UC Irvine
UC Irvine Previously Published Works

Title
Diagnostic and prognostic significance of cardiovascular vortex formation

Permalink
https://escholarship.org/uc/item/2mh6vOow4

Journal
Journal of Cardiology, 74(5)

ISSN
0914-5087

Authors

Kheradvar, Arash
Rickers, Carsten
Morisawa, Daisuke

Publication Date
2019-11-01

DOI
10.1016/j.jjcc.2019.05.005

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/2mh6v0w4
https://escholarship.org/uc/item/2mh6v0w4#author
https://escholarship.org
http://www.cdlib.org/

Journal of Cardiology 74 (2019) 403-411

journal homepage: www.elsevier.com/locate/jjcc

Contents lists available at ScienceDirect

Journal of Cardiology

| JOURNAL of
CARDIOLOGY

Review

Diagnostic and prognostic significance of cardiovascular vortex R

formation

Check for
updates

Arash Kheradvar (MD, PhD, FAHA)**, Carsten Rickers (MD)®,
Daisuke Morisawa (MD, PhD)¢, Minji Kim (BMSc)“, Geu-Ru Hong (MD, PhD),

Gianni Pedrizzetti (PhD)®

4 The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, CA, USA
P University Heart Center, Adults with Congenital Heart Disease Section, University Hospital Hamburg-Eppendorf, Hamburg, Germany

¢ Division of Cardiovascular Medicine, Hyogo College of Medicine, Hyogo, Japan

d Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea

¢ Department of Engineering and Architecture, University of Trieste, Trieste, Italy

ARTICLE INFO ABSTRACT

Article history:

Received 4 May 2019
Accepted 7 May 2019
Available online 26 June 2019

Keywords:

Vortex

Fluid dynamics

Heart valve

Heart failure

Congenital heart disease

Various forms of vortex formation in the cardiovascular system convey valuable information regarding the
function of heart and great vessels. The vortex ring that forms during systole in the aortic sinus is the first that
was recognized and the asymmetric transmitral vortex ring that forms in the left ventricle during diastole
has been most commonly used for diagnosis and follow up of heart failure patients. Adverse vortex
interaction in the heart can also occur due to valvular regurgitation and may have energetic consequences to
the heart. Furthermore, vortices do exist in other chambers such as the right ventricle and may even arise in
the great arteries and veins due to congenital heart disease. Here, we summarize diagnostic and prognostic
significance of vortices and vortex imaging in the heart, their applications in clinical medicine, and discuss
how these flow features can be used to assess functional status of the heart.

© 2019 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
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Introduction he portrayed the aortic valve leaflets being closed due to a

Presence of vortices in the heart is a phenomenon that was first
proposed by Leonardo Da Vinci in 1513. [llustrated in his drawings,
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symmetric vortex ring formed at the sinuses of Valsalva by the
end of systole. The subject was not discussed further until recent
years when a vast interest was reborn for studying these flow
features in different chambers of the heart. These efforts were
initiated by Bellhouse whose in vitro experiments suggested the
presence of a vortex ring in the left ventricle (LV) [1]. Later on,
several studies discussed the role of these vortices on blood flow
momentum and energy transfer [2-5], and on that basis, some
proposed diagnostic indices that can be used for clinical grading

0914-5087/© 2019 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.
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of the diastolic function [6]. Although, this was just the beginning,
thanks to advances in cardiac imaging, different types of vortices
were found in other heart chambers such as the right ventricle
(RV) [7] and the atria [8-10].

The clinical application of transmitral vortex has been the
main interest of these studies. Whether these flow structures
reveal significant information regarding the functional status of
the heart has been a question worth answering. The clinical
significance of vortices was initially suggested by Gharibetal.[11]
who demonstrated that major aspects of cardiac function can be
“uniquely and sensitively” reflected in the optimization of early
diastolic vortex formation based on the data of 110 volunteer
subjects. Following the same direction, researchers graded the
abnormal rapid filling phase in a group of 62 patients with
diastolic dysfunction and concluded that vortex formation can be
efficiently used in the clinical setting to distinguish among
different grades of diastolic dysfunction [6]. Other studies
discussed the application of vortex imaging in heart failure
[12-14], assessment of heart valves [14-18], RV flow [19], and in
congenital heart diseases [20-22].

