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In the current work we present the complete results for the measurement of normal Casimir force 

between shallow and smooth sinusoidally corrugated gold coated sphere and a plate at various 

angles between the corrugations using an atomic force microscope. All measured data were 

compared with the theoretical approach using the proximity force approximation and theory 

based on derivative expansion. In both cases real material properties of the surfaces and non-zero 

temperature were taken into account. Special attention is paid to the description of electrostatic 

interactions between corrugated surfaces at different angles between corrugations and samples 

preparation and characterization. The measured forces are found to be in good agreement with 

the theory including correlation effects of geometry and material properties and deviate 

significantly from the predictions of the proximity force approximation approach. This provides 

the quantitative confirmation for the observation of diffraction-type effects that are disregarded 

within the PFA approach. The obtained results open new opportunities for control of the Casimir 

effect in micromechanical systems.  
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I. INTRODUCTION  

 

The Casimir effect [1] has become well known due to many potential applications in both 

fundamental physics and nanotechnology. The most familiar is the attractive Casimir force 

between two planar neutral conducting surfaces placed in vacuum. Because the Casimir force 

goes inversely as a large power of the distance between surfaces it is large at sub-micron 

separations and plays an important role in micro- and nano-electromechanical systems (MEMS 

and NEMS). In MEMS/NEMS devices a common failure mode is the collapse of neighboring 

surfaces onto each other or the jump to contact of moving components with adjacent surfaces 

due to the Casimir force. This phenomenon is usually called stiction, pull-in effect or snap-down 

effect and has been a serious problem in NEMS/MEMS operation [2-7]. In condensed matter 

physics the Casimir effect finds application in the study of the properties of thin films and critical 

phenomena [8,9]. The precision measurement of the Casimir force has also been advanced as a 

powerful test for proposed hypothetical long-range interactions, including corrections to the 

Newtonian gravitational law at small distances predicted by the unified gauge theories, 

supersymmetry, supergravity and string theory [10-12]. Hence, there is an important need for 

further research on the Casimir effect motivated by the fact that it is finding new applications in 

both fundamental science and engineering.  

 The Casimir effect is viewed as originating from the modification of the quantum 

vacuum photon fluctuation spectrum due to the presence of boundaries such as the parallel 

plates. This approach naturally suggests a strong dependence of the force on the shape of the 

boundary. Many intriguing shape dependences have been predicted, including the possibility of 

obtaining repulsive forces for ideal metal spheres [13-14] and cubes [15-17]. These exotic shape 

dependences are yet to be tested. Uniformly corrugated surfaces provide a more convenient 

platform to explore some key aspects of the shape dependent Casimir force such as coherent 

diffraction like scattering of zero point photons [18-27].  

Alternately, the Casimir force can be viewed as the collective interactions of the charge 

and current fluctuations induced by the photons of the quantum vacuum on the two bodies. At 

non zero temperature, there is also a thermal photon contribution. Uniformly corrugated surfaces 

are an ideal system to explore the interplay of boundary shape and the length scale of the charge 

and current fluctuations. The coupled geometry and material dependence of the Casimir force 
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can be further enhanced by a measurement using two corrugated surfaces. The forces between 

the two corrugated surfaces can be studied with their axis aligned but as a function of the phase 

shift [21-24] or as a function of angle between the corrugation axis [28]. For understanding the 

role of coherent diffraction like effects, the important experimental size scales are corrugation 

period λ, and the separation between the corrugations, z. The vacuum and thermal photon 

wavelengths of interest are those that correspond to separation distance and the thermal 

wavelength λT=ħc/kBT. These couple with those representing the material reflectivity through the 

plasma wavelength λp=2c/p and the free electron scattering length = 2c/. The interplay of 

the different length scales associated with the photon wavelengths and boundary reflectivity, 

with the corrugation period and the angle between the two corrugations lead to a rich behavior in 

this system, making it a promising probe of these coupled phenomena [29-32]. The strong 

observed dependence of the Casimir force on the corrugation angle means, that this feature can 

be used in adjusting and controlling the moving parts in proposed micromechanical devices 

using corrugated surfaces and the Casimir effect [33-35].  

The normal Casimir force acting in the direction perpendicular to the interacting surfaces 

has been the most investigated aspect of the Casimir effect. This force component was studied 

between smooth surfaces and measured using various techniques such as the spring balance 

[36,37], the torsion balance [38,39] the AFM [40-46], macroscopic oscillators [47] and the micro 

torsion oscillator [4,5,48,49]. These studies have highlighted the material dependence of the 

Casimir force. Agreement between the measured data is obtained only when the material 

properties are taken into account. A key question on the role of free electron dissipation remains 

to be understood [39,44,49-58]. The optical modulation of the normal Casimir force has been 

demonstrated [59] and optically transparent boundaries have been used to cancel the Casimir 

force [60].  

The normal Casimir force has also been studied between a corrugated surface and a large 

spherical surface using the AFM [20] and a microtorsional oscillator [25-27]. These studies have 

pointed out the strong deviation of the measured Casimir force from approximate approaches 

such as the Proximity Force Approximation (PFA) [61,62]. In the simple PFA, opposing curved 

surfaces are then treated as infinitesimal parallel plates and Casimir energy is found as an 

additive sum of the corresponding local parallel plate energies. But Casimir forces are non-

additive and the PFA neglects diffraction effects from the curved boundaries and correlations 
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from the interplay of geometry, material properties and temperature. In addition, 1-D periodic 

structures such as corrugations modify the collective coherence effects. The effect of using two 

periodically corrugated surfaces has also been studied using the lateral Casimir force [19,21-

24,63]. In the lateral Casimir force the force tangential to the two surfaces, induced by a phase 

shift between the two aligned periodic corrugations is studied. For sinusoidal corrugation periods 

on the order of the separation distance a strong deviation from PFA including asymmetric force 

profiles where observed.   

