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QUANTITATIVE ME

Comparative Fit Inde

Xes in

Structural Models

M. Bentler
University of California, Los Angeles

Normed and nonnormed fit indexes are frequently used as adjuncts to chi-square statistics for evalu-
aung the it of a structural model. A drawback of existing indexes is that they estimate no known
population parameters. A new coetheient s proposed to summarize the relative reduction in the
noncentrality parameters of two nested models. Two estimators of the coefficient yield new normed
(CF1) and nonnormed (FF1) it indexes. CFl avoids the underestimation of fit often noted in small
samples for Bentler and Bonett's (1980) normed fit index (NFI). Fl is a linear function of Bentler

and Bonett's non-normed fit index (NNFI

. FLL

) that avoids the extreme underestimation and overestima-
tion often found in NNFI. Asymptotically, CFl

NFI, and a new index developed by Bollen are

cquivalent measures of comparative fit. whereas NNFI measures relative fit by comparing noncen-
trality per degree of freedom. All of the indexes are generalized 1o permit use of Wald and Lagrange
multiplier statistics. An example iHlustrates the behavior of these indexes under conditions of correct
specification and misspecification. The new fit .ndexes perform very well at all sample sizes.

As s well known, the
luating the ad

goodness-of-fit test statistic 7 used 1n

ey of o strectural mind

ferred to the chi-square d stribution to du(,rmmc acceptance or
rejection of a specific null hypothesis, £ = 2(6). In the context of
covariance structure analysis, Z is the population covariance
matrix anc 0 is a vector of more bas'c parameters, for example,
the factor loadings and intercorrelations and unique variances
in a confirmatory factor analysis. The statistic T reflects the
closeness of = = Z(8). based on the estimator 6, 1o the sample
matrix S, the sample covariance matrix in covariance structure
analysis, in the chi-square metric. Acceptance or rejection of
the null hypothesis via a test based on 7 may be inappropriate
or incompiete in model evaluation for several reasons:

1. Some basic assumptions underlying 7 may be false and
the dicsribution of the statistic may not be robust to violation
of these assumptions.

2. No specific mode! Z(0) may be assumed to exist in the
population, and 7 is sme»Cen to provide a summary regarding
closeness of Z 10 S, but not necessarily a test of Z = Z(4).

3. In small samples, 7 may not be chi-square distributed;
hence, the probability values used to evaluate the null hypothe-
sis may not be correct.

This research was supported in part by United States Public Health
Service Grants DA01070 and DAQOO17 and is based on a February
1988 technical report and a paper presented at the Psychorc.ezric Society
meetings, June 1988, Los Angeles. :

Helpful discussious with J. de Leeuw, R. [. Jennrich, T. A. B. Snijders,
and J. A. Woodward; the computer assistance of Shinn-Tzong Wu; and
the production assistance of Julie Speckart are gratefully acknowl-
edged.

Correspondence concerning this article should be addressed to P. M.
Bentler, Department of Psychology, University of California, Los Ange-
les, California 90024-1563.

4. In large samples, any a priori hypothesis £ = 2(6), al-
though calv e Iy falee may be rejected.

As a consequence, the statistic 7 may not be clearly interpret-
able, and transformations of 7 designed to map it into a more
interpretable 0-1, or approximate 0-1, range have been devel-
oped. Those indexes are usually called goodness-of-fit indexes
(e.g., Bentler, 1983, p. 507; Joreskog & Sorbom, 1984, p. 1.40).
A related class of indexzs, here called comparative goodness-of-
fit indexes, assess T in relation to the fit of a more restriciive
model. These comparative fit indexes, formalized by Bentler
and Bonett {1980), are very widely used (Bentler & Bonet,
1987) and are the sole object of this article. Alternative ap-
proaches to evaluating model adequacy are reviewed elsewhere
(e.g., Bollen & Liang, 198%; Rozdogan, 1987; LaDu & Tanaka,
in press; Wheaton, 1987). Although covariance structure analy-
sis is emphasized, ¢ te methods develgped here hold for any type
of structural model, including, for example, mean-covariance
structires and log-linear models.

Although more than 30 fit indexes have been reported and
their empirical behavior studied {Marsh, Balla, & McDonald
298 ), and although new ones coniinue o be developed (Bollen,

1989), it is surprising to note that they have been developed as
purely descripti- = statistics. Apparently, no population parame-
ter has been defined that is being estimated by any of the exist-
ing indexes. In this article, [ define an explicit population com-
parative fit coeffic.ent, provide two alternative estimators of the
coefficient, and investigate the asymptotic relations between the
new and previously defined comparative fit indexes. Further-
more, new indexes based on Wald and Lagrange multiplier sta-
tistics are developed.

id

Nested Models and Comparative Fit

In evaluating comparative model fit, it is helpful to focus on
more than one pair of models. Consider a series of nested
models,
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beginning with the most restricted model A4, that one might
consider and extending to the least restricted or saturated model
M. The models are assumed 10 be nested so that a more re-
stricted model is obtained by imposing constraints on a more
general model. For example, A7, may be obtained from A, by
fixing a free parameter in Af, to some a priori value. That is,
M;< M; c M, = M,. In covariance structure analysis, A4, is
Lypxcall) the baseline model Corrcsponding to uncorrelated
measured variables, or a model «f modified uncorrelatedness
that allows some independent variables to have known nonzero
covariances. M is sometimes called a null model, indicating no
mutual influences among variables. If the measured variables
that generate 2 are multivariate normally distributed, then M,
1s the independence or modified independence model. A7, is not
necessa:ily the most restricted model that can be considered,
but it 1s intended to be the most restricted one that would rea-
sonab'ly be considered in practice. T hus, a mode! containing no
free parameters would be still more restriciive than the indepen-
dence model, but such a model would almost never describe
data and is thus not considered seriously. At times it may also
make sense to have A, be a more general model than the uncor-
relatedness model (Sobel & Bohrnstedt, 1985). At the otherend
of the continuum, M, 1s the saturated model in which there are
as many parameters in  as there are nonredundant elements in
Z.1n M, there is no falsifiable structural hypothesis.

