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An Efficient Method for the Minimum Description Length 
Evaluation of Deterministic Cognitive Models 

Michael D. Lee (michael.lee@adelaide.edu.au) 
Department of Psychology, University of Adelaide 

South Australia, 5005, AUSTRALIA 

Abstract 

The ability to evaluate competing models against
noisy data is central to progress in cognitive science. 
In general, this requires advanced model selection 
criteria, such as the Minimum Description Length 
(MDL) criterion, that balance goodness­of­fit with 
model complexity. One limiting property of many 
of these criteria, however, is that they cannot read­
ily be applied to deterministic models. A solution to 
this problem, developed by Grünwald (1999), involves 
a process called ‘entropification’ that associates de­
terministic models with probability distributions, and 
allows MDL criteria to be calculated. However, a po­
tential practical difficulty with this approach is that it 
requires a multidimensional summation over the data 
space that can be prohibitively computationally ex­
pensive in realistic situations. This paper derives a 
simpler version of the MDL criterion for deterministic 
models in the important special case of 0­1 loss func­
tions that is computationally feasible. Two concrete 
applications of the simpler MDL criterion are pre­
sented, demonstrating its ability to consider model fit 
and complexity in selecting between competing mod­
els of cognitive processes. The first application in­
volves three different heuristics for a problem solving 
task, while the second involves three different models 
of forced­choice decision making. 

Introduction 
To a large extent, progress in cognitive science relies 
on the development of better models of cognitive phe­
nomena. Models provide a formalized representation 
of theoretical explanations, and make predictions that 
can be tested empirically. For this reason, the ability 
to evaluate competing cognitive models against noisy 
data in a complete and meaningful way has been a cen­
tral concern recently in mathematical psychology (e.g., 
Myung & Pitt 1997; Myung, Balasubramanian & Pitt 
2000; Myung, Forster, & Browne 2000; Pitt, Myung, 
& Zhang 2002). 

In particular, there has been a strong (and overdue) 
focus on balancing the goodness­of­fit of models with 
their complexity. These ideas have been applied to 
core topics in cognitive science such as models of psy­
chophysical discrimination (e.g., Myung et al. 2000),
stimulus representation (e.g., Lee 2001; Navarro & 
Lee 2003; in press), inference and generalization (e.g., 

Tenenbaum & Griffiths 2001), and decision­making 
(e.g., Myung & Pitt 1997). 

Probabilistic Models 

For the most part, however, these recent development 
have been restricted to considering probabilistic cogni­
tive models. This class of models has the property 
that any parameterization (or, more generally, any 
probability distribution over the parameter space) cor­
responds to a probability distribution over the data. 
That is, the model corresponds to a parametric family 
of probability distributions over the data. This means 
that considering a probabilistic model at a particular 
set of parameter values makes some data quantifiably 
more likely than others. In turn, for probabilistic mod­
els the likelihood of any observed data having arisen 
under the model at any parameterization of interest 
can be evaluated. 

Many cognitive models are probabilistic in this way. 
For example, models of memory retention (e.g., Ru­
bin & Wenzel 1996) usually consist of parameterized 
functions that specify the probability an item will be 
recalled correctly after a period of time. As another ex­
ample, the ALCOVE model of category learning (Kr­
uschke 1992) also produces a probability, that depends 
upon the values of a number of parameters, for each 
possible category response on any trial. For these mod­
els, their probabilistic nature allows likelihood to be 
measured against any pattern of observed data. 

Many advanced model selection criteria, such as 
Bayes Factors (e.g., Kass & Raftery 1995), Minimum 
Description Length (MDL: e.g., Grünwald 2000), Sto­
chastic or Geometric Complexity (Myung, Balasubra­
manian & Pitt 2000; Rissanen 1996), and Normalized 
Maximum Likelihood (Rissanen 2001), rely on this 
property. This is because they integrate the proba­
bilities of the data across the parameter space of the 
models, or the maximum likelihoods across all possible 
data sets, and so require non­zero probabilities over a 
subset of the parameter space that has measure greater 
than zero to be meaningful. 
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Deterministic Models 
As Myung, Pitt and Kim (in press) note, however, 
there are many important cognitive models that belong 
to the alternative class of deterministic models. These 
models specify differently how to assess the relation­
ship between data on the one hand, and model predic­
tions at different parameterizations on the other. For 
example, a sum­squared loss or error function might 
be proposed, so that increasingly large differences be­
tween model predictions and observed data are penal­
ized more heavily in evaluating the model. Alterna­
tively, a 0­1 loss function might be proposed, so that 
models are evaluated as being correct only if they pre­
dict data exactly, and are wrong otherwise. What de­
terministic models do not specify, however, is an error 
theory that describes the likelihood of data that dif­
fer from model predictions. This means that, when a 
deterministic model makes incorrect predictions, it is 
not possible to assign the probabilities needed by many 
modern model selection criteria. 

