UC Berkeley
Working Papers

Title

Modernization of Center-to-Center Data Communication Standards: Sample Implementation
Administration and User Guide

Permalink
https://escholarship.org/uc/item/2mf058rd
Author

Peterson, Brian

Publication Date
2021-11-30

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2mf058rd
https://escholarship.org
http://www.cdlib.org/

PARTNERS FOR ADVANCED TRANSPORTATION TECHNOLOGY
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Modernization of Center-to-Center Data

Communication Standards
Task 3713 (65A0761)

Sample Implementation Administration and User
Guide

November 30, 2021

CALIFO'R NI A

PATH

e

Partners for Advanced Transportation Technology works with researchers, practitioners, and
industry to implement transportation research and innovation, including products and services
that improve the efficiency, safety, and security of the transportation system.

Sample Implementation Administration and User Guide

This page left blank
intentionally

Sample Implementation Administration and User Guide

Author

Brian Peterson

Software Engineering Manager
California PATH

University of California, Berkeley

Sample Implementation Administration and User Guide

This page left blank
intentionally

Sample Implementation Administration and User Guide

TABLE OF CONTENTS

BLIEE 11 L= 100 e T = 1 N v
LISt Of FIBUIES ..ieeeeeiiiiiiiiiiniiiiiiiiiiiiiiiiiieeeeesiintieessssssssnnesssssssssinesssssssssssssnssssssssssessssssssssssnnns vii
T Ao] i -1 o] =TSN ix
B IO 1434 Yo (3Tt 4o o HO RIS 1
1.1, INtended AUdIENCEeeiiiieeieeeee e e e s e s b e e e e s ssabaaeeesesnes 1

1.2. DocUMENt Organizationccciiiiiiieiiiiiiiiitttee et e e e e e e e e e e et e e e e eeeeeesesssesaaannes 2

2. Installation REqUIrEMENtS.......ccciiiiemuiiiiiiiiiiiiiiiiieriieiiieessessierressessssstnnesssssssssssssssssssnss 3
2.1, Hardware REQUITEMENTSuuiiiiiiiiiieeeeeeiiitee ettt e e s e s e e e e s srae e e e s s sbare e e e s ssnbaeeeeees 3

2.2. REQUITEd SOfLWAIEttt e e e e e e e e e e e e e e e rr e e e e e e e aaaaaaeaens 3

3. ApPPlication DESIZNcciiirieuuiiiiiiiieuuiiiiiiiiruiiiiiienssiiiiirrsniiiiiressiittiresssssssstsssnssssnns 5
00 I 1o 1 Yo [V ot f oY o KPS PRURTR 5

N D 1T -1 o SO PPPPPPPP 5

4. Installation INSErUCHIONS ..cc.euiiiiiiiieiiiiiiiiriiiiinirrrsiinrrrrsaese s esassssssrressssssssssssnnssssssnnns 11
4.1. Installation Prer@qUISITESuiiii it e e e s s b e e e s s aeaes 11

4.2. Application COMPONENTS.......cciiiiiiiiiiieeeeeeeee e e e e e e e e e e e s e e s e nnnrsraeaeeeeees 11

4.3. Installation INSTrUCLIONSuviiiiiiiiiiiee e e 11

4.3.1. Open the Java Projectscccueeiiiiciiiieei ettt e e e 12

4.3.2. Configure DOCKEr DESKEOPuviiiiriiiiieeeieiiiiieeeeesiieeee e esiree e e e s ssieeeee e e e 12

4.3.3. Configure the tmdd_owner_center projectccccceeeeveivveeeiiniiieeeeeennnnns 14

4.3.4. Configure the External Center Project.......cccccvvviiiieeiiiniiieee i 16

4.3.5. Complete and Verify Installationcocccvieeiiiiiiiieiiiiniieee e 18

4.3.6. Installation COmMPlete.....ccoueiiiiiiiiiiieee e 32

5. Operating INStrUCHIONSccvvuiiiiiiiiiiiiiiiriiir s rsesss s rsasssssnessssrensssssansssssens 33
5.1. Restart a SOAP Services PipeliNe.......iiiiiiiieiiiiiiiiee et e e 33

5.2. Restart a Kafka Pipelineooiiiiiiiiiiie ettt 36

Sample Implementation Administration and User Guide

This page left blank
intentionally

Vi

Sample Implementation Administration and User Guide

LIST OF FIGURES

FIgUre 1 - APPIICAtION DESIZNeitiiiieieeteeie ettt sttt ettt et e e bt e bt et e satesheeebeeebe e be e beesbe e bt eabeeateeateenbesbaesbeesaeenaes 6
Figure 2 - tmdd_owner_center Opened Within INtellijooiiriiiiiiiiee e 12
Figure 3 - tmdd_external_center Opened Within INtellijcooiiiiiiiiiiiiee e 12
Figure 4 - Docker DesktOp RESOUICES SETLINES. ..ccueiiuiritiriietieiieett ettt ettt ettt ettt satesbe e s et e saeesbeenbeebeebeearens 13
Figure 5 - Docker Desktop File Sharing SETHINGScoouiiiiiiiiieiee ettt sttt s s et et et 14
Figure 6 - Owner Center docker-compose.yml Modification for Mongodbcccceeiiiiiniiniiniinieneeeeeeeeee 16
Figure 7 - Docker Desktop Display for RUNNING OWNE CONTENcciutiitiiitiirieeieeie ettt ettt st eseeesee e eee e s 19
Figure 8 - Docker Desktop Display for Running EXternal CENTEr........ccuiiiiieiiiiiieie ettt 21
Figure 9 - Kafka CoNtrol CeNTEr HOMEooiiiieiieeie ettt ettt ettt et sa e sbe e sbe e saeesae e beesteenbeeatens 23
Figure 10 - Kafka ClUSLEr OVEIVIEW SCIEENcc.uiiieiieete ettt ettt ettt et e et st e et e eabeeatesaeesbeesbeesaeesbeabeebeeabesatens 24
Figure 11 - Kafka CoONNECE CIUSLEI SCrEENiiiiiieiieeee ettt ettt ettt ettt ettt eat e s it e saeesbeesbeesaeesaeenbeenbeenbeentens 24
Figure 12 - Kafka Connectors SCreen (NO CONNECLONS) ..uiiiuiiiiieiieeiiieiieesieeesieessieeesaeestteesseeseteesseesbaeenseesnsseansseens 25
Figure 13 - Kafka Connectors Screen With CONNECLOISuiiiiiiiiiiiieieeie ettt sttt st be et e 25
Figure 14 - Provided Connector CONFIgG FilESccoueiiiiiiiiiiiiete ettt sttt e 27
Figure 15 - Add Connector SCreen — FIrSt CONNECTONccui ittt ettt sttt saeesbe e be et eabe et s 28
FIGUIE 16 - Add @ CONMNECLON ...ttt ettt ettt sttt e e bt e bt e bt e s b e e bt e abe e bt et e eateeabeeabesutesbeesaeesaeesbeenbeebeenbenatens 29
Figure 17 - Add CONNECLOT SCrEEN 2...c..uiiiiiieeieeie ettt ettt ettt e bt e b e e s bt e sbe e be e bt e abeeabeeateeabesuaesbeesbeesaeesbeabeebeenbenatens 30
Figure 18 - SOAP Service Validation REPOIT.......coiuiiiiiieiie ittt ettt ettt ettt ettt sae e bt e saeesbeenbeesbeebesatens 31
Figure 19 - External Center application.proPerti@s.......ccoo i iiriirienieieerte ettt ettt sttt esae et et bt 34
Figure 20 - Stop external center SOAP SErVICE CONTAINEooiiiiiiieiiereere ettt ettt ettt sttt st e saeeseeesbeebeeaeens 35
Figure 21 - SOAP Services External Center SOAP SErviCe LOEScoueriereireeniierieeie ettt sttt e st e saeeseeeseeeeesaeens 36
Figure 22 - Mongodb Collection Delete All DOCUMENTS..........cotiitiiieiienieerieesie ettt ettt site st e st e saeesaeesbeesbeebeeaeens 38
Figure 23 - List Of Kafka CONNECLOTS.eiiiiiieieeieeie ettt ettt ettt ettt ea e e bt e saeesbeesbeesaeesbeenbeebeenbeeatens 39
FigUre 24 - Add CONNECLON SCIEENeitiiiieteeie ettt ettt ettt e bt e bt e s bt e sbe e be e bt e abeeabeeateeabesbaesbeesbeesaeesaeebeebeenbenatens 40
Figure 25 - LaUuNCh CONNECTOT SCrEEMccuviitieieeieete ettt ettt ettt et e s bt e bt e bt e be et e eateeateeabesubesbeesbeesaeesbeanbeebeenbenatens 40

