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Nonlinear fluid simulations are carried out to investigate the properties of fully developed two-
dimensional (2D) electron fluid turbulence in a dense Fermi (quantum) plasma. We report several
distinguished features that have resulted from our 2D computer simulations of the nonlinear equa-
tions which govern the dynamics of nonlinearly interacting electron plasma oscillations (EPOs) in
the Fermi plasma. We find that a 2D quantum electron plasma exhibits dual cascades, in which the
electron number density cascades towards smaller turbulent scales, while the electrostatic poten-
tial forms larger scale eddies. The characteristic turbulent spectrum associated with the nonlinear
electron plasma oscillations exhibits a non-Kolmogorov-like feature in a weak quantum tunneling
regime, and it tends to relax towards a k™3/2 gpectrum, where k is the wave-number. By con-
trast, the turbulent spectrum condensates toward smaller modes when tunneling effects are strong.
Consequently, the turbulent transport corresponding to the large-scale structures is predominant in
comparison with the small-scales associated with electron number density variations, a result that

is consistent with the classical diffusion theory.

PACS numbers: 52.27.Gr,52.35.Ra,71.10Ca

About forty five years ago, Pines [1] had laid down
foundations for quantum plasma physics. During the last
decade, there has been a growing interest in investigat-
ing new aspects of dense quantum plasmas by developing
the quantum hydrodynamic (QHD) equations [2] by in-
corporating the quantum force associated with the Bohm
potential [2], by deriving the Child-Langmuir law in the
quantum regime [3], and by studying numerous collective
effects [4-7] involving different quantum forces (e.g. due
to the Bohm potential [2] and the pressure law [4, 5] for
the Fermi plasma, as well as the potential energy of the
electron—1/2 spin magnetic moment in a magnetic field
[9]). Studies of collective interactions in dense quantum
plasmas are relevant for the next generation intense laser-
solid density plasma experiments [10, 11], for superdense
astrophysical bodies [12, 13] (e.g. the interior of white
dwarfs and neutron stars), as well as for micro and nano-
scale objects (e.g. quantum diodes [3], quantum dots and
nanowires [14], nano-photonics [15]).

The the Wigner-Poisson (WP) model [16] has been
used to derive a set of quantum hydrodynamic (QHD)
equations [4, 5] for a dense electron plasma. The QHD
equations include the continuity, momentum and Pois-
son equations. The quantum nature [4] appears in
the electron momentum equation through the pressure
term, which requires the knowledge of the Wigner dis-
tribution for a quantum mixture of electron wave func-
tions, each characterized by an occupation probability.
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The quantum part of the electron pressure is repre-
sented as a quantum force [2, 4] —V¢p, where ¢p =
—(h?/2mer/mc)V?\/ne, b is the Planck constant divided
by 2w, m. is the electron mass, and n. is the electron
number density. Defining the effective wave function ¥ =
Vne(r,t) exp[iS(r,t)/h], where VS(r,t) = meue(r,t)
and ue(r,t) is the electron velocity, the electron momen-
tum equation can be represented as an effective nonlinear
Schrodinger (NLS) equation [4, 5, 7], in which there ap-
pears a coupling between the wave function and the elec-
trostatic potential associated with the EPOs. The elec-
trostatic potential is determined from the Poisson equa-
tion. We thus have the coupled NLS and Poisson equa-
tions, which govern the dynamics of nonlinearly interact-
ing EPOs is a dense quantum plasmas. This mean-field
model of Ref. [4, 5] is valid to the lowest order in the cor-
relation parameter, and it neglects correlations between
electrons. The density functional theory [8] incorporates
electron-electron correlations, which are neglected in the
present paper.

In this Letter, we use the coupled NLS and Poisson
equations for investigating, by means of computer sim-
ulations, the properties of 2D electron fluid turbulence
and associated electron transport in quantum plasmas.
We find that quantum tunneling effects play a crucial
role in the evolutionary processes. For instance, the non-
linear coupling between the EPOs of different scale sizes
gives rise to small-scale electron density structures that
co-exist with large scale electrostatic potential structures
in a weak quantum tunneling regime. Furthermore, the
total energy associated with quantum electron plasma
exhibits a non- Kolmogorov-like turbulent spectrum. On
the other hand, strong quantum tunneling yields a char-



acteristic turbulent spectrum that condensates at the
smaller modes resulting in the large scale structures in
both electron density and electrostatic potential. The
electron diffusion caused by the electron fluid turbulence
is consistent with the dynamical evolution of turbulent
mode structures.

