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Abstract:

We evaluate the accuracy of a machine-learning-based path loss model 
trained on 42157324 RSSI samples collected over one year from an 
environmental wireless-sensor network using 2.4 GHz radios. The 2218 links 
in the network span a 2000 km2 basin and are deployed in a complex 
environment, with large variations of terrain attributes and vegetation 
coverage. Four candidate machine-learning algorithms were evaluated in 
order to find the one with lowest error: 1) Random Forest; 2) AdaBoost; 3) 
Neural Networks; and 4) K-Nearest-Neighbors. Of the candidate models, 
Random Forest showed the lowest error. The independent variables used in 
the model include path distance, canopy coverage, terrain variability, and 
path angle. We compare the accuracy of this model to several well-known 
canonical (free space, plane earth) and empirical propagation models 
(Weissberger, ITU-R, COST235). Unlike canonical models, machine-learning 
algorithms are not problem-specific: they rely on an extensive dataset and a 
flexible model architecture to make predictions. We show how this model 
achieves a 37% reduction in the average prediction error compared to the 
canonical/empirical model with the best performance. This paper presents an
in-depth discussion on the strengths and limitations of the proposed 
approach as well as opportunities for further research.

Index Terms—Machine learning, Internet of Things, radio propagation, 
wireless mesh networks.

Section I

Introduction

Low-power wireless technology is increasingly being used by the scientific 
community for remote environmental sensing. One community at the 
forefront is the hydrology community. Bogena et al. [1] highlight the 
potential of low-power wireless for measuring soil water content variability, 
Pohl et al. [2] do a similar analysis for understanding the snow cover. Rice 



and Bales [3] show how embedded sensors can be used to evaluate the 
water content of snow. Simoni et al. [4] use wireless sensor networks to 
model the hydrologic response of an alpine watershed. Li et 
al. [5] summarize lessons learned from deploying a wireless sensor network 
for soil monitoring. Gutierrez et al. [6] use low-power wireless to monitor 
water and automate irrigation.

Since 2013, we have been deploying and operating the American River 
Hydrologic Observatory (ARHO) to monitor the snowpack in the California 
Sierra Nevada. This observatory consists of sensors measuring snow depth, 
air temperature, air relative humidity, soil temperature, soil moisture, solar 
radiation, interconnected by 14 independent low-power wireless mesh 
networks, deployed in the American River basin, a 2000 km2 area [7]. Fig. 
1 shows the location of the 14 networks. These networks are deployed in 
locations strategically chosen to get representative spatial estimates of snow
cover, soil moisture and other water-balance components. Data from these 
sensors are integrated with forecasting models and decision-support tools: 
ARHO is the core element of a new water-resource information system, and a
platform for improving hydro-electric generation operations using real-time 
data. To the best of our knowledge, ARHO is the largest environmental low-
power wireless sensor network in operation today.

In environmental monitoring applications, sensors are often deployed in 
remote regions. In the ARHO deployment, it takes hours of driving and hiking
to get to a deployment site, and installing a single node takes about an hour.
When the snow season starts, the deployment sites are usually inaccessible 
for 3–4 months. A trial-and-error deployment, in which nodes are 
added/moved over the course of a couple of days to obtain the right 
connectivity, is hence not an option. When we install a new node, we need to
be able to make an informed guess at how well that node will connect to 
already installed nodes. A key tool for making that guess is a connectivity 



model. Given different features of the deployment (the distance between the
nodes, the amount of vegetation, etc), that model must produce the best 
possible prediction of the Received Signal Strength (RSSI) between that node
and different other nodes in the network (we use the term Received Signal 
Strength (RSS) and Received Signal Strength indicator (RSSI) 
interchangeably in this article).