A good example of a deterministic cognitive model is 
the ‘Take the Best’ model of decision making (Gigeren­
zer & Goldstein 1996). This model takes the form of 
a simple algorithm, searching a fixed stimulus envi­
ronment in a deterministic way, so that it will always 
make the same decisions. One way of interpreting the 
model in relation to empirical data is that it has prob­
ability one when it makes the same decision as that 
observed, but probability zero when it makes a differ­
ent decision. Adopting this approach, however, any 
evaluation of the model against human data involv­
ing multiple decisions is very likely to find an overall 
probability of zero, because at least one of the model’s 
decisions will disagree with the data. 

Other deterministic models that face similar prob­
lems include the memory models surveyed by Pietsch 
and Vickers (1997), axiomatic theories of judgment 
and choice (e.g., Luce 2000), and various lexicographic 
decision models (e.g., Payne, Bettman & Johnson 
1990). For these sorts of models, the natural assess­
ment is in terms of the proportion of correct decisions 
it makes, or some such error function, but this mea­
sure is not the same as the probabilities from likelihood 
functions used in probabilistic model selection. In par­
ticular, it is not clear how the error function measuring 
goodness­of­fit should be combined with measures of 
model complexity to undertake model selection. 

Recently, however, Grünwald (1999; see also Myung, 
Pitt, & Kim in press), has developed a model selection 
methodology that overcomes these difficulties. He pro­
vides a principled technique for associating determin­
istic models with probability distributions, through a 
process called ‘entropification’, that allows MDL cri­
teria for competing models to be calculated. There is 
a potential practical difficulty, however, in using this 
approach to evaluate cognitive models. The MDL cri­
terion involves multidimensional summations over the 

data space that could be prohibitively computation­
ally expensive in some realistic situations. This pa­
per derives and demonstrates a reformulation of the 
MDL criterion for deterministic models in the impor­
tant special case of 0­1 loss functions that is much less 
computationally expensive. 

The MDL Criterion 
In this section, Grünwald’s (1999) formulation of the 
MDL criterion based on entropification is described, 
and a computationally simpler form is then presented. 
In one sense, the reformulation is just a straightforward 
algebraic manipulation, and has probably been noted 
(but not published, as far as we are aware) by others. 
In another sense, making the reformulation explicit, 
and demonstrating its advantages, is a useful contri­
bution. There are many cognitive models that are de­
terministic and naturally assessed under 0­1 loss1, for 
which the MDL method described here ought to find 
wide application. 

Original Formulation 
Suppose a deterministic model M is being evaluated 
using a dataset D that has n observations, D = 
[d1, . . . , dn]. Each of the observed data are discrete, 
and can assume only k different values. The model 
uses P parameters θ = (θ1, . . . , θP ) to make predic­
tions Y = [y1, . . . , yn]. To evaluate any prediction 
made by the model, a 0­1 loss function is defined as�n
f (D, Y ) =  i=1 γi, where γi = 0  if  di = yi and 
γi = 1 otherwise. By considering all possible para­
meterizations, the model makes a total of N differ­
ent predictions. In other words, there are N differ­
ent predictions, Y1, . . . , YN , the model is able to make 
about the data by choosing different parameter values. 
In general, the relationship between parameterizations 
and predictions will be many­to­one. This means that 
every unique model prediction is naturally associated 
with one or more parameterizations of the model. 

Under these assumptions, Grünwald (1999) shows 
that using entropification the model making prediction 
Y can be associated with a probability distribution, 
parameterized by the scalar w, as follows: 

e−wf(D,Y ) 

p (D | M, Y, w) =  �k �k 
. 

x1=1 . . .  xn=1 e
−wf(D,[x1,...,xn]) 

Determining the MDL criterion for the model requires 
finding the model predictions Y ∗ and scalar w ∗ that 
jointly maximize p (D | M, θ, w) to give the value p ∗ . 

