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Abstract

The application of microarray technology in schizophrenia research was heralded as paradigm-

shifting, as it allowed for high-throughput assessment of cell and tissue function. This technology 

was widely adopted, initially in studies of postmortem brain tissue, and later in studies of 

peripheral blood. The collective body of schizophrenia microarray literature contains apparent 
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inconsistencies between studies, with failures to replicate top hits, in part due to small sample 

sizes, cohort-specific effects, differences in array types, and other confounders. In an attempt to 

summarize existing studies of schizophrenia cases and non-related comparison subjects, we 

performed two mega-analyses of a combined set of microarray data from postmortem prefrontal 

cortices (n = 315) and from ex-vivo blood tissues (n = 578). We adjusted regression models per 

gene to remove non-significant covariates, providing best-estimates of transcripts dysregulated in 

schizophrenia. We also examined dysregulation of functionally related gene sets and gene co-

expression modules, and assessed enrichment of cell types and genetic risk factors. The identities 

of the most significantly dysregulated genes were largely distinct for each tissue, but the findings 

indicated common emergent biological functions (e.g. immunity) and regulatory factors (e.g., 

predicted targets of transcription factors and miRNA species across tissues). Our network-based 

analyses converged upon similar patterns of heightened innate immune gene expression in both 

brain and blood in schizophrenia. We also constructed generalizable machine-learning classifiers 

using the blood-based microarray data. Our study provides an informative atlas for future 

pathophysiologic and biomarker studies of schizophrenia.

Keywords

schizophrenia; gene expression; transcriptome; brain; blood; innate immunity; support vector 
machine; random forests

INTRODUCTION

The molecular bases of schizophrenia (SZ) remain unresolved despite decades of 

intensifying research. This situation impedes progress toward biologically based risk 

assessment and diagnostic testing, early detection, and the development of rationally 

selected therapeutics to alter disease progression and clinical trajectory. As such, 

characterizing molecular correlates of SZ is of great potential interest and value. In the past 

15 years, the transcriptome has received growing attention in SZ research, particularly in the 

effort to identify biomarkers—objective biological indicators of normal functioning or 

illness. Whole-transcriptome quantification (e.g., by microarray) offers several attractive 

features: (1) it provides a relatively efficient and unbiased means of screening many analytes 

of a single molecule type (i.e., messenger RNAs, mRNAs); (2) RNAs can be mapped 

reliably onto genes and proteins to assess a wide range of biological processes; (3) the 

measurement of large numbers of biological features allows for the assessment of network 

function; and (4) differences in mRNA expression reflect the combination of genetic and 

environmental factors, making it a more dynamic and responsive readout of biological 

function than static genetic variants. Indeed, transcriptome-wide studies of postmortem brain 

tissues have revealed altered molecular pathways and helped generate new hypotheses about 

the biological underpinnings of SZ. Similarly, studies of blood samples from individuals 

with SZ shed light on disturbances in circulating immune cells and could provide a basis for 

easily assessable SZ biomarkers.

Despite the vast potential and initial enthusiasm surrounding the use of microarrays in SZ 

research, the cross-study replication of genes and pathways found to be disrupted in SZ is 

Hess et al. Page 2

Schizophr Res. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mixed (Mirnics et al., 2006). A variety of practical and technical limitations may contribute 

to this, including: the evolution of new array technologies over time, the likelihood of 

etiologic heterogeneity of SZ (Arnedo et al., 2015; Tsuang and Faraone, 1995), the use of 

small sample sizes, and the inability to adequately protect against type-I errors, all of which 

exacerbate the “winner’s-curse” phenomenon that undermines replication. In light of these 

issues, several studies have sought to consolidate the knowledge of transcriptomic 

abnormalities in SZ via meta-analysis (Bergon et al., 2015; Mistry and Pavlidis, 2010; 

Mistry et al., 2013a; Pérez-Santiago et al., 2012). These studies bolstered confidence by 

employing consistent preprocessing methods and demonstrating some similar dysregulated 

genes and network features across different studies; the implicated biological functions 

included oxidative phosphorylation, protein and nucleotide metabolism, synaptic 

transmission, myelination and glial function, and immune function, each of which have been 

implicated in previous work (Åberg et al., 2006; Dean, 2011; Devor and Waziri, 1993; 

Fineberg and Ellman, 2013; Middleton et al., 2002; Potvin et al., 2008). However, the 

approaches employed in previous meta-analyses studies had some limitations: (1) for the 

detection of differentially expressed genes, meta-analysis of summary statistics is relatively 

underpowered compared with combined-samples re-analysis of individual level data; (2) 

summary statistic meta-analysis does not allow flexible and transcript-specific modeling of 

clinical covariates across the entire sample; and (3) meta-analysis is not amenable to co-

expression network analyses.

We use the term mega-analysis to refer to a strategy of the pooling of individual-level 

clinical and biological data from multiple studies for statistical modeling with appropriate 

correction for between-study variations (Mistry et al., 2013b; Seifuddin et al., 2013). This 

strategy allows for explicit modeling of factors that are consistently reported across studies 

(i.e., gender, age), as well as factors that are inconsistently reported across studies (e.g., 

subject medication status). In this study, we conducted two separate mega-analyses to 

summarize existing microarray-based transcriptomic studies of SZ in postmortem brain and 

in blood tissue using mixed-effect linear modeling. We extend upon previous approaches by 

employing network and annotation-based analyses to assess emergent biological functions. 