Such a connectivity model is a basic building block for planning the physical 
connectivity of a deployment, regardless of the type of networking 
technology being used (star topology, multi-hop redundant mesh network). 
Although, in the ARHO networks, we are using a particular type of low-power 
mesh network (see Section II), the methodology developed in this paper is 
not tied to that networking technology, and applies equally well to star 
networks. Similarly, even through we focus on low-power wireless networks 
deployed in forested mountainous areas, the methodology can apply to any 
deployment area, as long as the data used to train the model resembles the 
data to predict (see an in-depth discussion in Section VI-A).

Propagation models (equations) are a natural choice for predicting 
connectivity, but canonical path-loss models are ill-suited in complex terrain 
due their simplifying assumptions of plane-earth or free-space environments.
In order to address these limitations, empirical path-loss models that 
parameterize the effects of vegetation on path loss are used in a variety of 
settings. Although these models attempt to capture the excess power loss as
a function of frequency and foliage depth, they are otherwise univariate (i.e.,
they are only a function of distance).

The ARHO networks produce on average 10 times more network statistics 
than sensor measurements. Part of these statistics are RSSI measurements: 
each node reports the RSSI of the link to each of its neighbors, every 15 min.
This dataset and gives us a unique opportunity to quantify the performance 
of the propagation models.

Perhaps more importantly, having this dataset allows to think about 
connectivity models in a radical new way. In traditional propagation models, 
one creates an equation which approximates the observed data, and fine-
tunes the parameters in a univariate equation (multipliers, exponents, etc.) 
so it matches the data points best. We propose using a completely agnostic 
“big data” approach by associating to each of the RSSI measurements a set 
of features (distance, vegetation, terrain, etc. between the communicating 
nodes) and train a multivariate non-parametric model so it learns which 
features are most important in predicting the RSSI. The result of this 
machine-learning approach is a predictor: given a new set of features (e.g., a
new node is added), is it able to predict the RSSI over that link. The 
connectivity dataset allows us to quantify the performance of this approach 
through cross-validation. This allows us to evaluate the accuracy of the 
machine-learning method used, which is based on an ensemble of regression



trees (Random Forest). This is a multivariate, non-parametric method in 
which an ensemble of decision trees are trained on existing data.

The contributions of this article are threefold:

 We present a connectivity dataset consisting of 42,157,324 RSSI 
measurements gathered on 2218 wireless links in the ARHO networks.

 We develop a machine-learning approach to predict link quality by 
training on this dataset.

 We evaluate (i) the suitability of traditional and this machine-learning-
based model for predicting the RSSI in complex 
environments, (ii) whether features other than distance play a role in 
the prediction of RSSI in complex terrain, and (iii) the strengths and 
limitations of our machine-learning-based methodology.

The remainder of this article is organized as follows. Section II describes the 
large-scale connectivity dataset. Section III discusses related connectivity 
models for forested environments. Section IV presents the machine-learning 
model we propose. Section V evaluates the performance of the machine-
learning and canonical models. Section VI summarizes the key findings, 
discusses the strengths and limitations of the proposed approach and 
presents the opportunities for further research.

Section II

A Large-Scale Real-World Connectivity Dataset

The connectivity data we use in this article is gathered from nodes in the 
ARHO. Fig. 2 shows the network architecture of the AHRO observatory. 
Circled numbers in the paragraph (e.g., ①) refer to the annotations in Fig. 2. 
Sensor stations ① are placed a hydrologically significant locations. Relay 
nodes ② are added to ensure redundant connectivity. The sensor data is 
relayed to the manager ③ node, which is connected to a Linux computer. 
This computer connects to the Internet through a satellite ④ or a cellular link 
⑤. Seconds after the generated data is produced in the deployment site, it 
appears in the database ⑥ and can be visualized online ⑦.



Sensor stations are deployed in locations with diverse physiographic features
of elevation, slope, aspect, and canopy coverage, across the basin. A typical 
network consists of 45 nodes deployed over a 1–2 km2 area. Terrain 
attributes in each catchment are heterogeneous: low-elevation networks are 
characterized by a flat, densely forested terrain, whereas high-elevation sites
are in an Alpine environment with large variations in topography and canopy 
coverage. Fig. 3 shows the Echo Peak network (marked “ECP” in Fig. 1), 
which is representative of the other 13 networks.