Vii

Sample Implementation Administration and User Guide

This page left blank
intentionally

viii

Sample Implementation Administration and User Guide

LIST OF TABLES

Table 3-1 - Owner Center Docker STAaCK EI@MENTScocuueiiiiiei ettt e e e e e e e s e sbarae e e e e e e seaes 7
Table 3-2 - External Center DocKer STack EIEMENTS......ccuvviiiiiiiiecee ettt ee s e e e s s eebaba e e e e e e senes 7
Table 3-3 - C2C Application Management COMPONENTScco.eiiiiriiriieieeieetesite st e st este et e besabesabeseesaeesaeesaeesbeebeensens 8

Sample Implementation Administration and User Guide

This page left blank
intentionally

TMDD Standards Update Recommendations — Data Transmission

1. INTRODUCTION

This document provides a guide to the reference sample application developed under the
Traffic Management Data Dictionary (TMDD) modernization contract. The application provides
a sample implementation of a SOAP implementation using the XML Schema Definition (XSD)
and Web Service Description Language (WSDL) developed under the contract. In addition, it
provides a sample implementation of a Kafka/JSON based messaging implementation. Both
implementations utilize a sample set of data captured during the 1-210 Connected Corridors
contract. The application is intended for use by experienced Information Technology (IT)
personnel as an example of both SOAP and Kafka implementations of a Center-to-Center (C2C)
information exchange system.

1.1. INTENDED AUDIENCE
The primary audience for this document includes:

e The Caltrans Division of Research, Innovation, and System Information (DRISI).

e (Caltrans Operations personnel involved in specifying, procuring, and implementation of
systems requiring C2C communications

e (Caltrans Information Technology Personnel that may be tasked with installing this
application

The document is intended primarily to provide IT personnel with the information required to
install and operate the application, and to understand the basics of its design. It assumes that
those who are installing and operating the application have a fundamental understanding of

the following:

e Information technology systems and their implementation and operation, especially
large-scale implementations

e Database technology, design, and administration. A basic understanding of Mongodb
and Postgres is helpful.

e Messaging technology and the Kafka environment. Experience and understanding of the
Confluent Kafka stack is helpful.

e Docker and the use of containers and container stacks, docker networking, and the use
of docker compose.

e Basic programming experience and the use of Integrated Development Environment
tools such as Intellij. Java experience is helpful.

A basic understanding of IT systems is sufficient to install and run the application and the
document is written so that an individual with such understanding without specific experience
in these areas should be able to install and operate the system. Additional experience will allow
a more advanced usage of the system, including understanding, possible modification, and

TMDD Standards Update Recommendations — Data Transmission

configuration of the system to independently use either the owner or external center with a
third party implementation of either a SOAP or Kafka/Mongo service.

1.2. DOCUMENT ORGANIZATION
The remainder of this document is organized as follows:

e Section 2 provides the requirements for installation

e Section 3 provides a short overview of the application design
e Section 4 provides installation instructions

e Section 5 provides operation instructions

TMDD Standards Update Recommendations — Data Transmission

2. INSTALLATION REQUIREMENTS

2.1. HARDWARE REQUIREMENTS

The application was built for operation as a containerized application using Docker. It was built
and tested with the following hardware:

e Apple Macbook Pro 16” 2019 with:
2.3 GHz 8-Core Intel Core i9 Processor
32 GB 2667 MHz DDR4 Memory
macOS Catalina Version 10.15.7

Recommended minimum storage available: 60GB

As it is a containerized application, similar hardware and OS environments (Windows or Linux)
meeting similar processor and memory performance should work, but may require some
modification to the docker configuration and networking. It is configured to be installed on a
single computer, but can be reconfigured to run on multiple computers.

2.2. REQUIRED SOFTWARE
The following software is required for installation and operation of the application:

Docker desktop for your operating system (Docker Desktop for Mac v 3.5.2.18 was used)
Robo-3T v1.4.4 or similar Mongodb management tool

Intelli) IDEA v2020.3.3 or other Java based Integrated Development Environment (IDE)
DataGrip v2021.1 or similar Postgres management tool

Google Chrome or other internet browser software

Refer to the installation instructions for each tool and install on the target machine(s).

All other software utilized is installed within the containers that are deployed and no user
installation is required.

TMDD Standards Update Recommendations — Data Transmission

This page left blank
intentionally

TMDD Standards Update Recommendations — Data Transmission

3. APPLICATION DESIGN

3.1. INTRODUCTION

Center to center (C2C) communications occur between an owner center and an external center.
Owner and external centers are generally traffic management centers or other producers or
consumers of traffic information. C2C communications enable these centers to exchange
information related to traffic management, such as inventories and status of infrastructure
elements like sensors, intersection signals, or changeable message signs or request execution of
control commands affecting those infrastructure elements. An owner center generally refers to
the center that owns, manages, or controls those infrastructure elements, and an external
center refers to the center that is requesting information related to those infrastructure
elements.

The application provides the ability to exchange a limited set of the messages implemented
within the Traffic Management Data Dictionary, v 3.3d with modifications recommended within
this report. The sample data exchanged is based on data collected over a 24-hour period within
the Connected Corridors program. The data is not modified to represent the recommendations
made in this report and is exactly as it was collected within the Connected Corridors program.
Two methods of data exchange are available within the application. First, a SOAP web services-
based exchange is available, implemented using a modified version of a test harness developed
for the Connected Corridors program. A Kafka-based messaging exchange is also available,
implemented using a Confluent-based Kafka messaging stack.

3.2. DESIGN

The design of the application provides for a single owner center and a separate, single external
center. Figure 1 illustrates the application design. Within this illustration, the owner center is
shown within the tan colored box on the left side of the diagram, and the external center
shown on the right tan colored box. Both the owner center and the external center are each
docker stacks with multiple containers within each stack. Each white box within the owner
center and external center represents one or more containers that house the services required
to run the application.

The owner center on the left side of the figure is a docker stack composed of services and
containers represented in Figure 1 and Table 3-1.

TMDD Standards Update Recommendations — Data Transmission

Docker Desktop
Mongo Ul - Robo 3T
Postgres Ul - DataGrip

(® CONFLUENT

Internal port:8000 - External port:8002
Internal port:8080 - External port:8080

1.

Browser Ul - external
SOAP services
validation
IDE - Intellij

J

Internal port:5432 - External port:5431 %

o

Internal port:27017 - External port:27019

:Internal port:27017 - External port:27020
:Internal port:27017 - External port:27021

v Arcagiac ((
— =>Java
‘ =
aa Arcad
— Avcad o {
‘ Services
A
ccaa Arcadia.0
6 ga_messages ATME ‘
aa Arcadi
Cooga A (@)
ATHEG PostgreSQL
G ga_messages ATNS. ‘
6 ga_messages ATM: ‘
a_messages ATMS.DMSStaushisg
cc_ga_messages.ATMS.dynamicmessagesigni
oc_mongodb0 g
27017:27019
ATMS O
oc_mongodb1 s g
cG_ga_messages ATMS. 27017:07020 " mongoDB
o_ga_messages.ATMS.RampheterStatushs @
oc_mongodb2 .
27017:27021
Replication Clu
Broker (%) CONFLUENT
9092:9092 zookeoper g
S0r 910, 2081:2081
(®) CONFLUENT |(%) CONFLUENT
schema-registry_
ksaldbecli aoBrs0ns
(®) CONFLUENT |(%) CONFLUENT
rest-proxy
ksal-datagen e
(®) CONFLUENT (%) CONFLUENT kafka
I ksqldb server
> a021:9021 Bosa0ss e
(®) CONFLUENT
connect
e 8083:8083
network = host

W{ Internal port:9021 - External port:9021

—

External por
External port:

01 - Internal port:8000
081 - Internal port:8080

{

External port:5433 - Internal port:5432

ec_mongodb0
27017:27030

mongoDB

ec_mongodb1
27017:27031

(

Bridge Network:

L

0:External port:27030 - Internal port:2701
1:External port:27032 - Internal port:2701
2:External port:27032 - Internal port:2701

7
7
7

ec_mongodh? s
27017:27032

‘ Replication ol

L 4

External Center
network = host

oc_ec_bridge

-

Figure 1 - Application Design

TMDD Standards Update Recommendations — Data Transmission

Table 3-1 - Owner Center Docker Stack Elements

Owner Center Docker Stack Elements

Service Container(s) Description

Owner center SOAP service owner_center Apache Tomcat container
with TMDD SOAP
Services owner center
application

