
UC Berkeley
Working Papers

Title
Modernization of Center-to-Center Data Communication Standards: Sample Implementation
Administration and User Guide

Permalink
https://escholarship.org/uc/item/2mf058rd

Author
Peterson, Brian

Publication Date
2021-11-30

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2mf058rd
https://escholarship.org
http://www.cdlib.org/

PARTNERS FOR ADVANCED TRANSPORTATION TECHNOLOGY
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Modernization of Center-to-Center Data
Communication Standards
Task 3713 (65A0761)

Sample Implementation Administration and User
Guide

November 30, 2021

Partners for Advanced Transportation Technology works with researchers, practitioners, and
industry to implement transportation research and innovation, including products and services
that improve the efficiency, safety, and security of the transportation system.

Sample Implementation Administration and User Guide

ii

This page left blank
intentionally

Sample Implementation Administration and User Guide

iii

Author

Brian Peterson
Software Engineering Manager
California PATH
University of California, Berkeley

Sample Implementation Administration and User Guide

iv

This page left blank
intentionally

Sample Implementation Administration and User Guide

v

TABLE OF CONTENTS

Table of Contents .. v

List of Figures .. vii

List of Tables .. ix

1. Introduction .. 1

 Intended Audience .. 1

 Document Organization .. 2

2. Installation Requirements ... 3

 Hardware Requirements ... 3

 Required Software .. 3

3. Application Design .. 5

 Introduction .. 5

 Design .. 5

4. Installation Instructions ... 11

 Installation Prerequisites .. 11

 Application Components ... 11

 Installation Instructions .. 11

 Open the Java Projects ... 12
 Configure Docker Desktop .. 12
 Configure the tmdd_owner_center project ... 14
 Configure the External Center Project .. 16
 Complete and Verify Installation .. 18
 Installation Complete .. 32