At the heart of each sensor station is a NeoMote, a low-power wireless 
platform commercialized by Metronome Systems, a UC Berkeley spin-off 
company (http://www.metronomesystems.com). The NeoMote is a generic 
sensor platform, which features a Cypress PSoC micro-controller and a 



SmartMesh IP low-power wireless mote, in a hardened weather-proof design. 
We chose to use two different types of omni-antennas with different gain 
levels to adapt to the complex terrain. Pairs of 6-dB gain antennas were used
on flat areas with less than 10-degree slopes. When the slope between two 
radios is greater than 10 degrees, we switch to pairs of 4-dB antennas. The 
lower-gain antennas have a wider beam width in the vertical direction, hence
the performance is improved on severe slopes. The pins on the micro-
controller are programmable, and allow a user to connect any sensor and 
actuator to the board (http://www.cypress.com). The SmartMesh IP mote is 
the element that communicates wirelessly, and is commercialized by the 
Dust Networks product group at Linear Technology 
(http://www.linear.com/dust). The low-power wireless mesh network created 
between the devices offers >99.999% end-to-end reliability and a over 
decade of battery lifetime [8].

Besides generating sensor measurements, the network continuously 
produces network statistics for an operator to be able to assess its “health”. 
The network generates approximately 10 times more network statistics than 
sensor measurements. Each node in the network produces a “Health Report”
every 15 min which contains the list of neighbors it is communicating with, 
and – among other things – the average RSSI of the packets it received from 
that neighbor over the past 15 min. Over the course of 1 year, we have 
collected 42,157,324 such RSSI measurements from the 2218 wireless links 
that make up the ARHO deployments.

Every entry in the dataset of RSSI values is annotated with a set of 
“features” to characterize the topographic and canopy structures between 
the two nodes. The locations of the deployed nodes were logged the 
Magellan Explorist 710 handheld GPS unit. Features at the associated 
locations are extracted from two digital raster maps. We use a 30 m 
resolution digital elevation model (DEM) from the National Elevation Dataset 
(http://www.nationalmap.gov/elevation.html). The DEM stores elevations 
above sea level in meters for the latitude and longitude coordinates of each 
pixel. Each pixel is 30 m wide in the north-south direction. The spacing varies
in the east-west direction, depending on latitude. The clusters are separated 
with distances from 10 to 50 km. Features associated to canopy density are 
extracted from a percent-tree canopy cover raster developed by the National
Land Cover Database (http://www.mrlc.gov/nlcd2011.php) (NLCD) with 30 m 
resolution. The NLCD map gives a relative canopy density value ranging from
0 to 100, representing the percentage of tree canopy cover for each 
pixel [9]. It should be noted that 30 m is a large area compared to the 
vegetation size. Given the large variability of tree height, species, etc. the 
NCLD values may not precisely correspond to the vegetation density 
between nodes. It should also be noted that for 3.4% of the data, the 
distance is less than 30m. In this situation, the density is marked as the 
density of the grid cell that contains both nodes.

The features we annotate each RSSI measurement with are:



1. Path ground distance (a number in meters): the distance between the 
two radios communicating for this RSSI measurement, calculated from 
their GPS locations and elevations.

2. Mean percent tree canopy cover (a number between 0% and 
100%): the average pixel value from the NLCD vegetation map along 
the line-of-sight path between the two communicating nodes.

3. Terrain complexity: the standard deviation of the raster values from 
the DEM along the line-of-sight path between the two communicating 
nodes.

4. Vegetation variability: the standard deviation of the raster values of 
the NLCD vegetation map along the line-of-sight path between the two 
communicating nodes.