Furthermore, we perform systematic cross-tissue comparison of dysregulated functional 

gene sets and co-expression networks in SZ. We also characterized gene co-expression 

networks that were preserved across brain and blood samples in unaffected comparison 

subjects. Finally, we examined the cross-study generalizability of blood-based 

transcriptomic classifiers that differentiated SZ cases from unaffected comparison subjects.

METHODS

Methods are described briefly here due to space constraints. A comprehensive description of 

all methods can be found in the Supplementary Materials.

Literature Search and Study Selection

We searched public databases (i.e., NCBI dbGaP, PubMed, SCOPUS, and EMBL-EBI 

ArrayExpress) for microarray-based studies of gene expression in subjects with SZ, 

schizoaffective disorder, or psychosis. We conducted this literature search for eligible data 
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up to January 1, 2015; otherwise-eligible studies published after this date were not included 

in our analyses, but are shown in Supplementary Table 1 and compared to our findings 

qualitatively in the Discussion section.. Twenty-five studies of blood-based gene expression 

and 19 studies of brain-based gene expression were identified. The following criteria for 

study inclusion and sample inclusion were used: (1) we only included studies that compared 

cases with unaffected non-related controls, (2) we only included cases classified as SZ or 

schizoaffective disorder, depressive subtype, based on the original investigators’ 

determinations, (3) we only included studies for which raw probe-level data and gene 

annotations were available, (4) we only included studies that utilized non-custom microarray 

platforms developed by Affymetrix or Illumina to minimize technical sources of 

heterogeneity, and (5) we only included postmortem brain studies with samples consisting of 

tissue homogenates. Ultimately, we included nine blood studies and nine brain studies 

(postmortem prefrontal cortex, PFC, only) were ultimately retained for analysis (Table 1). 

The rationale for excluding each of the 26 other studies is provided in Supplementary Table 

1.

Data Import, Normalization, Quality Control and Probe Matching

Data from each study were processed and normalized independently. Affymetrix arrays 

underwent robust multi-array average (RMA) normalization (Irizarry et al., 2003), with 

additional GC-correction whenever possible (e.g., not compatible with Affymetrix Human 

Exon 1.0ST array). Both Affymetrix and Illumina array data were quantile-normalized and 

log-2 transformed. We mapped probes to HGNC gene symbols and collapsed expression 

values of multiple probes to individual genes through median summarization. Finally, for 

each gene within each individual study, expression values were z-transformed in order to 

normalize the range and variance of expression across datasets generated on different array 

platforms; the effects of normalization and transformation are depicted in Figure S1. In order 

to identify potential differences in the proportions of leukocyte subtypes between SZ cases 

and unaffected comparison subjects, we performed deconvolution analysis using previously 

described methods (Abbas et al., 2009) followed by an independent samples t-test with 

family-wise Benjamini-Hochberg (BH) correction for multiple testing.

Mixed-Effect Linear Modeling and Gene Set Analysis

Expression and covariate data from individual studies were combined, creating separate 

brain (n = 315 and blood datasets (n = 578). Independent mega-analyses were performed on 

these datasets using mixed-effect linear modeling. The brain analysis included covariates for 

age (continuous), ancestry (Caucasian, Asian, African-American), gender (male, female), 

postmortem interval (continuous) and tissue pH (continuous). The blood analysis included 

covariates for age, sample-type (whole blood, leukocytes, peripheral blood mononuclear 

cells), ancestry (Caucasian, Asian), gender, and anti-psychotic status (yes, no; as defined by 

original study authors). A total of 20 767 genes were analyzed from brain studies and 19 737 

genes contained sufficient data for analysis in blood studies. With the exception of 217 genes 

in our blood data set, all genes that were included in our mega-analyses had been measured 

in more than one study. For multiple-test correction, we examined Bonferroni-corrected p-

values in order to conservatively define differentially expressed genes; for downstream 

analyses, we used a more permissive False Discovery Rate (FDR) q-value < 0.10 to control 

Hess et al. Page 4

Schizophr Res. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the family-wise error rate at 10% while allowing more transcripts to move forward for cross-

tissue comparison and enrichment analysis (Storey, 2003). Permutation-based gene set 

analyses (Väremo et al., 2013) were performed separately for each tissue using the summary 

statistics (p- and t-values) derived from the single-gene analyses.

Expression Quantitative Trait Loci and GWAS Enrichment Analysis

For various gene lists of interest (i.e., differentially expressed or participants in a network 

module), we sought to assess whether those genes disproportionately represented: (1) 

expression quantitative trait loci (eQTLs) previously identified in brain or blood cells 

(National Center for Biotechnology Information [NCBI] eQTL Browser); and (2) SNPs 

associated with SZ based on prior association studies (Ripke et al., 2014).