1All of the deterministic decision making, memory and 
judgment models already mentioned effectively have 0­1 
loss when they are restricted to two choices. There are 
other models, such as the optimal stopping models consid­
ered later, that are also naturally associated with 0­1 loss 
despite having a larger number of choices. 
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Once this is achieved the MDL criterion for the model 
is given simply by MDL = − ln p ∗ + ln N . 

Besides automatically balancing the competing de­
mands of model fit and complexity, this MDL criterion 
has at least two attractive properties for model selec­
tion in cognitive science. First, differences in MDL 
values, through their natural probabilistic interpreta­
tion, can be assessed as odds, in much the same way 
as Bayes Factors. This allows the assessment the ‘sig­
nificance’ of different MDL values for different models 
to be done meaningfully as a question of the standards 
of scientific evidence required for the problem at hand, 
using a scale that is calibrated by betting. Secondly, as 
Grünwald (1999, pp. 24­28) discusses, the information 
theoretic or coding approach used by MDL means that 
results are available for cases where the data generat­
ing process that is being modeled has statistical prop­
erties that are not perfectly represented by the models 
being considered. We would argue this is inevitably 
the case for cognitive models, and so the ability of the 
MDL approach to address this problem is an important 
one. 

Despite these attractions, however, there is an ob­
vious difficulty in maximizing p (D | M, θ, w). The 
problem is that the denominator given by Z = 

x1=0 . . .  xn=0 e
−wf(D,[

�k �k x1,...,xn]) involves consider­
ing every possible data set that could be observed, 
which involves a total of kn terms. In cognitive sci­
ence, where it is possible for a deterministic model to 
be evaluated using many data points, each of which 
can assume many values, the repeated calculation of 
Z may be too computationally demanding to be prac­
tical. 

A Simpler MDL Computation 
A simpler form for Z can be derived by noting that 
f (D, Y ) can only take the values 0, . . . , n, in accor­
dance with how many of the model predictions agree 
with the data. Since Z considers all possible data sets, 
the number of times n−x matches (i.e., x mismatches) 

nwill occur is (k − 1)x. For a prediction Y that has x 
n − m matches with the data (i.e., there are m mis­
matches and f (D, Y ) =  m), this leads to the simplifi­
cation 

e−wm 

p (D | M, Y, w) =  �n � � 
(k − 1)x 

e−wx 
,n 

x=0 x 

which has a denominator that sums n + 1 rather than 
kn terms. 

The computational efficiency offered by this refor­
mulation means it will generally be possible to find 

∗the wi 
∗ that maximizes p (D | M, Yi, wi), giving pi , for 

all N model predictions. The p ∗ required for MDL 
∗ ∗calculation is then just the maximum of p1, . . . , p  N . 

Finding each wi 
∗ can also be done efficiently by ob­

serving that 

n
n −wx∂p/∂w =

1 −wm 
� � � 

(k − 1)x (x − m) e .
Z2

e
x 

x=0 

This derivative is clearly always positive if m = 0 and 
always negative if m = n. This means, if a model 
predicts all of the data correctly, wi 

∗ → ∞, and if a 
model fails to predict any of the data correctly wi 

∗ → 
−∞. Otherwise, if 0 < m  < n, the substitution u = 

∗ e−w allows wi to be found from the positive real roots 
of the degree n polynomial 

n
n 

(k − 1)x (x − m) ux . 
x 

x=0 

by standard numerical methods (e.g., Forsythe, Mal­
colm, & Moler 1976). 

Grünwald (1999, pp. 98­99) notes, with particular 
reference to the 0­1 loss function, that the case w < 0 
corresponds to ‘inverting’ models. For example, if a 
model only makes two choices, and so considers bi­
nary data (i.e., k = 2), the inverted model changes 
all of the model predictions to the alternative possi­
bility. We would argue it will generally be the case in 
cognitive modeling that it is not appropriate to con­
sider inversion, because this manipulation will require 
the model to be interpreted in a substantively different 
and unintended way. If this is the case, it is necessary 
to restrict consideration to w ≥ 0 in finding the MDL 
value. 

