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Warandelaan 2, 5037 AB Tilburg

Abstract

Two assumptions of psycholinguistic research are that text cor-
pora can be used as a proxy of the language that people have
been exposed to and that the reaction time with which people
recognize words decreases with the probability (or frequency)
of the words in a corpus. We propose a method that produces
topic-specific word probabilities from a text corpus using la-
tent Dirichlet allocation, then combines them to fit lexical de-
cision reaction times and re-estimates word probabilities. We
evaluated how well independent lexical decision reaction times
could be predicted from re-estimated word probabilities com-
pared to original probabilities, using independent lexical deci-
sion data. In an experiment designed to prove the concept, the
re-estimated word frequency model explained up to 9.6% of
additional variability in reaction times on group level and up
to 2.9% on level of individual participants.
Keywords: psycholinguistics; lexical decision; language
model; topic modeling; corpus; personalization

Introduction
Word probabilities are used in many areas, spanning from
psycholinguistics to computational language modeling and
artificial intelligence. While the main interest of a psycholo-
gist is to find models explaining the observed behavior well,
the interest of an artificial intelligence researcher is to design
machines that behave in a human-like manner. Both might
benefit from the ability to estimate the word distribution of a
personal language environment.

Getting a precise idea about what language a person is ex-
posed to is difficult. Typically, researchers use very large text
corpora as a proxy of a person’s language environment and,
although they take into account that some corpora better re-
flect the language environment than others (New, Brysbaert,
Veronis, & Pallier, 2007; Brysbaert & New, 2009), this is
still a one-size-fits-all approach. This is cause for concern, as
it is not controversial that there are profound individual dif-
ferences in familiarity with words. For instance, Mandera,
Keuleers, and Brysbaert (2019) have shown that word preva-
lence (the proportion of a population that knows a word) can
be markedly influenced by factors such as age, gender, loca-
tion. For instance, in English, words such as howitzer, ther-
mistor, azimuth are significantly more prevalent among men
and words peplum, tulle, chignon among women, on average
(Mandera et al., 2019).

In a recent effort to make corpora more reflective of the
language environment, Johns, Jones, and Mewhort (2019) de-
veloped the experiential optimization method, which allows
for the creation of customized corpora based on performance

on a target task, such as the TOEFL synonym test (Landauer
& Dumais, 1997), ratings of semantic similarity (Recchia &
Jones, 2009), or lexical decision reaction time (Balota, Yap,
Hutchison, et al., 2007). The core principle of experiential
optimization is to assemble a customized corpus by using a
hill-climbing algorithm that iteratively adds the best fitting
section to the final corpus until the performance on the target
task stops improving.

In the implementation of Johns et al. (2019), experiential
optimization requires a corpus to be composed of sections
that are labelled, for instance according to genre and author.
This makes it difficult to apply the technique to corpora which
do not have any such labeling. The method proposed in the
current paper alleviates this concern by using topic model-
ing as a form of unsupervised labeling, thereby allowing the
use of an arbitrary corpus. Instead of iteratively selecting the
best fitting section of a corpus, like in experiential optimiza-
tion, our method fits the topic model to the target task using
least squares optimization. The fitted topic model can then be
used to re-estimate word probabilities of all the words in the
original corpus. The technique can be applied for data from
particular groups or from individuals.

In this paper, we provide a proof-of-concept of the tech-
nique using lexical decision as the target task. In a lexical
decision task (LDT), a person is shown a string of charac-
ters and asked, whether or not it is an actual word (Meyer &
Schvaneveldt, 1971). In recent years, large amounts of lex-
ical decision data have been collected for English (Balota,
Yap, Cortese, et al., 2007; Keuleers, Lacey, Rastle, & Brys-
baert, 2012) and other languages (Dutch Lexicon Project
(Keuleers, Diependaele, & Brysbaert, 2010), French Lexicon
project (Ferrand et al., 2010), developmental lexicon project
(Schröter & Schröder, 2017), Chinese Lexicon project (Sze,
Liow, & Yap, 2014)). As pointed out by Johns et al. (2019),
most of the explained variance in lexical decision latency is
accounted for by measures such as word frequency and con-
textual diversity (Adelman, Brown, & Quesada, 2006), which
can be easily derived from text corpora (see Brysbaert, Man-
dera, and Keuleers (2018) for an overview).