The problem of a precise description of the Casimir effect and the surface geometry, for 

two interacting corrugations, remains nontrivial, which stimulates further investigation of 

geometry dependence of the Casimir effect. The use of two corrugations allows the additional 

parameter of the orientation angle between them as a means to study the strongly coupled 

geometry and material dependence. Changing the corrugation orientation angle modifies the 

effective length of the fluctuations. As remarked above sinusoidal corrugations when made of 

real materials is of special interest because provide an additional system to better understand the 

macroscopic effects of vacuum fluctuations and the coupling between the material dependent 

characteristic length scales. The experimental exploration of this problem might also be helpful 

for clarifying how to simultaneously consider both the dielectric properties of the interacting 

materials and their deformed geometry with sufficient precision, as well as, for estimation of 

uncertainties which can arise due to using the approximation methods in the Casimir force 

calculations. In this configuration both a normal and a lateral Casimir force can be detected. The 

rotation in the orientation of the two corrugations has also been proposed as a mechanism to 

generate vacuum fluctuation induced torques [64].  

In this paper we present the full description of experiment and theory of the normal 

Casimir force acting between a shallow and smooth sinusoidally corrugated sphere and a plate 

covered with a gold layer at different crossing angles between corrugations. Some of the results 

were briefly described in Ref. [28]. We present the description of experimental procedure and the 

measurement in more complete detail. In addition details of the theory underlying the 

perturbative computation of electrostatic force and the derivative expansion of the Casimir force 

are included. The forces were measured for corrugation periods of 570.5 nm and crossing angles 

from 0 to 2.4
o
. The measured forces at 300 K are compared with the theory based on the 

derivative expansion including the material properties with no fitting parameters. The derivative 
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expansion for smooth surfaces of the Casimir free energy is a local expansion in terms of the 

gradient of the height profile of the surfaces, regardless of the amplitude to distance ratio. It 

provides the leading order correction to the PFA. It is shown that inside the experimental error 

interval of 67% confidence level the measured Casimir forces are in agreement with the 

derivative expansion. For the corrugation wavelength used, the Casimir force increases by 15% 

at the closest sphere-plate separation point of 130 nm when the crossing angle between 

corrugations goes from 0 to 2.4
o
. The experimental data are also compared with theory based on 

PFA applied to both the corrugations and the curvature of the sphere. The material properties are 

included through the dielectric function as in Eq. (28). The PFA approximates the force by 

               
   , where      

    is the PFA approximation to the Casimir free energy per unit 

area between two corrugated  but otherwise planar surfaces as given by the Lifshitz theory, see 

Eqs. (15), (18) below. Strong deviation from the PFA theory is observed, pointing to the 

important role of geometry even for the small and smooth corrugation amplitudes used.  

The paper is organized as follows. In Sec. II the experimental setup, preparation and 

characterization of the samples are described. In Sec. III we describe the theory and experimental 

procedure for electrostatic calibration. In section IV the experimental results of Casimir force 

measurements, including the measurement errors are presented. In section V the derivative 

expansion and PFA theory that describes the normal Casimir force for the configuration of gold-

coated sphere and a plate covered with sinusoidal corrugations is presented. In section VI the 

theory developed is compared with the measurement results. We end with the conclusion in 

Section VII.  

 

II. EXPERIMENTAL SETUP AND SAMPLE CHARACTERIZATION  

 

The experimental apparatus used in this study is described elsewhere [46]. Here, we provide an 

abridged description and refer readers to Ref. [46] for additional details. An exception is made 

with regard to the force sensor, which is different from the one used previously [46]. A 

schematic diagram of the experimental setup is shown in Fig. 1.  

A standard AFM was used for the force measurements. It was placed in oil-free high 

vacuum chamber at pressure below 10
-6 

Torr and room temperature. The calibration of AFM 

piezo transducer movement was done with a fiber interferometer described elsewhere [65]. The 
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AFM was tuned to work in contact mode for measuring vertical cantilever deflection for every 

0.2 nm movement of the piezo actuator. For reducing mechanical noise, the system was 

maintained on an optical table and a sand damper box to prevent coupling of the low-frequency 

noise from the mechanical and turbo pumps was used. Liquid N2 cooling was used to further 

lower the noise and to stabilize the laser power in the AFM.  

To perform the Casimir force measurement, two aligned corrugated surfaces were 

required. This was achieved by imprinting a gold coated sphere onto a grating template as 

discussed below. Diffraction gratings with uniaxial sinusoidal corrugations and a 300 nm Au 

coating (from Horiba Jobin Yvon) was chosen as the first surface. The diffraction gratings were 

made on Pyrex glass and had a 300 nm Au coating. The same diffraction grating was used as a 

template for imprinting the corrugations on the top of the sphere as it described below. The grid 

surface was examined by an AFM and found to have a very homogeneous sinusoidal corrugation 

with a period of =570.50.2 nm and an amplitude A1=40.20.3 nm. The 3-D surface 

topography of the grating as measured with the AFM is shown in Fig. 2a. A minor sub-

oscillation of 1-2 nm amplitude with a stochastic mean and 110-140 nm period resulting from the 

manufacturing is also observed.  In Fig. 2b a typical cross section of the topography in Fig. 2a is 

depicted. These measurements were made after acquisition of the force data.  

