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Abstract

Theories of skill acquisition have made radically
different predictions about the role of means-ends
analysis in acquiring general rules that promote
effective transfer to new problems. Under one view,
means-ends analysis is assumed to provide the basis for
efficient knowledge compilation (Anderson, 1987),
whereas under the alternative view means-ends analysis
is believed to disrupt rule induction (Sweller, 1988).
We suggest that in the absence of a specific goal people
are more likely to use a rule-induction learning strategy,
whereas providing a specific goal fosters use of means-
ends analysis, which is a non-rule-induction strategy.
We performed an experiment to investigate the impact
of goal specificity and systematicity of rule-induction
strategies in learning and transfer within a complex
dynamic system. Subjects who were provided with a
specific goal were able to solve the initial problem, but
were impaired on a transfer test using a similar problem
with a different goal, relative to subjects who were
encouraged to use a systematic rule-induction strategy
to frecly explore the problem space. Our results
support Sweller's proposal that means-ends analysis
leads to specific knowledge of an isolated solution path,
but does not provide an effective method for learning
the overall structure of a problem space.

Introduction

A central problem in cognitive science is to identify the
relationship between problem solving and learning.
People can learn from solving problems, but it is
unclear exactly how learning takes place or what is
learned. People sometimes seem to learn little from a
problem-solving episode except a specific solution to a
particular problem; yet on other occasions people
acquire more general knowledge that can be applied to
a wide range of related problems. What is the
difference?
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Goal Specificity and Rule Induction

A particularly intriguing possibility is that some
solution methods may be effective for finding solutions
to specific problems, but relatively ineffective in
promoting abstraction of more general knowledge that
would support transfer to novel but related problems.
A case of particular theoretical interest concerns the
role of means-ends analysis in learning. Some theories
of learning have claimed that means-ends analysis,
while itself a weak problem-solving method used
primarily by novices, is nonetheless a valuable stepping
stone toward expertise. According to this view,
solutions first generated by means-ends analysis are
subsequently compiled into rules that allow more
efficient solutions to be found for problems similar to
the original one (e.g., Anderson, 1987; Larkin, 1981).

Other theorists, however, have argued that means-
ends analysis and similar problem-solving methods can
actually impede the acquisition of general rules (e.g.,
Mawer & Sweller, 1982; see Holyoak, 1991, for a brief
review). Means-ends analysis can be applied to well-
defined problems with a specific goal, and its
immediate product is not a general rule, but simply a
solution path that achieves the immediate goal. We
will term a strategy that achieves a specific goal
without necessarily yielding general rules a non-rule-
induction (NRI) strategy. In contrast, other learning
strategies can operate on ill-defined problem situations
that lack a specific goal. In the absence of a specific
goal, free exploration of a problem space may yield
general rules about state transitions, which can later be
used to achieve a relatively wide variety of goals, thus
promoting transfer to a family of similar problems.
We will term a strategy that focuses directly on rule
acquisition, rather than on achievement of a specific
goal, a rule-induction (RI) strategy.

Sweller and coworkers found evidence that people
with a non-specific goal gained more knowledge about
a task than did people with a specific goal (e.g.,
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Sweller, 1988; Sweller, Mawer, & Ward, 1982). They
interpreted their results as evidence that differcnt
learning strategies were applied depending on goal
specificity.  For example, subjects in one set of
experiments involving solving geometry problems were
provided with partial information about the angles and
sides of a triangle, and were asked either to calculate a
particular angle (specific goal), or else to calculate all
possible angles and sides (non-specific goal).
However, both groups had to calculate the same sides
and angles. Subjects who received the non-specific
goal instructions were subsequently more successful in
solving transfer problems.

Such evidence suggests that non-specific goals
encourage use of RI strategies, which promote
acquisition of more general knowledge about the
structure of a problem space. However, RI strategies
can vary in their effectiveness. People differ in the
degree of systematicity with which they formulate and
test their hypotheses, and those who formulate
hypotheses in a task-appropriate and testable way
generally gain more knowledge (e.g., Dunbar, 1993;
Klahr & Dunbar, 1988; Klahr, Fay, & Dunbar, 1993).
In general, the optimal strategy for testing hypotheses
about the influence of multiple factors on one or more
dependent variables is the VOTAT (vary one thing at a
time) strategy (Tschirgi, 1982), in which one factor is
varied while the others are held constant. This RI
strategy is central to experimental design in science.