Corresponding to the sequence of nested models (Equation
1) is a sequence of goodness-of-fit test statistics,

T[a~~~,Tjw-wTkwuwa» (2)

and corresponding degrees of freedom, d,, ..., d,, .. .. dy,. ..,
d,, obtained by optimizing = specific statistical fitting function
such as maximum likelihoou or generalized least squares using
a set of data S and the models (Equation 1). Thus, 7;is the chi-
square value based on 4; degrees of freedom obtained by fitting
model A/ t0 S; T, and d; are the corresponding vaiues obtained
for model A7;; T and 4, correspond to A, ; and 7 and d, corre-
spond 10 AZ,. The saturated model M, not necessarily unique,
has the characteristic that 7, = O andd 4, = 0. Typically, T = NF,
where N is the sample 55*° {or sample size minus 1) and 7 is
the minimum of some Ziscrepancy function. When alternative
models are comnpared with the same discrepancy function, 7, >
T,= T, = T, =0, indicating that the independence model has
the worst fit, intermediate models have intermediate degrees of
ﬁt, and the saturated model has a perfect fit. Similarly, ;> d; >
« > d,. Zorresponding to the models (Equation 1) and test sta-
us*ucs (Equation 2) are the parameter vectors 8, O
O, .... 0, and the corresponding model mamces = 4(6
, Zy, as well as their estimated values Z,,
In covariaace structure analysis, un-
der the model of uncorrelated variables, generally Z, = diag(S)
and no covariances are accounted for by the model. ntermediA
ate model matrices Z; and Z; account for the off-diagonal ele-
ments of S, the covariances, to varying degrees. At the other
extreme. £, = S, s0 that the model pe: fectly reflects the data.
Comparative fit indexes evaluate the adequacy of a particular
model A in relation to the endpoint models M, and M, on the
continuum (Equation 1) of models. In practice this is done by

.
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evaluating where T falls in relation to 7, and 7. If T} is close
to 7,, M 1s hardly an improvement over A, and the fit index is
close to 0. If T} is close to T, M, 1s almost as good as the satu-
rated model, which corresponds to the data, and the fit index is
close to 1. Different fitting funcuions will, of course, yield some-
what different values of a fit index (LaDu & Tanaka, in press).

In the next section, the comparative fit indexes of Bentler and
Bonett (1980) and Bollen (1989) are reviewed, and their limita-
tions are noted. A population fit index designed (0 overcome
these limitations is defined in the subsequent section, and some
estimators of the index are developed. Relations among the ex-
isting and new indexes are also developed. The various indexes
are extended in the following section to include infermation
from Wald and Lagrange multiplier statistics. A sampling study
lustrates the behavior of these indexes. Some concluding com-
ments are then offered.

Nermed and Non-Normed Fit Indexes

Bentler and Bonett (1930) proposed to evaluate model 47, by
comparing T with T via

-7
NFI =222k (3)

1

which equals 0 when T, = T}, equals 1.0 when 7, = 0, and 1s in
the 0-1 range otherwise, with higher values indicating better fit.
Because of the 0-1 range, this index was called the norined fit
index. James, Mulaik, and Brett (1982, p. 155) suggested multi-
plying Equation 3 by d,/d; 10 yield an index to reflect model
parsimony. The issue of parsimony, or degrees of freedom used,
is not addressed in this analysis (see Bentler & Mooijaart, 1989;
Mulaik et al., 1989). An imporiant characteristic of NF7 is that
the index is additive for nested modei comparisons. Thus, if one
defines the incremental normed fit index cornparing models A4,
and M) as

Th:s cha; acteristic p‘\,rzAmLS msm’sng zelaiive 5
model misspecification.

A disadvantage of NF/ is that it is affected by sample size
(Rearden, Sharma, & Teel, 1982;. It may not reach 1.0 even
when the model is correct, especially in smaller sampiles. This
can occur because the expectied value of T, may be greater than
0. for example, when T} is a x%(d,) variate, E(T,) = d,. This
difficulty with range was resolved by the modified index

T,-'—(j,‘dklek
T,—d,

L {

NNFI = (5
called the non-normed fit index. Bentler and Bonett (1980)
built this index on one developed by Tucke: and Lewis (1973)
for evaluating the fit of exploratory factor analysis models esti-
mated by maximum likelihood. The degrees of freedom adjust-
ment in the index was designed to improve its performance near
1.0, not necessarily to permit the index to reflect other model
features such as parsimony. When T, = E(T}) = d,, the NNFI =
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1.0, thus obviating a major difficulty with NF/. However, NNF/
can fall outside the 0-1 range. It will be negative when
dd,'Ty> T, asusually T, » d,. It will exceed 1.0 when T} <
d,.. In fact, the index can be anomalously small, especially in
small samples, implying a terrible fit when other indexes suggest
an accepiable model fit (Anderson & Gerbing, 1984). As a con-
sequence, the variance of NNF/ s, in sampling studies, substan-
tially larger than the variance of NF/. This is a negative feature.
The comparable incremental fit index.

NNFI( ) = c/,[l,"'T{f(/(/k"T"k‘ ()
T,-d,
shares the advantages and disadvantages of the basic index.
The nonnormed fit index has the major advantage of reflect-
ing model fit very well at all sample sizes (Anderson & Gerbing,
1984 Marsh et al., 1988; Wheaton. 1987). It would be desirable
to modify this index so as to maintain its desirable feature while
minimizing its undesirable features. A modification relating to
sample size was proposed by Bollen (1986), but it did not solve
the major problem of vanability in the index. This problem
was addressed by Bollen (1989). He defined the incremental fit
index as

Tl* TA

1Kl = ,
7‘, - (1’4‘»

(7

and showed that it behaved like NVFT in a sampling study bat
had a smaller sampling variance.

Unfortunately, population parameters corresponding 1o the
indexes that have been described have not been given, so it is
not clear what guantity or quantities they are estimating. Let
me first define a2 population fit index and two estimators of it,
and then return to these indexes.