A ~11 cm
2
 size of the diffraction grating was gently cut using a circular diamond cutter 

and the surface was checked for attached debris using an optical microscope. Then additional 

cleaning of the grating sample was done using the following procedure. First, the grating sample 

was sonicated in sulfur-free soap water for 10 min. After this, the piece was rinsed with DI water 

to remove soap and again sonicated in methanol and ethanol for 10 minutes each respectively. 

During the sonication process care was taken to delicately hold the sample far away from the 

container boundaries. Finally, it was dried with pure nitrogen and again examined with an optical 

microscope to check for surface damages. After confirming that the grating sample surface does 

not contain microscopic damages, it was fixed on a rotation stage. The stage with the sample 

grating was mounted on the top of the AFM piezo scanner (see Fig. 1). To provide electrical 

contact to the grating sample a thin copper wire was soldered to the edge of the grating using 

indium wire as a solder. This grating sample was used as a template for in situ imprinting of the 

corrugations on the bottom surface of an Au coated sphere of a specially prepared cantilever. 
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The force sensor was prepared in the following way. A polystyrene sphere of radius 

100 μm was attached to the tip of a 320 μm long triangular silicon-nitride cantilever with a 

nominal spring constant of order 0.01 N/m using conductive silver epoxy. Using the cantilever 

with triangle configuration allowed us to suppress the lateral Casimir effect that can lead to the 

torsional deflection (rotation) of the cantilever. The torsional spring constant of triangle 

cantilever is much larger than that corresponding to the bending making it sensitive to detecting 

the normal Casimir force, while simultaneously suppressing the effect of the lateral Casimir 

force. To improve the adhesion of the sphere, the cantilever with the freshly attached sphere was 

placed under heat lamp (250 Watt) at the distance of about 10 cm for 30 min and then placed in 

vacuum chamber for 24 hours to let all volatile gas molecules to evaporate. After the sphere was 

secured, the cantilever-sphere system was coated with a 10 nm Cr layer followed by a 20 nm Al 

layer and finally with a 110±1 nm Au layer using oil-free thermal evaporator at a 10
−7

 Torr 

vacuum. To provide an uniform coating of the metals, rotation of the sensor during the coating 

process. The radius of the Au-coated sphere was determined using a SEM to be R=99.6±0.5 μm. 

After the sensor preparation was complete, it was inserted into the AFM cantilever holder and 

the AFM was placed inside the vacuum chamber for force measurements.  

Next the in situ printing of the corrugations on the sphere bottom using the fixed 

diffraction grating on the sphere was done. After the chamber pressure reached 10
-7

 Torr, the 

grating sample was moved using a stepper motor to just touch the bottom of the sphere. The 

whole process was visually monitored, using a telescope and CCD camera attached to its output. 

The image was displayed on a large screen to precisely monitor the moment of sphere-plate 

contact. A metal stylus with a rounded end was slowly approached to the top side of the sphere 

using second stepper motor to gently touch the sphere (see Fig. 1). Then the AFM piezoelectric 

tube was extended to its maximum length. As a result, the sphere was squeezed between the 

grating and the stylus end leading to the imprint of the corrugations onto the sphere bottom. It 

was confirmed that the radius or ellipticity of the sphere remained unchanged. After the 

imprinting process, the metal stylus was removed and the force measurements were started. The 

topography of the imprinted corrugations measured using an AFM after completion of the force 

measurements is shown in Fig. 3a. In Fig. 3b, the profile of the corrugations perpendicular to the 

axis is fit to a sinusoid and the amplitude was found to be A2=14.60.3 nm. The amplitude was 
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relatively uniform as shown. A scanning electron image of the imprinted corrugations is shown 

in Fig. 4. The size of imprinted area was measured to be about Lx~Ly~14 m.  

Special attention was paid to the evaluation of the inhomogenuities (roughness) of the 

corrugations on the grating sample and imprinted sphere. Here we use the procedure described in 

Ref. [24]. The stochastic roughness was obtained from AFM topography measurements with the 

same procedure for both surfaces. Here, we compared the measured surface profile of the 

corrugations (circles in Fig. 2b and 3b) with a sine function (solid line in Fig. 2b and 3b). 

Following this, we calculated the difference between the experimentally measured data points 

and the sine function and the corresponding rms deviation between the two. This was repeated at 

20 different corrugation periods and the variance describing the stochastic roughness was found 

to be equal to 1=2.9 nm and 2=1.9 nm for the corrugated plate and sphere respectively.  

For changing the orientation angle between the corrugations, the corrugated plate was 

rotated using a stage controlled with a stepper motor. The stepper motor was actuated by 

rectangular pulses from a function generator and the control of the pulses was monitored using 

an oscilloscope. Prior to the measurements, the stepper motor was independently calibrated and 

the uncertainty in the rotation angle was determined to be 0.1. The Casimir forces between the 

corrugations were measured at the crossing angles of =0, 1.2, 1.8 and 2.4 degree respectively.  

 

III. ELECTROSTATIC INTERACTION  

 

The deflection of the cantilever in response to a force between the corrugated sphere and plate is 

calibrated using the electrostatic force. The calibration allows the determination of the values of 

such parameters as the cantilever spring constant k, average separation distances on contact z0 

and the residual potential difference V0 between the sphere and the corrugated plate. These 

parameters are obtained as a result of comparison of experimentally measured electrostatic force 

with a theoretical model of electrostatic interaction between sphere and plate.  