Owner center Postgres
database

oc_postgres

Postgres database
containing owner center
data (XML formatted)

Owner center Mongodb
database (3 containers)

oc_mongodb0

oc_mongodb1l

oc_mongodb?2

Owner center Mongodb
replication cluster
containing owner center
data (json formatted)

Kafka (up to 9 containers) broker Kafka broker (not
clustered)
zookeeper Zookeeper cluster
manager

schema-registry (optional)

Kafka schema registry for
message validation

rest-proxy

Kafka control interface

connect

Kafka connect service
(utilized for mongodb-
kafka interface)

ksqldb server (optional

Kafka ksqldb service

ksqldb-cli (optional)

Kafka ksqldb command
line interface

ksgldatagen (optional)

Kafka random data
generator

control-center

Kafka management user
interface

The external center on the right side of the figure is a docker stack composed of the following

services and containers:

Table 3-2 - External Center Docker Stack Elements

External Center Docker Stack Elements

Service Container(s) Description

External center SOAP service external_center Apache Tomcat container
with TMDD SOAP services
external center
application

TMDD Standards Update Recommendations — Data Transmission

External center Postgres
database

external_center_postgres

Postgres database
containing external
center data (XML
formatted)

External center Mongodb
database (3 containers)

ec_mongodb0

ec_mongodbl

ec_mongodb2

External center Mongodb
replication cluster for
receiving owner center

data (json formatted)

In addition to the two docker stacks and their containers, at the top of the diagram are the
tools used by an administrator or user to manage and operate the owner and external center
components. These are installed on the user or administrator’s local machine, which can be the
same as the owner and external host machine. Users may substitute other similar tools based
on personal preference. Those used and tested include the following:

Table 3-3 - C2C Application Management Components

C2C Application Management Components

Service Description
Docker Desktop Used to manage docker deployment, images, and
containers

Used to access control center and SOAP exchange
validation report

Google Chrome or other
internet browser

Robo 3T Open source Mongodb management tool

DataGrip Commercial interface for Postgres management (Required
only for development — not for operation)

Intellij Community or Commercial integrated development
environment (Required only for development — not for
operation)

The design provides for the following:
Isolation of SOAP and Kafka based implementations
Automated application deployment and shutdown
Control of individual message streams for each data message type
Exchange of messages for the following:
o Organization
Center Active Verification
Ramp Meters
Intersection Signals
Sensors
o Dynamic Message Signs
Exchange of different information types, such as:
o Inventories
o Status

O
O
O
O

TMDD Standards Update Recommendations — Data Transmission

o Data
o Maintenance History

Each of the two Docker stacks (owner center and external center) contain their own isolated
default networks which allow the containers within the stacks to communicate. In addition, the
two SOAP service containers (external_center and owner_center) communicate on the docker
host network. The owner centers connect container communicates with the external center
mongodb containers via a bridge network between the two Docker stacks, the oc_ec_bridge.

The next section of this document will describe installation and opportunities to configure the
application to run in different environments if desired.

TMDD Standards Update Recommendations — Data Transmission

This page left blank
intentionally

10

TMDD Standards Update Recommendations — Data Transmission

4. INSTALLATION INSTRUCTIONS

These installation instructions assume installation of the application on a single host.
Installation on multiple hosts may require changes to the installation parameters. The
instructions will identify installation elements that will require changes in order to install on
multiple hosts.

4.1. INSTALLATION PREREQUISITES

Install the non-containerized local components on the host of the application. This includes an
internet browser such as Google Chrome, Docker, a mongodb management application such as
Robo 3T, a postgres management application such as DataGrip (optional — required for
development environments only), and a developer IDE such as Intellij (optional — required for
developer environments only). For non-development installations, any text editor may be used
instead of the developer IDE to make file edits required for operation. The application is
developed using Java, so any IDE selected should be capable of Java based development. The
version of the Java Development Kit (JDK) used in development is OpenJDK v1.8.0_282.

4.2. APPLICATION COMPONENTS

The application is delivered within a single zip file. When unzipped, the following high level
directory structure is created:

/TMDD Modernization
/tmdd_owner_center
/tmdd_external_center
/Mongodata
/Images

tmdd_owner_center contains the code for the owner center, including java code, configuration,
and docker instructions for deployment

tmdd_external_center contains the code for the external center, including java code,
configuration, and docker instructions for deployment

Mongodata contains the data files for the owner center mongodb database

Images contains docker images for deployment

4.3. INSTALLATION INSTRUCTIONS

To install the application on a single host, complete the following:

11

TMDD Standards Update Recommendations — Data Transmission

4.3.1. OPEN THE JAVA PROJECTS (DEVELOPERS ONLY)

1. Copy or move the /tmdd_owner_center and /tmdd_external_center directories to the
directory where your Intellij IDE projects are located. (This step is optional, as generally
the project can be opened from any location — just nice from a point of keeping things
clean).

2. Open each of the projects within Intellij. You should see something similar to the
following:

[] tmdd_owner_center
Iz tmdd_owner_center [&] Remote debug owner center v
[&] Project v

v g tmdd_owner_center

> m

¥ Project

= .mvn
I owner_center
I src Search Everywhere

$ Commit

>
>
>
>

eseqeieq (({}

& .dockerignore Go to File

i .gitignore
% Dockerfile
pom.xm| Navigation Bar
% README.md
i Drop files here to open
> il External Libraries

Recent Files

F Pull Requests

> P Scratches and Consoles

%= Structure

H Gt Serices b Run #Debug i=TODO © Problems [Terminal G Profilr % Endpoints e Spring Q EventLog
InteliiJ IDEA 2020.3.4 available // Update... (10/26/21, 4:48 PM) P master @

Figure 2 - tmdd_owner_center Opened within Intellij

[] tmdd_external_center

J
v
i |
o

Iz tmdd_external_center [5) DEBUG Remote v
[=] Project ~

v g tmdd_external_center
>
> I .mvn

uene 3

> M external_center
> M src

& Commit I Project

Search Everywhere

eseqeieq ({(#

& .dockerignore Go to File

T\ :
i .gitignore Recent Files

2
8
E
g
4
&
=
&
a

£ README.md Navigation Bar
-

|

> il External Libraries Drop files here to open

> P Scratches and Consoles

2. Structure

K Gt O Senices QFnd P Run i=TODO © Problems [Terminal () Profiler % Endpoints 4 Buikd 9 Spring @ EventLog
IntelliJ IDEA 2020.3.4 available // Update... (10/26/21, 4:48 PM) P master @

0

Figure 3 - tmdd_external_center Opened within Intellij

4.3.2. CONFIGURE DOCKER DESKTOP

Docker desktop and your docker environment must be configured to run the application. To
configure your docker environment, complete the following:

1. Set up the Docker resources in Docker Desktop.

a. Open Docker Desktop and click the settings icon on the top right corner of the
application. ()

12

TMDD Standards Update Recommendations — Data Transmission

b. Click Resources.

. =
@ docker Upgrade e H O bippe
Preferences X
== General Resources Advanced
I@ Resources CPUs: 8
* ADVANCED
@
FILE SHARING
PROXIES
Memory: 10.00 GB
NETWORK
@ Docker Engine e
i Experimental Features
Swap: 1.5 GB
Kubernetes
— @
Disk image size: 96 GB (53 GB used)
— o
Apply & Restart

Figure 4 - Docker Desktop Resources Settings

c. Set the resources as shown in Figure 4. CPUs to a minimum of 8, memory to a
minimum of 10GB, swap to a minimum of 1.5 GB, and disk image size to a
minimum of 96 GB.

2. Set up Docker file sharing within Docker Desktop.

a. While you are still in Docker Desktop, click FILE SHARING under the Preferences,

Resources menu.

13

TMDD Standards Update Recommendations — Data Transmission

_

Preferences

= General Resources File sharing
These directories (and their subdirectories) can be bind mounted into Docker
1@ Resources containers. You can check the documentation for more details.
ADVANCED
* FILE SHARING /Users ©
PROXIES
NETWORK ACETES ©
4@ Docker Engine Jprivate o)
i Experimental Features
/tmp ©

Kubernetes

/Users/brianpeterson/IdeaProjects/tmdd. ©
/Users/brianpeterson/IdeaProjects/tmdd. ©
/Users/brianpeterson/IdeaProjects/tmdd. @

/Users/brianpeterson/IdeaProjects/tmdd. ©

ecto ®

Figure 5 - Docker Desktop File Sharing Settings

b. Click on the + button on the bottom right to add the full path of each location
where the tmdd_owner_center/owner_center/center_service,
tmdd_owner_center/owner_center/postgres,
tmdd_external_center/external_center/center_service, and
tmdd_external_center/external_center/postgres were created in your
development environment.

c. Click Apply & Restart in the docker Preferences screen.