Fredriksson et al. [23] discussed an asymmetric vortex ring
surrounding the tricuspid inlets during the early and late diastolic
phases, and emphasized the significance of this flow feature
during normal function of the right heart. There are also
hypotheses on the asymmetric redirection of blood in atrial
and ventricular cavities of the looped heart in humans [24], which
suggest that the asymmetries and curvatures of the looped heart
have potential fluid dynamic advantages to prevent thrombus
formation by affecting the flow arriving at arterial branches, thus
facilitating the evolution of large and dynamically-active verte-
brate animals.

This review aims to summarize diagnostic and prognostic
significance of vortices and vortex imaging in the heart along with
their applications in clinical medicine, and discusses how these
flow features can be used to assess functional status of the heart.

Vortex imaging to study heart failure

There are growing interests in the clinical applications of
intracardiac flow analysis in various fields of cardiology. Intracar-
diac flow analysis is useful in evaluating the current disease status,
selection of treatment strategy, assessment of response to therapy,
and prediction of future clinical outcomes in patients with heart
failure (HF). Therefore, in conjunction with the conventional
structural and functional parameters, vortex flow analysis may
contribute to the optimal management of patients with HF.

The form and dynamics of vortical flow within the LV reflect the
pathophysiological link between diastolic filling and systolic
ejection and have been shown to be an important predictor of
adverse outcomes among patients with chronic HF [25-27]. Thus,
vortex imaging can be used as a powerful tool to predict clinical
outcomes in these groups of patients. Here we outline the
application of vortex imaging in a variety of cardiac conditions
that may lead to HF.

Dilated cardiomyopathy (DCM) is anatomically characterized by
chamber enlargement that leads to systolic dysfunction. DCM is a
good example for which intracardiac flow analysis can lead to further
clinical information because its low systolic function defined by
conventional ejection fraction (EF) is often misleading and not
directly correlated with patients’ symptoms and functional status
[28,29]. In an early clinical study using echocardiographic particle
imaging velocimetry (Echo-PIV), Hong et al. demonstrated the clear
differences between the vortex flow in normal subjects versus DCM
patients [27]. The vortex morphology in patients with abnormal LV
systolic function is consistently shorter, wider and rounder
compared to normal controls. Furthermore, vortex pulsatility was

found to be significantly lower in patients with DCM. Through this
study, Hong et al. showed that vortex flow analysis using Echo-PIV is
feasible, reproducible and can distinguish between normal and
abnormal ventricular systolic function [29].

In the context of vortex flow, kinetic energy fluctuation (KEF)
represents the degree of regularity in flow or turbulence. A recent
study has shown that in patients with congestive heart failure and
systolic dysfunction, KEF serves as an independent predictor for
major adverse cardiac events (MACE) including death, heart
transplantation, hospitalization due to heart failure, and signifi-
cant ventricular arrhythmia that require admission. There was an
inverse correlation between the two, with higher KEF associated
with a lower risk for MACE (Fig. 1) [30].

Ischemic cardiomyopathy: One of the most promising applica-
tions of vortex imaging in HF patients lies in the prediction of LV
thrombus formation due to acute anterior wall myocardial
infarction (MI). LV apical thrombus formation is a major
complication in patients with LV dysfunction following an anterior
MIL. Although thrombus formation mechanisms are diverse,
abnormalities in apical contraction and consequent changes in
the fluid dynamics would lead to stagnant flow in the LV apex,
which predispose to thrombus formation in these patients
[31]. However, conventional echocardiographic parameters are
insufficient for predicting post-MI apical thrombus formation
[25]. Son et al. showed that the intraventricular vortex flow
analysis is useful in evaluating the future risk of thrombus
formation after acute anterior MI [13]. In particular, they showed
that lower values of vortex depth and pulsatility power are
strongly associated with LV apical thrombus formation. This
prospective study also proposed higher incidence of LV thrombus
formation in patients showing poor vorticial flow pattern when
diagnosed with anterior MI. These results suggest the possibility of
vortex-guided anticoagulation therapy in the future [13].