The total force between the corrugated sphere and plate is given by the sum of electric 

and Casimir forces. The cantilever deflection signal due to the total force can be represented in 

the form:  

  
'

)z(F
VV

'

)z(X

'

)z(F)z(F

'

)z(F
)z(S Cas2

0i

Caseltot

def





  ,  (1) 
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where FCas and Fel=X(z)(Vi -V0)
2 

are the Casimir and electrostatic forces between the corrugated 

sphere and plate, which are the functions of sphere-plate separation z. Here z is measured from 

the mean values of the two corrugations. Even when both corrugations are grounded there is a 

residual potential V0 which is the present between the surfaces due to the different surface work 

functions of the sphere and plate materials. This value of V0 can result from the different paths 

taken to the ground, the polycrystalline nature of the Au coating or contaminants. The expression 

for the coefficient X(z) is discussed below. The term ’≡m is the calibration constant of the 

cantilever measured in the units of force per unit deflection (pN/mV), where  is the cantilever 

spring constant and m is the cantilever deflection in units of nm per unit photodetector signal.  

 

A. Theory  

The coefficient X(z) of theoretical electric force in Eq. (1) can be obtained in the following way. 

We employ a perturbative expansion to compute the electrostatic energy per area A between two 

corrugated plates located at )(Hz 1 r  and )r(Hz 2 . It is given by 

 

    
2

1

( )

2 20

( )

( ) ,
2

H

el

A H

U d dz
A


  
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r

r      (2) 

where the potential  obeys  

 

    02   , 0
)(Hz 1


 r

 , ,V
)(Hz 2


 r
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such that the surfaces have a voltage difference of VVi-V0. Solving Laplace’s equation 

perturbatively in the height profiles yields the general expression for the energy of two surfaces 

)(h)(H 11 rr   and )(hz)(H 22 rr  to second order in the height profiles )(h j r , 
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where k is the in-plane wave vector of the Fourier transformed height profiles )(h
~

j k . We have 

assumed that the spatial average of )(h j r
 
vanishes.  

 To study two corrugated surfaces, which have amplitudes A1 and A2, corrugation 

wavelength  and crossing angle  between the corrugation axes, we consider the two profiles 
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so that the Fourier transforms of the profiles are proportional to )()( jj kkkk    with 

x̂)/2(1 k  and  sinŷ)/2(cosx̂)/2(2 k . Hence one has the integrals 
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where the delta functions for a plate of finite area        are given by 
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Using Eqs. (4), (6), (7) and (8), we get for the electrostatic energy per area for small values of  
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 Eq. (9) was compared with a numerical computation of the electrostatic force using a 

finite element method for separations between 160 to 400 nm and for angles between 0° and 

2.4°, and was shown to agree to better than 1%.  

 

The usual PFA yields for the electrostatic force between a flat plate and a sphere of radius 

R the result 

   el

PFA

el RU2F  ,       (10) 

 

assuming that    . Since in the present experiment   is also much larger than all other 

geometric length scales, we can apply Eq. (10) to the corrugated surfaces and combine it with 

Eq. (9) to obtain the coefficient X(z) in Eq. (1). For small values of  it becomes 
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 (11) 

 

where PFA requires     and perturbation theory assumes            The ratio z/ can be 

arbitrary.  

 

B. Experimental calibration  

The calibration parameters were independently obtained for each value of crossing angle  using 

the electrostatic force. For that purpose, the following measurement procedures were done. For 

application of voltages to the corrugated plate it was connected to a voltage supply operating 

with 1 μV resolution. To protect the sample surfaces from current surges when the surfaces come 

in contact, a 1 kΩ resistor in connected in series with the voltage supply. The cantilever with the 

attached corrugated sphere is grounded. To eliminate the adverse effect of electrical ground 

loops all the ground connections were unified and tied to the AFM ground.  

The electrostatic force between corrugated plate and sphere as a function of the 

separation z is measured for eleven different voltages Vi applied to the corrugated plate.  A range 

of voltages from -40 to -145 mV were applied to the corrugated plate.  The mean separation z 

between the bottom of the sphere and the corrugated plate is varied by applying voltages to the 
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AFM piezo. For this purpose a 0.05 Hz continuous triangular voltage was applied leading to the 

piezo extension represented by zpiezo. Prior to all measurements, zpiezo was calibrated 

interferometrically [65]. Starting at a maximum separation of 2 m, the corrugated plate was 

moved towards the sphere and the cantilever deflection recorded every 0.2 nm. The net change in 

the corrugated sphere-plate separation is a sum of that from the piezo and the small contribution 

from the cantilever deflection and is given by [46]  

z=zpiezo+mSdef+z0,     (12)  

 

where, mSdef is the change in separation distance due to cantilever deflection and z0 is the average 

separation on contact of the two corrugated surfaces. All distances are referenced to the mean 

value of the corrugations. Although, cantilever deflections were acquired every 0.2 nm of zpiezo, 

the data analysis was done only for interpolated values at every1 nm step.  

After the deflection Sdef due to total forces were measured, the first step was to subtract 

any mechanical drift of the photodetector system with respect to the cantilever. For distances 

larger than 1.7 µm, the force between the Au sphere and grid is below the instrumental 

sensitivity. At these separations, the noise is larger than the signal and in the absence of 

systematic errors the signal should average to zero and have no dependence on the corrugated 

sphere-plate separation. Therefore, any linear alteration in signal Sdef is due to the mechanical 

drift of the cantilever-photodiode system. Such a linear drift was present even in the absence of 

the corrugated sphere and plate. To subtract this systematic drift the following procedure 

outlined in Ref. [66] was used. Sdef at distances larger than 1.7 µm was fit to a straight line, and 

the straight line was subtracted from the measured Sdef at all separation distances to correct for 

the effects of photodiode mechanical drift. This subtraction led to the mean deflection signal at 