Fit Indexes and Noncantrality

Suppose that.the distribution of each of the test statistics 7'
given in Equation 2 can be approximated in large samples by
the noncentral chi-square distribution with given degrees of
Treedom. This is a reasonable assumption for the true model
and for small model misspecifications; that is, if systematic er-
rors due to discrepancy between the true population covariance
matrix, say 29, and the population model matrix, say Z(6°), are
not large relative to the sampling errors in the mairix S (see,
e.g., Satorra, 1989). If the mean or variance of the distribution
of T substantiaiiy differs from the corresponding reference non-
central chi-square distribution, 7 can be scaled or adjusted to
more closely achieve this result (Satorra & Bentler, 1988). Thus,
the reference distribution for T} is the noncentral x*(d}) distri-
bution with parameter A\, known as the noncentrality parame-
ter. Asymptotically, A, = T, = NF,°, where T;° is the value of
T, obtained when Z* substitutes for S in the discrepancy func-
tion F used, and F,° is the corresponding minimum of F under
M, obtained wlhen (6°) is fitted to 2°. If M, is the true model,
Fi° = 0 and asymptotically T} is distributed as a central x*(dy)
variate with A\, = 0. Hence, the size of }, can be taken as a
population indicator of model misspecification, with larger val-
ues of A, reflecting greater misspecification. The relative size of
the noncentrality parameters associated with Equation 2,

v

Nz A= A=A =0, (8a)

will reflect the degree of model misspecification. In view of the
fact that the models are nested. the standardized noncentrality
parameters are also ordered

FPz=Fl=F=zF=0 (8b)
The relations in Equation 8 permit defining a population mea-
sure of comparative model misspecification, that 1s, a compara-
tive fit index.

The fit index is built as follows. Let A\, be the measure of mis-
specification of model A/,.. The corresponding misspecification
for model A is A;. In gencral, one hopes that A\, is small and
expects that A; is large. The smaller the ratio A/A;. the greater
the information provided by model A7, as compared with A,
Hence,

A=1- NN (9a)

would equal 1.0 if A, is 0, and would Be close 10 0 1f A, = A In
view of Equation 8, A is naturally a normed coefficient having
a 0-1 range. For a fixed null model misspecification A,, de-
creases in misspecification vield increasing values of A. Thus,
A is a measure of comparative iit. This index can equivalently
be written as
A= )\k
A==, (9b)
A;
showing that the index A measures the relative improvement in
noncentrality in going from model A/, to A7,. The correspond-
ing incremental fit index comparing models A7, and M is
A AL
A, = L= (%Q\
L5 B iy
J Ny
ftiseasytov
are additive.
Itisapparent that Aand A

A= Ay + Ay, thatis, that the increments

- are invariant to a rescaling of the
noncentirality parameters by a nonzerc coastant, forexample, if
for some ¢, A, — i and A; — ¢, 4 is unchanged. Thisinvari-
ance is critical ¢ the definition of comparative fit via noncen-
irality because the noncentrality parameters depend on sample
size. The ordering of Equation 8a only makes sense when all
noncentrality parameters are based on the same sample size.
As a consequencs, it is assumed that all nested models and fit
statistics (Equation 2) being compared are based on the same
sampile size, as in fact model comparisons are essentially always
implemented. In the unusual situation that A4, is evaluated on
a sample of size N; and M}, on a sample of size NV, for example,
Equations 9a-9b would need to be replaced by

A=1-F°/F?, (1n

using the standardized noncentrality parameters (Equation 8b).
Of course, asymptotically Equations 11 and 9a are equal when
N is equal for all models. Differential sample zize would not
affect Equation 11, although it could affect Equation 9a. Modi-
fications parallel to Equation 11 would be made to Equation 10
in this atypical situation.

These indexes (Equations 9a, 9b, 10, and 11) are population
quantities. To implement them in practice, estimators of the
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noncentrality parameters (Equation 8) must be available. A va-
riety ofestrnaiors can be obtamed but let me concentrate on
two. Let M =T,—d, = NE. AN=T -d = NF . and corre-
spondingly for other noncentrality parameters. Then

A=Fl=1-NJ\ =1~ FCfF) (12)

a natural index of comparative fit. Apparently, like the NNFT,
FIcan be outside the 01 range. The alternative estimator

A= CFl=1=M\/A, (13)

based on 5\, = max(i,, XA. 0) and )_\,‘. = max(ka, 0), 1s a normed
comparative fit index. Because A= A= 0, Equation 13 must
lie in the O-1 interval. Saxena and Alam (1982) noted that Ak
dominates the maximum likelihood estimator of A, with
squared error as the loss function. Estimators of A are built
analogously. In the unnatura! situation that sample size is not
constant for all models, F,7 = (T — di)/ N, and Fe=(T, - d)/
N;would be used in Ecaation 12 and similarly applied to obtain
Eguation 13.

The estimator F/ is a consistent estimator of A. As N — co,
Fe=(T, - )/ N and F" = (T, — d)/N converge in probability
1o the constants

FeL Fe and FPL Fe (14)

Assuming F° > 0, F7 converges in probability to A. Similarly,
CFI s a consistent estimator of A. In v1ew of E tquauons 14 and
8b, and the definition of &, in the limit A Aand A are equal, and
equal to A. This means that F/ behaves as a normed fit index
asymptotically. Thus, although FJ can fall outside the O-
“nge such behavior would be a small sample effect.
The asympiotic definitions of NFI, NNFI and [F1, say, NFI°

NNFI°, and [F° are obtained similarly. Specifically, as Tk/N

d T,/N have the same probability limits as given in Equation
14,

NFI® = JFI° = A,
50 that these indexes have the same limit in very large samples.
Thus, asymptoticaily NF7 and JF7 also can be related %o *hﬂ
on

comparative reduction in noncentrality as proposed here,
the other hand,

J

Md,Fko_ i d/}\k

NNFI? =1 Sl Bl
d;\r F’() dk>\x

does not have the same limiting definition as the other indexes.
This result is consistent with Bolicn’s (1989) conclusions re-
garding the similar asymptotic limits of NF/ and /F7 and their
differences from NNFT and Bollen's (1986) inder. NNFT does
not have an interpretation as a comparative reduction in non-
centrality, but it can be interpreted as a relative reduction in
noncentrality per degree of freedom. Thus, it does appear to
have a parsimony rationale.