Constructing Networks of Co-Expressed Genes in Brain and Blood

We performed unsupervised weighted unsigned gene co-expression network analysis 

(WGCNA; (Langfelder et al., 2011) using the blockwiseModules function separately in 

brain and blood datasets. We used linear mixed effect models (as described above) to predict 

module eigengene values, in order to identify SZ-associated modules. For SZ- associated 

modules, we identified highly connected hub genes, assessed functional enrichment 

(described below), and performed cross-tissue comparison of module genes. Additionally, 

we assessed network module preservation within each tissue (across diagnostic groups) and 

between tissues (only in unaffected comparison subjects).

Enrichment Analysis of Biological Annotations and Cell-Type Signatures

Hypergeometric testing was used to assess network modules for: (1) functional enrichment 

based on the contents of the DAVID Knowledgebase (v.6.7; Huang et al., 2009) (2) 

enrichment with brain cell-specific signatures (Dougherty et al., 2010); and (3) immune cell-

specific signatures (Abbas et al., 2009; Watkins et al., 2009). Family-wise BH correction 

was applied per database to control for multiple testing.

Gene Set and Network Module Heterogeneity Analyses

For SZ-associated gene sets and network modules, we sought to assess whether the same SZ 

samples were driving the between-groups difference observed for each feature using 

previously described clustering methods (Lottaz et al., 2007).

Machine-Learning Classification using Blood Transcriptomic Data

We used Random Forest and Ensemble Support Vector Machine approaches to construct and 

validate classifiers using independent data matrices carved from the blood mega-analysis 

dataset. Training (n = 413 samples run on Illumina arrays) and validation sets (n = 165 run 

on Affymetrix arrays) were generated; this manufacturer-based separation was chosen to 

pose a maximal challenge to classifier generalizability. Sets of the top significantly 

dysregulated genes (k = 20, 60, 150) were identified by linear mixed-modeling in the 

training set; these sets reflect the minimum, maximum, and average size of optimal 

classifiers of neuropsychiatric disorders from blood transcriptome data based on our past 
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experience (Glatt et al., 2013, 2012; Tsuang et al., 2005; Tylee et al., 2015). Classifiers were 

fit to the training data and subsequently tested in the independently withheld validation set.

RESULTS

Dysregulated Genes and Gene Sets in Brain

For our brain mega-analysis, 92 genes were dysregulated in SZ at an FDR q < 0.10 and two 

genes (RHOBTB3 and ABCA1) reached a Bonferroni-corrected level of significance 

(Supplementary Table 3A). Among the 92 dysregulated genes, 73 genes were up-regulated 

and 19 genes were down-regulated in SZ (two-tailed sign test p < 3.9×10−9). Gene set 

analysis identified 745 sets (among 9254 examined) with at least one significant test 

hypothesis (Bonferroni p < 0.05); the vast majority of gene sets (720) were up-regulated 

among SZ cases, whereas one gene set showed a non-directional effect, and 19 gene sets 

showed a down-regulated effect (Supplementary Table 3B). The list of up-regulated sets 

included innate immune and inflammatory signaling pathways (TNF-α, NF-kB, p38 MAPK, 

IL-6 via STAT3, IL-2 via STAT5, IFN-γ, several TLR signaling cascades, protozoal 

infection, implicated in lupus); cellular stress responses (hypoxia, UV exposure, unfolded 

protein response, apoptosis/p53 cascades); response to androgens; metabolism of cholesterol 

and fatty acids; RNA metabolism and binding; several pathways related to cell survival, 

growth, and oncogenesis (EGFR, ERBB2, Insulin, KRAS, MAPK/MEK, MTOR, MYC, 
PDGFR, PIGF, VEGF); many gene sets targeted by miRNAs and transcription factors; genes 

involved in development and cellular differentiation; and several chromosomal loci, among 

others. Down-regulated gene sets included olfactory signaling pathways, genes with 

promotor CpG-site methylation in neural precursor cells, and several chromosomal loci 

(most notably 22q11). Five gene sets showed significant evidence for heterogeneity, such 

that approximately 20% of SZ cases appeared to drive the group main effect, and different 

individuals drove the effects for different functional sets (Figure 1, Panel A).

Dysregulated Genes and Gene Sets in Blood

We estimated the abundance of 17 leukocyte subtypes in SZ cases and unaffected 

comparison subjects and found no significant difference between groups, though a trend 

toward increased activated cytotoxic T cells was observed among SZ cases (uncorrected p = 

0.054, Supplementary Table 2)

Within our blood mega-analysis, 2 238 genes were dysregulated in SZ at an FDR q < 0.10 

and 220 reached a Bonferroni-corrected level of significance (Supplementary Table 4A). 

Among the 2 238 genes, 1 110 were up-regulated and 1 128 were down-regulated in SZ 

(two-tailed sign test p = 0.66); the absence of a systematic directional effect in the single-

gene analysis did not preclude a directional effect at the level of gene sets, and gene set 

analysis identified 526 gene sets (among 9256 examined) with at least one significant test 

hypothesis (Bonferroni p < 0.05); the majority of gene sets (390) were up-regulated among 

SZ cases, whereas 21 gene sets showed a non-directional effect, and 115 gene sets showed a 

down-regulated effect (Supplementary Table 4B). The list of up-regulated sets included 

innate immune and inflammatory signaling pathways (TNF-α, NF-kB, IL-6, several TLR 

signaling cascades, protozoal infection, implicated in lupus); cellular stress responses 
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(hypoxia, UV exposure); response to androgens; glycolytic metabolism; several pathways 

related to cell survival, growth, and oncogenesis (EGFR, ERBB2, PDGFR, PIGF, PTEN, 
VEGF); many gene sets targeted by miRNAs and transcription factors; genes involved in 

development and cellular differentiation; and several chromosomal loci, among others. 