The present study was designed to investigate the
role of goal specificity and learning strategies in the
acquisition and transfer of knowledge about a complex
dynamic system. The learning domain was chosen
because it is especially suitable for investigating the
interrelationships between problem solving and
hypothesis testing. = By manipulating both goal
specificity and the systematicity of subjects’ hypothesis-
testing strategies, we attempted to determine whether
an NRI strategy or an RI strategy is most effective in
promoling learning and transfer. Our hypothesis was
that while an NRI strategy would be adequate for
achieving a specific goal, a systematic RI strategy,
VOTAT, would be more effective for acquiring general
structural knowledge about the domain, resulting in
greater transfer to similar problems with different goal
states.

Biology Lab: A Dynamic Problem Environment

Since the early 1980s, researchers have used computer-
simulated scenarios to study complex problem solving
(for a review see Funke, 1991). These tasks are
relatively complex, as multiple variables have to be
manipulated in order to achieve multiple goals

simultaneously. In the present study we used a
computer-driven dynamic problem environment we
termed biology lab, constructed using the shell
DYNAMIS (Funke, 1991). In our cover story, subjects
were told that they were in a biology 1ab in which there
is a tank with four species of sea animal (crabs,
prawns, lobsters, sea bass). These species are affected
by four input variables (temperawre, salt, oxygen,
current). The structure of the environment, illustrated
in Figure 1 (which was never shown to our subjects),
was such that two of the outputs (prawns, crabs) are
relatively simple to manipulate because each is
influenced by only one input (as shown by relations I
and II, respectively). The other two outputs are more
complex, because each is influenced by two factors.
One output (sea bass) is affected by two inputs, and the
other (lobster) is affected by a decay factor (marked as
a circle connected to the output) in addition to a single
input variable. The decay factor was implemented by
multiplying an output by a constant negative factor on
each trial. Decay is a dynamic aspect of the system,
because it yields state changes even if there is no input
(i.e., all inputs are set to zero). The system is thus
complex in that it involves multiple input variables
that must be manipulated to control multiple output
variables, and dynamic in that the state of the system
changes as a joint function of external inputs and
internal decay.

lemperature

salt

oxygen

current
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Figure 1. Structure of the system for the "biology lab".

We used the biology-lab task to test the influence of
goal specificity on subjects' representations of the
system, their accuracy in solving a specific initial goal,
and their ability to transfer their knowledge to similar
problems with different goals. We predicted that
subjects given a specific goal would use an NRI
strategy that would suffice to achieve the given goal,
but would yield a poorer representation than would be
achieved by subjects given a non-specific goal coupled
with instruction in an optimal RI strategy, VOTAT.




The more complete representation of the system
attained by the latter subjects was expected to lead to
more effective transfer o other biology-lab problems
with altered goals.

A Study of Learning in a Dynamic
Environment

Method

Subjects: Sixty undergraduate students at the
University of California, Los Angeles, participated for
course credit.

Design: The experiment included four conditions,
defined by the factorial combination of two levels of
goal specificity (specific vs. non-specific) and two
levels of strategy instruction (instruction to use
VOTAT vs. no such instruction). Fifteen subjects
served in each condition.

Procedure: The biology-lab problem required subjects
on each trial to set the levels of the four input variables
and observe the resulting values of the output variables
(numbers of each of four species of sea animals). The
underlying structure of the system was as depicted in
Figure 1. Each series of six trials was defined as a
"round”, at the beginning of which the system was set
to a specific state. All subjecis received three initial
exploratory rounds followed by a fourth round in which
they were asked to produce a specific goal state
(namely, 50 crabs, 400 prawns, 900 lobsters, and 700
sea bass). Subjects in the specific-goal condition were
informed of this goal from the outset of round 1, and
thus had a total of four rounds to achieve the goal. In
contrast, subjects in the non-specific-goal condition
were not given any specific goal until round 4. In
rounds 1-3, these subjects were simply asked to set
inputs and observe outputs in order to figure out how
the system works.