There is an interesting relation between Equations 12 and 5.
Let 8 =dJd and « = | — 3. Then FI = o + B(NNFI). As a
result, £7 will behave better than NNF/. Although both NVFT
and F/ are not restricted to the 0-1 range, F7 will not be nega-
tive as frequently as NNFI. This can be seen as follows. Suppose
that NNFI is negative. Then, as long as a« > B|NNFI|, FI re-

mains positive. 7 also behaves better than NNFT at the upper
end. Suppose that NNFT is greater than 1.0. Then, although it
will also exceed 1.0, F/ < NNFT; that is. it will exceed 1.0 by a
smaller amount. Another consequence of the relation between
Fland NNFTisthat the standard error of F/ will be smaller than
the standard error of NNFT by the factor . Stated differently,
var(FI) = B*var(NNFI) < var(NNFT) because 0 < § < 1.0.
Thus, F/ is a more precise measure of fit than NNF/. This effect
is illustraied in the sampling study described later. If 8 = d,/d;
1s small, that is, if A/, has many parameters and hence few de-
grees of freedom, d,,, the reduction in variance possible by using
FTI rather than NNFT can be quite substamial. Finally, 1t will be
apparent that as CFI = FI when O < 1, CFI > FI when
FI <0, and CFI < Fl when FI > 1, lhe variabiliiy of CFI will
always be less than the variability of F/.

All of the previously defined fit indexes, including the new
coefficients F7 and CFTintroduced here, are based on compara-
tive model fit as measured by the fit 7; and 7, of two nested
models. 'n effect, they are based on a rationale involving differ-
ence tests. However, in view of the basic definition (Equations
9a, 9b, and 1 1), this is not the only way such coeflicients need
to be stated. Consequently, some new comparative fit indexes
based on a different rationale are also introducea.

Fit Indexes for Wald and Lagrange Multiplier Tests

in recent years, Wald and Lagrange multiplier (or score) tesis
have been introduced into S‘Lructural modeling (Bentler & Dijk-
sira, 1985; Dijksira, 1981, Lee, 1985; Lee & Bentler, 1980).
They are routinely available in a public computer program
{Bentler, 1986, 1989) and are typically applied to compare
nested submodels. These tests provide At information from the
perspective of the less restricted model A4, (Wald) or the more
restriciive model A, (L aoranoe multiplier). That is, when esti-
mating M and obtaining T}, one can calculate & Wald statistic
Wy at i, that evaina iesthe “vpo&hesgs that the parameters «aat
differentiate 1 ire 0. When estimating A4, and
@atamm 73, one can caicuiaie 2 Lagrange multiplier statistic
3 £ i hypothesis. Under standard
{ Lik behave as asympioi:c non-
dy = d; — 4, degrees of free-
dom and noncentrality parameter Ay = A; — A, (Davidson &
MacKinnon, 1987; Satorra, 1989). The weli-known difference
test Dy == T; — T also has the same distribution, although it
requires estimating the two models A/; and A rather than only
one of them (Steiger, Shapiro, & Browne, 1985). In general,
these statistics can be used interchangeably in large samples
that is, asymptotically Wy = Ly = Dy = 7, — T,. Thus, this
equivalence can be used to form goodness-of-fit indexes 10 as-
sess model misspecification.

As A = N — A, Equations 9a, 9b, and ! 1 may be equivalently
written as

A= N/ N = N (Nig + A, (17

and estimators of A, obtained from W, and L, tesis can be
used to implement Equation 17. Using Ay = Wy — dy or A =
Ly — dy along with A; and A, as previously defined yields
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- . W, - d,
Ay = FIW = — - A
Wet Ty —dy = dy
~ Ly~ dy
N, = FIL = —F 18
’ T, -d, e

Estin‘{ators out of the 0-1 range can be avoided by using }\,A
max(Ay, 0) along with A, and A, previously given via

A= CFIW = Af(hs + A (19a)
A, = CFIL = Ag/\,. (19%)

where X\ is based on W/, in Equation 19a and on L, in Equa-
iion 19b. The practical importance of these indexes (T.quations
18, 19a, and 19b) is that they can be implemented when the
standard indexes cannot be used: £/ and CF/ require estimates
of both models M, and A, FIW and CF/H require esimating
only model A, and F/L and CFIL require esumating only
model 44,

Although i prefer the new ‘ndexcs because of their clear ratio-
nale, the NFI, NNFI, and IFI indexes can also be modified 10
vield information from the M, and L, tests. Thus,

W, L
NE[W = — ;‘_‘l’k‘f“f . NFIL = /' . (20)
W, + T, I,
i -1
NNFIW = ; W ik dt/\' d/\' TA .
LV{/\‘ + T(( -d ik T dk
L. —d.,T
NNFIL = _diLi = duT, ] 21
(di - dik)( T: - d.)
[FIW = Wof( Wy + Te — dy)
IFIL = Ly/(T; — d; + dy). (22)

Modifications o ensure that Equations 20-22 have a 0-1 range
are obvious. The simples: implementation is to pull estimates
cutside the 0-1 range to the 0 or | endpoinis.

The estimators (Equations 18-22) converge in probability as
N —» oo to interpretable constants. Let /0 = W%/ N{or = L,°/
N3, Then

FIW® = CFIW® = NFIW® = IFIW° = Fy[(Fy® + F,)

P
o}
(W8}

(e

ILE = FylFe (24)

and are equal if F¢ = F,° + F,.° as assumed. Furthermore, both
equal Equation 15 under this circumstance, indicating that the
W-based and L-based indexes are ¢quivelent to the traditional
indexes. However,
Fu® — dyd, ™ Fi©
NNFIW® = __"*___Lﬁ‘...__’f_ (25)
Faf + B

does not equal Equation 23 but does equal Equation 16 if the
assumptions are met. Similarly,

diFy’ = daFYE

NNFIL® = .
(di - dik)Fio

(26)

which equals Equations 16 and 25 but not Equation 24, under
the assumed conditions.

Finally. although new M. and L-based versions of fit indexes
have been presented, the L-based indexes may fail 10 be defined
meaningfully in an important practical circumstance. The in-
dexes are defined when the corresponding Lagrange multiplier
statistic £, or L, is defined. In the standard application of L,
statistics, there 1s rarely a problem. However, when the baseline
model A7, 1s the model of uncorrelated vanables, the statistic
L, may be 0. Forexample, if Af,: 2 = A®A" + Yand M1 2 =
W . the derivatives of Z with respect to elements of A and @ under
model Af, will be 0. Yet these are key components involved in
computing L. [t is apparent that the asymptotic equivalence
of W, [,.and D, breaks down in this situation. For these
reasons, the L-based indexes are not recommended for applica-
tion in the context of the independence model. However, they
will be applicable when other baseline models (Sobel & Bohrn-
stedt. 1985) are used.