Application of vortex imaging in cardiac resynchronization
therapy

In selected groups of HF patients with low EF and left bundle
brunch block, cardiac resynchronization therapy (CRT) has been
shown to be effective in terms of predicting the prognosis and
quality of life [32]. However, even by using advanced diagnostic
techniques, selecting patients who are potential responders to CRT
remains challenging for the reasons that are not completely
understood [33]. Several studies have clearly shown the key role of
echocardiography in assessing mechanical dyssynchrony before
CRT [33,34]. However, due to the large variability of results,
currently there is no recommended echocardiographic parameter
for selection of patients undergoing CRT [35]. To overcome the
limitations of conventional echocardiography, vortex flow analysis
has been considered as a potentially useful tool according to
several studies [36,37], including the recent one by Cimino et al.
that showed significant worsening in flow-derived parameters in
non-responder patients compared to responders to CRT [38].

Vortex formation in the right heart

The RV function represents an important determinant for
clinical outcome following several cardiac conditions including but
not limited to congenital heart diseases (CHDs) [30,39-41]. The
peculiar shape of the RV is elusive to most visualization methods
and its physiological relevance is not yet completely understood.
Accordingly, several questions remain unanswered, such as the
relevance of the RV's wide excursion of the free wall with respect to
thickening of the intraventricular septum during RV contraction,
functional role of the RV inflow and outflow tracts geometry, and
coupling of the RV and the pulmonary artery (or aorta) in case of a
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Steady flow

Pulsatility flow

Male, 50 years old
LVEF: 21%
LVEDD/ESD: 71/64mm
PVO2: 33.15

ED: 0.10 KEF: 0.80

Male, 48 years old

EF: 20%

LVEDD/ESD: 72/63mm
PVO2: 12.76

ED: 0.35 KEF: 0.64

Fig. 1. Left ventricular (LV) vortex flow pattern in dilated cardiomyopathy. (A) A patient without event; (B) a patient with non-sustained ventricular tachycardia. Both patients
showed comparable LVEF and LV size. However, patient A showed higher pulsatility and kinetic energy fluctuation and less energy dissipation compared to patient B.
SI, sphericity index; RS, relative strength; LVEF, left ventricular ejection fraction; LVEDD, left ventricular end diastolic dimension; ESD, end systolic dimension; PVO2, peak

oxygen consumption; ED, energy dissipation; KEF, kinetic energy fluctuation.

systemic RV in hypoplastic left heart syndrome (HLHS). These
unknowns have led to different hypotheses on the RV mechanical
and physiological functions [42].

Due to its asymmetrical shape and anatomical location, RV
structure and flow cannot be clearly visualized by conventional 2D
echocardiography techniques. The RV's complex shape limits the
information that can be acquired from echocardiography to assess
its function. In general, quantifying the RV based on geometrical
assumptions are only partially reliable and those information must
be combined with the results obtained by multiple views to infer
more reliable information [43]. More recently, the advent of 3D
echocardiography permits a more comprehensive evaluation of RV
geometry. Nevertheless, the availability of reliable quantification
methods is still limited, or at the experimental level [44-
46]. Contrary to LV whose fluid dynamics have been vastly studied,
the role of fluid dynamics in RV function is yet largely unknown.
Several studies using echocardiography, phase-contrast cardiac
magnetic resonance (so-called “4D-Flow MR”) and numerical
simulations have explored LV fluid dynamics [28,47,48]. However,
the field has not yet progressed at a comparable pace for the RV. It
is believed that the main reason would be the lack of techniques
that can reliably map the flow in such a complex geometry. We
have summarized the current-state-of-the-art on RV fluid dynam-
ics and provided our perspectives for future studies.