Down-regulated gene sets included those involved in DNA repair; metabolism and 

nonsense-mediated decay of mRNA; influenza RNA replication; citric acid cycle, 

mitochondrial function, and oxidative phosphorylation; ribosomal function and the 

regulation of protein translation; genes whose expression is typically driven by MYC and 

EIF4E; and several chromosomal loci, among others. One gene set (MYC targets) showed 

significant evidence for heterogeneity, such that approximately 50% of SZ cases appear to 

drive the group main effect (Figure 1, Panel B).

Cross-Tissue Comparison of Dysregulated Genes and Gene Sets

Cross-tissue comparison of dysregulated gene lists is depicted in Figure 2; 10 genes were 

dysregulated in both the brain and blood mega-analyses, reflecting a non-significant overlap 

(hypergeometric test p = 0.68). Seven genes were coordinately up-regulated in SZ across 

tissues (p = 0.15) and 1 gene was coordinately down-regulated. Two genes showed 

directionally discordant effects across tissues. The cross-tissue overlap of significantly 

dysregulated gene sets is depicted in Figure 1, Panel A. Two hundred and sixty-three gene 

sets were common to both tissues (Bonferroni p = 1.7×10−158); 255 of these sets were 

commonly up-regulated (p = 2.8×10−198) and 4 sets were commonly down-regulated (p = 

4.6×10−4). One gene set showed directionally discordant effects across tissues. Gene sets 

that were dysregulated in both tissues are shown in bold font in Supplementary Tables 3B 

and 4B.

Enrichment of eQTL and GWAS Association Signals among Dysregulated Genes

eQTLs (NCBI eQTL Browser) were significantly enriched among dysregulated genes (q < 

0.1) identified in the blood mega-analysis, but not those from the brain analysis 

(Supplementary Table 5). Specifically, 50 genes identified as dysregulated in the blood 

analysis previously showed evidence of eQTL regulation in lymphoblastoid cell lines (p < 

0.007), while 607 showed evidence of eQTL regulation in the frontal cortex (p < 0.001); 20 

genes were common to both lists, including TMEM30A, SCAMP3, HSD17B12, TRPV2, 

BCR, SLC2A8, SLK, BCAT2, NUP93, DDX55, ANP32A, RTN4, ETS2, MDH2, DHRS1, 

UROS, MRPL43, HERPUD2, CYB561, and RAE1. Within our lists of dysregulated genes 

in each tissue, we did not find significant quantitative enrichment with genes harboring (or 

located proximal to) SZ-associated SNPs (Ripke et al., 2014) as compared with randomly 

permuted gene lists of the same size (brain p = 0.07, blood p = 0.99). Among the 108 

independent loci (located proximal to 311 genes) showing genome-wide significant 

association in the largest SZ GWAS from the Psychiatric Genomics Consortium (PGC; 

Ripke et al., 2014), we observed overlap with 1 differentially expressed brain gene 

(Clusterin, CLU, up-regulated in SZ cases) and 36 differentially expressed blood genes 

(hypergeometric overlap p < 0.99; Supplementary Table 6).
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Network Co-expression Analysis identifies SZ-Associated Modules in Brain and Blood

We detected 21 modules of co-expressed genes in the brain, and while none were associated 

with SZ at a BH-corrected threshold of significance, three (arbitrarily labeled “green”, 

“salmon”, and “yellow”) were nominally associated and were examined in downstream 

analyses (Figures 3 and S2). The green module was diminished in SZ cases and enriched 

with synapse-and neuronal projection- and development-related genes (Figure 3D). This 

module also over-represented signatures of neuronal cell types known to express D1 and D2 

dopaminergic receptors, and cortical neurons and immune cells (Figure 3C). The salmon 

module was enriched with immunologic terms and also over-represented signatures of 

cortical and cerebellar astrocytes, cerebellar oligodendrocytes, Bergman glia, and brain stem 

cholinergic motor neurons (Figure 3G and 3H). The yellow module was enriched with 

metabolic and electron transport function and over-represented cortical and cerebellar 

astrocytes, cerebellar oligodendrocytes, and Bergman glia, and cortical oligodendrocyte 

progenitors (Figure S2C and S2D).

We detected 33 modules in the blood, nine of which were associated with SZ at a corrected 

level of significance. Among these, “darkolivegreen”, “greenyellow”, “grey60”, “pink”, 

“turquoise”, and “yellow” were enhanced in SZ, while the “blue”, “steelblue”, and “cyan” 

modules were diminished among SZ cases (Figures S3 – S5). Notably, two enhanced 

modules (darkolivegreen and grey60) were enriched with innate immune function and over-

represented granulocytes (Supplementary Table 7). The yellow module also over-represented 

the granulocyte and B lymphocyte signature. The steelblue module was associated with 

antigen presentation and self-recognition and over-represented natural killer cells. The pink 

module enriched with mitochondrial functions. The turquoise and greenyellow modules 

enriched with post-translational modifications and protein trafficking, with the former 

module showing over-representation of B lymphocytes, and also enriched in splicing 

complex function. All immune cell enrichments are shown in Supplementary Table 7. Hub 

genes and functional enrichments of SZ-associated blood modules are shown in Figure S4 

and S5, respectively.