Two Sampling Studies

An example was created to illustrate some of the indexes de-
scribed earlier and their characteristics. A population model A7,
based on the stability of alienation model (see, e.g., Bentler &
Bonett, 1980, p. 601) was created. This model contzined six
measu:ed variables, three factors each with two (mutually ex-
clusive) indicators, and regressions among the factors. A/, con-
tains 15 parameters that require estimation in a sample, with
d, = 6. The baseline model Af,, which is false, is the indepen-
dence model with 6 parameters and ¢, = 15. A multivariate nor-
mal sample of a given size was drawn from this population, and
T:, Ty, Wi, and the corresponding degrees of freedom were
pulled from a standard EQS (Bentler, 1989) maximum likeli-
hood estimation run. These statistics were transformed to cal-
culate several of the fit indexes described earlier. This process
was repeated until 200 samples of the given size were drawn and
ihe corresponding indexes were obtained. The resulting distri-
butions of indexes form the basic data 1o be described. This
process was repeated at the sample sizes 50, 100, 200, 400, 800,
and 1,600.

Summary statistics for the performance of the fit indices at
the various sample sizes are shown in Table 1. The simulation
for N = 50 is presented first. The 10 indexes that were computed

1

fit information presented first and the 5 corresponding new
Wald-based indexes pre~ented nexi. A row summarizes the per-
formance of a given index across the 200 replications: the meau
value of the index, its standard deviation, its minimum value.
and its maximum. As the model is correct, the means should be
close to 1.0.

The first 5 rows give fit indexes based on fit of two nested
models. The problem of underestimation via small samples
known for NFT is evident in the first row of the table. Its mean
of .921 is substantially below the means of all other indexes.
perhaps inappropriately leading one to question whether the
model is correct. The NNFT pertorms much better on the aver-
age, with a mean of 0.998. However, its range of 0.570 to 1.355
is so large that in many samples one would suspect model incor-
rectness and, in many other samples, overfitting. This increase
in variability is also seen in the standard deviations: The NNF/
has a threefold increase in standard deviation as compared with
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Table |
Statistics From Sampling Study With 200 Replications

Index M SD Minimum Maximum Index M SD Minimum Maximum
Sample size = 50 Sample size = 400
NFI 0.921 0.042 181 0.992 NFI 0.989 0.007 960 0.999
NNF1 0.998 0.131 570 1.355 NNF1 1.000 0.019 927 1.030
Fl 0.999 0.053 828 1.142 Fl 1.000 0.007 971 1.012
CFl 0.980 0.034 828 1.000 CF1 ‘ 0.997 0.005 971 1.000
IF1 0.999 0.045 849 1.110 [F1 1.000 0.007 971 1.012
NFIW 0.974 0.016 914 0.998 NFIW 0.996 0.002 987 1.000
NNFIW 0.998 0.038 849 1.092 NNFIwW 1.000 0.006 976 1.009
Flw 0.999 0.013 940 1.037 FIw 1.000 0.002 990 1.004
CFIW 0.994 0.011 940 1.000 CHiw 0.999 0.002 990 1.000
iFIw 0.999 0.015 943 1.034 [FIW 1.000 0.002 990 1.003
Sample size = 100 Sample size = 800
NFI 0.957 0.023 869 0.994 NF1 0.994 0.003 985 1.000
NNFI 1.001 0.066 735 1.132 NNFI 0.999 0.009 976 1.015
Fl 1.001 0.02/ 894 1.053 Fi 1.000 0.003 990 1.G6D6
CF: 0.990 0.017 804 1.000 CFI1 0.959 0.002 .990 1.000
IF1 1.000 0.025 900 1.048 IFI ' 1.000 0.003 .990 1.006
NFIW 0.985 0.008 948 0.998 NFIW 0.998 0.001 995 1.000
NNFIW 1.000 0.021 907 1.036 NNFIW 1.000 0.003 992 1.005
Fiw 1.000 0.008 962 1.014 FIwW 1.000 0.001 997 1.002
CFiw 0.997 0.006 963 1.000 CFIW 1.000 0.001 997 1.000
IFIwW 1.000 0.008 964 1.014 [FIW 1.000 0.001 997 1.002
Sample size = 200 Sample size = 1,600
NFI 0.978 0.013 932 0.998 NFI 0.997 0.002 990 1.000
NNFI 1.001 0.034 882 1.061 NNFI 1.000 0.004 983 1.007
Fl 1.001 0.013 953 1.024 FI 1.000 0.002 993 1.003
CFI 0.995 0.009 953 1.000 CFI 0.999 5.001 993 1.000
iFl 1.001 0.013 954 1.023 iFl 1.000 0.002 993 1.003
NFIW 0.993 0.004 977 0.999 NFIW 0.999 0.001 997 1.000
NNFTW 1.000 0.011 962 1.018 NNFIW 1.000 0.001 994 1.002
Fiw 1.000 0.004 985 1.007 F1wW 1.000 0.001 998 1.001
CFIw 0.998 0.003 985 1.000 CFiw 1.000 0.000 998 1.000
IFIW 1.000 0.004 983 1.007 IFIW 1.000 £.001 998 1.001

Note. NF1 = normed fit index; NNFI = non-normed fit index; F1 = non-normed comparative fit index; CFI = normed comparative fit index; IFi =

incremental fix index: W = Wald.

NFI. The newly proposed £7 fares much oetter. As expected, its
mean is almost perfect (0.999) and its range is more circum-
scribed around 1.0, with 2 minimum of 0.828 and a maximum
of 1.142. The standard deviation is substantially smaller than
that shown by NNF7, indeed, being only marginally larger than
that of N¥/. The normed index CF nas a mean 0f 0.980, some-
what below that of F7 due to pulling-in values of F7 greater than
1.0, and its standard error is even smaller than that shov'n by
NFI. Bollen’s (1989) /FI has a mean of 0.999 and a standard
error estimate between those of Fland CFI. Like NNVFI and F7,
its maximum exceeds 1.0.