large distances being equal to zero. This procedure was repeated for all experimental 

measurements. The next step was to precisely determine the point of corrugated sphere–plate 

contact and the cantilever deflection coefficient m as described in Ref. [66]. The value of m was 

determined to be 102.1±0.5 nm/unit deflection signal. The obtained value of m was used to 

calculate the change in separation mSdef due to the cantilever deflection. This with Eq. (12) 

determines the corrugated sphere-plate separation z up to the value of z0 (which is constant for 

the complete set of measurements).  
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The same electrostatic force dataset were used for determining the residual contact 

potential V0, the cantilever calibration constant ’, and the average separation on contact z0. The 

parabolic dependence of the electrostatic force (Eq. (1)) on the applied voltage Vi for a fixed 

separation z was used in the determination of these quantities. The first step in the process is the 

determination of V0 and the parabola curvature β(z)X(z)/’ at every corrugated sphere-plate 

separation z. An example is shown in Fig. 5 where the deflection signal Sdef measured at the 

corrugated sphere-plate separation za=135 nm as a function of the applied voltage is shown as 

squares. This dependence was best χ
2
-fitted with parabolas (Fig. 5, line) to determine the value of 

V0, the parabola vertex, and the value of the coefficient β(z)X(z)/’, the parabola curvature. The 

curvature of the parabola depends on the cantilever calibration constant ’ and the average 

separation on contact z0. The same procedure was repeated at each separation and β(z)obtained as 

a function of z. Some values of β(z) for =0 are 14.86±0.06, 13.86±0.06, 8.06±0.06, 4.26±0.06 

V
-1

, at separation distances of 145, 155, 265 and 500 nm respectively. From best 2
 fitting of the 

experimentally obtained β(z) by X(z)/’, where X(z) is determined by Eq. (11), we obtained the 

values of ’ and z0.   

It is important to check if V0 changes with the corrugated sphere-plate separation z. 

Fig. 6a-d shows the V0 obtained at all separations z for the four different crossing angles used in 

the experiment. The presence of contaminants on the corrugated sphere and plate would lead to 

V0 changing systematically with the separation z [67-72]. The V0 is found to be independent of 

separation and crossing angle. To check for possible systematic errors in the determination of ’ 

and z0, the following procedure was done [66]. First, the experimental β(z) was fitted from the 

closest corrugated sphere-plate position to an end point zend=1000 nm, and the values of z0 and ’ 

were determined. Then the end point was decreased by 100 nm and the fitting was repeated, i.e. 

smaller range of z values were used in the fitting procedure. That was repeated for 13 values of 

the end point each less than the previous by 100 nm at large zend and 50 nm at small zend. The 

dependences of ’(zend) and z0(zend) are shown in Fig. 7-8 for all crossing angels . Both are 

constant within the random errors and independent of the value of zend chosen. The independence 

of these two parameters on separation indicates the absence of separation distance calibration 

and other uncontrolled systematic errors. The same distance independency of calibration 

parameters were observed for all crossing angles . From the value of z0 the absolute separation 
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distance can be determined and the value of k
’
 is used to convert Sdef to a force for each  

separately. The corresponding mean values of the parameters that were used for force calibration 

with the errors at 67% confidence level are given in the Table I. 

 

IV. CASIMIR FORCE MEASUREMENT  

 

Using the cantilever calibration parameters above, the Casimir force was calculated from the 

subtraction of the electrostatic force from the total measured force Eq. (1) as Fcas(z)= ’Sdef(z)-

X(z)(Vi-V0)
2
, where Vi are the applied voltages to corrugated plate while the sphere remains 

grounded.  We applied 11 voltages Vi and at each voltage the cantilever deflection Sdef(z) was 

measured 10 times as a function of the corrugated sphere plate separation z.  

This cantilever deflection Sdef(z) corresponds to that of the total force, Casimir and 

electrostatic. The mean value of FCas as a function of z (with a step of 1 nm) calculated from 110 

individual values of the total force are shown as crosses in Fig. 9. The size of the cross 

corresponds to the horizontal and vertical total (random plus systematic) experimental errors at 

67% confidence level. From Fig. 9 it can be observed that the magnitude of the Casimir force 

increases with the orientation angle. The Casimir force at a distance of 130 nm increases in the 

order 84.9, 88.8, 92.5 and 97.8 pN for orientation angles of 0°, 1.2°, 1.8° and 2.4° respectively 

for a total change of 15%. At a separation of 150 nm, the same forces are equal to 55.7, 57.8, 

59.2 and 62.1 pN corresponding to a net increase of 11%. Note that this angle dependence is a 

finite size effect. For larger angles beyond 2.4°, the multiple crossings of the corrugations will 

lead to negligible angle dependence.  

The error analysis of the experimental data was done as described in Ref. [44,46,73] for 

67% confidence level. The variance of the mean value of Casimir force obtained from 110 

measured force curves was found to be independent of corrugated sphere-plate separation.  The 

mean values of the variance was found to be equal to 0.51, 0.45, 0.49 and 0.49 pN for the 

crossing angles 0°, 1.2°, 1.8° and 2.4° respectively. These values can be considered as random 

errors in the Casimir force measurements if we choose the 67% confidence level. For the 110 

measurements, the degree of freedom is equal to 109. The systematic error in the measured 

forces is determined by [73] the instrumental noise (including the background noise) and errors 

in calibration. The latter is largely influenced by the errors in the measurement of the separation 
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distances. Thus the systematic error is naturally separation dependent and increases at short 

distances. At the shortest separation, the maximum value of the systematic error in the Casimir 

force determination was found as 0.79 pN for =0° and the minimum as 0.73 pN for =1.8°. To 

get the total absolute experimental error for the uncertainty in the measurement of the Casimir 

force, we quadratically added the random and systematic errors. An illustration of the typical 

dependence of the total error in the Casimir force determination on the corrugated sphere-plate 

separation is given in the Fig. 10 for the crossing angle of =1.2°. The total error changes within 

the range from 0.88 to 0.78 pN as a function of the separation. In the same graph we plotted the 

random and systematic error dependences on the corrugated sphere-plate separation. The relative 

total experimental error in the Casimir force measurement increases with increasing the 

separation distance. For example for the separation distances z=127, 200 and 300 nm it was 

found to increase as (a) 1%, 3.2% and 10.3% for the =0°, (b) 0.9%, 3.2% and 10.6% for the 