Our solution is based on two assumptions:

1. Participants’ reaction times in a lexical decision task partly
reflect the word probabilities in their language environ-
ment.

2. A corpus consisting of a large set of semantically diverse
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documents allows for identification of a smaller set of se-
mantically coherent components for each of which there is
a distinct set of word probabilities, for instance using topic
modeling.

Using the two assumptions, the proposed method uses
topic modeling to find a topic space and estimates probabili-
ties for every word in the topic vocabulary given lexical de-
cision reaction times. Since lexical decisions are made for
single words, the method is constrained to unigram represen-
tations.

By conducting two experiments, we addressed the follow-
ing research questions:

1. How much additional variability in lexical decision reac-
tion times can be explained by re-estimating word proba-
bilities for groups and individuals?

2. How does limiting the amount of words and corresponding
reaction times shown to the model affect the performance?

We recorded up to 9.59% of additionally explained vari-
ability in aggregate reaction times by the re-estimated word
probabilities at 80 topics, which was the highest value we
experimented with. When fitted on individual level reaction
times, on average, the re-estimated word probabilities addi-
tionally explained up to 2.9% of variability compared to the
original corpus probabilities. As the proportion of words
shown to the model decreased, so did the R2 on reaction
times. This effect was moderated by the number of topics.

Method
For the sake of the present study, we formally define the fol-
lowing terms:

• A vocabulary is a set of words denoted by V =
{w1,w2, ...,wN}. In the context of the present work, a
word is the elementary discrete unit of a unigram language
model.

• Topics represent the hidden semantic structure of a corpus
denoted by Z = {z1,z2, ...,zM} with M being the number
of topics. A topic zm predicates a word distribution over a
vocabulary VT M represented by a vector βm with elements
equivalent to βm[i] = p(wi|zm). The columns vectors βm
comprise a matrix β of shape |VT M|,M.

• Reaction times of an individual j to words VRT are rep-
resented by a vector R j containing elements indexed by
i ∈ {1,2, ..., |VRT |}. The value of R j[i] is equivalent to
f (RT ) (see Formula 2). In case the trial was inaccurately
decided (participant did not recognize the word) the value
is undefined.

• Let g = {1,2, ...,J} be a group of J participants and Yg =[
R1,R2, ...,RJ

]
be a matrix with column vectors being the

participants’ reaction times R j. Aggregate reaction times
of the group g are equivalent to a vector Ȳg with elements
equal to means of the corresponding rows of the matrix Yg
while ignoring the undefined elements.

Model
The proposed technique consists of two main steps:

1. Estimation of the matrix β (only necessary once).

2. Finding a linear combination of topics x that best fits the
reaction times (per participant/group).

The first step corresponds to obtaining a transformation
from topic space to word distribution, IRM → IR|VT M |. For
this purpose, we adopted a well established generative topic
modeling method, the latent Dirichlet allocation (LDA; Blei,
Ng, and Jordan (2003)). The vanilla LDA models a corpus
as a collection of documents, each of which is assumed to be
generated by a unique combination of hidden variables (top-
ics). The topics are identified based on words that tend to
occur in similar context which makes the estimation of the
matrix β fully unsupervised. The number of topics M is a
hyper-parameter.

The second step corresponds to finding the most likely lin-
ear combination of topics given the reaction times. We op-
erationalized it by solving the following linear least squares
optimization problem:

argmin
x
‖Ax− y‖2 (1)

The matrix A is a rescaled representation of top-
ics β defined as A =

[
g(β1), ...,g(βM)

]
where g(βm) =

log10(βm/min(βm)). Rescaling is needed because of the Zip-
fian distribution of word probabilities; the logarithm of the
probability is a more suitable unit for a linear model. De-
pending on whether the topic mixture should model aggre-
gate or individual level reaction times, the dependent variable
y is selected to be Ȳg, or R j.