3. Install the owner_center Postgres image.

a. Open a terminal window on the machine in which docker is installed.

b. Run the following command, substituting the PATH with the full path of the
directory where the postgres image was unzipped (the images directory in the
resulting file structure):

i. docker load < PATH/ocPostgresimagel.1.tar

4.3.3. CONFIGURE THE TMDD_OWNER_CENTER PROJECT

Complete the following within the tmdd_owner_center project to configure it for operation:

1. For the SOAP services, complete the following:

14

TMDD Standards Update Recommendations — Data Transmission

15

a.

THIS STEP IS NOT REQUIRED IF STARTING THE INSTALLATION FROM THE ZIP
FILE. IT IS ONLY REQUIRED IF STARTING FROM THE FIRST PULL FROM A GIT
REPOSITORY. The target WAR files are included within the zip files. If the source
of the tmdd_owner_center project is a git repository, you will need to build the
WAR files. To build the WAR files run a maven clean followed by maven package.
After the maven package process has successfully completed, copy the following
files from the target folder to the owner_center/center_service folder:
i. TMDDOwnerCenter-Arcadia.war

ii. TMDDOwnerCenter-ATMS.war

iii. TMDDOwnerCenter-County.war

iv. TMDDOwnerCenter-TSMSS.war

2. Configure the Kafka implementation as follows:

a.

In the path where you unzipped the Mongodata folder, create two copies of the
directory and contents of
Mongodata/owner_center_ATMS_arcadia_1_hr_data/db0, creating the
following:
i. Mongodata/owner_center_ATMS_arcadia_1_hr_data/db0

ii. Mongodata/owner_center_ATMS_arcadia_1_hr_data/db1

iii. Mongodata/owner_center_ATMS_arcadia_1_hr_data/db2
This creates a set of data for each of the Mongodb instances within the owner
center’s replication cluster.
In the file tmdd_owner_center/owner_center/docker-compose.yml, change the
path for the volume mounts for each of the Mongodb instances to the full path
where you created the three directories holding the mongo data in step a above.
Figure 6 highlights the line where you change the full path for the mongodb0
data within the docker-compose.yml file. Make sure to leave as is the end of the
line “:/data/db” which references the path used within the container itself that is
mapped to your local path. Repeat the procedure for the mongodb1 and
mongodb?2 data paths you created in step a above.

TMDD Standards Update Recommendations — Data Transmission

: ./mongodb
¢ host
: oc_mongodb®
: oc_mongodb@
: mongo Change local path to match
: Mongodb local data file path

owner_center_default

27019:27017

./mongodb/mongo-init.js:/docker-entrypoint-initdb.d/mongo-igit.js:ro

./mongodb/keyl.ke
e

Figure 6 - Owner Center docker-compose.yml Modification for Mongodb

4.3.4. CONFIGURE THE EXTERNAL CENTER PROJECT

Complete the following within the tmdd_external_center project to configure it for operation:

e For the SOAP services, complete the following:

a. THIS STEP IS NOT REQUIRED IF STARTING THE INSTALLATION FROM THE ZIP
FILE. IT IS ONLY REQUIRED IF STARTING FROM THE FIRST PULL FROM A GIT
REPOSITORY. The target WAR files are included within the zip files. If the source
of the tmdd_external_center project is a git repository, you will need to build the
WAR files. To build the WAR files run a maven clean followed by maven package.
After the maven package process has successfully completed, copy the following
file from the target folder to the owner_center/center_service folder:

i. TMDDExternalCenter.war

b. Setthe owner center postgres username and password (optional).

i. Inthe tmdd_external_center/external_center folder, open the docker-
compose.yml file. In the postgres: service definition environment variable
for POSTGRES_PASSWORD, set the desired postgres password.

ii. Inthe external_center\center_service folder, open the
application.properties file set the value for postgres.qa.dataSource.pass
to match the password set in step i above.

c. Configure what data will be exchanged when running the SOAP service as
follows:

i. Inthe application.properties file opened in step 1.b.above, choose the
pipelines to be run by setting the pipeline.configFiles. As delivered, the
application is set to run the arcadia pipelines. Also available are the atms,

16

TMDD Standards Update Recommendations — Data Transmission

county, and tsmss pipelines. An example of how to run multiple source
pipelines is included in the comment above the pipeline.configFiles.

ii. Setthe subscription duration limit by entering the duration in seconds as
the value for the key subscription.duration.seconds. The delivered
application.properties value is set to 120 seconds. A maximum value is
86400 seconds (24 hours). Note that the subscription will end at midnight
of the day for which it was started regardless of the duration entered.

d. Configure the endpoint address for each pipeline SOAP service. These endpoint
addresses will point to the owner center SOAP service. These instructions
assume you are running both owner center and external center stacks on the
same local machine. You will need to adjust if the owner center and external
center stacks are running on separate machines.

i. ldentify the local address of the host machine. On a mac based machine,
open the network preferences on your local machine (found in the
System Preferences application), choose the network you are currently
using in the list of available networks, click Advanced, and select the
TCP/IP tab. Note or copy the IPv4 address of the machine.

ii. Use the IPv4 address copied in step i above and paste that address in
each of the SOAP endpoint IP addresses for each pipeline sources’
endpoint and returnAddress. Replace only the ip address in each line and
leave the remaining url elements as is.

iii. If you are using two machines —one for external center and one for
owner center, the IP of the owner center should be used for the
“endpoint” address and the IP of the external center should be used for
the subReturnAddress element.

e. Configure the details of each pipeline startup. These are contained in each of the
pipline start yml files located in the
tmdd_external_center/external_center/center_service yml files (e.g.
_arcadiaPipelineStart.yml, _atmsPipelineStart.yml, etc.)

i. Each of the files are preconfigured to run. The name of the pipeline, its
communication type, subtype (if required), and subFrequency (if
required) are specified. For each specified, there is data within the
postgres database for the run specified. In general, use the following
definitions to understand what will run with the specified configuration.

1. name: the name of the dialog to be run
2. communication: the type of dialog — sync indicates a request
response, async indicates a subscription
3. subType: if async is specified for the communication parameter,
the subType must be specified as onChange for an onchange
subscription, periodic for a periodic subscription
4. subFrequency: if the subType is periodic, subFrequency must be
specified in seconds.
Note that it is critical that a supporting set of data be available within the
owner_center postgres instance for any desired SOAP dialog and communication

17

TMDD Standards Update Recommendations — Data Transmission

4.3.5.

18

parameter combination. That can be determined by reviewing the materialized
views within postgres and verifying a set of data exists for the desired dialog and
accompanying parameters.

COMPLETE AND VERIFY INSTALLATION

(Optional) Setup Mongodb replication set security keys. Each Mongodb replication set
(owner center and external center) consist of three individual Mondogb instances. Each
instance requires a security key that allows the instance to communicate with the other
instances within its replication cluster. A keyfile is provided with the software, however,
if a secure keyfile is desired, the provided keyfile can be replaced with a private, secure
keyfile. See the instructions for Mongodb keyfile creation in the Mongodb online
documentation at https://docs.mongodb.com/manual/tutorial/deploy-replica-set-with-
kevfile-access-control/.

Change the permissions for each owner center Mongodb keyfile. In a terminal session,
run the following command within the directory (3 directories) where the keyfiles are
located. They should be located in the tmdd_owner_center/owner_center/mongodb,
tmdd_owner_center/owner_center/mongodb1l, and
tmdd_owner_center/owner_center/mongodb2 directories. Substitute the name of your
keyfile for keyl.key if you created your own keyfile in step 1 above.

a. chmod 600 keyl.key

Repeat step 2 for each external center Mongodb keyfile. Keyfiles are located in the
tmdd_external_center/external_center/mongodb,
tmdd_external_center/external_center/mongodb1,
tmdd_external_center/external_center/mongodb2 directories.

Build and start the owner center stack by completing the following:

a. Open a terminal window and navigate to the directory where you installed the
owner center and the docker_compose.yml file exists
(tmdd_owner_center/owner_center).

b. Type docker—compose up —build and press return. Docker will download
the required images for installation, build the containers required and start the
application. Open docker desktop and when complete, the owner center stack
should look similar to Figure 7. Note that it is possible that one or more
containers may exit, as occasional timing issues may arise that cause an
application to not start. If that occurs, select the container that stopped, and to
the right of the container name, click start. This will generally fix the issue.