Before starting to manipulate the system on the
computer all subjects received general instructions
about the task. In addition, subjects in the strategy-
instructed group were given written instructions
explaining the optimal strategy (VOTAT) of varying
just one variable at a time, setting the remaining
variables to zero. Subjects in the strategy-uninstructed
group received no advice on how to explore the system.
After each round of the exploratory phase (rounds 1-3),
subjects completed a “structure diagram”, in which
subjects indicated how they believed the input variables
affect the output variables. They were provided with a
diagram showing the inputs and outputs as in Figure 1,
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but with all links omitted. The subjects' task was to
draw links between variables that they believed to be
dependent, and also to assign weights indicating how
strong they felt each influence was.

In round 4, all subjects were presented with a
specific goal state. This goal state was the same as that
which those in the specific-goal group had had
throughout the exploratory phase (rounds 1-3).
Finally, in round 5 all subjects were asked to achieve a
different goal state (namely, 250 crabs, 200 prawns,
1000 lobsters, and 350 sea bass) that was new to
subjects in all conditions. Performance on this new
goal provided a measure of the degree to which
learning over rounds 1-4 yielded transfer to a novel
problem drawn from the same problem space. The
entire experiment took an hour to complete.

Results

Dependent variables: Three dependent variables
were analyzed to provide evidence of learning and
transfer. (1) Structure score. The structure diagram
completed by all subjects after each of the first three
rounds was used to derive a score reflecting degree of
knowledge of the underlying structure of the system.
This structure score was computed as the sum of the
number of correct specifications of links, directions,
and weights, adjusted with a correction for guessing
(see Woodworth & Schlosberg, 1954, p. 700). Because
the structure score after round 3 was most informative
about subjects' knowledge at the end of the initial
learning phase, this score was used in all analyses
reported here. (2) Solution error. Solution error in
reaching the specific goal state during round 4 was
computed as the sum of the absolute differences
between the target and the obtained number for each of
the four output variables. As this measure produced a
skewed distribution, the variance was corrected by
applying a logarithmic transformation. Solution error
was computed for each of the six trials that comprised
round 4, in order to determine how quickly subjects
were able to approach the target goal. As there was no
difference in performance between trials the mean
error for the six trials was used. (3) Transfer error.
Transfer error in achieving the new goal introduced in
round 5 was measured in exactly the same way as
solution error in round 4.

Preliminary analyses. Preliminary analyses were
performed to determine whether our measures of
learning were systematically related, and whether the
manipulation of subjects’ learning strategy by
instructions had been effective. If the structure score
derived from subjects’ completions of structure



diagrams in round 3 provides a valid assessment of
what they had learned about the system, then the
structure score would be expected to correlate inversely
with solution error measured on round 4 and transfer
error on round 5. This was indeed the case. Subjects
with higher structure scores produced lower solution
error when they had to reach the goal state in round 4,
r =-.50, p < .001, as well as lower transfer error in
round 5, r=-.58, p <.001,