The final vector of re-estimated word probabilities is ob-
tained by (1) multiplying the matrix A by the vector x, the
best fitting topic combination, and (2) transforming it with
exponentiation and normalization such that the entries sum to
1.

The vocabulary of the vector y containing the lexical deci-
sion information, VRT , may only be a subset of the vocabu-
lary of the topic model (and hence the matrix β), VT M . While
the final re-estimation is done for all words in VT M , the least
squares optimization is performed on the subset of rows of β

that correspond to words in VRT ∩VT M (see Figure 1 for an
illustration) 1.

We used the following implementations for the afore-
mentioned techniques: gensim.models.LdaMulticore for
LDA (Řehůřek & Sojka, 2010), and for least squares
sklearn.linear model.LinearRegression (Pedregosa et
al., 2011).

Evaluation
In psycholinguistics, the most common method to quantify
the fit of a corpus to lexical decision data is to compute the

1This is useful because lexical decision data are typically not
available for every word in a corpus.
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Figure 1: An overview of the method. Where appropriate, we denote the corresponding data structure and vocabulary.

R2, proportion of explained variance, between the aggregated,
standardized reaction times and log-scaled word frequencies.
Excluding the inaccurately decided trials from the computa-
tion is a common practice. We adopted the practice in the
present study, while working with log-scaled probabilities in-
stead of frequencies.

The baseline model performance is the R2 achieved by the
log-scaled word probabilities derived from the corpus pro-
cessed as described in subsection Corpus.

The predictive capabilities of the model can be assessed by
working with two disjoint vocabularies, Vtrain, Vtest , and only
using the reaction times for words in Vtrain to find the best
topic combination and evaluate the performance on reaction
times for words in Vtest .

Word Recognition Data

The British Lexicon Project (BLP; Keuleers et al. (2012))
contains lexical decisions for 78 individuals, who were stu-
dents and employees of Royal Holloway, University of Lon-
don. The participants were divided in one group of 38 and
one group of 40, with each group assigned to a different set
of word stimuli. Each participant responded to all of the
word stimuli for their group, resulting in reaction times for
14,365 words per participant. On average, participant’s accu-
racy level was more than 80%, as a sufficient level of accuracy
was one of the requirements for not being excluded from the
BLP.

The raw reaction times, measured in milliseconds, were
standardized assuming a log-normal distribution. Because the
log-normal distribution requires an absolute zero point, we
shifted the reaction times toward zero. Additionally, we re-
flected the variable about the y-axis by multiplying it by −1,
such that higher values could be interpreted as faster reactions
(see Figure 2). In order to eliminate variance caused by indi-
vidual differences and situational context, the procedure was
performed per participant and block (participants responded
in blocks of 500 trials). The final transformation f , depicted
in Figure 2, can be summarized as follows:

f (RT ) =−zscore(log(RT −min(RT ))) (2)

Corpus
The English section of the OpenSubtitles 2 dataset (Lison &
Tiedemann, 2016), release 2018, is an extensive collection
of translated movie subtitles. We decided to use this cor-
pus throughout the experiments for topic modeling purposes
for the following reasons: it is open and accessible which
makes it a suitable resource for reproducible scientific ex-
periments, and subtitle-based corpora are simply a suitable
linguistic resource for explaining variance in lexical decision
performance (Brysbaert & New, 2009).

Prior to training models and running experiments, the
dataset was processed to better fit the needs of the approach.
First, we excluded the movies released in 2018 (only 5
movies) and before 2000, in order to limit the text to rel-
atively recent language as well as make it computationally
easier to process. From the resulting set of 97,388 movies
we picked the first subtitle file per movie, since the original
dataset contained multiple alternative translations for some
movies. Next, all of the utterances were lemmatized with
spaCy (Honnibal, Montani, Van Landeghem, & Boyd, 2020)
and filtered to only include words from the BLP. The result-
ing corpus contained 373 million tokens and 25,626 distinct
words that constitute the final topic model vocabulary VT M .
The discrepancy between this vocabulary size and number of
words in the BLP (28,730) was mainly due to the fact that
the lemmatizer returned nouns in singular form and verbs in
present tense; therefore, some stimuli from the BLP in past
tense or plural form were not matched by lemmas in the cor-
pus.