5. Operating Instructions ... 33

 Restart a SOAP services pipeline ... 33

 Restart a Kafka Pipeline .. 36

Sample Implementation Administration and User Guide

vi

This page left blank
intentionally

Sample Implementation Administration and User Guide

vii

LIST OF FIGURES

Figure 1 - Application Design .. 6

Figure 2 - tmdd_owner_center Opened within Intellij ... 12

Figure 3 - tmdd_external_center Opened within Intellij .. 12

Figure 4 - Docker Desktop Resources Settings .. 13

Figure 5 - Docker Desktop File Sharing Settings ... 14

Figure 6 - Owner Center docker-compose.yml Modification for Mongodb ... 16

Figure 7 - Docker Desktop Display for Running Owner Center ... 19

Figure 8 - Docker Desktop Display for Running External Center ... 21

Figure 9 - Kafka Control Center Home .. 23

Figure 10 - Kafka Cluster Overview Screen ... 24

Figure 11 - Kafka Connect Cluster Screen ... 24

Figure 12 - Kafka Connectors Screen (No Connectors) ... 25

Figure 13 - Kafka Connectors Screen with Connectors ... 25

Figure 14 - Provided Connector Config Files ... 27

Figure 15 - Add Connector Screen – First Connector .. 28

Figure 16 - Add a Connector ... 29

Figure 17 - Add connector Screen 2 .. 30

Figure 18 - SOAP Service Validation Report .. 31

Figure 19 - External Center application.properties ... 34

Figure 20 - Stop external center SOAP service container ... 35

Figure 21 - SOAP Services External Center SOAP Service Logs ... 36

Figure 22 - Mongodb Collection Delete All Documents .. 38

Figure 23 - List of Kafka Connectors .. 39

Figure 24 - Add Connector Screen .. 40

Figure 25 - Launch Connector Screen ... 40

Sample Implementation Administration and User Guide

viii

This page left blank
intentionally

Sample Implementation Administration and User Guide

ix

LIST OF TABLES

Table 3-1 - Owner Center Docker Stack Elements .. 7

Table 3-2 - External Center Docker Stack Elements .. 7

Table 3-3 - C2C Application Management Components ... 8

Sample Implementation Administration and User Guide

x

This page left blank
intentionally

TMDD Standards Update Recommendations – Data Transmission

1

1. INTRODUCTION

This document provides a guide to the reference sample application developed under the
Traffic Management Data Dictionary (TMDD) modernization contract. The application provides
a sample implementation of a SOAP implementation using the XML Schema Definition (XSD)
and Web Service Description Language (WSDL) developed under the contract. In addition, it
provides a sample implementation of a Kafka/JSON based messaging implementation. Both
implementations utilize a sample set of data captured during the I-210 Connected Corridors
contract. The application is intended for use by experienced Information Technology (IT)
personnel as an example of both SOAP and Kafka implementations of a Center-to-Center (C2C)
information exchange system.

 INTENDED AUDIENCE

The primary audience for this document includes:

• The Caltrans Division of Research, Innovation, and System Information (DRISI).
• Caltrans Operations personnel involved in specifying, procuring, and implementation of

systems requiring C2C communications
• Caltrans Information Technology Personnel that may be tasked with installing this

application

The document is intended primarily to provide IT personnel with the information required to
install and operate the application, and to understand the basics of its design. It assumes that
those who are installing and operating the application have a fundamental understanding of
the following:

• Information technology systems and their implementation and operation, especially
large-scale implementations

• Database technology, design, and administration. A basic understanding of Mongodb
and Postgres is helpful.

• Messaging technology and the Kafka environment. Experience and understanding of the
Confluent Kafka stack is helpful.

• Docker and the use of containers and container stacks, docker networking, and the use
of docker compose.

• Basic programming experience and the use of Integrated Development Environment
tools such as Intellij. Java experience is helpful.

A basic understanding of IT systems is sufficient to install and run the application and the
document is written so that an individual with such understanding without specific experience
in these areas should be able to install and operate the system. Additional experience will allow
a more advanced usage of the system, including understanding, possible modification, and

TMDD Standards Update Recommendations – Data Transmission

2

configuration of the system to independently use either the owner or external center with a
third party implementation of either a SOAP or Kafka/Mongo service.

 DOCUMENT ORGANIZATION

The remainder of this document is organized as follows:

• Section 2 provides the requirements for installation
• Section 3 provides a short overview of the application design
• Section 4 provides installation instructions
• Section 5 provides operation instructions

TMDD Standards Update Recommendations – Data Transmission

3

2. INSTALLATION REQUIREMENTS

 HARDWARE REQUIREMENTS

The application was built for operation as a containerized application using Docker. It was built
and tested with the following hardware:

• Apple Macbook Pro 16” 2019 with:
2.3 GHz 8-Core Intel Core i9 Processor
32 GB 2667 MHz DDR4 Memory
macOS Catalina Version 10.15.7

Recommended minimum storage available: 60GB

As it is a containerized application, similar hardware and OS environments (Windows or Linux)
meeting similar processor and memory performance should work, but may require some
modification to the docker configuration and networking. It is configured to be installed on a
single computer, but can be reconfigured to run on multiple computers.

 REQUIRED SOFTWARE

The following software is required for installation and operation of the application:

 Docker desktop for your operating system (Docker Desktop for Mac v 3.5.2.18 was used)
 Robo-3T v1.4.4 or similar Mongodb management tool
 IntelliJ IDEA v2020.3.3 or other Java based Integrated Development Environment (IDE)
 DataGrip v2021.1 or similar Postgres management tool
 Google Chrome or other internet browser software

Refer to the installation instructions for each tool and install on the target machine(s).

All other software utilized is installed within the containers that are deployed and no user
installation is required.

TMDD Standards Update Recommendations – Data Transmission

4

This page left blank
intentionally

TMDD Standards Update Recommendations – Data Transmission

5

3. APPLICATION DESIGN

 INTRODUCTION

Center to center (C2C) communications occur between an owner center and an external center.
Owner and external centers are generally traffic management centers or other producers or
consumers of traffic information. C2C communications enable these centers to exchange
information related to traffic management, such as inventories and status of infrastructure
elements like sensors, intersection signals, or changeable message signs or request execution of
control commands affecting those infrastructure elements. An owner center generally refers to
the center that owns, manages, or controls those infrastructure elements, and an external
center refers to the center that is requesting information related to those infrastructure
elements.