5. Path angle: the angle between the line-of-sight path between the two 
communicating nodes and horizontal.

6. Source canopy coverage: the bi-linear interpolated values of the NLCD 
vegetation map pixels at the source and receiver locations, a number 
between 0% and 100%.

7. Receiver canopy coverage: same calculation as the “Source canopy 
coverage” feature, but at the receiver node.

Section III

Related Connectivity Models for Forested Environments

The aim of a propagation model is to predict the expected connectivity. 
Models based on the physics of the diffusion of electromagnetic waves in an 
ideal medium (Friis propagation) provide a first-order approximation of the 
expected connectivity. More complex models, such as “plane earth” account 
for constructive/destructive interference based on the height of the 
transmitter and receiver nodes, and the assumption of an ideal flat and 
empty environment. These propagation models are described in Section III-A.

In forested environments, signal strength is attenuated by vegetation. 
Related work has focused on empirically modeling the excess signal strength
loss due to canopy, based on field measurements. These models are 
described in Section III-B.

A. Canonical Propagation Models

The simplest path-loss model is “free space” propagation. It assumes 
unobstructed, line-of-sight decay of an electromagnetic wave, based on the 
Friis transmission equation, see (1) (and [10, eq. (1)] “free space”).

In (1), Pt is power transmitted by the transmitter, Pr is power received by the 
receiver, Gt and Gr are the gains of the antennas at the transmitter and 



receiver, respectively, λ is the signal wavelength (m), d is the distance 
between the transmitter and receiver (m), L is the system loss factor (equal 
to 1 for free space, but modified in the empirical models detailed in Section 
III-B).

“Free space” propagation does not capture the effect of ground reflection. 
“Plane earth” is a second canonical model which takes into account the 
effect of ground reflection, under the assumption of an infinite ground plane, 
see (2) (or [10, eq. (2a)]).

In (2), hr and ht are the heights of the transmitter and receiver (m), 
respectively, kw is the wave number (m−1).

B. Empirical Propagation Models in Forested Environments

While canonical, plane-earth, and free-space path loss models provide a first-
order approximation of path loss, their simplifying assumptions make them 
unrealistic in the general case. We are looking for a model representative of 
our deployments in forested environments. Models specific to this 
environment model the excess loss induced by the foliage characteristics 
between each link. They modify the loss factor (L ) from the canonical 
models. Well-known propagation models for forested environments include 
Weissberger’s modified exponential decay model [11], the ITU 
Recommendation (ITU-R) model [12] and the COST235 model [13].

The Weissberger [11] model assumes that propagation occurs through a 
dense body of dry trees (see [10, eq. (4)]). It assumes that propagation only 
occurs through the trees, and is not diffracted over the top of the trees. The 
loss factor is given by (3).

In (3), LWeiss is the loss due to foliage, f is the transmission frequency 
(GHz), d is the distance between transmitter and receiver (m).

Another common propagation model is ITU-R [12]. Like Weissberger, it 
assumes that the majority of the signal propagates through a body of trees 
(See [10, eq. (5)]). The measurements for ITU-R were primarily made in the 
Ultra High Frequency (UHF) range. The loss factor is given by (4).

In (4), f is the transmission frequency (MHz), d is the distance between 
transmitter and receiver (m).

The Weissberger and ITU-R models do not account for seasonality (i.e., 
differing amounts of vegetation when trees have leaves or are bare). In order



to account for this effect, the COST235 model [13] was developed based on 
measurements carried out over two seasons when trees are “in-leaf” and 
“out-of-leaf”. Measurements were made in the millimeter-wave frequencies 
(9.6 to 57.6 GHz). The resulting parametrization is given by (5).

In (5), f is the transmission frequency (MHz), d is the distance between 
transmitter and receiver nodes (m).