All of the new W,-based fit indexes seem to perform very
well. The lowest mean value. 0.974, was obtained by NFIW,
substantially above the 0.921 shown by the traditional NF/. The
most remarkable feature of all of these indexes is their Jow
ranges and estimated standard errors. The largest standard error
is.038 for NNFIW, which is only shightly worse than that shown
by the best non- W-based index, namely CF/. All other indexes
have standard errors that are smaller by a factor of 2. Not shown
in Table | is the fact that in 7 of the 200 replications at sample

size 50, the .uformation mairix contained linear dependencies
and the Wiiest was based on 8 rather than 9 degrees of {reedom.
v.esulis for the 193 samples with 4, = 9 were virtually identical
to those for the 200 samples shown in Table 1.

The trends shown at N = 59 are visible at all sample sizes,
although the effecis are less strong. The minimum fit indexes
are all much more reasonable at V = 100, with all vaiues being
substantially higher than the value of .735 obtained with NNFJ.
Although NFT is still 0.043 below 1.0 on the average, and NFTIV
15 0.015 below 1.0, the other indexes have means almost on top
of 1.0. Again, the W-based indexes have the smallest standard
deviations aind NNFI has the largest. At N = 200, F/ and [/FI
are virtually on target, having a mean of 1.001 and a range of
0.95-1.02. In contrast, NNFI has a larger range of 0.88-1.06.
Again, the W-based indexes perform very well. These trends
continue at larger sample sizes. The underestimation of perfect
fit by NFI, wh:ch is evident at the smaller sample sizes, becomes
trivially small at the largest sample sizes, as noted previously
(Beardenetal., 1982; LaDu & Tanaka, in press) and as expected
by Equation 15.
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Table 2
Statistics From Sampling Study Wirth Misspecified Model
Index M SD Minimum Maximum Index M SD Minimum Maximum
Sample size = S0, repheations = 176 Sample size = 400. replications = 200
NFI 0.874 0.03% 679 0.976 NFI 0.938 0.019 865 980
NN 0.920 0.133 415 1.261 NNF1 0.894 0.042 731 984
Fl 0.963 0.072 27 1122 Fl 0.950 0.020 875 993
CFl1 0.950 0.05% 727 1.000 CF1. 0.950 0.020 875 993
[+l 0.967 0003 701 1101 1F] 0.951 0.019 876 993
NFITW 0.956 0.023 855 0.994 NFIW 0981 0.006 950 994
NNFIW 0973 0.051 167 1.067 NNFIW 0.968 0.013 902 995
FIw 0.987 0.024 891 1.031 Flw 0.985 0.006 954 998
CFIw 0.984 0.021 891 1.000 CFIW 0.985 0.006 954 998
IFIwW 0.988 0.022 896 1.029 IFIW 0.985 0.006 954 998
Sample size = 100, replications = 196 Sample size = 800, replications = 200
NFI 0.907 [SNVAR 762 0.991 NF1 0.944 0.015 897 974
NNFI 0.898 0.099 533 1115 NNFI 0.893 0.032 793 958
Fl 0.952 0.046 791 1.054 Fl 0.950 0.015 903 980
CFI 0.950 0.043 791 1.000 CFi 0.950 0.015 903 980
{F1 0.955 0.043 805 1.050 iFl 0.950 0.015 904 : 980
NFIw 0.969 0.018 856 0.998 NFIW 0.983 0.005 968 993
NNFIW 0.968 0.033 769 1.028 NNFIW 0.968 0.010 937 988
FIW 0.985 0.016 892 1.013 FIwW 0.985 0.005 971 994
CHFIW 0.984 ERSEES 292 1.000 CTTW 0.985 0.005 971 994
IFIW 0.985 0016 398 1.013 W 0.985 0.005 971 994
Sample size = 200, replications = 200 Sariple size = 1,600, replications = 200
NF1 0.929 0.033 826 0.991 NF1 0.947 0.010 922 970
NNFI 0.896 0.074 665 1.029 NNF1 0.892 0.021 838 943
Fi 0.952 0.034 844 1.013 Fl 0.949 0.010 925 973
CFl1 0.951 0.034 844 1.000 CFl1 0.949 0.010 925 973
IFi 0.953 0.033 .848 1.013 iF1 0.950 0.010 925 973
NFIW 0.978 0.012 925 0.997 NFIW 0.984 0.003 974 991
NNFIW 0.968 0.024 861 1.009 NNFIW 0.968 0.007 946 98
Fiw 0.985 0.011 935 1.004 FIw 0.985 0.003 975 992
CFIw 0.985 0.011 935 1.000 CFiW 0.985 0.003 975 992
IFIW 0.985 0.011 935 1.004 IFW U.985 0.003 975 992
Note. NFI = normed fit index; NNFI = non-normed i ind=x; FI = non-normed comparative fit index; CFI = normed comparative fit index; IF1 =

incremental fit index; W = Wald.

The correlational simila:ity among the various indexes sum-
marizes a different aspect of their performance, and the trends
are clearest at vV = 1,600. In spite of the severe restriction in
range, essentially all of the correlations are close to 1.0, except
that CF7 and CFIW {which correlate = 1.0) correlaie about
.91 with the remaining indexes. This different behavior of C77
and CFIW appears to mirror the fact that these indexes corre-
late only —.91 with T}, whereas all other indexes correlate be-
low —.995 with 7). NNFI, FI, and IFI are essentially perfectly
correlated, as ars the corresponding W-based indexes; the cor-
relation between these two classes of indexes is .9996. At
smaller sample sizes, these trends are visible but less extreme.
At N = 50, CFI correlates about .86~.88 with the other indexes
and —.88 with 7,. NNFI and F/ correlate 1.0 as expected, and
both correlate .999 vith /FT; these indexes also correlate about
—.96 with T}.. The W-based indexes show a similar pattern.

