. For simulated datasets under the baseline model of no gene-gene 

correlation, we compared the CPMA and xQTL statistics to a Χ"distribution with one degree 

of freedom to obtain a p-value for each SNP. Otherwise, we simulate an empirical null 

distribution to obtain an empirical p-value for each SNP. To obtain an empirical null 

distribution, we shuffled the labels of the genotype dataset. We ran Matrix eQTL with this 

shuffled genotype dataset and then xQTL and CPMA to get a xQTL statistic and CPMA 

statistic. These statistics make up the empirical null distribution due to the assumption that after 

shuffling genotype labels, the SNPs become null or not an eQTL. We compare the observed 

statistic to the empirical null statistics to obtain an empirical p-value based on how many null 

statistics we observe that have a more “extreme” value than the observed value. For simulated 

datasets that have only 100 SNPs, we used the value of 10,000 SNPs to adjust for the number 

of hypotheses tested with Bonferroni correction assuming 10,000 tested SNPs. As noted above, 

the actual number of hypotheses tested depends on the particular dataset and set of SNPs being 

analyzed. 
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Additionally, to detect trans-eQTLs instead of cis-eQTLs, we regressed out cis effects 

from the expression dataset before running trans-eQTL detection methods. We first run Matrix 

eQTL to obtain cis-eQTLs. We only kept cis-eQTLs that have less than 20 samples missing 

genotype data. We populated samples with missing genotype data with the most common 

genotype of the specific SNP for the resulting cis-eQTLs. Then we regressed out effects of the 

top 10 cis-eQTLs in the expression dataset with an elastic net model for each gene. We use the 

resulting expression dataset for trans-eQTL detection. 
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2.6 Supplementary Figures 

 

Figure 2.7 Simulation heatmap of xQTL vs CPMA. The simulation heatmap shows the method with highest 
power for detecting trans-eQTLs with varying number of target genes and effect size (assuming a baseline model 
with no gene-gene correlation). The color represents the method with the highest power: blue=CPMA, red=xQTL, 
purple=tie between xQTL and CPMA. The size of each cell of the heatmap represents the power of the 
corresponding best method. 

CPMA
xQTL
Tie
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Figure 2.8 Empirical null accounts for gene correlation. QQ-plot shows -log10(p-values) of simulated null 
SNPs. Expression datasets are simulated with gene correlation. There are two simulations (red and blue) with 
different gene correlation matrices. After adjusting for gene correlation with a simulated empirical null, we observe 
less false positives eQTL signals. 
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CHAPTER 3 

scBE-seq: A pooled, high-precision genome editing strategy with single-cell sequencing 

to interrogate effects of hundreds of variants 

3.1 Introduction 

Mutations in trans-acting regulators such as transcription factors (TFs), chromatin 

regulators (CRs), and splicing factors (SFs) can result in global transcriptomic changes 

leading to a variety of human diseases (Lee and Young 2013). Intriguingly, different 

mutations in the same gene can result in distinct phenotypes ranging from no impact to severe 

health consequences, often leading to completely different disease outcomes. This highlights a 

major challenge in human genomics: understanding the mechanistic impact of a specific 

mutation in its native cellular context. 

A variety of computational tools have been developed for predicting the pathogenicity 

of a particular mutation. These primarily include gene-level constraint scores (Samocha et al. 

2014; Lek et al. 2016) and machine learning based methods to predict variant-level scores 

(Adzhubei et al. 2013; Kircher et al. 2014; Vaser et al. 2016; Jaganathan et al. 2019). Yet, 

existing metrics face important limitations. (1) Gene-level information is often insufficient, as 

different mutations in the same gene may lead to widely different phenotypes depending on 

where they fall. For example, mutations in HNF4A may contribute to various forms of diabetes. 

Similarly, mutations in MLL2 may contribute to Kabuki Syndrome, bipolar disorder, or cancer 

risk. Alternatively, some mutations in these genes may lead to no phenotype at all. (2) Both 

classes of methods do not consider tissue-specificity, and thus are not informative of what tissue 

is most likely to be affected by a particular mutation. (3) Despite progress in prediction methods 

(e.g., PolyPhen2 (Jaganathan et al. 2019)), missense mutations remain challenging to interpret. 
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Some amino acid changes may result in dramatic changes in protein function, whereas others 

are benign. Still others may only affect certain cell-type specific isoforms of the gene. Thus, 

although a variety of prediction methods exist, they are based on computational models, have 

limited ground truth information for evaluation, and do not provide cell-type specific 

predictions of mutation impact. Predicting cell-type specific impacts of individual variants thus 

remains a critical unmet need in clinical variant prioritization efforts. 

Pooled genome-editing assays enable interrogating effects of multiple mutations 

simultaneously. A variety of pooled editing approaches have been applied to assay effects of 

thousands of variants on expression of the edited cells (Findlay et al. 2014) or on cell survival 

(Hill et al. 2018). The success of these approaches relies on easily tying genotype to phenotype 

in each system. For example, this may be accomplished by using selection markers, gene 

expression based FACS soring (Gaudelli et al. 2017), or inducing the mutation of interest in the 

same gene or protein whose phenotype is measured (Komor et al. 2016). Yet, these techniques 

analyze expression of a single gene, and cannot easily be modified to measure global regulatory 

impacts of a single mutation. 