Several other models have been developed to take into account specific 
characteristics. Guo et al. [14] derive path loss as a function of trunk height 
gain k for a pine tree environment. Azevedo and Santos [15] model RSSI 
inside a forest, based on factors such as the average density of trees, or the 
average trunk diameter. They find that the path loss coefficient decreases 
linearly with the average tree density multiplied by the trunk diameter. 
Demetri et al. [16] use high-resolution LiDAR data to calibrate a log-normal 
path loss-model.

C. Comparison to Real Data

All of the canonical and empirical propagation models in Sections III-A and III-
B are equations. Starting from ideal physics in the canonical models, the 
empirical propagation models fine tune parameters for each equation (e.g., 
the system loss factor L ) so the resulting equation better matches 
experimentally gathered data. These models use the distance between 
nodes as the only variable.

Since we have collected a large number of real-world RSSI measurements on
the 2218 wireless links from the ARHO networks, we are interested in seeing 
how well the models surveyed in Section III are able to match the 
measurements. We plot in Fig. 4 the RSSI as a function of distance predicted 
by the different models, and overlay our measurements. In the models, we 
set the parameters to match that of our 
deployment: Gt=4 dBi, Gr=4 dBi, λ=12.5 cm (for 2.4 GHz), ht=hr=5 m. We 
also use the “in-leaf” variant of the COST235 model, as it corresponds best 
to the deployment environment. Fig. 4 suggests the models do not match 
our empirical data well, and canonical models over-estimate the measured 
RSSI. Moreover, the shape of the signal strength decay is not exponential: at 
short distances, there is much greater signal strength variability than 
predicted by the models. The 1% sensitivity level of the LTC5800 chip used 
in the deployment is −93 dBm; which is the reason why there are no points 
below −95 dBm.



To quantify the error between the models and the measurements, we use 
each of the models on each of the 2218 wireless links in the dataset. We 
record the difference between the RSSI predicted by the models, and the 
average RSSI of that link over the year of measurement. Fig. 5 shows the 
results as a histogram. Table I contains the average and standard deviation 
of the prediction error for the distributions shown in Fig. 5.



It is clear from Fig. 4 and Table I that the models cannot be used as-is to 
accurately predict the RSSI between two nodes deployed in the field. Other 
phenomena besides distance and vegetation affect signal strength, including
specifics about the environment we deploy in (e.g., terrain), or the hardware 
we use (e.g., transmission power, antenna matching, antenna alignment, 
radiation pattern). We could produce another model, in which we take into 
account these phenomena, and create an equation that best matches our 
data. We believe that such matching makes the model more specific to a 
particular set of empirically gathered data, and less generally useable. We 
question whether using a simple equation is the right approach.

Our conclusion is that trying to model every physical phenomenon in an 
equation is a non-starter. Minute changes to the environment (e.g., node 
position [18], antenna alignment, the quality of the antenna connector) can 
cause the RSSI to vary by over 10 dB. Understanding, measuring and 
modeling each of these phenomena is unfeasible for any real deployment. 
Our intuition is that we should instead learn from the wireless links deployed 
now and predict the performance of wireless links installed in the 



future. Section IV develops this idea, and presents a model based on the 
Random Forest algorithm (a common algorithm used in machine learning). 
We show how this model achieves a 37% reduction in the average prediction
error compared to the canonical/empirical model with the best performance.

Section IV

A Machine Learning Model

Given the limitations of the canonical and empirical models, we want to 
determine whether a multivariate connectivity model could be trained on the
RSSI measurements and associated features described in Section II, and 
used to predict RSSI at un-instrumented locations. We describe a number of 
potential machine learning algorithms in Section IV-A, and the proposed 
model in Section IV-B.