For our 2D turbulence studies, we use the nonlinear
Schrédinger-Poisson equations [4, 7]

v
i\/2H%—t + HV?U + o0 — |U|?¥ =0, (1)
and
v290: |\I]|2_17 (2)

which are valid at zero electron temperature for the
Fermi-Dirac equilibrium distribution, and which govern
the dynamics of nonlinearly interacting EPOs of differ-
ent wavelengths. In Egs. (1) and (2) the wave function
V¥ is normalized by /ng, the electrostatic potential ¢ by
kpTr /e, the time ¢ by the electron plasma period w,.',
and the space r by the Fermi Debye radius A\p. We have
introduced the notations A\p = (kpTr/4nnee?)'/? =
Vi /wpe and VH = hwpe/\/ikBTF, where kp is the
Boltzmann constant and the Fermi electron temperature
Tr = (h2/2me)(37r2)1/3n(2)/3, e is magnitude of the elec-
tron charge, and wpe = (47npe?/m.)'/? is the electron
plasma frequency. The origin of the various terms in
Eq.(1) is obvious. The first term is due to the electron
inertia, the H-term in (1) is associated from the quantum
tunneling involving the Bohm potential, ¥ comes from
the nonlinear coupling between the scalar potential (due
to the space charge electric field) and the electron wave
function, and the cubic nonlinear term is the contribu-
tion of the electron pressure [4] for the Fermi plasma that
has a quantum statistical equation of state.

Equations (1) and (2) admit a set of conservation laws
[9], including the number of electrons N = [ U2dzdy, the
electron momentum P = —i [ U*VWdzdy, the electron
angular momentum L = —i [ ¥*r x VUdzdy, and the to-
tal energy £ = [[—U*HV?U+|V|?/2+|¥]3/2]dzdy. In
obtaining the total energy &, we have used the relation
OE/0t = iH(UVU* — U*V), where the electric field
E = —Vy. The conservations laws are used to maintain
the accuracy of the numerical integration of Egs. (1)
and (2), which hold for quantum electron-ion plasmas
with fixed ion background. The assumption of immobile
ions is valid, since the EPOs (given by the dispersion
relation [4, 5] w? = w7, + k*VE + h?k*/4mZ2) occur on
the electron plasma period, which is much shorter than
the ion plasma period wp_l-l. Here w and k are the fre-
quency and the wave-number, respectively. The ion dy-
namics, which may become important in the nonlinear
phase on a longer timescale (say of the order of w;il), in
our investigation can easily be incorporated by replacing
1 in Eq. (2) by n;, where the normalized (by ng) ion
density n; is determined from d;n; +n;V - u; = 0 and
dyu; = —C2?V, where d; = (0/0t) +u; - V, u; is the ion

velocity, Cs = (kBTF/mi)l/2 is the ion sound speed, and
m; is the ion mass.

The nonlinear mode coupling interaction studies are
performed to investigate the multi-scale evolution of a
decaying 2D electron fluid turbulence, which is described
by Egs. (1) and (2). All the fluctuations are initialized
isotropically (no mean fields are assumed) with random
phases and amplitudes in Fourier space, and evolved fur-
ther by the integration of Egs. (1) and (2), using a fully
de-aliased pseudospectral numerical scheme [17] based on
the Fourier spectral methods. The spatial discretization
in our 2D simulations uses a discrete Fourier representa-
tion of turbulent fluctuations. The numerical algorithm
employed here conserves energy in terms of the dynamical
fluid variables and not due to a separate energy equation
written in a conservative form. The evolution variables
use periodic boundary conditions. The initial isotropic
turbulent spectrum was chosen close to k~2, with ran-
dom phases in all directions. The choice of such (or even
a flatter than —2) spectrum treats the turbulent fluctu-
ations on an equal footing and avoids any influence on
the dynamical evolution that may be due to the initial
spectral non-symmetry. The equations are advanced in
time using a 4 th order Runge-Kutta scheme. The code is
made stable by a proper de-aliasing of spurious Fourier
modes, and by choosing a relatively small time step in
the simulations. Our code is massively parallelized using
Message Passing Interface (MPI) libraries to facilitate
higher resolution in a 2D computational box of size 2,
with a resolution of 5122 grid points.