TMDD Standards Update Recommendations — Data Transmission

19

owner_center
control»cenFer confluentinc/cp-
connect Cr't demos/cp-s
oc,mongoqbz
oc_mongoqb1
owner_cenFer owner_center
oc;mongod'bo mongo
owner_centler_postgres_l owner_center_p
rest-proxy confluentinc/cp-
Schema-registry confluentinc/cp-
broker co t uentinc/cp-

zookeeper confluentinc/cp

Figure 7 - Docker Desktop Display for Running Owner Center

5. Finalize configuration of the owner center Mongodb databases as follows:

Set up your Mongodb client to connect to the Mongodb instances. Follow the
instructions of your Mongodb client software to connect to each of the three
owner center Mongodb instances. You will want to create two connections to
each instance, one logged in as admin and a second logged in as
cc_qga_messages. The connection information for each is as follows (it is
recommended that you change the password after connecting — see Mongodb
documentation for instructions. If you change the password, update your
connection and the Kafka Connect configuration files located in the
tmdd_owner_center/owner_center/connect directory to reflect the password

a.

change):

i. oc_mongodb0 —admin

1.

vk wnN

address: localhost

port: 27019

database: admin

username: user_admin

password: Hummingbird (it is recommended that you change the
password after start — see Mongodb documentation for

TMDD Standards Update Recommendations — Data Transmission

20

instructions. If you change the password, update your connection
and the Kafka Connect configuration files located in the
tmdd_owner_center/owner_center/connect directory)
ii. oc_mongodb0 - cc_ga_messages
1. address: localhost
port: 27019
database: cc_qga_messages
username: db_owner
password: TurkeyVulture (it is recommended that you change the
password after start — see Mongodb documentation for
instructions. If you change the password, update your connection
and the Kafka Connect configuration files located in the
tmdd_owner_center/owner_center/connect directory)
iii. oc_mongodbl —admin (same as oc_mongodb0-admin with the following
changes):
1. port:27020
iv. oc_mongodbl —cc_ga_messages (same as oc_mongodb0-
cc_ga_messages with the following changes):
1. port: 27020
v. oc_mongodb2 —admin (same as oc_mongodb0-admin with the following
changes):
1. port:27021
vi. oc_mongodb2 — cc_ga_messages (same as oc_mongodbO-
cc_ga_messages with the following changes):
1. port: 27021
Verify the connection to each instance. Using your Mongodb client, create a shell
within the oc_mongdb0-admin connection you just verified. In Robo 3T you can
do this by right clicking on the connection in the left pane and selecting Open
Shell.
Within the shell, type rs.initiate() and execute the command (in Robo 3T, click
the green arrow in the top toolbar. In the results pane, expand the results and
verify the initiation of the cluster was successful.
Replace the rs.initiate command with the following: rs.add(‘oc_mongodb1’) and
execute the command. Expand the results and verify the command was
successful.
Repeat the rs.initiate command for oc_mongodb?2.
Replace the rs.add command with rs.status(). Execute the command and verify
the replication cluster is operating. oc_mongodb0 should be the primary node in
the cluster, oc_mongodb1 and oc_mongodb2 should be secondary nodes. (Note,
it is possible during shutdown and subsequent restart of the owner center
docker stack that one of the secondary nodes becomes primary. This is normal,
but may cause confusion when subsequently executing commands for the
Mongodb via your Mongodb client. If a command fails, verify the primary node

vk wnN

TMDD Standards Update Recommendations — Data Transmission

21

via the rs.status() command. Any command requiring a write or change to the
database must be executed through the primary node.

6. Build and start the external center stack by completing the following:

a.

Open a terminal window and navigate to the directory where you installed the
external center.

Type docker—compose up —build and press return. Docker will download
the required images for installation, build the containers required and start the
application. Open docker desktop and when complete, the external center stack
should look similar to Figure 8. Note that it is possible that one or more
containers may exit, as occasional timing issues may arise that cause an
application to not start. If that occurs, select the container that stopped, and to
the right of the container name, click start. This will generally fix the issue.

(T:'xter.nal_center
gxternal_cehter external_center:
external_center_postgres_1 postgres:latest
ec_mongod‘bo mongo:latest
gc_mon god‘m mongo

ec_mongodb2 mongo

Figure 8 - Docker Desktop Display for Running External Center

7. Finalize configuration of the external center Mongodb databases as follows:

a.

Set up your Mongodb client to connect to the Mongodb instances. Follow the
instructions of your Mongodb client software to connect to each of the three
external center Mongodb instances. As with the owner center cluster, you will
want to create two connections to each instance, one logged in as admin and a
second logged in as cc_ga_messages. The connection information for each is as
follows (it is recommended that you change the password after connecting — see
Mongodb documentation for instructions. If you change the password, update
your connection and the Kafka Connect configuration files located in the
tmdd_owner_center/owner_center/connect directory to reflect the password
change):

i. ec_mongodb0—admin

1. address: localhost

TMDD Standards Update Recommendations — Data Transmission

port: 27030

database: admin

username: user_admin

password: Hummingbird (it is recommended that you change the

password after start — see Mongodb documentation for

instructions. If you change the password, update your connection
and the Kafka Connect configuration files located in the
tmdd_owner_center/owner_center/connect directory)

ii. ec_mongodb0 —ec_ga_messages

1. address: localhost

port: 27030

database: ec_ga_messages

username: db_owner

password: TurkeyVulture (it is recommended that you change the

password after start — see Mongodb documentation for

instructions. If you change the password, update your connection
and the Kafka Connect configuration files located in the
tmdd_owner_center/owner_center/connect directory)
iii. ec_mongodbl —admin (same as ec_mongodb0-admin with the following
changes):
1. port:27031
iv. ec_mongodbl —ec_ga_messages (same as ec_mongodb0-
ec_qga_messages with the following changes):
1. port: 27031
v. ec_mongodb2 —admin (same as ec_mongodb0-admin with the following
changes):
1. port:27032
vi. ec_mongodb2 —ec_ga_messages (same as ec_mongodb0-
ec_qga_messages with the following changes):
1. port: 27032

b. Verify the connection to each instance. Using your Mongodb client, create a shell
within the ec_mongdb0-admin connection you just verified. In Robo 3T you can
do this by right clicking on the connection in the left pane and selecting Open
Shell.

c. Within the shell, type rs.initiate() and execute the command (in Robo 3T, click
the green arrow in the top toolbar. In the results pane, expand the results and
verify the initiation of the cluster was successful.

d. Replace the rs.initiate command with the following: rs.add(‘ec_mongodb1’) and
execute the command. Expand the results and verify the command was
successful.

e. Repeat the rs.initiate command for ec_mongodb?2.

f. Replace the rs.add command with rs.status(). Execute the command and verify
the replication cluster is operating. ec_mongodb0 should be the primary node in
the cluster, ec_mongodb1 and ec_mongodb2 should be secondary nodes. (Note,

vk wnN

vk wnN

22

TMDD Standards Update Recommendations — Data Transmission

it is possible during shutdown and subsequent restart of the owner center
docker stack that one of the secondary nodes becomes primary. This is normal,
but may cause confusion when subsequently executing commands for the
Mongodb via your Mongodb client. If a command fails, verify the primary node
via the rs.status() command. Any command requiring a write or change to the
database must be executed through the primary node.

8. Finalize configuration of the Kafka Connect instance as follows:

a. Open the Kafka Control Center. On the local machine it will be located at

http://localhost:9021. You should see something similar to Figure 9.

(o CONFLUENT

Home

n Healthy clusters n Unhealthy clusters

controlcenter.cluster

Running

Overview

Brokers 1
Partitions 293
Topics 81
Production 3.33KB/s
Consumption 166B/s

Connected services

ksqlDB clusters 0

Connect clusters 1

Figure 9 - Kafka Control Center Home

23

TMDD Standards Update Recommendations — Data Transmission

b. Click on the controlcenter.cluster tile. You should see something similar to Figure
10. Do not be concerned if the number of topics is different. However, there
should be at least 1 broker and 1 connect cluster.

%) CONFLUENT
Overview
Cluster overview
Brokers
Brokers
Topics
1 20.8/K 20.77K
Tota! Production (bytes / second) Consumption (bytes / second)
ksqlDB
Consumers
Replicators .
Topics
Cluster settings 8’] 2 9 3 O O
Total Partitions Under replicated partitions Out-of-sync replicas
Connect
Clusters Running Paused Degraded Failed
ksqlDB
Clusters Persistent queries

Figure 10 - Kafka Cluster Overview Screen

c. Click on the Connect cluster tile. You should see something similar to Figure 11.
The number of total connectors may be different.