A. Overview of Machine Learning

Machine-learning algorithms are trained to identify patterns in historical 
data. This is very different from the canonical and empirical models surveyed
in Section III, which fit a specific function “a priori”. Patterns learned by 
machine-learning algorithms can be non-linear, multivariate, and can be 
used both for predicting which category a piece of data belongs to 
(classification), and predicting continuously valued outputs from a set of 
inputs (regression). Algorithms in machine learning are broadly divided into 
two categories: “supervised” and “unsupervised.” Supervised algorithms 
require observations of the output to learn patterns. Unsupervised 
algorithms learn patterns in the space of independent variables without 
observations of a dependent variable (e.g., clustering). The field of machine 
learning has seen a number of recent applications to low-power wireless 
networking, including for localization and routing [19]. In this study, we have 
observations of the output (the RSSI), and try to predict a continuously 
valued function. We therefore desire a “supervised regression” machine 
learning solution.

A number of algorithms can be used to solve supervised regression 
problems, including: Support Vector Machines, Neural Networks, Nearest 
Neighbors, Gaussian Processes, and Random Forest. In, this study we 
evaluate four algorithms: Random Forest, Adaboost, Neural Networks, and K-
Neareast-Neighbors. Decision trees, the core component of the Random 
Forest algorithm, are advantageous in that they are not sensitive to 
independent-variable scaling or the inclusion of irrelevant variables [20]. 
Also, decision trees are not “black-box” models: each split in the decision 
tree can be inspected once the model is trained. A single decision tree is 
known overfit data [21]. To address this, Random Forests combine estimates 
from multiple trees using a random selection of features to arrive to a 
consensus of the true output [22]. This process prevents the model from 
over-fitting the data (i.e., fitting the noise rather than the trend). The 
accuracy of the algorithm is affected by parameters of the estimator such as 



the maximum tree depth and the size of the ensemble. Decision tree depth 
controls the maximum depth of the decision tree (i.e., how many splits on 
the independent variables are made). The size of the ensemble is the 
number of decision trees the outputs are averaged over. In general, a small 
ensemble with deep decision trees has a greater tendency to overfit than a 
shallow ensemble of many decision trees. These parameters must be tuned 
for the RSSI model, which is discussed in Section IV-B.

Once the model is trained, its indicates which features are more important. 
This is calculated either by computing the out-of-bag sampling error (MSE) 
during training, then permuting each predictor variable and computing the 
difference in sampling errors [22], or by computing how frequently a given 
feature is used to perform splits in the estimator.

B. Model Implementation and Parameter Tuning

We develop the connectivity model using Scikit-Learn version 18.1, an open-
source machine learning package implemented in Python (http://scikit-
learn.org/). We first divide the average annual RSSI data along the 2218 links
into three subsets using randomized sub-sampling (“test train split” in Scikit-
Learn). We use standard splitting ratios: training (50%), cross-validation 
(25%), testing (25%). Training and cross-validation sets are used to 
determine the optimal parameters for the models. The input features were 
scaled to values between 0 and 1 as K-Nearest-Neighbors and Neural 
Networks are sensitive to the scale of the input space. We use a grid search 
cross-validation scheme with 3 folds to determine the optimal parameters for
each model.

For Random Forest we evaluate the following parameters: maximum tree 
depths between 5 and 50 (at 5-unit intervals), number of ensemble members
between 10 and 130 (at 20-unit intervals), and between 1 and 7 features for 
each split. Splits are axis-alined. Mean squared error is used as the 
information gain criteria. All other values are set to defaults. For Adaboost, 
we evaluate linear, square, and exponential loss functions, and evaluate 
between 2 and 30 estimators (at 2-unit intervals). In the Neural Network, we 
use 1 hidden layer with between 2 and 20 neurons, between 20,000 and 
100,000 maximum iterations (at 20,000-unit spacing). Four activation 
functions are considered: identity, logistic, tanh, and rectified linear (relu). 
For K-Nearest-Neighbors, we evaluate between 2 and 50 neighbors (at 1-unit 
intervals).