Enrichment of GWAS Association Signal in SZ-Associated Modules

The green and yellow brain modules, as well as the blue, grey60, turquoise, and yellow 

blood modules contained genes with known SNPs more strongly associated with SZ 

compared with randomly permuted genes (family-wise BH p < 0.05; Figure S6). 

Differentially expressed genes containing known SNPs that are significantly associated with 

SZ are indicated in Supplementary Table 6.

Cross-Tissue Overlap of Genes and Functional Annotations in SZ-Associated Modules

Cross-tissue comparison revealed overlapping genes between the green brain module and the 

blue and cyan blood modules (hypergeometric p < 6.1×10−14 and 1.94×10−7); there was also 

significant sharing of genes between the salmon brain module and yellow blood module (p < 

1.3×10−3; Supplementary Table 8A). A list of genes for modules that were significantly 

overlapped between brain and blood is provided in Supplementary Table 8B. The salmon 

brain module shared three functional annotations with two blood modules: genes mapping to 
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major histocompatibility complex region at cytoband 6p21.3 (cyan), and response to biotic 

stimulus and defense response (darkolivegreen).

Network Co-Expression Analysis Identifies Cross-Group and Cross-Tissue Preservation

Among the 26 modules that were identified in brain samples from unaffected comparison 

subjects, 24 were highly preserved and two were moderately preserved among SZ samples 

(Figure S7, Panel A); the least preserved module (“darkturquoise”, Z summary = 5.9) was 

enriched with extracellular space, immune functions, cytokine (CXCL1, CSF3, BMP2, 

CXCL2, IL12A, TNFSF9, CXCL10) and growth factor activity (CXCL1, CSF3, BMP2, 

ENDOU, IL12A, HBEGF, HGF) and signal transducer activity. For the thirty-two modules 

identified in unaffected comparison subject blood samples, all were highly preserved among 

SZ samples (Figure S7, Panel B). The “skyblue” module was the least preserved (Z 
summary = 14) and was enriched with genes functioning in RNA processing and 

metabolism. In a contrast of brain and blood, 13 of 30 network modules identified in 

unaffected comparison subjects’ brain samples showed strong evidence for preservation (Z 
summary > 10), 15 showed moderate preservation (10 < Z summary ≥ 2), and two showed 

no evidence for preservation (Z summary < 2; Figure S7, Panel C). The “pink” module 

identified in brain showed the strongest evidence of preservation in blood (Z summary = 25) 

and was enriched with genes associated with zinc finger transcription factors and nuclear 

components. The full list of significantly enriched biological annotations associated with 

abovementioned modules can be found in Supplementary Tables 9 – 11, respectively.

Machine-Learning Classification using Blood Transcriptome Data

The results of blood-based transcriptomic classification analyses are shown in 

Supplementary Table 12. Random Forest classifiers performed with high receiver operating 

characteristic area under the curve (AUC; 0.92 to 0.96) in the training matrix and retained 

moderate AUCs (0.72 to 0.77) in the independent validation matrix. Ensemble Support 

Vector Machine classifiers also performed with high AUCs in the training matrix (0.90 to 

0.99) and moderate AUCs in the validation matrix (0.72 to 0.75). Assuming that a random 

binomial classifier (e.g., coin-flip) would obtain no-better-than chance performance if 

employed within an identical bootstrapping and aggregation framework (AUC = 0.50), the 

validation sample predictions reflect better than chance performance (binomial test p-values 

ranging from 5×10−6 to 2×10−9).

DISCUSSION

Our study detected many dysregulated genes that surpassed rigorous corrections for multiple 

testing, particularly in the larger blood dataset. In combination with gene set and network-

based analyses, identified emergent biological functions robustly altered in SZ brain and 

peripheral blood transcriptome. Our study is preceded by a recent meta-analysis that sought 

to identify a cross-tissue signature of SZ using postmortem brain and ex vivo peripheral 

blood microarray data (Bergon et al., 2015). Comparing the differentially expressed genes 

identified in the present study with those reported by Bergon et al., we observe only eight 

brain and 40 blood genes implicated by both studies; differences in the results could be 

attributed to the following differences between studies: (1) inclusion of different postmortem 
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brain regions (multiple regions vs. PFC-only in our analysis) and the number of blood 

studies included (more included in present study); (2) the total number of genes tested (more 

in the present study); (3) the approaches taken to reduce between-study variation; (4) the 

approach to statistical modeling and the specific covariates modeled; and (5) the thresholds 

for declaring significance. Despite these differences, we note broad similarities with respect 

to the biological pathways and functions implicated in each study (e.g., genes that mediate 

immunologic functions, mitochondrial processes, and protein metabolism). However, it is 

important to acknowledge that functional annotation-based approaches will necessarily be 

limited to the biological terms that are well-annotated within their respective databases, and 

that many databases over-represent domains of cancer biology and immunology, which 

could contribute to bias in studies such as ours.