SONFLUENT

HOME > CONTROLCENTER.CLUSTER

Cluster overview Connect clusters

Brokers

Topics ‘ }

Connect

Cluster name Total connectors Running D S Failed connectors Paused connectors

ksqlDB

connect-default 34 34 0 0 0
Consumers

Replicators

Cluster settings

Figure 11 - Kafka Connect Cluster Screen

d. Click on the connect-default cluster in the list of Connect clusters. You should see
something similar to Figure 13. The specific connectors listed and the number of

24

TMDD Standards Update Recommendations — Data Transmission

connectors may be different in your screen. If this is the first install, there will be
0 connectors.

»calhost:8081/TMDDExternalCenter, Control Center

o CONFLUENT

HOME > CONTROLCENTER.CLUSTER > CONNECT CLUSTERS > CONNECT-DEFAULT

Cluster overview Connectors

Brokers

Topics
Connectors

Connect

ksqlDB O O O O O
Total Running Degraded Failed Paused

Consumers

Replicators

Cluster settings

You haven't added any connectors yet

Bring data into or out of your cluster

Figure 12 - Kafka Connectors Screen (No Connectors)

HOME > CONTROLCENTER.CLUSTER > CONNECT CLUSTERS > CONNECT-DEFAULT

Cluster overview Connectors
Brokers
Topics
comect Connectors
34 34 O O
Consumers Total Running Failed Paused
Replicators
Cluster settings | v] | + Add connector | | F Upload connector config file
Connector name Status Category Plugin name Topics Number of tasks
OwnerCenter Arcadia Orga.. Running Source MongoSourceCon... == 1210
OwnerCenter ATMS Ramp... e Running Source MongoSourceCon... - 1210
OwnerCenter ATMS detect... e Running Source MongoSourceCon... - 1210
OwnerCenter Arcadia Dete.. Running Source MongoSourceCon... —- 1210
OC to EC ATMS Organizati.. e Running Sink MongoSinkConne... cc_ga_messages... 10
OwnerCenter Arcadia Inter... e Running Source MongoSourceCon... - 1210
OwnerCenter ATMS Organi.. e Running Source MongoSourceCon... - 1210
OwnerCenter ATMS DMSSt... e Running Source MongoSourceCon... == 1410

Figure 13 - Kafka Connectors Screen with Connectors

25

TMDD Standards Update Recommendations — Data Transmission

26

e. Connectors required for a specific pipeline are provided in pairs.

The first connector in a pair reads from the owner center Mongodb database for
a specific data source (Arcadia or ATMS) and for a specific data type (such as
intersection signal status). Connectors are configured so that the first time the
connector starts, it reads all data from the collection and then monitors the
Mongodb collection for any new records. It places each record in the collection
in a Kafka topic for that source and data type. If a topic does not yet exist, it
creates the topic before populating the topic. The naming standard for this type
of connector begins with a prefix of “OwnerCenter”, followed by the source
name (“ATMS” or “Arcadia”) and the followed by the data type being
transmitted.

The second connector in the pair reads from the topic and writes the messages
from that topic into the external center’s Mongodb database. The external
center’s Mongdodb collection that is written to is specific only to the datatype
being transmitted, and is not specific to the source (Arcadia or ATMS). The
naming standard for this type of connector begins with the prefix “OC_to_EC”
followed by the source name and then the data type being transmitted.

If no connectors exist, or a desired connector does not exist, there are
predefined connectors specified within connector config files located within the
tmmd_owner_center/owner_center/connect/connector_config_files directory.
Figure 14 provides a list of the connector config files that are installed with the
application.

TMDD Standards Update Recommendations — Data Transmission

27

Figure 14 - Provided Connector Config Files

To create a data pipeline for a source/datatype combination, first complete one
of the following:

(1) If you have no current connectors, click on the Add
Connector button (see Figure 12). A screen similar to
Figure 15 will be displayed. Click on the “upload connector
config file” button.

TMDD Standards Update Recommendations — Data Transmission

(% CONFLUENT

HOME > CONTROLCENTER.CLUSTER > CONNECT CLUSTERS > CONNECT-DEFAULT

Cluster overview

Browse

Brokers
Topics _
Connect
ksqlDB
MongoSinkConnector

Consumers
Sink

Connect

Replicators

Cluster settings

JdbcSourceConnector

Source

MirrorCheckpointConnector

Source

CONNECTORS

MongoSourceConnector

Source

Connect

FileStreamSinkConnector

Sink

MirrorHeartbeatConnector

Source

Control Center

T Upload connector config file

JdbcSinkConnector

Sink.

FileStreamSourceConnector

Source

MirrorSourceConnector

Source

Figure 15 - Add Connector Screen — First Connector

(2) If you have already existing connectors, click on the

“upload connector config file” button on the Kafka Control

Center connectors screen (see Figure 13).

28

TMDD Standards Update Recommendations — Data Transmission

29

HOME CONTROLCENTER.CLUSTER CONNECT CLUSTERS CONNECT-DEFAULT CONNECTORS SOURCES

Cluster overview Add connector
Brokers
Topics 1. Setup connection
How should we connect to your data?
Connect Common
How should we connect to your data?
Transforms
ksqlDB
Predicates
Consumers Error Handling

Replicators

— Name Errors
OwnerCenter_Arcadia_IntersectionSignalStatus }

Topic Creation

Cluster settings
9 Connection

Common
Server Api
Tasks max @

10

Change stream

Topic mapping

Schema

org.apache.kafka.connect.json.JsonConverter
Copy existing

org.apache.kafka.connect.json.JsonConverter General

Additional Properties

(Key converter class ®

Value converter class ©® } Partition

Transforms

| |

Figure 16 - Add a Connector

In the file dialog, select and open the connector config file starting with
“connector_OwnerCenter” that matches the data source and data type for which
you wish to create a pipeline. A screen similar to Figure 16 should be displayed.

Note that Kafka connect and control center will not allow duplicate named
connectors. If the connector already exists and you attempt to create the
connector with the same name, it will display an error. If you want the same
connector as one that already exists, you must change the name of the
connector in the Name field. Scroll to the bottom and click the Next button. You
should see something similar to Figure 17. If you have changed the connector
configuration in any way and want to save a configuration file for later use, click
download connector file and follow the instructions to save the connector
configuration. Click Launch to start the connector. Upon launch Kafka Control
Center will return to the list of connectors and you should see the newly created
connector in the list. It may begin in a failed state, but should change to a
Running status shortly. If you click the Topics link on the Control Center left
menu, you should see the new topic being filled with the message(s) from the
appropriate Mongodb collection.

TMDD Standards Update Recommendations — Data Transmission

30

{
"name": "OwnerCenter_Arcadia_IntersectionSignalStatus",
"config": {
"name": "OwnerCenter_Arcadia_IntersectionSignalStatus",
"connector.class": "com.mongodb.kafka.connect.MongoSourceConnector",
"tasks.max": "10",
""key.converter": "org.apache.kafka.connect.json.JsonConverter",
"value.converter": "org.apache.kafka.connect.json.JsonConverter",
"connection.uri": "mongodb://db_owner: -wasswororere=- @mongodb:27017,mongodb1:27017,mongodb2:27017/7?
authSource=cc_ga_messages&replicaSet=rs0",
"database": '"cc_ga_messages",
"collection": "Arcadia.IntersectionSignalStatusMsg",
"output.format.key": "bson",
"output.format.value": "bson",
""copy.existing": true
+
}

Launch Back Download connector config file

Figure 17 - Add connector Screen 2

g. Repeat steps e and f for the second connector in the pair for your desired data
source and data type pipeline. Remember, this connector name will be prefixed
with OC_to_EC, and the configuration file will be
“connector_OC_to_EC_DATASOURCE_DATATYPE_config.json. Select the file
when uploading for the same data source and data type selected for the first
connector of the pair.

h. Open your Mongodb client and review the external center target collection for
the pipeline created. The names of these collections begin with the prefix
“xmlSourced.” followed by the data type (such as IntersectionSignalStatus). The
collection should start to fill with records from Connect, thereby transferring the
data from the owner center to the external center.

i. Repeat steps e through h for each pipeline you want to create.

9. Verify SOAP service operation by opening the data validation report for SOAP services.
The report can be located within your browser at the URL
http://localhost:8081/TMDDExternalCenter/. A report similar to Figure 18 should be
displayed. Note that the message counts for the subscription dialogs may be different,
as messages are replayed based on the current time and the collection time, matching
what would have been received from the field during the current time period.
Request/Response message counts should always be 1 for a successful data exchange.