A second simulation study was run with a misspecified
model, using the design parameters given for the previous study.
Although the true model was the same as before, the model that
was analyzed omitted the stability path for the repeated latent

common factor. The resulis are shown in Table 2. Turaing o
the last part of the table, with a sample size of 1,600, one sees
that the relative degree of misspecification was on the order of
05 when assessed by all of the fit indexes based on difference
tests, except that the NNFT indicaied a greater degree of mis-
specification. All of these indexes averaged close to .95, whereas
NNFI averaged .892. Differences in definition of coeflicients are
hardly apparent, although NNFT has a limit that is not the same
as the limit shown by other indexes. These means mirror the
asymptotic limits (Equations |5 and 16) cuite well. On the
other hand, the degree of fit evidenced by the H<based iivizsxes
is substantially more cotimistic than is evidenced by the differ-
ence-based indexes. Because of the magnitude of the omitted
path, it would seem that the W-based indexes provide an unduly
ontimistic picture of model fit. Apparently, the equivalence
= T;— T, is not yet true at this sample size, although the asymp-
totic means of the varicus H4based indexes except NNFI W are
equal, as expected from Equation 23.

The statistics on the fit indexes shown in the remainder of
Table 2 are consistent with the general conclusions that have
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been mentioned. At sample sizes 50 and 100, there were some
problems of nonconvergence as well as singularity of the infor-
mation matrices that made calculation of the W, statistics im-
possible (the ratio of convergence failure 10 information matrix
singularity was 1:3). Asa consequence results from fewer than
200 replications were tabled. The main results to be noted in
the other panels involve the comparison 1o values obtained at
N = 1,600: the means of the indexes F/, CFI, and IFI at virtu-
ally all sample sizes mirror the large sample results extremely
well: NFT underestimates the large sample value by a substantial
amount in the smaller samples; and the H-based indexes seem
to be inflated at all sample sizes. Correlational similarity among
the indexes mirrored the previously menticned results under
the correct model, with some exceptions. In the misspecified
models, the CF/ indexes were much more similar to all other
indexes than they were in the correctly specified model, with
the lowest correlation between CFI and any other index being
981 at ¥ = 1,600. In fact, the lowest correlation among any
pair of indexes was .98, and Lhe correlation between the indexes
and T, was on the order of —.96 for all indexes. At N = 50,
the lowest correlation among indexes was .84, and the highest
correlation, as expected, was between NNFT and F7 (1.0), with
IFI correlating .999 with these.

Conclusion

Normed and nonnormed fit indexes are very popular ad-
juncts to more traditional statistics in structural equation mod-
eling to help assess the quality of a model (Bentler & Bonett,
1987). In spite of their popularity, nothing has been known
about the population guantities that these indexes are intended
to assess. This is also true of Bollen’s (1989) /F/, although Bol-
len showed that /57 and NFI have the same asymptiotic limits
end NNFT has a different limit. It is apparent from Equation 15
thatin large samples, NF7 and /77 will reflect a relative diop in
noncentrality, that is, they will mirror the comparative fit in-
dexes F7 and CFJ introduced here. Thus, these indexes are
equivalent asymptoticaily and they can be used interchange-
ably. In small samples, however, this equivalence is less certain
and the indexes do not estimate the same quantity. 77 and /7
seem (0 behave guite similarly, but both can exceed 1.0. CF/
seems 10 be the best index: Like the populaiion coefficient A, it
has a 0-1 range, has smail sampling variability, and estimates
the relative difference in noncentratity of interest. However,
these advantages are obtained at the cxpensz of some downward
bias. This bias is quite small, and is certainly much less than
the bias of the NFI. In fact, there was virtually no bias in the
simulation with the misspecified model.

The index NNFT seems to Lave a rationale that is different
irom the other indexes just mentioned. As seen in Equation 16,
NNFI cea be interpreted in large samples as assessing the rela-
tive drop in noncentrality per degree of freedom. In contrast,
the new index A and its estimators assess the difference in non-
centrality on an absolute basis. Thus, NNF/ should be inter-
preted differently from A and its estimators. However, NNF/
and F/ are perfectly correlated as they are linearly related when
comparing models with the same degrees of freedom, so that
alternative models would be ranked equivalently by these two
indexes. The critical issue in the use of NNF/ as compared with
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other indexes is its absolute value. Rules of thumb or other
more precise decision rules for model acceptability may have to
be somewhat different for NNFT as compared with the other
difference-based indexes considered in this article.

A class of indexes that use Wald or Lagrange multiplier statis-
tics 1n addition to fit information on a given model were also
developed. The Lagrange multiplier-based indexes appear not
to work in a common application where relative fit is assessed
by comparing a substantive model to the model of uncorrelated
or independent variables. On the other hand, the Wald-based
indexes were always implementable and appeared. in the exam-
ple, to perform quite well, with generally small sampling vari-
ability; however, they shcwed an upward bias. This bias may
originate from the fact that equivalence between Wald- and
difference-based statisiics was not complete at & = 1,600 with
the number of replications considered: Asympiotic equivalence
would 1mply that the sampling means of the statistics should
approximaiely relate as 7, = Ty + W, and that T, and (T, +
1) saould correlate close 1o 1.0 across the 200 replications.
In fact, (T, + W) exceeded T, by a factor of about 3 in beth
studies, and the correlations were only .73-.83. Thus, it is possi-
ble that even V = 1,600 is too small for asymptotic theory to
apply accurately enough, or that the noncentral chi-square dis-
tribution 1s not a totally appropriate reference distribution for
T;. There was some degradation in performance of all indexes at
N =50, where occasional linear dependencies among parameter
estimates and less than full-rank Wald tests were observed. At
large sample sizes, differences between all it indexes became
quite small. At N = 1,600 the correlations among all indexes
studied, computed across 200 sampling replications, were close
to 1.0, indicating that correlational performance differences be-
tween the indexes become irivial in very large samples. The ex-
ception was CF/ (and CF/1), which correlated only .91 with
the remaining in:dexes in the correct model analysis; however,
in the misspecified model analysis, these indexes correlated as
highly with others as did any other pair of indexes with each
-Jiher

The perfor
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{0 be computed from ihe EQJ ouiput.