Experiments
We performed several word probability re-estimation exper-
iments for individual level data, group level data, situations
with limited training sets, and different topic models for three
values of the hyper-parameter value M ∈ {5,20,80}.

Experiment 1: Full vocabulary
The goal of the initial experiment was to establish the per-
formance on lexical decision data using the full set of avail-
able words. This purpose was conveniently served by the two

2http://www.opensubtitles.org/
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Figure 2: Histogram of all reaction times from the BLP before
(left) and after (right) applying the transformation f .

Table 1: Results of the first experiment in terms of differ-
ences in R2 between fitted models and baseline models (BL
R2) across different amounts of topics used. The upper part
shows results for aggregate reaction times of all the combi-
nations of training and test data GR1 and GR2. The average
increase in R2 per individual when fitted on individual and
aggregate data is listed in the bottom part.

BL R2 M = 5 M = 20 M = 80
Groups
Train Test
GR1 GR1 .2688 +.0131 +.0732 +.0959
GR2 GR1 .2688 +.0130 +.0718 +.0876
GR1 GR2 .2521 +.0146 +.0720 +.0788
GR2 GR2 .2521 +.0146 +.0733 +.0863
Individuals
Basis
Agg. Mean .0657 +.0033 +.0163 +.0197

SD .0271 .0018 .0061 .0072
Ind. Mean .0657 +.0038 +.0185 +.0273

SD .0271 .0019 .0062 .0069

participant groups originating from the design of the BLP
which provide aggregate data for two disjoint vocabularies.
The two groups, GR1 and GR2, were sized 38 and 40 partici-
pants. We estimated the topic coefficients for both groups and
then tested for every combination of them. Next, we applied
the method to every individual and computed two values of
R2, one based on aggregate data of the group that the par-
ticipant belongs to, and one based on the participant’s single
responses. For both we report the average R2 per participant
and the standard deviation.

Results The results of the inter-group evaluation are listed
in the upper half of the Table 1. The difference in base-
line performance between the two test sets was about 1.6%
in terms of R2; the corresponding difference to the rescaled
corpora was consistently positive with an increasing value
for higher number of topics used. The steps from M = 5 to

M = 20 and then further to M = 80 respectively accounted
for ∼ 5.9% and ∼ 1.5% of additional variance explained, on
average. When evaluating on the same set of data as used
for training, there was a marginal increase in R2 compared
to using the complementary set. This effect was symmetri-
cal across the two groups and got progressively stronger with
higher values of M, whilst achieving the largest difference of
∼ 0.8% for the test setup on the first group and M = 80.

The bottom part of the Table 1 lists the results for average
proportion of variance explained per participant. We can ob-
serve patterns similar to the previous scenario: the difference
in R2 was consistently positive for both models, it progressed
with higher values of M, and the first increase of M improved
R2 more significantly than the second one (on average, 1.4%
and 0.61% respectively). Additionally, the rate at which the
performance rose with higher values of M was higher for the
model trained on the individual’s reaction times as opposed
to aggregate group reaction times.

Discussion The fact that the re-estimated word probabili-
ties consistently explained more variance than the original
corpus, even when the training group was different than test-
ing group, indicates the validity of the method. The fact
that the performance difference between probabilities esti-
mated on the testing data versus training data was more pro-
nounced at higher values of M suggests that increasing the de-
gree of granularity in the topics leads to a more fine-grained
re-estimation. This effect was especially evident when both
trained and evaluated on individual level data where, unlike
in other scenarios, the performance did not appear to start
converging even at the highest value of M.

Experiment 2: Limited Vocabulary

The second experiment was designed to assess the prediction
robustness of the technique by progressively decreasing the
percentage of words used for training, thus making the least
squares problem less overspecified. The complementary set
of unseen words was used for testing. The experiment was
adapted for both individual and group level reaction times. In
case of individuals, we computed the mean performance per
participant and the standard deviation. We report results on
the first group only, since there was no significant difference
between the groups. The training set proportions were 50%,
25%, and 12.5%; the values for number of topics remained
unchanged. In order to eliminate effects of chance under var-
ious train-test splits, we ran every experiment setting multiple
times with a differently shuffled vocabulary and estimated the
average R2 (100 times for groups and 10 times for individu-
als). Lastly, we computed the upper bound performance (UB)
achieved by training and testing on the same, full vocabulary.