RV fluid dynamics: The flow through the RV develops a diastolic
3D vortex that originates from the tricuspid jet that eventually
rotates about an axis oriented along the RV outflow tract in systole.
During the early 1990s, Peskin and McQueen performed the first
numerical simulations of the flow in the entire heart including the
RV [49]. Although those studies were primarily focused on

methodological improvements, they showed the complexity of
the swirling motion in the RV with a rotational flow observed from
multiple views [50]. A decade later, studies based on the
segmentation of animal-dedicated 3D echocardiography evi-
denced the vortex ring formation behind the tricuspid valve
whose circulation diminishes in the dilated RVs [51].

Methodological advances in studying RV fluid dynamics
progressed to be more feasible in the advent of 4D-Flow MRI that
permits direct measurements of time-resolved blood velocities with
good spatial resolution. Visualizations with 4D-Flow MR have shown
that in healthy subjects the blood entering the RV produces a vortex
ring through the tricuspid valve during diastole, and then, this
rotating body of blood passes into the RV outflow tract while the RV
apex exhibits relatively low blood velocities. This patternis associated
with an efficient blood transit where almost halfof the ejected volume
is from the blood that directly flows from the right atrium (RA) toward
the pulmonary valve [23]. Accordingly, the blood flow kinetic energy
efficiently transfers from the RV inflow to the RV outflow tract. These
observations suggest that, contrary to the LV, the wide motion of the
atrioventricular plane toward the RV base significantly boosts the
normal early RV filling even more than apical suction, and implies that
the E-wave velocity measured at the tip of the tricuspid valve would
be lower than its analogous at the mitral side [52].

The results obtained from MRI complemented by the numerical
simulation, in vitro experiments and endocardial geometry
reconstructed from 3D echocardiography have shown formation
of an initially-compact trans-tricuspid vortex ring during early
diastole (Fig. 2A) [7,19,53]. This vortex ring is partly dissipated due
to interaction with the RV septum and breaks into a weakly
turbulent flow pattern with an underlying rotation due to the
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Fig. 2. Streamlines inside a healthy right ventricle model obtained from numerical simulation. (A) During diastole, the incoming flow gives rise to the formation of a vortex
structure with a relatively ring shape. (B) During systole, the vortex gets mostly dissipated and its rotational tendency turns into a helical flow along the axis of the right
ventricular outflow tract. The streamlines are color-coded based on kinetic energy from low (blue) to high (yellow).

remaining portion of the vortex. During systole, this background
rotation gives rise to a helical motion spinning out along the RV
outflow tract (Fig. 2B).

Abnormal vortical flow in congenital heart disease

Echocardiography is a well-established method for the diagno-
sis and follow-up of children as well as adult patients with CHD.
However, RV assessment that plays a crucial role in many CHD
conditions can be challenging by only relying on echocardiography,
particularly after several re-operations that are common in CHD
patients. In various CHDs, the RV can be of very different shapes
resulting in a diverse blood flow patterns whose physiological
relevance are not completely understood. Recent advances in MRI-
based phase-contrast flow measurements have widened the scope
of MRI's clinical applications beyond the functional measurements
and follow-up to quantify the hemodynamics and risk stratifica-
tion in CHD patients [22,54-56]. In particular, development of 4-
dimensional flow MR imaging (4D-Flow MRI) has uniquely
provided the possibility of quantifying the blood flow dynamics
including vortex formation [57].

Vortex formation in the Fontan circulation: Fontan physiology is
characterized by a single functioning pumping chamber that takes
advantage of passive venous return blood flow to the lungs. Fontan
circulation is considered the palliative state after multiple (usually
three) corrective surgeries in CHD patients, e.g., in tricuspid atresia
or the hypoplastic left heart syndrome (HLHS), in whom a
biventricular repair is not possible. In Fontan circulation, the
function of the single ventricle (SV) represents an important factor
for the clinical outcome and long-term survival [58,59]. More
recently, it has been shown that cardiac function, and not
respiration, is the driving force of the venous return flow in
patients with HLHS whereas respiration is the crucial factor for the
blood flow amplitude in the vena cava [60]. Therefore, compre-
hensive imaging and analysis of blood flow dynamics can lead to
better understanding of the altered blood flow in this iatrogenic
univentricular circulation. Vortex formation in the venous side of
the Fontan circulation can be observed in the Fontan tunnel of
patients with a lateral tunnel where the atrial part is often dilated
[61,62] or at the site of the cavopulmonary connections. The in vivo
visualization of such vortices can be best achieved by using 4D-
Flow MRI [61,63]. Although computer simulations have been used
for quantification of vortices with blood flow pathlines in the
Fontan circulation [61,64], 4D-Flow MRI has the greatest potential
to reliably map the flow in the complex Fontan circulation and
overall in CHD patients.