A number of methods based on single cell technology have been used to further enhance 

throughput of these approaches. Notably, previous scRNAseq-based editing methods have 

focused on inducing deletions or gene knockouts using double stranded breaks, and could not 

introduce specific mutations of interest due to the low efficiency of editing using homology 

directed repair (HDR). Novel base editing approaches (Abid et al. 2018; Grunewald et al. 2019) 

now offer increased conversion efficiency of up to 50%-75% and make variant-level pooled 

scRNAseq approaches feasible. 
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Here, we introduce scBE-seq (single cell base editor sequencing), which combines a 

pooled, high-precision genome editing strategy with single-cell sequencing assays to 

simultaneously interrogate the effects of hundreds of variants. Key advantages of scBE-seq over 

existing methods include: (i) ability to induce precise mutations of interest using high efficiency 

base editing, rather than gene knockouts, and (ii) phenotype readout is global gene expression, 

which does not require mutation-specific specialized assays and can be applied to profile a large 

number of mutations of interest. Genotype-phenotype relationships for every potentially 

pathogenic variant in a gene can be profiled in a single experiment. Importantly, this approach 

can be directly extended to interrogate transcriptome-wide effects of mutations in theoretically 

any gene and cell type of interest. 

In this Chapter, I discuss my work in the initial developments of scBE-seq and the 

overall goals of the assay.  

3.2 Results 

3.2.1 Efficient base-editing of target mutations in HEK293T cells 

In the development of scBE-seq, I use the BE3 editor, which converts targeted C•G base 

pairs to T•A. This may be substituted with alternative editors (e.g., adenine base editors (ABEs) 

which converts A•T to G•C) depending on the mutation of interest. BE3 is composed of a fusion 

protein that contains a catalytically inactivated ‘dead’ Cas9 (dCas9), a cytidine deaminase 

(APOBEC1) and uracil glycosylase inhibitor (UGI) to prevent base excision repair. A sgRNA 

specifically targets the editor to a genomic region with a modification window of 1-2 

nucleotides.  
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Figure 3.1: Efficiencies of successful edits using pooled base editing in HEK293. The y-axis gives the percent 
of each nucleotide at each position in pooled edited cells determined by targeted Illumina sequencing. X denotes 
nonsense mutation. 

 

I employed the base editor BE3 to target 7-9 mutations in genes EP300, FOXAC1, and 

GATA4. Different BE3 editors are compatible with different protospacer-adjacent motif (PAM) 

sequences. For example, to generate the mutation S52F in GATA4, I employed VQR-BE3  

(Addgene #85171) which requires PAM NGAN. To establish the Q23TER variant in FOXC1 I 

used VRER-BE3 (Addgene #85173) which requires PAM NGCG. I achieved editing 

efficiencies of up to 53.7% (Fig. 3.1). To test for off-target RNA edits, I performed RNA-

sequencing of clonal cell lines edited with FOXC1 mutations approximately 3 weeks after 

transfection. I identified far fewer RNA C->T edits (~7,000) compared to previously reported 

results (~600,000) (Grunewald et al. 2019) for cells analyzed 24 hours after transfection (Fig. 

3.2). Thus, I consider the off-target effects of the base editor to be transient and likely to have 

little impact on my analyses.  
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Figure 3.2: Off-target editing of RNA. Grunewald et al samples include control and treated where cells were 
analyzed 24hrs after transfection. We include 2 treated replicates and analyzed our samples 3 weeks after 
transfection. (A) The x-axis represents the samples and the y-axis is the % of positions that have off target edits. 
(B) The x-axis represents the samples and the y-axis is the % of reads edited at off target edit positions. 
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3.2.2 Types of mutations scBE-seq can interrogate.  

I simulated scRNA-seq data to determine the types of mutations scBE-seq would be 

able to interrogate. Simulations were produced with Splatter, a scRNA-seq toolkit (Zappia et 

al. 2017). scRNA-seq data with varying cell numbers, editing efficiencies, and percentage of 

differentially expressed genes induced by an edit of interest, were simulated. To score how well 

I can distinguish between the two cell populations, I performed Louvain clustering and 

measured the correlation of assigned cluster labels to ground truth labels (edited vs. unedited) 

(Fig. 3.3). Overall, this indicates that the requirements to study a mutation are (i) efficient 

genome editing of precise SNPs (>5%), and (ii) mutation has a global effect on the 

transcriptome (>1%). Cells with mutations with weaker effects or lower editing efficiencies 

cannot be distinguished from unedited cells. 