TMDD Standards Update Recommendations — Data Transmission

¢ > € (@ tocalnost:8081/ TMDDExternalCenter

H Apps M Inbox (43815)-b. B3 Kafka £ TS EJ Securty E3 GeneralDevelopm.. [S Personal [AWS ES Spark & Mackeyboardsho.. @B Fig.1by Universit. 4 One Stop Shop fo Postmie Services @ Software Copyrig... € Connected Corrid.. @ UCPATH Home @ Calirans : Comme... @ LCS Field Descript.. (@ Cost Manager

The configuration files used for this data capture:

_arcadiaPipelineStart.yml:

source: ARCADIA action: START pipelines: - name: CenterActive Verification communication: sync subType: subFrequency: - name: IntersectionDetectorData communication: sync subType: subFrequ
subFrequency: - name: IntersectionDetectorMail History cc ication: sync subType: subFrequency: - name: IntersectionDetectorStatus communication: sync subType: subFrequency: - nam¢
name: IntersectionSignalStatus cc ication: sync subType: subFrequency: # - name: IntersectionSignalTimingPlanInventory # communication: sync # subType: # subFrequency: - name: Organizati

IntersectionDetectorData communication: async subType: onChange subFrequency: - name: IntersectionDetectorStatus communication: async subType: onChange subFrequency: - name: IntersectionSi

Summary of Data:

Dataset ID | View Name Dialog Name Message Count\ Message Total Bytes |Is Data Valid
84 ARCADIA_cenAct_ REQUEST_20211029155811 CenterActive Verification 1 455 true
85 ARCADIA_detData_REQUEST_20211029155816 DetectorData 1 540999 true
86 ARCADIA_detInv_REQUEST_20211029155820 DetectorInventory 1 886220 true
87 ARCADIA_detMain_ REQUEST_20211029155823 DetectorMaintenanceHistory |1 577698 true
88 ARCADIA_detStatus_REQUEST_20211029155825 DetectorStatus 1 368372 true
89 ARCADIA_siginv_REQUEST_20211029155827 IntersectionSignallnventory |1 630334 true
90 ARCADIA_sigStatus_ REQUEST_20211029155829 IntersectionSignalStatus 1 300640 true
91 ARCADIA_org_REQUEST_20211029155830 'OrganizationInformation 1 1094 true
92 ARCADIA _detData_SUB_ON_CHANGE_20211029155830 |DetectorData 23 2203243 true
93 ARCADIA_detStatus_SUB_ON_CHANGE_20211029155831 |DetectorStatus 2 6223 true
94 ARCADIA _sigStatus_SUB_ON_CHANGE_20211029155831 |IntersectionSignalStatus 65 2757224 true

Summary of Detail Message Validation Against Schema:

Dataset ID [View Name Dialog Name Total Message Count Is Data Valid Valid M Count id M Count
84 ARCADIA_cenAct_REQUEST_20211029155811 CenterActive Verification 1 true 1 0
85 ARCADIA_detData_REQUEST_20211029155816 DetectorData 1 true 1 0
86 ARCADIA _detInv_REQUEST_20211029155820 DetectorInventory 1 true 1 0
87 ARCADIA_detMain_REQUEST_20211029155823 DetectorMaintenanceHistory |1 true 1 0
88 ARCADIA_detStatus_REQUEST_20211029155825 DetectorStatus 1 true 1 0
89 ARCADIA_siginv_REQUEST_20211029155827 IntersectionSignallnventory |1 true 1 0
90 ARCADIA _sigStatus_REQUEST_20211029155829 IntersectionSignalStatus 1 true 1 0
91 ARCADIA_org_REQUEST_20211029155830 OrganizationInformation 1 true 1 0
92 ARCADIA_detData_SUB_ON_CHANGE_20211029155830 |DetectorData 23 true 23 0
93 ARCADIA_detStatus_SUB_ON_CHANGE_20211029155831 |DetectorStatus 2 true 2 0
94 ARCADIA _sigStatus_SUB_ON_CHANGE_20211029155831 |IntersectionSignalStatus 65 true 66 0

Figure 18 - SOAP Service Validation Report

10. While not required, it is recommended that after first start, you change the owner
center and external center postgres instances. Complete the following to change the
owner center and external center postgres passwords:

a. The owner center postgres image is a fully populated database within the image.
The external center is a fully structure database (users, roles, tables, etc.) that
has not yet be populated with TMDD data. Upon first run of the application
however, the data is populated within the external center database.

b. Inthe Intellij IDE tmdd_owner_center project, enter the postgres password you
choose within the
tmdd_owner_center/owner_center/center_service/application.properties file.
To do this, change the line within the file starting with
postgres.qa.dataSource.pass replacing the password in the file with the desired
password.

c. Inthe postgres database, using the DataGrip postgres management tool or your
preferred postgres management tool, change the password to match the
password you set in the application.properties file.

d. In Docker Desktop, restart the owner_center SOAP services container.

31

TMDD Standards Update Recommendations — Data Transmission

e. Repeat steps a through c for the external center postgres instance. For step b,
the location of the application.properties file is
tmdd_external_center/external_center/center_service/.

f. Restart the external center SOAP services container in Docker Desktop.

g. Allow the SOAP services to run and upon completion verify success in the SOAP
Service Validation Report (Figure 18).

4.3.6. INSTALLATION COMPLETE

Installation is now complete and operation of the services has been completed. Both SOAP and
Kafka traffic data services are installed and operation has been verified.

32

TMDD Standards Update Recommendations — Data Transmission

5. OPERATING INSTRUCTIONS

The application, once installed, is for the most part self-operating. The Kafka services will
continue to listen for changes in the owner center Mongodb database and upon detecting a
change in a collection for which a connector pair is established will transfer the data to the
external center Mongodb database. The SOAP services however are generally a one-time
operation that can be restarted by stopping and restarting the external center container within
Docker Desktop. If changes to the dialogs or sources are desired within the SOAP services, the
user can alter the application.properties and individual SOAP pipeline config files prior to
restarting the external center SOAP services container as described in the installation
instructions.

These operating instructions will provide instructions for the following:
e How to restart the SOAP services pipeline
e How to restart from scratch an existing Kafka pipeline to demonstrate the pipeline with
the data contained within the owner center’s Mongodb collection for that pipeline.

5.1. RESTART A SOAP SERVICES PIPELINE

The SOAP services pipeline starts under the following conditions
e There is a properly configured owner center application/container available with
associated and connected Postgres database with available data
e There is a properly configured external center SOAP application/container available with
associated and connected Postgres database
The SOAP services start automatically upon startup of the external center services container.
Upon startup, the external center service will retrieve the pipeline configuration to execute
(located in the application.properties file). The pipeline configuration includes the list of
pipeline config files to execute, subscription duration, report directory, and endpoint of each
owner center service to connect to. See Figure 19 for an example application.properties file.

33

TMDD Standards Update Recommendations — Data Transmission

Figure 19 - External Center application.properties

The pipeline configuration also consists of each source pipeline config file specified at the top of
application.properties. These files are located in the
tmdd_exernal_center/external_center/center_service directory. See the installation
instructions, Section 4.3.4, for instructions on editing the pipeline config files to change the
active data pipelines.

TMDD Standards Update Recommendations — Data Transmission

Since the pipelines start upon container start, if it is desired to run again, the easiest method is
to stop the container in Docker Desktop by clicking the stop icon to the right of the
external_center container (see Figure 20).

external_center
I

external_center external_center: @ @ @ @

external_center_postgres_1 postgres:latest

F !

Stop icon

ec_mongodb0 mvrgo:latest
R N K

Container icon

ec_mongodb1 mongo
N F

ec_mongodb2 mongo
N F

Figure 20 - Stop external center SOAP service container

If desired, alter the pipeline sources to run by altering the pipeline config file list in the
application.properties file. If desired, alter which pipelines to run and the type of pipeline
(request/response [sync] or subscription[async] and type of subscription and parameters) by
changing the pipeline config file for the selected source. The center_service folder is mounted
in the container, so the container does not require a rebuild. Simply restart the external center
container in Docker desktop by clicking the start icon (replaces the stop icon when the
container is stopped). The SOAP pipelines will automatically start as the container starts. You
can watch the log to see the log messages for data flow by clicking on the external_center
container icon in the Docker Desktop application. See Figure 20 for container icon location and
Figure 21 for example logs. The service does take several seconds after container start to begin
processing the data.