=1.2°, (c) 0.9%, 3.2% and 10.1% for the =1.8°, (d) 0.8%, 3.1% and 10% for the =2.4°.  

 

V. THEORY OF CASIMIR FORCE BETWEEN CORRUGATIONS  

 

To compare the experiment with the theoretical Casimir calculations, we need to take into 

account the geometric features, the finite temperature and real material properties. The important 

geometric features to consider are the sphere-plate geometry, the corrugations on both the sphere 

and the plate, and the angle of orientation between the two corrugated surfaces. In this approach, 

to apply the derivative expansion, the PFA is used to treat the curvature of the sphere, and relates 

the force to the energy per unit area as 2Der

corrF RU , where the energy of two corrugated 

plates, Ucorr, is calculated using the derivative expansion introduced by Fosco et al. [74] for 

scalar fields and Bimonte et al. [61,75] for the electromagnetic field in the presence of perfect 

conductors and dielectric materials. The latter calculation takes into account the material 

properties and finite temperatures as well as the corrugations. We expect that a first order 

derivative expansion is sufficient since the derivative of the surface profiles is of 

order  14.6/570.5 ~0.026 and 40.2/570.5 ~0.070, respectively. 

Consider two almost flat periodic surfaces separated by an average distance z. Let h1(x,y) 

and h2(x,y) be the position dependent height profiles of the surfaces. The total local separation 

between the plates in the z direction is then 
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Following [61], we can write the average energy per unit area between two slowly curving 

surfaces as 
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where A is the area of integration, U(H) and U’(H) are the Casimir energy per unit area between 

two perfectly flat parallel plates separated by a distance H and its first derivative, and (H) is a 

coefficient that is given by the derivative expansion (see below). 

For two corrugated surfaces with an angle  between the corrugations, the height profiles 

are explicitly given by Eq. (5). The first term in Eq. (14) corresponds to the traditional PFA. 

While there is some  dependence for infinite sized systems due to the derivative terms in Eq. 

(14), a separate stronger  dependence of the Casimir energy between corrugated plates can be 

found for finite sized plates. For any infinite sizes plates and any non-zero value of the angle , 

the PFA energy per unit area between two plates is given by the integral over a unit cell, 
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where the prefactor is the inverse of the area of the parallelogram unit cell, and the limits of 

integration cover a single unit cell.  Under the change of variables x’=x, y’=x cos-y sin, the 

distance H(x,y) and the limits of integration become independent of , and the Jacobian of the 

transformation cancels the sin from the area of the parallelogram. Therefore in order to obtain a 

 dependence to leading order, we must consider that at least one of the plates is of finite extent. 

Assuming that one of the corrugated plates has dimensions LxLy, by substituting the 

profile functions into Eq. (14), we see that the integral will be highly oscillatory in both x and y 

unless Ly sin/ is of order unity. In the case where Ly sin/ is much larger than 1, the integral 

given in Eq. (14) can be approximated by the integral over a single unit cell, and for the same 
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reasons given above there will be no  dependence. Therefore, we can assume that Ly sin is of 

the same order as . Since the plate is large enough to contain many periods (Ly >> ), the angle 

must be very small (sin << 1). We can simplify the profile function h2 by using the small angle 

approximation 

 

   ),/)yx(2cos(A)y,x(h 22        (16) 

 

The final result of the Casimir energy per unit area between two corrugated surfaces is obtained 

using Eq. (14) where the limits of integration are explicitly given by 
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and the profiles functions are given by Eqs. (13), (5), and (16). Errors in Lx have negligible 

effect, as the average over one period is the same as over many periods. We have computed the 

error in the force introduced by a 0.5 m error in Ly and found it to be 0%, 1%, 1.6% and 1.5% 

for angles of 0, 1.2, 1.8 and 2.4 respectively at a mean separation of 100 nm. The effects of 

finite temperature and material properties are contained in the functions U(H), U’(H), and (H). 

The function U(H) is given by the Lifshitz formula 
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(18) 

 

where kB is Boltzmann's constant, T is the temperature, p is the polarization (in this paper for TM 

polarizations p=1 and for TE polarizations p=2), n is the n
th

 Matsubara frequency, rp(in,k) are 

the Fresnel reflection coefficients, k is the magnitude of the k  vector, and 
222 kc/    is 

the Wick rotated wavenumber in vacuum. The function U’(H) can be simply calculated as the 

partial derivative of Eq. (18) with respect to H. The coefficient (H) can be calculated from the 

small k expansion of the kernel )k(G
~

 of the 2
nd

 order perturbation theory in the height profile. It 

is given by [61] 
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The functions Bpp’ and B2,pp are obtained by expanding the scattering matrix perturbatively in the 

height field [61,77]. The material properties enter the calculation via the dielectric function (i) 

that is included in both the Fresnel reflection coefficients rp and the functions Bpp’ and B2,pp. For 

completeness sake they are given here explicitly. The reflection coefficients are 
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where 
222 kc/)i(    is the Wick rotated wavenumber in the material. The first 

function Bpp is given by 

  ),'k,(d

'kk'kk

ẑ
'kk

ẑ
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where the indices p=1,2 and p'=1,2 number the element of the matrix B, and 
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The second functions B2,pp are for TM- and TE-polarizations respectively 
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The theoretical computation of the Casimir forces is performed with realistic properties of Au at 