We study the properties of 2D fluid turbulence, com-
posed of nonlinearly interacting EPOs, for two specific
physical systems. These are the dense plasmas in the
next generation laser-based plasma compression (LBPC)
schemes [11] as well as in superdense astrophysical ob-
jects [12, 13] (e.g. white dwarfs). It is expected that in
LBPC schemes, the electron number density may reach
10?7 cm™? and beyond. Hence, we have w,. = 1.76 x 10'®
s, kpTr = 1.7 x 1077 erg, hwpe = 1.7 x 10~? erg, and
H = 1. The Fermi Debye length A\p = 0.1 A°. On
the other hand, in the interior of white dwarfs, we typ-
ically have [18] ng ~ 103° cm™3 (such values are also
common in dense neutron stars and supernovae), yield-
ing wpe = 5.64 x 1019 s71 kpTr = 1.7 x 1077 erg,
fiwpe = 5.64 x 1078 erg, H ~ 0.3, and A\p = 0.025 A°.
The numerical solutions of Egs. (1) and (2) for H = 1
and H = 0.025 (corresponding to ng = 10%” ecm ™3 and
no = 103 ecm ™3, respectively) are displayed respectively
in top and bottom panels of Fig 1 which represent the
electron number density (left) and electrostatic (ES) po-
tential (right) distributions in the (z, y)-plane.

Of particular importance are the regimes of weak
(H < 1) and strong (H > 1) quantum tunneling where
the underlying model exhibits rich and complex dynam-
ics as shown in Fig 1. Figure 1 reveals that the electron
density distribution |¥|? (top left), in H < 1 regime, has
a tendency to generate smaller length-scale structures,
while the ES potential cascades towards larger scales (top
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FIG. 1: Small scale fluctuations in the electron density re-
sulted from a steady turbulence simulations of our 2D electron
plasma. Forward cascades are responsible for the generation
of small-scale fluctuations (top left). (Top right) Large scale
structures are present in the electrostatic potential, essentially
resulting from an inverse cascade. The parameter H is 0.025
and 1.0 respectilvely for the upper and lower panels. Lower
panel shows predominance of large scale structures in both
electron density (left) and ES potential (right).

right). It is to be noted that the co-existence of the small
and larger scale structures in turbulence is a ubiquitous
feature of various 2D turbulence systems. For exam-
ple, in 2D hydrodynamic turbulence, the incompressible
fluid admits two invariants, namely the energy and the
mean squared vorticity. The two invariants, under the
action of an external forcing, cascade simultaneously in
turbulence, thereby leading to a dual cascade phenom-
ena. In these processes, the energy cascades towards
longer length-scales, while the fluid vorticity transfers
spectral power towards shorter length-scales. Usually,
a dual cascade is observed in a driven turbulence sim-
ulation, in which certain modes are excited externally
through random turbulent forces in spectral space. The
randomly excited Fourier modes transfer the spectral en-
ergy by conserving the constants of motion in k-space.
On the other hand, in freely decaying turbulence, the
energy contained in the large-scale eddies is transferred
to the smaller scales, leading to a statistically stationary
inertial regime associated with the forward cascades of
one of the invariants. Decaying turbulence often leads
to the formation of coherent structures as turbulence re-
laxes, thus making the nonlinear interactions rather in-
efficient when they are saturated. The power spectrum
exhibits an interesting feature in our 2D electron plasma
system, unlike the 2D hydrodynamic turbulence [19, 20].
The spectral slope in the 2D quantum electron fluid tur-
bulence is close to the Iroshnikov-Kraichnan power law
[21, 22] k—3/2 rather than the usual Kolomogrov power
law [19] k=%/3. This is shown in Fig 2 (solid curve).
Physically, the deviation from the k~%/3 exponent comes
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FIG. 2: The 2D electron fluid turbulence interestingly relaxes
towards an Iroshnikov-Kraichnan (IK) type k~%/2 spectrum in
a dense plasma. Here H = 0.025 for the solid curve. The dot-
ted curve corresponding to H = 1.0 exhibits a condensation
phenomenon in which both the electron density and poten-
tial are dominated by the large scales, whereas the spectrum
shows a sharp rise in the lower band. This is further consistent
with Fig 1 (lower panel).