∗With this restriction in place, the Y ∗ and w learned 
from data for qualitative model selection convey use­
ful information in their own right. In particular, as 
Grünwald (1999, pp. 94­95) explains carefully, the 
value of w ∗ measures the ‘randomness’ of the data with 

∗respect to the model Y ∗ , so that smaller values of w 
indicate that the the model provides relatively less in­
formation about the data. 

Demonstrations of the MDL Criterion 
In the remainder of this paper, we present two con­
crete examples of the MDL criterion evaluating cogni­
tive models, in situations where there is a clear need 
to assess whether the better goodness­of­fit of some 
models warrants their additional complexity. The first 
involves different heuristics for a problem solving task, 
while the second involves different models of forced­
choice decision making. 

Optimal Stopping Problem 
As a first demonstration of the MDL criterion for de­
terministic models, consider three different account 
of human decision­making on an optimal stopping 
task sometimes known as the full­information secretary 
problem (see Ferguson 1989 for a historical overview). 
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Figure 1: An optimal stopping problem of length 10, 
with the sequence of values shown by circles, demon­
strating the operation of the biased optimal (curved 
line), threshold (horizontal line) and cutoff (vertical 
line) models. 

Background In these problems, a person presented 
with a sequence of numerical values, and told to select 
the maximum. They must decide whether to accept 
or reject each possibility in turn and, if a possibility is 
rejected, they cannot select it at some later point. The 
number of choices in the complete sequence is fixed and 
known, and the distribution from which the values are 
drawn (usually a uniform distribution on the interval 
[0, 1]) is also known. Performance is assessed using a 
0­1 loss function, so that if choosing the maximum is 
regarded as correct, but any other choice is regarded 
as incorrect. 

From the mathematical (e.g., Gilbert & Mosteller 
1966) and psychological (e.g., Seale & Rappoport 
1997) literature, there are at least three plausible ac­
counts of how people might make decisions on these 
problems. The first ‘threshold’ model assumes peo­
ple simply chooses the first value that exceeds a fixed 
threshold. The second ‘biased optimal’ model assumes 
people choose the first value that exceeds a threshold 
level, where the threshold level changes for each posi­
tion in the sequence. The threshold levels correspond 
to the mathematically optimal values (see Gilbert & 
Mosteller 1966, Tables 7 and 8), for the given prob­
lem length, all potentially biased by shifting by the 
same constant. The third ‘cutoff ’ model assumes peo­
ple view a fixed proportion of the sequence, remember 
the maximum value up until this cutoff point, and then 
choose the first value that exceeds the maximum in the 
remainder of the sequence. Each of these models has 
one parameter, giving the threshold, the bias, or the 

cutoff proportion respectively. For all three models, 
if no value meets the decision criterion, the last value 
presented becomes the forced choice. 

Figure 1 summarizes the three models on a secre­
tary problem of length 10. The sequence of values 
presented is shown by the filled circles. The horizontal 
line shows the constant level used by the threshold 
model. The threshold levels for the optimal model 
with no bias follow the solid curve. The vertical 
line shows the proportion used by the cutoff model. 
Under these parameterizations, the biased optimal,
threshold, and cutoff models choose, respectively, the 
eighth, ninth, and fifth values presented. 

Application of MDL Lee, O’Connor and Welsh 
(this volume) administered n = 20 problems of length 
k = 10 to a number of subjects. For this set of prob­
lems, the threshold, biased optimal, and cutoff models 
are able to predict, respectively, 60, 78, and 9 data 
sets by varying their parameters. As a concrete ex­
ample of how the MDL criterion can balance these 
different model complexities against the fit they are 
able to achieve, consider the decisions made by one 
subject from the experiment. For this subject, the 
best­fitting parameterizations of the threshold, biased 
optimal, and cutoff models correctly predict, respec­
tively 14, 17, and 10 of the 20 decisions. This is an in­
teresting case to consider, because increases in model 
complexity lead to increases in model fit. 