Section V

Model Validation and Results

To validate each model, we use data not used during the training process. 
We train the model using the best parameters determined in Section IV-B, 
and evaluate the model’s accuracy on the cross-validation dataset selected 
at random from the available data. Table II shows the chosen parameters, 
along with the mean absolute error for each method. We discuss the 



accuracy of the chosen model on the cross-validation dataset in Section V-A. 
We then discuss the relative contribution of each independent variable 
in Section V-B.

A. RSSI Prediction Accuracy

The accuracy of the predictor on the 555-sample cross-validation dataset is 
depicted in Fig. 6. The blue line represents an ideal predictor; black points is 
the predicted data for the 555-sample cross-validation dataset. The R2 score 
of the predictor is 0.51. The predictor exhibits a slight positive bias at very 
low values of RSSI (less than −85 dBm) and a slight negative bias at values 
greater than −85 dBm. We attribute the bias at low RSSI values to the fact 
that frames cannot be received with an RSSI well below the sensitivity; which
causes the predicted RSSI to exhibit a slight positive bias. Overall, the 
predictor exhibits near-zero bias (0.18 dBm).

Fig. 5 shows how this predictor compares to the predictions done with the 
canonical and empirical RSSI models from Section III. All of the canonical and
empirical propagation models exhibit positive bias on the testing dataset 
(the bias is 19.5, 17.7, 3.61, 1.75, and 0.49 dBm for plane earth, free space, 
Weissberger, ITU-R, and COST235, respectively). It should be noted that the 
comparison is limited to 2.4 GHz data. The models also show a higher mean 
absolute error and higher error variability (error standard deviation) than the
proposed model (Table I). Of the existing models, the COST235 (in-leaf) 
model shows the highest accuracy. The proposed model, however, exhibits 



an average prediction error 37% lower than that of the COST235 (in-leaf) 
model.

B. Feature Contribution

One important aspect of this study, which is made possible by the machine-
learning approach, is to determine which additional independent variable 
(“feature”) is important to predict the RSSI. Random Forests provide a 
natural ranking of features in the model, based on the degree to which splits 
on each variable improve the split quality criterion (mean squared error – 
MSE – in the current study). In Scikit-Learn, this value is computed based on 
how frequently a feature is used to split in the ensemble in order to 
determine a “mean importance” for each feature. Table III shows the mean 
and standard deviation (SD) of the contribution of each independent variable
used in the model. Path ground distance is the most important feature in the 
model, followed by terrain complexity, vegetation variability, and mean 
percent tree canopy. Attributes related to the local characteristics of each 
node (source/receiver canopy coverage) exhibit lower significance. Given 
that the model is trained only on 2.4 GHz data, it should be noted that the 
feature importances may change for different frequencies.

Section VI

Discussion and Opportunities

This paper introduces a radical new way of thinking about wireless 
connectivity models. Instead of relying on an expert understanding of the 
physics of wireless propagation, we propose a agnostic 
computational approach in which patterns are identified in recorded data. 
The machine-learning tools used are generic: they are not specific to wireless
connectivity.

The main result, which is counter-intuitive, is that this agnostic approach 
yields better results than the expert approach. The proposed approach 
reduces the average prediction error by 37%, when compared the expert 
model with the best performance. The quantitative study is based on a large 
connectivity dataset of 42,157,324 measurements gathered for one year on 
2218 wireless links: we have confidence in the results. These findings open 



up many new possibilities for understanding, planning and diagnosing 
wireless networks.

A. Discussion

On top of the numerical results, we want to conclude this article with a 
discussion about the strengths and limitations of the proposed approach.

Being able to compute which features are important is a key benefit of the 
methodology developed. First, it confirms the importance of distance as a 
key feature for predicting the wireless connectivity between devices, but it 
also highlights that other features are important.

An immediate drawback is that these extra features are not common to all 
deployments. While the mean percent tree canopy cover is an important 
feature for our networks, it doesn’t apply to, for example, a smart factory 
application. This means the model created during the learning phase only 
applies to the particular environment it was created in. That being said, 
the methodology can be used in all environments, and the same remark 
applies to canonical and empirical models.