The advantage of vortex formation and optimal arrangement in
total extracardiac cavopulmonary connection has been quantita-
tively studied in vitro by Amodeo et al. [65]. They reported that the
total extracardiac cavopulmonary connection with left-sided
diversion of the inferior vena caval conduit anastomosis leads to
a central vortex that regulates the caval flow and provides a
relatively more energy-efficient flow pattern compared to the total
extracardiac cavopulmonary connection with directly-opposed
cavopulmonary anastomoses [65].

In single ventricle physiology where the RV serves as the
systemic ventricle e.g. in the HLHS, the vortex formation within
the single ventricle has not been thoroughly studied yet. In
Fig. 3A, we show an example of the diastolic blood flow across the
tricuspid valve in a single ventricle of a HLHS patient with Fontan
circulation whose ejection fraction is within normal range with
no detectable tricuspid regurgitation. Using 4D-Flow MRI,
formation of a vortex ring in the RV during diastole as well as
its dissipation by end-systole can be observed (Fig. 3B). To date,
the clinical significance of these vortices as surrogate for RV
diastolic function (or their role in energy dissipation and blood
flow momentum) is unknown.

The RV's complex shape and function in CHD patients is an
important determinant for blood flow dynamics, which may have
implications on the long-term clinical outcome of these patients.
To understand the cause and effect between form and function,
future prospective studies need investigate how specific shapes of
the RV inflow and outflow tracts and the coupling of the RV and
the neo-aorta in HLHS in CHD patients affect the patients’
outcome.

Tetralogy of Fallot: Tetralogy of Fallot (TOF) is a common form of
cyanotic CHD with a prevalence of 3.4 per 10,000 live births in the
United States [66] and accounts for approximately 6.8% of live-born
patients with CHD [67]. TOF presents as a heterogeneous range of
phenotypes whose major anatomical features are pulmonary and
subpulmonary stenosis or atresia, a subaortic ventricular septal
defect (VSD), and RV hypertrophy. Although total repair during
infancy reduces the risk of several complications [68,69], pulmo-
nary regurgitation (PR) and RV dilation frequently occur even years
after the TOF repair. These adverse outcomes are particularly more
common in subjects with transannular patch and RV outflow tract
(RVOT) dilation [70]. 4D-Flow MRI provides additional information
on blood flow profiles, e.g., vortex formation in the pulmonary
artery [71,72].

The first systematic application of RV fluid dynamics in a
clinical context was shown in patients with repaired TOF (r-TOF)
using echo-PIV [73]. This study was performed in 4-chamber-view,
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Fig. 3. Flow in the single ventricle of a HLHS patient with Fontan circulation is acquired by 4D-flow MRI (right anterior oblique view). (A) Diastolic vortex ring developed from

the trans-tricuspid jet; (B) vortex dissipation at end-systole.

which only shows a partial view of the complex 3D RV flow.
Nevertheless, the study demonstrated that flow pattern in patients
with TOF generates higher circulation and reduced energy
dissipation, which are assumed to be related to ventricular
enlargement and changes in the chamber compliance. These
results evidence the need to introduce simple comprehensive
descriptions of the RV fluid dynamics in global terms to be used for
clinical evaluations.

Under normal conditions, hemodynamic forces are directed
along the base-apex direction in diastole, and they rotate toward
the RVOT during systole with no significant component in the
transversal direction between the septum and the free wall
[47,74]. 1t is expected that deviations from this natural dynamic
balance may lead to abnormal RV function even during the early
stages of dysfunction. More recent studies have shown that in TOF
patients with pulmonary regurgitation, RV blood motion is altered
in a way that affects hemodynamic forces and leads to a disturbed
pattern of kinetic energy [75,76]. These effects are assumed to
disturb the balance of intraventricular pressure in presence of
tricuspid valve regurgitation due to the backward flow directed
toward the RVOT.