Results The results for aggregate reaction times are shown
in the upper part of the Table 2. Whilst the baseline perfor-
mance was stable across different test set sizes, the average
increase in R2 progressed with more topics used in the model.
There was an exception to this in the case of train set propor-
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Table 2: The results of the experiment 2 reported as differ-
ences to the baseline performance BL R2 for the various re-
estimated probability distributions. The top and bottom part
show data for group and individual level prediction respec-
tively. The UB rows represent the upper bound. The column
N lists the average number of words used in the training vo-
cabulary.

Ratio N BL R2 M = 5 M = 20 M = 80
Group 1
UB 12,807 .2688 +.0131 +.0732 +.0959
50% 6,359 .2688 +.0126 +.0704 +.0845
25% 3,180 .2685 +.0121 +.0684 +.0766
12.5% 1,589 .2690 +.0111 +.0640 +.0610
Individuals of group 1
UB Mean .0691 +.0039 +.0194 +.0292

SD .0276 .0022 .0065 .0072
50% Mean .0691 +.0027 +.0139 +.0088

SD .0276 .0029 .0075 .0084
25% Mean .0694 +.0021 +.0107 -.0010

SD .0274 .0027 .0072 .0077
12.5% Mean .0693 +.0005 +.0052 -.0149

SD .0273 .0033 .0070 .0077

tion of 12.5% where at M = 80 the increase was .3% lower
than at M = 20. Similar to the first experiment, the step in
number of topics from 5 to 20 resulted in larger increase in
R2 (∼ 5.6% on average) than from 20 to 80 (∼ .7% on aver-
age). The increase was the closest to the upper bound at train
set proportion of 50% and it decreased toward the lowest pro-
portion value.

The results for average fit per participant are listed in the
bottom half of Table 2. In this case, we can observe a slightly
different pattern for increasing values of M; in terms of M,
the performance increased from 5 to 20 by ∼ .8% on aver-
age, but from 20 to 80 it decreased by ∼ 1.2% for all train set
proportions, on average. Furthermore, at M = 80 and propor-
tions 25% and 12.5%, there was a decrease in performance
w.r.t. the baseline; the best performing models were achieved
at M = 20.
Discussion The second experiment demonstrated that the
word probabilities can be re-estimated well even based on a
very limited set of words in the training set, especially in case
of aggregate reaction time data. In this setup it also seems to
be important to choose M cautiously, because increasing the
value only helped up to a certain point. When using individ-
ual level reaction times, modeling by 80 topics was counter-
productive in all situations but mostly with smaller train set
sizes. This effect aligns with the common issue of overfit-
ting where high number of model parameters combined with
small number of training examples hinders the capability to
generalize beyond training data and regularization needs to
take place.

Figure 3: Distribution of topics coefficients at M = 20 ag-
gregated over all 78 participants. The bars correspond to the
average coefficient value; the whiskers represent the standard
deviation.

Further Analysis
To shed more light on the nature of the results, we inspected
the resulting topic distributions and re-estimated word proba-
bilities. Firstly, we noticed that when the topic models were
fitted to lexical decision data of individual participants, the
average topic coefficients for all participants were signifi-
cantly non-zero, as shown in Figure 3. This finding sug-
gests that the discrepancy between the original corpus as
a reference to lexical exposure of the participants is more
pronounced than differences between individual participants.
Additionally, we noticed that the mean of all coefficients was
consistently positive and also consistently included some neg-
ative components. This implies that the technique allows for
the identification of topics that are particularly bad reflections
of an individual or a group’s language environment. In con-
trast to experiential optimization, which only allows for a
customized corpus to be built by adding words, the current
technique can be thought of as also allowing subtraction of
material.