300K. The dielectric function of Au was expressed using a 6-oscillator model for the core 

electrons and the Drude model for the free electrons, which on the imaginary frequency axis is 

given by 
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For Au we use the plasma frequency ωp=9eV/ħ, the relaxation frequency γ=0.035eV/ħ, and the 

oscillator constants gi from Ref. [49]. Small roughness corrections were taken into account as 

described in Ref. [24]. 

 

VI. COMPARISON BETWEEN EXPERIMENT AND THEORY 

 

 Angular dependence  

 

The comparison of the experimental data with theory is shown in Fig. 9. No fitting parameters 

are used in the comparison of theory and experiment. At the start of the experiment i.e. =0
o
, the 

corrugations on the sphere and plate are considered to be in perfect registry, with the valleys in 

the former directly above the peaks of the latter due to the in situ imprint procedure used 

[21,22,24]. This means that for >0
o
, the peaks on the two corrugations approach each other 
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leading to an increase in the magnitude of the attractive force observed. Good agreement 

between experiment and theory is found for all the crossing angles between the corrugations. We 

illustrate the coupled geometry and material dependence of the Casimir force from the 

corrugated plate-sphere system in two different ways. In Fig. 11 the deviation from PFA is 

explored by plotting the ratio of the experimental data to the force obtained from PFA 

(corresponding to      
   ). The deviations at the shortest common separation 127 nm, where the 

relative experimental error are small, are 7.7%, 4.7%, 2.3%, 1.8% for the angels =0, 1.2, 1.8 

and 2.4 respectively. This is consistent with our theoretical computations which indicate that the 

magnitude of the deviation saturates at ~2% for crossing angles >2
o
 at the smallest separation for 

these corrugation parameters. Note that these deviations are observed even with the shallow 

smooth small amplitude corrugations on the sphere used. Due to the size of the error bars at the 

larger separations, no definitive observations on the change with z for the different crossing 

angles can be made. Alternatively, one can observe the role of the diffraction like correlation 

effects and the interplay of the material properties on the geometry of the periodic corrugations 

by comparing the difference force obtained by subtracting the theoretical PFA force 

(corresponding to      
   

 at 300 K) from the measured values. This is displayed in Fig. 12. Here 

the difference between the experimental data and the PFA is compared to the difference force 

between the derivative expansion and the PFA, corresponding to Ucorr -      
    both at 300 K. The 

error bars (at 67% confidence level) represent the data and the theoretical difference is 

represented by the solid line. For clarity of observation only data at every 3 nm separation are 

shown in the figure. One can observe that there is a significant deviation of the experimental data 

from the theory based on simple PFA which ignores correlation effects. The difference is a 

measure of the diffraction like correlation effects. For the separation of 130 nm the absolute 

deviation is 5.9, 4.2, 2.1, 0.98 pN for crossing angles =0, 1.2, 1.8 and 2.4 respectively. Note 

that while the magnitude of the force (Fig. 9) increases with crossing angle the difference force 

has the opposite relationship. The solid lines in Fig. 12 which represents the deviation of the 

derivative expansion from PFA are in good agreement with the deviation from PFA observed in 

the experiment. The agreements show that the derivative expansion is a good approach for 

understanding the complete Casimir force between two corrugated surfaces.  

The role of the diffraction like correlation effects can be understood in relative isolation 

from the material dependence by comparing the same difference of the measured force from PFA 
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to the theoretical difference force computed by subtracting the PFA force from that obtained 

using the derivative expansion for ideal metal corrugated surfaces at 300K. The theoretical 

difference is shown as dotted line in Fig. 12. The difference between the dashed and solid lines is 

a measure of the theoretical material dependence. In Fig. 12(a) the ideal metal result deviates 

from the observed difference force. The apparent agreement in Fig. 12(b) is a numerical 

coincidence and is part of a trend, where the theoretical force difference for an ideal metal 

increases with crossing angle. The difference is more clear for the other angles as shown in Fig. 

12(c)-(d). It should be noted that this is only a difference between forces, and the total Casimir 

force is always larger for the perfect metal. To explore the role of temperature the ratio of the 

experimental data to the force from the derivative expansion at 300 K and 0 K is shown in the 

inset to Fig. 12. The data is found to be consistent with 300 K particularly at the smaller crossing 

angles.  