Perhaps the main drawback of the approach is that one needs a lot of data to
train the model. This has two main implications. First, one needs training 
data, which leads to a chicken-and-egg situation in new deployment 
environments. When deploying in a completely new environment, one needs 
to build up a dataset by measuring the connectivity between nodes that 
were deployed without assistance from a model. As the dataset grows, and 
as more and more nodes/networks are deployed, the model can be refined to
start helping with the deployment. Second, one needs the dataset to be 
gathered in an environment that has similar distributions of independent 
variables as the environment used train the model. The 14 low-power 
wireless networks from the American River Hydrologic Observatory are 
similar in that they are deployed outdoor in a mountainous forested areas, 
and composed of the same devices and radio technology. Fig. 7 quantifies 
the temporal consistency across the networks. It shows the standard 
deviation of the RSSI of the different links over the one-year period of the 
dataset. It is less than 5 dB for 90% of the of links. The model would be less 
accurate if the different networks would be deployed in very different areas.



Another limitation of the proposed approach is that the feature selection 
needs to be done well. Table III shows the 7 features the training data is 
annotated with. Even though the machine-learning approach is agnostic to 
the independent variable selection and can discard irrelevant variables, it 
still takes expert knowledge and “intuition” to select which feature to use.

Further complicating the problem, the importance of the feature can evolve 
depending on the setup. For example, the “path angle” feature has an mean 
importance of 0.08 (see Table III), which is low. This, in part, can be 
explained by the choice of using a lower-gain 4 dBi antennas for nodes on 
the slope. If a 8 dBi antenna were used, the spread of the vertical radiation 
pattern would be narrower, probably leading to an increased mean 
importance of the “path angle” feature.

To conclude the discussion, the model developed in this article achieves very
good results, with a 37% reduction in the average prediction error compared 
to the canonical/empirical model with the best performance. That being said,
the methodology is applicable only to cases where (1) training connectivity 
data have already been gathered for similar deployments and (2) there is 
some physical intuition about which features are important, and hence which
features to annotate the data with.

B. Opportunities for Further Research

The methodology presented in this article is a radical new way of predicting 
connectivity in wireless networks. It opens up numerous opportunities of 
further research, including to understand/minimize the drawbacks 
highlighted in Section VI-A.

First, develop a methodology to guide feature selection. Such a methodology
would guide feature selection in a systematic way, and reduce the amount of
expert guidance needed. The goal would be limit the possibility of “missing” 
important features.



Second, employ next-generation remote sensing tools (e.g., airborne laser 
scanning, LIDAR) to address the limitations of the NLCD maps discussed 
in Section II. LIDAR data enables sub-meter modeling of the canopy 
structure. This would better represent the true density between each node, 
and would likely improve the accuracy of the machine-learning algorithm.

Third, evaluate how much training data is required to build a model with 
good enough accuracy, and how that accuracy evolves as the size of the 
data set increases. The ultimate goal is to be able to assess how the model 
behaves if the training data is built-up as more and more nodes are 
deployed. This study could be done with the same dataset, by considering 
data from an increasing number of wireless links.

Fourth, build a prediction placement tool. This study would use the model 
proposed in this article to optimize network topologies in complex terrain 
over the set of feasible signal repeater placements. This would facilitate the 
automated deployment of new networks to ensure they are robust to path-
loss.

Fifth, apply the same methodology in different environments. This study 
would gather a similar connectivity dataset in a different environment (e.g., 
a smart factory), verify that the methodology applies equally, and quantify 
the difference in connectivity with the model presented in the present article.

Finally, expand the number of machine-learning models and parameters 
evaluated. This study offers a preliminary analysis of the most appropriate 
methods, but the model can be further refined by evaluating more 
algorithms and parameter optimization methods on the dataset provided 
with this study.
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