Vortex formation in the great arteries: Dextro-transposition of
the great arteries (D-TGA) is the second most frequent cyanotic
congenital cardiovascular malformation, usually requiring arterial
switch operation (ASO) in the neonatal period [77,78]. The current
routine surgical technique for ASO includes the Lecompte
technique, which is characterized by transferring the pulmonary
artery bifurcation in front of the ascending aorta [79].

It has been previously shown that patients who undergo
Lecompte technique present with vortex formation, supranatural
helical blood flow, and a reduced indexed cross-sectional area of
the left pulmonary artery compared to the patients after spiral
reconstruction (complete anatomical correction) [80]. Fig. 4
compares the pathline reconstruction in a TGA patient after ASO
and Lecompte technique using GTFlow software (GyroTools GmbH,
Winterthur, Switzerland). Abnormal vortices are formed (arrows)
in the often-dilated aortic sinus (Fig. 4A and B) and pulmonary
artery (Fig. 4C). Lalezari et al. [81] demonstrated that the neoaortic
root after ASO, which is originally the root of the pulmonary artery,
has histomorphological deficiencies in collagen content and
myocardial support that may explain the dilatation of the neoaortic
root (Fig. 4A) and consequently the typical flow pattern with vortex

Fig. 4. Transposition of the great arteries after arterial switch operation. (A) Anterior-posterior view: long-term follow-up with MRI shows a significantly dilated aortic sinus
in contrast-enhanced magnetic resonance-angiography (MRA); (B) lateral view: vortex formation in the distal pulmonary arteries (arrow) in early systole; (C) lateral view:

vortex formation in the aortic sinus in late systole.
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formation in the aortic sinus (Fig. 4C). Due to the steep angle
between the main pulmonary artery and left and right pulmonary
artery branches after ASO with Lecompte technique, an accelerated
systolic blood flow can usually be observed along with vortex
formation in the distal main pulmonary artery (Fig. 4B).

Using 4D-Flow MRI, Riesenkampff et al. [82] analyzed the blood
flow patterns in the aorta and pulmonary trunk of TGA patients.
They compared 29 patients with repaired transposition, concor-
dant atrioventricular and discordant ventriculoarterial connection,
to 8 healthy volunteers. They found that contrary to the healthy
control groups, helicity was absent in all TGA patients, indepen-
dent of the type of operation. They also reported that partial helices
were observed in the ascending aorta of 58% of patients after
arterial switch. In the pulmonary trunk, laminar flow was mainly
observed in healthy volunteers and in patients after arterial switch,
whereas vortex formation was present in 88% of patients after
atrial redirection (Mustard or Senning Operation [83,84]), which is
considered a historic surgical technique [82].

Abnormal vortical flow in heart valve disease

Heart valve diseases are in various types and each type affects
vortex formation in a unique form. Abnormal fluid dynamics
situations due to aortic regurgitation (AR), aortic stenosis (AS), and
mitral regurgitation (MR) directly and indirectly affect transmitral
vortex formation. Additionally, vortex formation can be easily affected
due to the severity of valve insufficiency, valve morphology, blood
pressure, and cardiac output. Here we summarize in vivo and in vitro
studies on abnormal vortex formation induced by heart valve diseases.

Aortic regurgitation and paravalvular leak: Aortic regurgitant jet
flows backward into the LV, which leads to volume overload,
elevation of end-diastolic pressure, and LV enlargement. A recent
in vitro study using Echo-PIV has quantified how AR jet affects
intraventricular flow field [85]. The regurgitant jet flowing into the
LV through the center of aortic valve impinges the inferolateral

Trasmitral*
Flow

wall of the LV and interferes with the transmitral vortex formation
that eventually leads to an increase in intraventricular energy
dissipation. As the severity of AR progresses from trace to
moderate, the energy dissipation accentuates. In another in vitro
study, Morisawa et al. reported that paravalvular leak (PVL) after
transcatheter aortic valve replacement leads to abnormal intra-
ventricular vortex formation and disturbed fluid dynamics
condition [86]. Furthermore, they showed that the location of
PVL orifice strongly affects the vortex interaction between the PVL
jet and transmitral flow (Fig. 5). Compared to the anterior PVL,
posterior PVL generates more significant flow disturbance with
and increased flow kinetic energy, which suggests that posterior
PVL has more negative impact on intraventricular fluid dynamics.