In Figure 4 we can see that the re-estimated word probabil-
ities (left) are less scattered at the lower end, suggesting better
prediction for words which tend to be reacted to quickly de-
spite their low frequency. There is also a larger concentration
of points at values of roughly −4.6, because there is a sub-
set of words which are not clearly associated to any topic;
therefore, no combination of topics can change their position
on the x-axis of the scatter plot. These words, which have a
very low frequency, probably lack the structural variety to be
topic-specific, and therefore cannot be re-estimated.

General Discussion
The word probability re-estimation technique results in a sub-
stantial increase in explained variance for aggregated lexi-
cal decision data, relative to baseline corpus word frequen-
cies. Fitting a topic combination using the lexical deci-
sion data from one group of participants in the BLP re-
sulted in re-estimated word probabilities that explained nearly
9% more variance in lexical decision latencies for the other
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Figure 4: Scatter plots depicting the relationship between
word probabilities (log-scale) and reaction times. The top
panels show reaction times for a single participant, while the
bottom panels shows aggregate reaction times. The left part
corresponds to the re-estimated log-probabilities and the right
part correspond to the original log-probabilities. The number
of topics was M = 80.

group of participants, compared to the original word proba-
bilities. Hence, this technique may be of particular value to
researchers in psycholinguistics, where many experiments re-
quire frequency effects to be tightly controlled.

Individual lexical decision data are far more noisy than
the aggregate data. Based on an experiment in which par-
ticipants were presented with 500 identical trials on multi-
ple occasions, Diependaele, Brysbaert, and Neri (2012) point
out that the same lexical decision was made on only around
83% of the trials and, in terms of reaction times, the signal
from repeated trials only explained about 8% of the variabil-
ity of the initial signal. This upper bound on the amount
of variance that can be explained in individual lexical de-
cision data is reflected in our results, where explained vari-
ance for individual-level data was in the range of 6%−10%.
Still, our results showed that, on average, word probability re-
estimation increased explained variance in individual lexical
decision times by nearly 3%, approaching the upper bound
suggested by Diependaele et al. (2012).

One limitation of the present study is the lack of an exten-
sive topic model evaluation. In the design of the experiments
conducted in this study, the effect of mere dimensionality of
the least squares optimization is confounded with the effect
of the actual topic model quality resulting from the choice of
M. This way, the results may create an impression that sim-

ply increasing the value of M leads to better results; however,
this is meaningful only up to a certain point. The semantic
diversity of corpora is affected by factors such as text source
and size and should be rigorously estimated. The recommen-
dations for finding the right value of M include measuring
the topic model perplexity on a held-out test set, or various
types of topic coherence (Röder, Both, & Hinneburg, 2015).
In future studies, evaluating the topic model quality and the
hyper-parameter setting needs more attention. Additionally,
when working with larger values of M and/or limited sets of
reaction times, it might be necessary to regularize the least
squares problem because of overfitting.

In contrast to Johns et al. (2019), one limitation of the word
probability re-estimation method is that it cannot be used for
tasks that require local context for words, such as building
lexical representations, an area where experiential optimiza-
tion is extensively presented. Our technique does not preserve
the structure of the corpus or the order of words. Therefore,
it is restricted to unigram, bag-of-words language models.
In future work, the presented technique may be extended to
higher-fidelity language modeling by employing a topic mod-
eling method capable of retaining the sequential structure of
text.

Lastly, it is important to acknowledge that, while the
present study uses lexical decision data for both fitting and
validation, it would be interesting to see how well do re-
estimated word probabilities transfer to language tasks be-
yond the training task, such as reading text measured by eye
tracking.

Conclusion
Motivated by methodological innovation in computational
psycholinguistics as well as potential application in artificial
intelligence systems involving language, we demonstrated
that behavioral data, such as reaction times from lexical deci-
sion experiments, can be used to re-estimate word probabili-
ties so that they provide a better proxy to language environ-
ment, both at the group level and at the individual level. The
present work improves on experiential optimization by being
unsupervised, but, unlike experiential optimization, can only
be applied to tasks requiring isolated word probabilities.
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