In addition, we note similarities between our mega-analysis of postmortem PFC 

homogenates and a prior microarray study of SZ based on laser-microdissections of 

dorsolateral PFC (n = 24 schizophrenia, n = 12 schizoaffective, n = 24 unaffected 

comparison; (Arion et al., 2015). From this study, we examined the top 35 differentially 

expressed genes detected in SZ cases in layers 3/5; among these, our PFC analyses also 

showed down-regulation of DEF8. . However, the effect we observed in PFC homogenates 

for DEF8 was not strong enough to survive multiple testing (uncorrected Ps < 6×10−4, q-

values < 0.12). We also cross-referenced their findings with the results from our blood 

analysis and found four genes with consistent down-regulation in SZ at a p< 0.05 (TINF2, 

RPS10, NDUFA8, and EMG1). These overlaps suggest that a subset of genes show 

generalizable differences across tissues and cell types.

We foresee transcript-level mega-analyses making important contributions to our knowledge 

of differential transcript expression and splicing patterns associated with SZ. However, there 

is an issue with combining data from multiple platforms that needs to be overcome for such 

an analysis to be feasible, namely the alignment of probe data across platforms. Local 

alignment methods such as BLAST can identify probe clusters with high sequence 

homology, however, alignment might not smooth out unwanted variation in probe design and 

libraries between platforms.

In the present study, genes dysregulated in SZ brain tissue were associated with diverse 

biological functions, but featured prominently among these were up-regulated inflammatory 

and cellular stress responses, cell growth and oncogenesis pathways, and metabolic 

pathways. These findings were recapitulated and further resolved by network analysis, 

which implicated three modules reflecting neurodevelopment (diminished in SZ), 

inflammation (enhanced), and lipid metabolism (enhanced), with the latter two modules 

enriched with markers of glial cells and the former enriched with neuronal cell types. Our 

mega-analysis helps clarify conflicting reports of NF-kB dysregulation (Rao et al., 2013; 

Roussos et al., 2013) by demonstrating that transcriptional targets of this signaling pathway 

are up-regulated in a large sample. Furthermore, our observations are consistent with the 

idea that excessive expression and signaling via damage/pathogen-associated molecular 

pattern receptors may contribute to brain inflammation in SZ (Fillman et al., 2013; 

Venkatasubramanian and Debnath, 2013).
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The blood mega-analysis yielded more significantly dysregulated genes compared with the 

brain mega-analysis; this was a function of both more samples and a larger magnitude of 

effect sizes among the top 1% of genes ranked by p-value (|covariate adjusted mean 

difference|brain = 0.41 ± 0.05; |covariate adjusted mean difference|blood = 0.46 ± 0.05; t-test 

p-value < 2×10−22); the observation that the transcriptomic signature of SZ is more 

prominent in blood tissue is a curious one that remains open to interpretation; one 

explanation may be that blood tissue simply allows for a wider range in the intensity of gene 

expression as compared with the brain. Alternatively the blood may more prominently 

reflect the effects of inadequately controlled covariates (e.g., smoking, antipsychotics). 

Blood co-expression modules were generally preserved between SZ cases and unaffected 

comparison subjects and SZ samples, yet several modules identified in the full sample were 

associated with the SZ diagnosis and support the assertion that disturbances in innate 

immunity, antigen presentation, granulocytic, natural killer cells and lymphocytic functions 

are altered in SZ.

Relatively little cross-tissue overlap was observed at the level of dysregulated gene lists, yet 

our gene set and network-based approaches identified cross-tissue transcriptomic 

convergence, particularly with respect to innate immune functions, antigen presentation, 

cellular growth pathways, and common regulatory mechanisms (particularly the up-

regulation of many miRNA targets, suggesting that miRNA-based regulation of gene 

expression may be deficient in SZ). Taken together, these findings suggest that different 

genes are dysregulated in each tissue, but that cross-tissue convergence may be observable at 

the level of emergent function.

Notably, one gene from the brain analysis and 36 genes from the blood analysis harbored 

SNPs that reached genome-wide significance in the largest available association meta-

analysis of SZ from the PGC (Ripke et al., 2014). Identifiers of SZ-associated genes from 

GWAS can be found in Supplementary Table 6. We did not, however, observe significant 

enrichment of SZ GWAS signals within the list of dysregulated genes for either tissue, yet a 

network-based approach revealed that SZ-associated modules in both brain and blood were 

enriched with SZ GWAS association signal. Additionally, we observed significant over-

representation of genes with lymphoblastoid cell and postmortem PFC eQTLs (NCBI eQTL 

Browser) within our lists of dysregulated genes in the SZ blood samples, allowing the 

possibility that some peripheral transcriptomic differences may be governed by genetic 

variants with known regulatory activity in both neural and immunologic cell types (Sanders 

et al., 2013). However, the majority of dysregulated genes in both tissues were not 

associated with known eQTLs or SZ-associated loci from GWAS studies, suggesting that 

genetic regulatory elements may play a relatively small, indirect, or developmentally 

dependent role in shaping SZ-associated transcriptomic differences.