35

TMDD Standards Update Recommendations — Data Transmission

& WO v
SIS % e\x[eval"‘nalﬁcenter external_center: = LOGS © INSPECT |~ STATS @ @ @ @

mages

Volumes

Dev Environments m

otionId:

Figure 21 - SOAP Services External Center SOAP Service Logs

Verify that the service completed after the subscription duration has elapsed by reviewing the
SOAP services validation report.

5.2. RESTART A KAFKA PIPELINE

As discussed during the installation procedure, Section 4.3.5, paragraph 8.e, each Kafka pipeline
is defined within a pair of Kafka connectors:
e A connector that:
o Reads all data initially, and then monitors for updates, from the owner center
Mongodb collection containing a set of data for a single source
o Places the data read from Mongodb into a Kafka topic
e Asecond connector that:

36

TMDD Standards Update Recommendations — Data Transmission

o Pulls the data from the Kafka topic
o Writes the data from the topic to the external center Mongodb replication
cluster in a collection specific to the data type being sent from the owner center

As a result, once the initial data is loaded, there will be no further activity once the initial data
transfer is complete without one of two actions:

e New data records are added to the owner center source collection for the pipeline

e A new connector is added that will restart the data flow (it is recommended that to keep
clutter down in the list of connectors, that any time a connector is added to restart data
flow, that the connector be deleted upon completion of data transfer)

In a production system, new data would regularly flow into the Mongodb source collection as
data is received from field units. However, in an isolated environment such as this application,
there is no external source. Records can be manually added if desired and the user should have
an appropriate set of data and consult the Mongodb documentation on how to insert records.

To restart a pipeline with a new connector, complete the following:

1. Open the Mongodb client and delete all documents in the external center Mongodb
target collection. The collection name will be prefixed with “xmlISourced.” and will be
named based on the data type being transferred within the pipeline. Note that you can
only delete the documents from a connection to the cluster or from the primary node of
the cluster. If you are using Robo 3T, you can right click on the pipeline target collection
and select “Remove All Documents...” as illustrated in Figure 22. The transfer will
proceed without this step, but since the documents are duplicates of what was originally
transferred, it is easier to verify that the transfer was completed via the record count
within the collection. Verify that the collection now has 0 documents using the
“Statistics...” option in the collection context menu.

37

TMDD Standards Update Recommendations — Data Transmission

- o—
v [E External Center Mongo ec_ga_messages node 1 (1)
v & ec_qa_messages
v [Collections (60)

database_version
xmiSourced.Cctvinventory
xmiSourced.CctvStatus
xmiSourced.CenterActiveVerification
xmiSourced.DMSState
xmiSourced.DetectorData
xmlSourced.Detectorinventory

D i fistoryDetail
xmliSourced.DetectorStatus
xmlSourced.Dmsinventory

D

xmiSourced.DmsMessagelnventory
xmlSourced.DmsPriorityQueue
xmiSourced.DmsState
xmiSourced.Esslnventory

EssOl i Data

xmiSourced.EssObservationalReport
xmiSourced.EssStatus
xmiSourced.Eventindex
xmiSourced.FullEventUpdate
xmiSourced.Harlnventory
xmiSourced.HarMessagelnventory
xmlSourced.HarPriorityQueue
xmiSourced.HarSchedule
xmliSourced.HarStatus
xmiSourced.IncidentResponse
xmiSourced.IncidentTermination

Y ¥ YV Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y YYYYYYYVYVYVYY

B xmliSourced.IntersectionSg

View D

xmiSourced.LcsInventory
L

Insert Document...

xmiSourced.LcsStatus
xmiSourced.Linkinventory
xmiSourced.LinkStatus
xmiSourced.Nodelnvento
xmliSourced.NodeStatus
xmiSourced.Organization

Update D
Remove Documents...
Remove All Documents...

Rename Collection...
Duplicate Collection...
Drop Collection...

xmlSourced.RampMeterlr
xmiSourced.RampMeterP

Shard Version

YYVYVYVYVYVYVYVYVYVYVYY

xmiSourced.RampMeterp Shard Distribution

Figure 22 - Mongodb Collection Delete All Documents
2. Open the Kafka Control Center in your browser and navigate to the list of connectors.

38

TMDD Standards Update Recommendations — Data Transmission

ONFLUENT

HOME CONTROLCENTER.CLUSTER CONNECT CLUSTERS CONNECT-DEFAULT

Cluster overview Connectors

Brokers

Topics

- Connectors

34 34 O O O

Consumers Total Running Degraded Failed Paused

Replicators

Cluster settings] [| v] ‘ + Add connector ‘ T Upload connector config file
Connector name Status Category Plugin name Topics Number of tasks
OwnerCenter_Arcadia Orga... ® Running Source MongoSourceC... -- 1-+10
OwnerCenter ATMS Ramp... ® Running Source MongoSourceC... -- 1-+10
OwnerCenter ATMS detect... ® Running Source MongoSourceC... -- 1-+10
OwnerCenter_Arcadia Dete... ® Running Source MongoSourceC... -- 1-+10
OC to EC ATMS Organizati... ® Running Sink MongoSinkConn.. cc_ga_message... 10
OwnerCenter_Arcadia_Inter... ® Running Source MongoSourceC... -- 1-+10
OwnerCenter ATMS Organi... ® Running Source MongoSourceC... -- 1-+10
OwnerCenter ATMS DMSSt... e Running Source MongoSourceC... -- 1-+10

Figure 23 - List of Kafka Connectors

3. Click on the “Upload connector config file” button. In the file dialog box, navigate to and
select the connector configuration file for the pipeline you wish to restart. Select the
configuration file for which the name begins with “OwnerCenter” followed by the
pipeline source (ATMS or Arcadia) and the data type for the pipeline. The Control Center
will load the configuration file and display the Add connector screen populated with the
parameters for the selected connector (Figure 23).

39

TMDD Standards Update Recommendations — Data Transmission

Add connector

1. Setup connection
How should we connect to your data?

Common
How should we connect to your data?
Transforms
Predicates
Error Handling

~— Name Errors

OwnerCenter_Arcadia_IntersectionSigna Topic Creation

Connection
Common
Server Ap
— Tasks max @
10 Change stream
Topic mapping
~— Key converter class @
Schema
org.apache.kafka.connect.json.JsonCon
Copy existing
~ Value converter class ©@ ————————— Partition
org.apache.kafka.connect.json.JsonCon General

Additional Properties

Transforms

v

Figure 24 - Add Connector Screen

4. Change the connector name (Kafka Connect will not allow duplicate connectors). Scroll
down to the bottom of the screen and click Next. Control Center will display the pipeline
configuration and the Launch button will be displayed (Figure 25). Click Launch to start
the connector.

{

""name": "OwnerCenter_Arcadia_IntersectionSignalStatus",

"config": {
"name": "OwnerCenter_Arcadia_IntersectionSignalStatus",
"connector.class": "com.mongodb.kafka.connect.MongoSourceConnector",
"tasks.max": "10",
""key.converter": "org.apache.kafka.connect.json.JsonConverter",
"value.converter": "org.apache.kafka.connect.json.JsonConverter",

"connection.uri": "mongodb://db_owner: -wasswororere- @mongodb:27017,mongodb1:27017,mongodb2:27017/7?
authSource=cc_qga_messages&replicaSet=rs0",

"database": '"cc_ga_messages",

"collection": "Arcadia.IntersectionSignalStatusMsg",

"output.format.key": "bson",

"output.format.value": "bson",

"copy.existing": true

Launch Back Download connector config file

Figure 25 - Launch Connector Screen

40

TMDD Standards Update Recommendations — Data Transmission

5. Connect will start the connector and Control Center will now list the new connector
within the list of connectors. If you see a connector fail status, give the connector a few
seconds to see if it starts before troubleshooting.

6. Verify that the data is flowing.

a. You can verify that the Kafka topic that is being populated is receiving data in the
Control Center Topics screen for the topic receiving data (click Topics on the
Control Center left menu and then select the topic for the specific source and
data type to see the topic screen for that pipeline topic. The production and
Consumption graphs should indicate data is flowing.

b. You can verify the data is being received within the external center Mongodb
database collection by returning to the Mongodb client and checking the
document count for the target collection. You should see the document count
increase from 0 to the number of documents within the owner center source
collection.

7. ltis recommended that you delete the added connector or the original connector to
ensure only one Mongo — Topic connector is running at any time for a specific source
and data type.

41

TMDD Standards Update Recommendations — Data Transmission

This page left blank
intentionally

42