Fit indexes as currently used are primarily descriptive statis-
tics. This article has developed a population index that provides
a more fundamental raiionale for assessment of comparative fit
than has previously been available. Yet essentially nothing is
known about the theoretical sampiing distribution of the vari-
ous estimators. A purely theoretical approach will no doubt be
difficult as fit indexes are intended to be applied in circum-
stances not covered by current theory in structural modeling,
for example, in small samples, when both models M, and A,
may be false. and when A/, may be true but M, is far away from
it. Research shouvid also address the use of other reference distri-
butions besides the noncentral chi-square distribution used
here for defining comparative fit. It is possible that the null
model of independence may be so different from the true model
that another distribution could be more appropriate at times
(see, c.g., Satorra, Saris, & de Pijper, 1987). Sample fit indexes

O~
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would then need to be redefined as well. Of course, statistical
theory may be limited in its relevance 1o assessing fit, and the
descriptive character of the indexes may continue 10 be a major
feature, as one important application will continue 1o be in very
large samples where almost any a priori model £ = 2(8) will be
false. that is, where any a priori model will have a comparative
fit that 1s statistically less than a perfect 1.0.

References

Anderson, J. C., & Gerbing, A. W. (1984). The effect of sampling error
on convergence, improper solutions, and goodness-of-fit indices for
maximum likelihood confirmatory factor analysis. Psychometrika,
49, 155-173.

Bearden., W. Q., Sharma, S., & Teel, J. E. (1982). Sample size effects '

on chi square and other staustics used in evaluating causal models.
Journal of Marketing Research, 19, 425-430.

Bentler, P. M. (1983). Some contributions to efficient statistics for struc-
tural models: Specification and estimation of morrent structures.
Psychometrika, 48. 493 -517.

Benter, P. M. (1986). Lagrange Multiplier and Wald tests for EQS and
EQS/PC. Los Angeles: BMDP Staustical Software.

Bentler, P. M. (1989). EQS structural equations program manual. Los
Angeles: BDMP Statistical Software.

Bentler, P. M., & Bonett, D. G. (1980). Sigaificance tests and goodness
of fit in the analysis of covariance structures. Psychological Budletin,
88. 588—606

Bentler, P. M., & Bonett, D. G. (! q87) This week’s Citation Classic.
Current Conzenzs S&BsS. 19(37 .

Bentler, P. M., & Dijkstra, T. (1985)‘ Eﬁicicm estimation via lineariza-
tion in structural models. In P. R. Krishnaiah (Ed.), Multivariate
analysis VI (pp. 9-42). Amsterdam: Elsevier.

Bentler, P. M., & Mootjaart, A. (1989). Choice of structural model via
parsimony: A rationale based on precision. Psychological Bulletin,
106, 315-317.

Bollen, K. A. (1986). Sample size and Bentler and Bonett's nonnormed
fir index. Psychometrika, 51, 3715-377.

Bollen, K. A. (1989). A new incremental fit index {or general structural
equation medels. Sociological Methods & Research, 17, 303-3106.

Bollen, K. A., & Liang, 1. (1988). Some properties of Hoelter's CN.
Sociological Methods & Research. 16, 492-503.

Bozdogan, H. (1987). Model selection and Akaike’s information crite-
rion {AIC): The general theory and its analytical extensions. Psycho-
metrika, 52, 345-370.

Davidson, R., & MacKinnon, . G.{1987). Implicit alternatives and the
local power of test statistics. Econometrica, 55, 1305-1329.

Dijkstra, T. K. (1981). Latent variables in linear stochastic models.
Groningen, The Netherlands: Rijksuniversiteit te Groningen.

James, L. R., Mulaik, S. A., & Brett, J. M. (1982). Causal analysis:
Assumptions. models, and data. Beverly Hills, CA: Sage.

Joreskog, K. G., & Sérbom, D. (1984). LISREL Vi user’s guide. Moores-
ville, IN: Scientific Software.

LaDu, T. J., & Tanaka, J. S. (in press). The influence of sample size,
estimation method, and model specification on goodness-of-fit assess-
ments in structural equation models. Journal of Applied Fsychology:

Lee, S. Y. (1985). On testing functional constraints in structural equa-
tion modeling. Biomertrika, 72, 125-131.

Lee.S. Y., & Bentler, P. M. (1980). Some asympiotic properties of con-
strained generalized least squares estimation in covariance structure
models. South African Statistical Journal, 14. 121-136.

Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness-of-fit
indexes in confirmatory facior analysis: The effect of sample size.
Psychological Bu[/e/in 103, 391-410.

Mulaik, S. A., James, L. R., Van Alstine, J., Bennett, M., Lind, S., &
Stiiwell, C. D. (i989). An evaluation of goodness of fit indices for
structural equation models. Psychological Bulletin, 105, 430-445.

Satorra, AL (1989). Alternative test criteria in covariance structure anal-
ysis: A unified approach. Psychometrika, 54, 131-151.

Satorra, A., & Bentler, P. M. (1988). Scaling corrections for chi-square
statistics in covariance structure analysis. AS4 Proceedings. Business
and Economic Statistics Section (pp. 308-313). Washington, DC:
American Statisiical Association.

Satorra, A, Saris, W. E., & de Pijper. M. (1987). A comparison of several
approximations to lh€ power function of the likelihood ratio test in
covariance structure analysis. ASA Proceedings, Business and Eco-
nomic Statistics Section {pp. 393-398). Washington, DC: American
Statistical Association.

Saxena, K. M. L., & Alam, K. (1982). Estimation of the non-centrality
parameter of a chi-squared distribution. 4nnals of Statistics, 10.

012-1016.

Sobel, M. E., & Bohrastedt, G. W.(1985). Use of null models in evaluat-
ing the fit of covariance structure models. In N. B. Tuma (Ed.), Socie-
logical methodology 1985 (pp. 152-178). San Francisco: Jossey-Bass.

Steiger, J. H., Shapiro, A., & Brownc‘ M. W. (1985). On the multivariate
asympiotic cistribution of sequential chi-square statistics. Psychomne-
trika, 50, 253-264.

Tucker. L. R., & Lewis, C (1973). A reliability coefiicient for maximum
likelihood fa thr "nalyszs Psychometrika, 38, 1-10.

Wheaton, B. {198 .ssessment of it in overideniified models with
latent varia D%es E o[owca! AMethods & Research, 16, 118-154.
Received February 25, 1988
Revision received Ocigber 12, 1988
Accepted May 16, 1989 &