Another essential outcome of our work is identification of numerous gene co-expression 

modules that are preserved across brain and blood tissues in non-psychotic individuals. 

These results align with the findings of our previous review on the topic (Tylee et al., 2013) 

and also supports the pursuit of blood-based transcriptomic classification tools for CNS 

disorders like SZ. Our machine-learning classifier work makes several important 

contributions to the psychiatric biomarker literature. To our knowledge, this was the first 
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attempt at classifier construction within a sample composed of multiple independent studies, 

reflecting different distributions of sex, age, ancestry, and medication usage. Our classifiers 

performed with moderate (approximately 70%) accuracy in an independently withheld 

sample composed of distinct studies (rather than a withheld subset of the same study 

sample); thus these classifiers appear robust to differences in experimental factors that vary 

across study sites (e.g., microarray platform). Future studies should employ higher-

resolution transcriptomic data (i.e., RNA sequencing) and more sophisticated feature-

selection algorithms to explore the upper limits of blood-based classification accuracy and to 

assess classifier specificity when discriminating different psychiatric conditions (e.g., SZ vs. 

bipolar disorder); prospective transcriptomic studies could also be useful for predicting 

treatment response (Mamdani et al., 2011), thus paving the way for treatment selection 

biomarkers.

We identified hundreds of significant molecular signatures of SZ. According to evidence 

from previous genomic and transcriptomic studies (Cross Disorder Group of the Psychiatric 

Genomics Consortium, 2013; de Jong et al., 2016), it is possible that a fraction of molecular 

signatures are also represented in other psychiatric disorders. We did not empirically 

evaluate a separate disease group in our analysis to determine if these signatures are specific 

to SZ, however, we have compared our SZ-associated gene modules from brain and blood to 

a module associated with major depressive disorder in the literature (Jansen et al., 2015). We 

found a high degree of overlap between the 74 gene steelblue module and a 64 gene module 

associated with MDD. both from peripheral blood samples (overlap = 33 genes, 

hypergeometric p-value < 1.08E-64, Supplementary Table 13). Based on GO terminology, 

these 33 overlapping genes are involved in cellular defense response, chemotaxis, and 

immunity. The blue and turquoise modules from blood exhibited weaker overlap with the 

MDD-associated module (Ps < 0.68 and < 0.51). This finding lends support to the possibility 

that SZ-associated markers are not all constrained to diagnostic boundaries, which is a 

valuable finding for understanding pathophysiology of psychiatric disorders as a larger unit.

Accumulating evidence from various lines of research links immune dysregulation and SZ, 

including: (1) the most strongly implicated locus in the largest SZ GWAS study lies within 

the major histocompatibility complex (MHC) region (Ripke et al., 2014), which encodes 

genes involved in cellular antigen presentation and reflects a critical bridge between innate 

and adaptive immune functions; (2) increased prevalence of autoimmune disorders is found 

among individuals with SZ and their relatives in epidemiologic studies (Eaton et al., 2006); 

(3) increased levels of cytokines in peripheral blood (Miller et al., 2011) and cerebrospinal 

fluid of SZ patients are correlated with elevated levels of an endogenous NMDA receptor 

antagonist (Schwieler et al., 2015) and with cytoarchitectural and structural changes in the 

brain (Ellman et al., 2010; Fung et al., 2014); and (4) pharmacological evidence that 

antipsychotics dampen inflammation and may act as a restoration loop into dopaminergic 

circuitry (Kumarasinghe et al., 2013; Müller and Schwarz, 2010; Sugino et al., 2009). The 

present study demonstrated that many of the same inflammatory signaling cascades are up-

regulated in both tissues, and also supports previous accounts of acute SZ-related changes in 

adaptive immune cells (Maino et al., 2007; Ripke et al., 2014; Steiner et al., 2010) and 

alterations in white matter and glial cell populations (Cotter et al., 2002; Duncan et al., 
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2014). In light of this growing body of literature, it seems likely that global dysregulation of 

immune and inflammatory function is present in a subset of individuals with SZ and it is 

plausible that some genetic risk factors for SZ may exert their effects through immunologic 

cell types and their emergent functions. A new landmark finding in SZ genetics 

demonstrated that risk for SZ increases linearly with expression of the MHC region gene C4, 

which in turn leads to excessive synaptic pruning, thus providing clear mechanistic evidence 

that immune genes can mediate and perturb brain development (Sekar et al., 2016). Acute 

dysregulation of inflammatory signaling systems could also contribute to the SZ phenotype 

within the fully developed brain, through changes in neuroplasticity and neurotransmission. 

The implication of dysregulated inflammatory functions in the postmortem SZ brain 

underscores the need for interdisciplinary basic science research characterizing the cross-

talk between these signaling cascades and those controlling typical neurodevelopmental 

processes and normal functioning in the fully developed brain.