Aortic stenosis and bicuspid aortic valve: Restriction in aortic
valve opening because of AS leads to abnormal flow field downstream
of the valve. AS due to bicuspid aortic valve results in complex vortex
formation in the ascending aorta because of its eccentric orifice. Few
studies have described how bicuspid aortic valve affects the fluid
dynamics in aorta. Through in vitro experiments and using particle
image velocimetry (PIV), Saikrishnan et al. showed that thelocation of
the valve orifice strongly affects the vortex formation in the aortic
sinus and ascending aorta [87]. The eccentric orifice location resultsin
eccentric ejected jet, which forms a high velocity vortex with larger
turbulent kinetic energy compared to control trileaflet valves. In
another study, Kimura et al. computationally analyzed how
transvalvular jet through a bicuspid aortic valve influences the aortic
flow field [88]. According to their study, bicuspid AS leads to helical
blood flow in the ascending aorta and increases the wall shear stress
inthe greater curvature of the proximal ascending aorta. Their results
corroborate with other studies on helical blood flow in the ascending
aorta of patients with bicuspid aortic valve [89,90].

Mitral regurgitation: MR is commonly diagnosed by echocardi-
ography and patients with severe MR ultimately need surgical or
interventional treatment. In moderate or severe MR, massive
regurgitant jet streaming into the left atrium (LA) leads to LA
enlargement and increased LA pressure, which sometimes result in

Trasmitral™
Flow
™ \'

Fig. 5. Intraventricular vortex interaction in presence of paravalvular leak (PVL). (A) Anterior PVL jet streams into an LV model alongside the anterior wall and travels toward
the apex. The PVL jet forms counterclockwise vortex at the vicinity of apex and collides with transmitral flow. (B) Posterior PVL jet streams toward the posterior left
ventricular wall, forms a large clockwise vortex and ultimately collides with the transmitral flow and significantly disturbs the LV flow field.
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atrial fibrillation. MR jets are heterogenous and vastly complex
because their form and direction vary and can be easily affected by the
LV systolic function as well as LA morphology and mitral leaflets.
Therefore, a general description of LA fluid dynamics in MR patients is
considerably challenging. Dyverfeldt et al. analyzed LA vortex
formation in five patients with prolapse of posterior mitral leaflet
using 4D-Flow MRI and compared those with healthy control subjects
[91]. They reported a distinct form of vortex formation in the vicinity of
inflow from the left pulmonary vein during both systole and diastole,
whereas in patients with MR, the dominant systolic vortex occurred
near the route of the MR jet alongside the atrial septum that led to a
boost in turbulent kinetic energy.

Vortex formation through mechanical heart valves: The form and
function of the vortices due to the mechanical heart valves (MHVs)
are far from normal. Unlike bioprosthetic heart valves (BHVs), the
MHVs’ rigid leaflets boost the flow turbulence, which increases
energy dissipation.

Faludi et al. described the intraventricular vortex formation in
patients with a bileaflet mechanical mitral position versus healthy
control subjects using echo-PIV [16]. Based on the echocardio-
gram's three-chamber view, transmitral flow entering the LV forms
a clockwise vortex, and then the rotating blood flow is redirected
toward the LV outflow tract at the end diastole. In contrast, in
patients with a bileaflet MHV, a counterclockwise vortex is formed
at the end diastole before flowing across the LV center towards the
LV outflow tract. Other studies have reported that the flow through
the MHVs is strongly affected by the valve design (i.e. mono or
bileaflet), leaflet opening angle, and valve orientation [92-94].
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