 
 
Figure 3.3: Heatmap of clusters from simulated scRNA-seq data. The x-axis represents the editing efficiency 
of the base editor and the y-axis is the % of genes that are differentially expressed. The color denotes the cluster 
quality with red denoting a good cluster. Two sections of the heatmap are zoomed in to display the clustering 
results from the simulated data with varying parameters and shows examples where the cluster quality is 0 and 1. 
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3.2.3 Script to design gRNAs 

To make interrogating multiple variants scalable, I wrote a script to output all possible 

gRNAs in a specified gene. The script takes a gene of interest and base editor as input. It 

searches for all 20 bp sequences on the forward and reverse strand with a matching PAM and 

potential nucleotide in the edit window based on the chosen base editor. It outputs transcript, 

exon, and protein IDs for all possible gRNAs and reports possible “bystander” mutations that 

occur in the same edit window. The script has identified gRNAs that are used in the 

developments of scBE-seq.  

 
3.3 Discussion 
 

Altogether, scBE-seq involves: (1) introducing a library of mutations to proteins of 

interest or their regulatory elements into a cell type of interest, (2) performing single-cell 

RNAseq and single-cell ATAC-seq on the pool of cells, and (3) applying a custom 

computational pipeline to characterize genome-level effects of variants on transcriptomic and 

somatic mutational profiles. Ongoing developments of scBE-seq by other members of lab focus 

on mutations in two genes: (i) ERCC2, a transcription factor/DNA repair factor implicated in 

Xeroderma pigmentosum and (ii) MECP2, an X-linked chromatin regulator implicated in Rett 

Syndrome expected to induce widespread transcriptomic changes. Currently, developments are 

done with HEK293T cells, which are easily edited, and human embryonic stem cells (hESCs), 

which can be differentiated into multiple lineages. 

Overall, we aim to use scBE-seq to perform deep mutational scanning of candidate 

genes. We will scale scBE-seq in male and female hESCs to interrogate all possible C->T and 

A->G mutations in three additional DNA repair and chromatin regulators/transcription factors, 

for a total of 6 genes. We target genes harboring known pathogenic variants of interest (DNA 
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repair genes MSH2 and ERCC8, and transcription/chromatin regulatory genes MLL2 and 

EP300). The remaining two target genes will be based on candidates identified in Chapter 2. 

3.4 Acknowledgments  

Chapter 3, contains unpublished material by Wu, C., Shleizer-Burko, S., Goren, A, 

Gymrek, M. The dissertation author was the primary author of this chapter.  
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CHAPTER 4 
 

Conclusions 
 

In this dissertation, I presented several projects aiming to further our understanding of 

genetic variation in trans-acting factors. Variants in trans-acting factors can result in 

widespread transcriptomic changes leading to a variety of human diseases and traits. The work 

in this dissertation makes important contributions to the ultimate goal of precision genomics: 

the ability to interpret the impact of a specific mutation in a given individual.  

In Chapter 1, we performed an unbiased genome-wide scan for regulators of repeat 

expansion propensity and identified the mismatch repair protein MSH3 as a strong trans-acting 

factor affecting germline mutation patterns in recombinant inbred mice. Varying mutation 

patterns due to inherited variants in and near Msh3 are most pronounced at long tetranucleotide 

repeats. Importantly, we also demonstrate a potential evolutionary tradeoff in which elevated 

Msh3 leads to increased repeat expansions whereas Msh3 deficiency results in a higher rate of 

short insertions and deletions. 

In Chapter 2, we presented xQTL, a novel trans-eQTL detection method based on a 

biologically plausible mixture model of non-target and target genes. To benchmark our tool, we 

also developed a simulation framework and show that xQTL has improved power over 

traditional trans-eQTL methods. We applied xQTL to whole brain RNA-sequencing data from 

a cohort of outbred rats and identified 45 trans-eQTL candidates. For example, we identified a 

strong candidate trans-eQTL locus overlapping Neurod4, a key neuronal transcriptional factor, 

which xQTL estimate to regulate thousands of target genes. Importantly, this study also 

highlights key technical considerations regarding treatment of technical covariates when 
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performing trans-eQTL detection. Altogether, xQTL allows the detection of potential trans 

candidates which can be further characterized.  

In Chapter 3, we introduced scBE-seq, a pooled genome editing assay which combines 

base editing and scRNA-seq to enable high-throughput variant interrogation. scBE-seq enables 

us to introduce specific mutations of interest which offers an opportunity to validate trans 

candidates identified by xQTL from Chapter 2. I focused on the initial developments of scBE-

seq to determine and optimize base editing parameters. Ongoing progress has been made by the 

collaboration of multiple labs. Development of scBE-seq will allow us to interrogate the global 

effects of variants in numerous target genes and cell types, enabling the characterization of gene 

expression and mutator phenotypes.  

Additionally, I contributed to An Zheng’s AgentBind project which is a deep learning 

framework aimed to interpret sequence context for determining transcription factor binding. 

This study allowed the characterization of features necessary for binding of transcription 

factors, a major class of trans-acting factors. Overall, my work in this dissertation explores 

various approaches to further our understanding of the impact of genetic variation in trans-

acting factors on biological functions and complex phenotypes. 
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