In summary, our study makes several important contributions, including statistical 

improvements to obtain the best-estimate of SZ-associated differential expression, a 

thorough cross-tissue assessment of transcriptomic dysregulation in SZ, and generalizable 

classification of SZ cases and comparison subjects measured on different microarray chip 

technologies. However, the present study inherits many of the same limitations shared by all 

postmortem brain studies of SZ. These data are cross-sectional, representing transcriptomic 

profiles from a single time point, occurring after disease onset, death, and (probably in the 

vast majority of cases) years of anti-psychotic treatment. As such, it is not possible to know 

whether the observed differences are causal contributors or downstream consequences of SZ 

pathophysiology. While we attempted to control for the effects of medication, we must 

acknowledge the likelihood that some observations currently attributed to diagnostic status 

were influenced by group differences in medication use or other uncontrolled covariates 

(e.g., tobacco use). Studies in animal models, or antipsychotic-naïve, smoking-matched 

subjects will be essential for resolving these possibilities. Despite these limitations, this 

study provides an atlas of dysregulated genes, biological processes, and co-expression 

networks associated with SZ in brain and blood tissues.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cross-Tissue Comparison of Significantly Dysregulated Gene Sets (Bonferroni p <0.05)
The results of the permutation-based gene-set analyses are shown (Panel A), highlighting 

gene sets that were significantly dysregulated in both tissues. A total of 745 gene sets were 

dysregulated (out of 9254 tested) based on single-gene test statistics from the brain mega-

analysis. A total of 526 gene sets were dysregulated (out of 9256 tested) based on single-

gene test statistics from the blood mega-analysis. For the purpose of cross-tissue 

comparison, gene sets with either an absolute effect (i.e., all genes in the target set) or a 

mixed effect (i.e., a subset of the genes in the target set) were considered to be directionally 

dysregulated. Among the dysregulated gene sets, 263 were common to both tissues 

(Bonferroni-corrected hypergeometric p < 1.7×10−158, and among these, 255 showed 

evidence of up-regulation across tissues (p < 2.8×10−198), while only 4 showed evidence of 

down-regulation across tissues (p < 4.6×10−4). Detailed methods for gene set analysis and 

the reference databases can be found in the Supplementary Methods. Among dysregulated 

gene sets corresponding to the Molecular Signature Database’s (Broad Institute) Hallmark 

category, we assessed whether SZ cases showed significant evidence for heterogeneity using 

a previously developed approach described in the Supplementary Methods. Within the brain 

data, we observed significant 2-group clustering of SZ cases based on the expression values 

corresponding to 5 gene sets showing a main-effect of upregulation in SZ (Panel B); cases 

are shown such that the individuals belonging to the cluster driving the up-regulation effect 

are depicted in red. These results suggest that different SZ cases contribute to the observed 

dysregulation in distinct biological pathways. Within the blood data, we observed significant 

2-group clustering for a single gene set which showed a main-effect of down-regulation 

among SZ cases (Panel C).

Hess et al. Page 18

Schizophr Res. Author manuscript; available in PMC 2017 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Cross-Tissue Comparison of Significantly Dysregulated Genes (FDR q <0.05)
(A) Based on the mega-analyses, we identified the most significantly dysregulated genes in 

brain (n = 92) and blood (n = 2238) at a relatively conservative threshold (FDR q < .10). A 

total of 10 genes were common to both lists; 7 genes were coordinately up-regulated and 1 

gene was coordinately down-regulated across tissues. The degree of cross-tissue overlap for 

each of the displayed intersections was non-significant based on hypergeometric test 

statistics.
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Figure 3. Co-expression Modules Nominally Associated with SZ in Brain (p < 0.05)
Comparison of module eigengene expression values (unadjusted for covariates) between SZ 

cases and unaffected comparisons within the “green” and “salmon” co-expression modules 

identified by the WGCNA R package (A and E, respectively), which were nominally 

associated with SZ from linear mixed model (uncorrected p < 0.05). We cross-referenced the 

set of dysregulated genes identified in the brain mega-analysis (q < .1) with the top 25 genes 

in each module ranked by intramodular connectivity (overlaps denoted by asterisk *) (B and 

F). In panels B and F, the top 5 “hub” genes are found in the innermost circle. Modules were 
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biologically characterized by testing for enrichment of brain cell-type signatures (C and G) 

and annotations by a pathway-based approach (D and H). In panels D and H, annotations 

that surpassed a BH p < 0.05 (cutoff depicted by vertical dotted line) from hypergeometric 

tests are shown (represented as −log10[P]).
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Figure 4. A Co-expression Module that was Significantly Associated with SZ in Blood (BH p < 
0.05)
Comparison of module eigengene expression values (unadjusted for covariates) between SZ 

cases and unaffected comparisons within the “darkolivegreen” co-expression module 

identified by the WGCNA R package (A), which was significantly associated with SZ based 

on linear mixed model test (BH p < 4.4×10−6). We cross-referenced the set of dysregulated 

genes identified in the blood mega-analysis (q < .1) with the top 25 genes ranked by 

intramodular connectivity in this module (overlaps denoted by asterisk *) (B). In panel B, 
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the top 5 “hub” genes are found in the innermost circle. To biological characterize this 

module, a pathway-based approach was used to test for significant enrichment biological 

annotations mapping to “darkolivegreen” genes (C). In panel C, annotations that surpassed a 

BH p < 0.05 (cutoff depicted by vertical dotted line) from hypergeometric tests are shown 

(represented as −log10[P]).
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