about because the short wavelength part of the EPOs
spectrum is controlled by the quantum tunneling effect
associated with the Bohm potential. The peak in the en-
ergy spectrum can be attributed to the higher turbulent
power residing in the EPO potential, which eventually
leads to the generation of larger scale structures, as the
total energy encompasses both the electrostatic poten-
tial and electron density components. In our dual cas-
cade process, there is a delicate competition between the
EPO dispersions caused by the statistical pressure law
(giving the k2V2 term, which dominates at longer scales)
and the quantum Bohm potential (giving the h2k*/4m?
term, which dominates at shorter scales with respect to
a source). Furthermore, it is interesting to note that
exponents other than k~%/3 have also been observed in
numerical simulations [23] of the Charney and 2D incom-
pressible Navier-Stokes equations. The dual cascades,
shown in Fig 1 (top panel), can further be contrasted
with H > 1 case. The latter modifies the characteris-
tic of turbulence by condensating the energy in the lower
Fourier modes. Hence the spectra of electron density and
potential are dominated by the large scales as shown in
Fig 1 (bottom panel). The turbulent spectrum is there-
fore peaked essentially at the lower band as illustrated
by the dotted curve in Fig 2 (H =1 curve).

We finally estimate the electron diffusion coefficient
in the presence of small and large scale turbulent EPOs
in our quantum plasma. An effective electron diffusion
coeflicient caused by the momentum transfer can be cal-
culated from Degp = [(P(x,t) - P(r,t + t'))dt’, where
the angular bracket denotes spatial averages and the en-
semble averages are normalized to unit mass. Since the
2D structures are confined to a x — y plane, the effective
electron diffusion coefficient, D,y s, essentially relates the
diffusion processes associated with random translational
motions of the electrons in nonlinear plasmonic fields. We
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FIG. 3: Time evolution of an effective electron diffusion co-
efficient. Upper curve corresponds to the diffusion associated
with the large-scale structures for H = 1.0, whereas the lower
curve represents a diffusion corresponding to the H = 0.025.
The former is consistent with the Fig 1 (lower panel) and Fig
2 (dotted curve).

compute Dcss in our simulations, to measure the turbu-
lent electron transport that is associated with the turbu-
lent structures that we have reported herein. It is ob-
served that the effective electron diffusion is lower when
the field perturbations are Gaussian. On the other hand,
the electron diffusion increases rapidly with the eventual
formation of longer length-scale structures, as shown in
Fig. 3. The electron diffusion mediated by the large scale
structures in quantum plasmas dominates substantially
in the presence of condensation effects i.e. H = 1, as
elucidated in Fig. 3 (top curve). Furthermore, in the

steady-state, nonlinearly coupled EPOs form stationary
structures, and D¢y saturates eventually. Thus, remark-
ably an enhanced electron diffusion results primarily due
to the emergence of large-scale potential structures in our
2D quantum plasma.

In summary, we have presented computer simulation
studies of the 2D fluid turbulence in a dense quantum
plasma. Our simulations, for the parameters that are
representative of the next generation intense laser-solid
density plasma experiments as well as of the superdense
astrophysical bodies, reveal new features of the dual cas-
cade in a fully developed 2D electron fluid turbulence.
Specifically, we find that the power spectrum associated
with nonlinearly interacting EPOs in (weak) quantum
plasmas follow a non-Kolmogorov-like spectrum. The de-
viation from a Kolmogorov-like spectrum resulting from
the flattening of the spectrum is mediated essentially by
the nonlinear EPOs interactions in the inertial range (ba-
sically controlled by the electron plasma wave dispersion
effect represented by h2k*/4m?2), which impedes the spec-
tral transfer of the turbulent power associated with the
short scale Fourier modes. In the nonlinear regime, the
inhibition of the spectral transfer is caused by short scale
EPOs that are nonlinearly excited by the mode coupling
of the EPOs in the forward cascade regime, which then
grow, acquire nonlinear amplitudes, and eventually sat-
urate in the nonlinear phase.
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