We also tested whether our manipulation of learning
strategy by instructions was successful. We examined
subjects’ patterns of settings for the four inputs to
determine their basic strategy. Subjects were classified
as trying to reach the goal state (NRI strategy) when
two criteria were met: 1) at least one of the four output
states for the specific goal was reached; and 2) they
displayed a pattern of gradually coming closer to the
goal (as opposed to directly calculating the correct
output value). In contrast, subjects were classified as
using the RI strategy of VOTAT if on at least four out
of the six trials of a round they set the pattern of
varying a single input while setting the remaining
three inputs to zero. Other strategies (e.g., varying
multiple inputs at once) formed a heterogeneous set.
These additional patterns were difficult to classify
firmly as NRI or RI strategies. Eighty percent of all
subjects in the strategy-instructed conditions followed
the VOTAT strategy in the first round. Figure 2 shows
how the goal conditions influenced the percentage of
strategy-instructed subjects using each non-VOTAT
strategy on each round. (The missing percentage
reflects subjects using VOTAT.) Most strategy-
instructed subjects in the non-specific-goal condition
continued with the VOTAT strategy through round 3.
However, the strategy-instructed subjects who had a
specific goal exhibited a strong tendency to switch
from the VOTAT strategy to an NRI strategy that
focuses directly on reaching the stated goal. Figure 3
shows the same information as Figure 2, but for
strategy-uninstructed subjects. As can be seen from
Figure 3, in the absence of strategy instructions most
subjects did not spontaneously use the VOTAT
strategy. Giving subjects a goal to reach, did have an
effect on strategies, however, as many subjects with a
specific goal used an NRI strategy whereas no subject
in the non-specific-goal group ever used that strategy.
It thus appears that our strategy instruction was indeed
effective in promoting use of the RI strategy of
VOTAT, but that providing a specific goal created a
strong pressure to employ an NRI strategy.
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Figure 2. Percentage of strategy-instructed subjects
using non-VOTAT strategies over three rounds.
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Figure 3, Percentage of strategy-uninstructed subjects
using non-VOTAT strategies over three rounds.

Influence of goal specificity and strategy on learning
and transfer. Subjects achieved higher structure
scores when given a non-specific goal (M = 2.35)
rather than a specific goal (M = 1.69), F(1,56) = 15.5,
p < .001; and when given instruction in the VOTAT
strategy (M = 2.22) rather than no strategy instruction
(M = 1.82), F(1,56) = 5.87, p < .05. The interaction
between goal specificity and strategy instruction as
determinants of structure score was not significant. In
addition, as depicted in Table 1, subjects instructed in
use of the VOTAT strategy achieved lower solution
error in round 4 over all six trials, F(1,56) = 4.9, p <
.05. Solution error did not differ as a function of goal
specificity, F(1,56) = .35. Although subjects in the
non-specific-goal condition achieved greater overall
knowledge of the system structure, those in the
specific-goal condition had three additional rounds of
practice in attaining the goal set for all subjects in
round 4. These offsetting advantages may explain the
groups’ equal performance.



Table 1. Means and variances (in parentheses) for the
three dependent variables.

structure |solution error|transfer error
score
uninstructed/ | 1.53 (.73) | 4.10 (.96) |3.99 (1.08)
specific goal
uninstructed/ | 2.10 (.69) {3.69 (1.18)| 3.58 (.87)
mon-sp. goal
Ensl.rucledf 1.84 (.69) |2.77 (2.89)(3.22 (2.98)
pecific goal
linstructed/ 2.60 (.45)12.52 (2.85)(2.22 (2.90)
[non-sp. goal
The most crucial results concern transfer

performance on round 5, when a goal that was novel to
all subjects was introduced. These results are shown in
Table 1. A 2x2x2 repeated-measures ANOVA yiclded
a marginally significant three-way interaction between
round, goal specificity and strategy instruction, F(1,56)
= 2.80, p < .10. In contrast to the solution round, the
group that received the non-specific goal in rounds 1-3,
coupled with instruction in the VOTAT strategy,
achieved lower error scores on the transfer problem
than did the other three groups combined, F(1,58) =
4.54, p < .05. Thus although subjects given a specific
goal, who predominantly used an NRI learning
strategy, were able to effectively achieve that specific
goal, they were relatively poor in transferring their
knowledge to a similar problem with a new goal. The
combination of low goal specificity and instruction in
the VOTAT strategy maximized knowledge of the
overall structure of the dynamic system, and thereby
maximized transfer to the new problem.