The MDL criteria values for each model, in relation 
to this subject’s data, are 29.5, 19.4 and 38.0 respec­
tively, showing that, despite its increased complexity, 
the biased optimal model provides a better account 
than the threshold and cutoff models. This superi­
ority can be quantified in terms of naturally inter­
pretable odds, because differences between MDL val­
ues lie on the log­odds scale. For example, the bi­
ased optimal model provides an account that is about 
e29.5−19.4 ≈ 24, 000 times more likely than that pro­
vided by the threshold model. 

Sequential Sampling Processes 
As a second example, we consider the sequential sam­
pling model of decision making developed by Lee and 
Cummins (in press). 

Background Lee and Cummins (in press) proposed 
that an evidence accumulation approach can unify the 
‘Take the Best’ (TTB: Gigerenzer & Goldstein 1996) 
model with the ‘rational’ (RAT) alternative to which 
it is usually contrasted. The cognitive process being 
modeled involves choosing between two stimuli on the 
basis of the cues or features that each does or does 
not have. In essence, TTB searches the cues until it 
finds one that only one stimulus has, and then simply 
chooses that stimulus. The RAT model, in contrast, 
forms weighted sums across the cues for both stimuli, 
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Figure 2: A sequential sampling process using evidence 
accumulation to decide between choices A and B. Suc­
cessive evidence values are shown as cues are examined 
from highest validity to lowest. A decision is made 
once the evidence exceeds a threshold value. 

and chooses the one with the maximum sum. 
Figure 2 shows a sequential sampling process accru­

ing information in making this sort of decision. Each 
of the cues is examined and the evidence provided by 
that cue is used to update the state of the random 
walk in favor of choosing stimulus A or stimulus B. If 
stimulus A has the cue and stimulus B does not, the 
random walk moves towards choosing A. If stimulus B 
has the cue and stimulus A does not, the random walk 
moves towards choosing B. If both stimuli either have 
or do not have the cue, the state of the random walk 
is unchanged. 

The important observation about Figure 2 is that 
the TTB and RAT models correspond simply to 
different required levels of evidence being accrued 
before a decision is made. If a very small evidence 
threshold were set, the sequential sampling process 
would choose stimulus A, in agreement with the 
TTB choice. Alternatively, if a very large evidence 
threshold were set, the sequential sampling process 
would eventually choose stimulus B (because the final 
evidence is in its favor), in agreement with the RAT 
model. In general, if a threshold is small enough
that the first discriminating cue is guaranteed to 
have evidence that exceeds the threshold, sequential 
sampling corresponds to the TTB decision model. If 
a threshold is large enough that it is guaranteed never 
to be reached, the final evidence is used to make a 
forced decision, and sequential sampling corresponds 
to the RAT decision model. 

Application of MDL For the 200 decisions col­
lected from 40 subjects by Lee and Cummins (in press), 
the TTB model made 36% correctly, while the RAT 
model made 64% correctly. The sequential sampling 
model, at the best­fitting value of its evidence thresh­
old parameter, made 84.5% of the decisions correctly. 
Of course, the sequential sampling model, through 
its use of the parameter, is more complicated than 
both the TTB and RAT decision models, which are 
parameter­free. This raises the issue of whether the 
extra complexity is warranted by the improved ac­
curacy. Using the model selection method developed 
here, Lee and Cummins (in press) found MDL values 
of 87.6, 138.6 and 130.7 for the sequential sampling, 
TTB and RAT models respectively. The much smaller 
MDL value for the unified model indicates that it pro­
vides a better account of the data, even allowing for 
its additional complexity. 

Conclusion 

These demonstration of the MDL criterion provides 
clear practical examples of how it can be used to eval­
uate competing deterministic models of human cogni­
tive processes. It also highlights the contribution of 
this paper, which is a simpler form of the MDL cri­
terion for the special case of 0­1 loss functions. For 
the optimal stopping problem example, the original 
MDL formulation involves summing 1020 terms in the 
denominator to find p (D | M, Y, w) for each combina­
tion of m and Y that needs to be evaluated in opti­
mization. The simpler form given here requires sum­
ming only n + 1 = 21 terms each time. For the se­
quential sampling problem, the original formulation 
involves 2200 ≈ 1060, while the simplification involves 
201 terms. As these comparisons make clear, the dras­
tic reduction in computation offered by the simplifi­
cation developed here makes the MDL evaluation of 
deterministic cognitive models under 0­1 loss feasible 
for most (if not) all empirical data collected in cogni­
tive science. 
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