 

VII. CONCLUSIONS AND DISCUSSION 

 

In conclusion, we have experimentally demonstrated the angle dependence of the normal Casmir 

force between a corrugated plate and corrugated sphere. An Au coated plate with sinusoidal 

grating of period 570 nm and an amplitude of 40.2 nm was used as one surface. A pressure 

imprinting procedure was used to transfer the corrugations to the bottom of Au coated sphere 

resulting in aligned corrugations with the peaks of the corrugated plate corresponding to valleys 

in the imprint on the sphere. The normal Casimir force was measured at different crossing angles 

between the corrugations which was achieved by rotating the corrugated plate. The residual 

potential and the mean separation on contact between the two corrugations were verified to be 

independent of separation. Both random and systematic errors were found and combined to give 

a total error, which was used in the comparison. The random error was found to be independent 

of separation between the corrugations. The systematic error increased at smaller separation due 

to the distance dependence of the electrostatic force used in the calibration. The theoretical 

calculation of the electrostatic force was verified numerically to better than 1%. The measured 

Casimir force was shown to increase by 15% at 130 nm separation when the orientation angle 

between corrugations increased from 0° to 2.4°. The measurements were found to be in 

agreement with theory based on the derivative expansion which includes the diffraction like 
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correlation effects and the real material properties of the Au surfaces. The comparison between 

experiment and theory were made with error bars representing the 67% confidence level. No 

fitting parameters were used in the comparison. The role of the correlation effects and material 

properties were explored by different comparisons to the PFA, which ignores the complex 

interplay of the boundary geometry. The ratio of the measured Caimir force to that from PFA 

showed a deviation as large as 7.7% for a crossing angle of 0
o
 at the shortest separation even for 

the shallow corrugations used. The deviations due to the coupled correlation and material 

properties were also examined by comparing the difference of the measured force and PFA to the 

difference of the theoretical force from the derivative expansion and PFA. The agreement 

between the experimental difference force and that of the derivative expansion theory with real 

material properties are included, demonstrate the interplay of the correlation effects of the 

geometry with the dielectric properties of the boundary. The role of the material properties was 

independently assessed by a comparison to the derivative expansion theory using ideal metals. 

The role of temperature in the measured force was studied and the experimental results were 

shown to be more consistent with the derivative expansion theory at 300 K. The results give an 

experimental verification of the derivative expansion approach to calculating the Casimir force. 

These results indicate that the angle dependent Casimir force for two oriented corrugations is an 

important system for understanding the non-trivial combined interactions of geometry, material 

properties and temperature. This demonstration of the normal Casimir force between corrugated 

surfaces will find applications in adjusting and controlling the functionality of closely spaced 

moving parts of micromachines in the nanotechnology industry.  
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Fig. 1: Schematic of the experiment setup. 
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Fig. 2: (a) Am AFM scan of the grating surface showing the sinusoidal corrugations. (b) A 

typical section of the grating surface along y=const plane. The solid line is a sine function 

obtained from the fit.  
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Fig. 3: An AFM scan of the surface of the sphere showing the imprinted sinusoidal corrugations. 

(b) A typical section of the grating surface along a y=const plane. The solid line shows a sine 

function obtained from the fit.  
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Fig. 4: Scanning electron micrograph of the imprint of the corrugations on the sphere.  
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Fig. 5. The deflection signal Sdef as a function of the applied voltage V at a fixed separation of 

135 nm between the sphere and the plate. Line is the best fit of the data by parabolic dependence 

(see Eq. (1)).  
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Fig. 6. The residual potential difference V0 between the sphere and the plate surfaces as a 

function of separations for (a) 0, (b) 1.2, (c) 1.8 and (d) 2.4 degree crossing angle between 

corrugations.   
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Fig. 7. The separation on contact z0 between the sphere and the plate surfaces as a function of the 

end point zend for (a) 0, (b) 1.2, (c) 1.8 and (d) 2.4 degree crossing angle between corrugations. 
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Fig. 8. The calibration constant ’ as a function of the end point zend for (a) 0, (b) 1.2, (c) 1.8 and 

(d) 2.4 degree crossing angle between corrugations.  
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Fig. 9: The mean values of measured Casmir forces are shown as crosses for different orientation 

of the corrugations. The forces from the top to the bottom correspond to orientation angles of 0
o
, 

1.2
o
, 1.8

o
 and 2.4

o
 respectively. The size of the crosses represents the total error at 67% 

confidence level. Separations distances from 127 to 230 nm are shown. The solid lines represent 

the theoretical Casimir forces F
Der

 calculated in section V using derivative expansion. No fitting 

parameters are used in the comparison of theory and experiment.  
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Fig. 10: The random (dash line), systematic (dotted line), and total (solid line) errors in the 

measured Casimir force determined at a 67% confidence level are shown as functions of 

separation z for the 1.2 crossing angel. 
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Fig. 11: The ratio of measured Casimir forces (presented in the Fig. 9) to the force calculated 

using PFA at (a) =0, (b) =1.2, (c) =1.8 and (d) =2.4.  
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Fig. 12: The difference Casimir force FCas=Fexp-F
PFA

 represented as crosses corresponding to 

error bars at 67% confidence lever for corrugation orientation angles of (a) 0
o
, (b) 1.2

o
, (c) 1.8

o
 

and (d) 2.4
o
. The solid line is the corresponding difference between the two theories F

Der
–F

PFA
 

calculated in section V, which is a measure of the correlation effects. Significant deviation from 

the PFA is observed and the good agreement with the theory based on derivative expansion is 

found with no fitting parameter. The dashed line is the theoretical difference for ideal metal 

corrugated surfaces at 300 K. The data is presented every 3 nm for clarity. Inset in (a) and (b) 

shows the ratio of the data to the force from the derivative expansion at 300 (black squares) and 

0 K (gray circles); the same ratios for the angels 1.8
o
 and 2.4

o
 were indistinguishable.  
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Table I. The mean value of residual electrostatic potential V0, the closest separation distance z0 

and the cantilever calibration constant ’ for each measured crossing angel .  

 

 

 V0 (mV) z0 (nm) ’ (pN/mV) 

0 -90.2±1.3 126.2±0.4 1.35±0.02 

1.2 -89.5±1.1 126.5±0.4 1.34±0.02 

1.8 -89.9±1.3 126.3±0.4 1.34±0.02 

2.4 -89.7±1.2 126.7±0.4 1.35±0.02 

 

 