Discussion

The aim of the present study was to test alternative
theories of the relationship between problem solving
and acquisition of generalized rules. The biology-lab
domain, a complex dynamic system involving multiple
input variables that must be manipulated to control
multiple output variables, provided a rich environment
in which to explore the influence of goal specificity
and hypothesis-testing strategies on learning and
transfer. We found that providing subjects with a
specific goal from the outset of learning produced a
strong tendency to use a non-rule-induction strategy.
The predominant strategy for such subjects was a
variant of means-ends analysis that focused on
incrementally reducing the difference between obtained
outputs and the specific goal. This strategy was
adequate for eventually solving the particular goal, but
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was suboptimal as a vehicle for discovering the overall
structure of the system. As a result, provision of a
specific goal impaired eventual transfer to a new
problem drawn from the same problem space but
involving a different goal state.

Acquisition of the structure of the system was
fostered both by using a non-specific goal and by
providing explicit instruction in an optimal rule-
induction strategy, VOTAT, which involves varying a
single factor at a time while holding other factors
constant at zero. However, subjects who were given a
specific goal tended to abandon the VOTAT strategy
over the course of the learning session, shifting to a
non-rule-induction strategy. Subjects who were not
taught the VOTAT strategy tended to use either a non-
rule-induction strategy (if a specific goal was provided)
or some other suboptimal strategy (if no specific goal
was provided). Thus optimal transfer performance
required a combination of a non-specific goal coupled
with instruction in use of an effective rule-induction
strategy.

Our results run counter to theories of skill
acquisition that stress the importance of learning from
weak problem-solving methods as a means of inducing
general rules (e.g., Anderson, 1987; Larkin, 1981). It
is certainly possible that people sometimes learn
general rules in the aftermath of solving problems by
variants of means-ends analysis; however, at least in
the absence of prior knowledge of the domain, this
approach does not appear to provide an optimal path
toward either general knowledge of the structure of a
complex system or successful transfer to problems with
an altered goal. Rather, acquisition of system structure
is fostered to a greater extent by free exploration of the
problem space.

It should be noted that the NRI strategy used by our
subjects, although goal-directed, did not meet the
technical definition of means-ends analysis (i.e.,
removing the largest difference between the current
state and goal state, in the process recursively solving
the subproblem of getting from the current state to that
which satisfies the preconditions of required
operators). Thus our results do not directly show that
the full means-end strategy would fail to promote
learning of overall problem structure. Nonetheless, the
present NRI strategy did involve difference reduction
(i.e., search in which each step progresses closer to the
specified goal), which is a major component of means-
ends analysis. It is possible that the key factor limiting
acquisition of overall structure is focus on a specific
goal, in which case full means-ends analysis, like the
NRI strategy used by our subjects, would also prove
relatively ineffective in promoting learning. However,
further research will be required to test this possibility.



Another caveat concerning the present findings
relates to the fact that our study used a problem domain
in which our subjects were complete novices. A
different pattern of results might emerge in a problem
domain for which subjects have a prior theory of the
domain. In a more knowledge-rich domain,
mechanisms of explanation-based learning (e.g.,
Mitchell, Keller, & Kedar-Cabelli, 1986) might allow
people to form generalizations of solutions initially
obtained by weak methods, such as means-ends
analysis. One direction for future work would involve
manipulating domain knowledge together with
subjects' learning strategies, and examining transfer
performance in the aftermath of initial problem
solving.

The present results are broadly in agreement with
the findings of Sweller and his colleagues (Sweller,
1988; Mawer & Sweller, 1982), who also found that
reduced goal specificity yields greater transfer. The
present study increases the generality of this conclusion
by demonstrating similar results in the domain of a
complex dynamic system, as opposed to the static
mathematical domains primarily used in earlier
studies. In addition, the present study goes beyond
previous work in identifying the interactive
relationship between hypothesis-testing strategy and
the impact of reduced goal specificity. In a complex
task environment such as the biology lab, college
students are not generally prepared to make
spontaneous use of an effective rule-induction strategy,
even when they are given a non-specific goal. It is
therefore important to provide instruction in the use of
such a strategy in order to allow maximum benefit
from free exploration of the problem space. It is not
enough to simply “wander" through a haphazard series
of input-output relations; rather, effective learning
depends on systematic investigation of controlled
variations in the inputs. Our results thus have
important educational implications for designing
effective techniques for encouraging problem-based
learning in complex domains.
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