The application provides the ability to exchange a limited set of the messages implemented
within the Traffic Management Data Dictionary, v 3.3d with modifications recommended within
this report. The sample data exchanged is based on data collected over a 24-hour period within
the Connected Corridors program. The data is not modified to represent the recommendations
made in this report and is exactly as it was collected within the Connected Corridors program.
Two methods of data exchange are available within the application. First, a SOAP web services-
based exchange is available, implemented using a modified version of a test harness developed
for the Connected Corridors program. A Kafka-based messaging exchange is also available,
implemented using a Confluent-based Kafka messaging stack.

 DESIGN

The design of the application provides for a single owner center and a separate, single external
center. Figure 1 illustrates the application design. Within this illustration, the owner center is
shown within the tan colored box on the left side of the diagram, and the external center
shown on the right tan colored box. Both the owner center and the external center are each
docker stacks with multiple containers within each stack. Each white box within the owner
center and external center represents one or more containers that house the services required
to run the application.

The owner center on the left side of the figure is a docker stack composed of services and
containers represented in Figure 1 and Table 3-1.

TMDD Standards Update Recommendations – Data Transmission

6

Figure 1 - Application Design

Owner Center
network = host

External Center
network = host

oc_postgres

Replication Cluster

external_center_postgres

Replication Cluster

owner_center

SOAP
Services

0:Internal port:27017 - External port:27019
1:Internal port:27017 - External port:27020
2:Internal port:27017 - External port:27021

 Internal port:5432 - External port:5431

external_center

SOAP
Services

0:External port:27030 - Internal port:27017
1:External port:27032 - Internal port:27017
2:External port:27032 - Internal port:27017

External port:5433 - Internal port:5432

Internal port:8000 - External port:8002
Internal port:8080 - External port:8080

External port:8001 - Internal port:8000
External port:8081 - Internal port:8080

zookeeper
2081:2081

schema-registry
8084:8084

rest-proxy
8082:8082

ksqldb server
8088:8088

connect
8083:8083

Docker Desktop
Mongo UI - Robo 3T

Postgres UI - DataGrip
Browser UI - external

SOAP services
validation

IDE - Intellij

Internal port:9021 - External port:9021

Broker
9092:9092
9101:9101

ksqldb-cli

ksql-datagen

oc_mongodb0
27017:27019

oc_mongodb1
27017:27020

oc_mongodb2
27017:27021

ec_mongodb0
27017:27030

ec_mongodb1
27017:27031

ec_mongodb2
27017:27032

cc_qa_messages.Arcadia.DetectorDataMsg

cc_qa_messages.Arcadia.detectordeviceinventory

cc_qa_messages.Arcadia.DetectorStatusMsg

cc_qa_messages.Arcadia.IntersectionSignalStatusMsg

cc_qa_messages.Arcadia.OrganizationInformation

cc_qa_messages.ATMS.DetectorDataMsg

cc_qa_messages.Arcadia.detectordevicemaintenancehistory

cc_qa_messages.Arcadia.signalcontrollerdeviceinventory

cc_qa_messages.ATMS.CenterActiveVerification

cc_qa_messages.ATMS.detectordeviceinventory

cc_qa_messages.ATMS.DetectorStatusMsg

cc_qa_messages.ATMS.DMSStatusMsg

cc_qa_messages.ATMS.dynamicmessagesigninventory

cc_qa_messages.ATMS.OrganizationInformation

cc_qa_messages.ATMS.rampmeterdeviceinventory

cc_qa_messages.ATMS.RampMeterStatusMsg

Bridge Network:
oc_ec_bridge

control-center
9021:9021

cc_qa_messages.Arcadia.CenterActiveVerification

TMDD Standards Update Recommendations – Data Transmission

7

Table 3-1 - Owner Center Docker Stack Elements
Owner Center Docker Stack Elements
Service Container(s) Description

Owner center SOAP service owner_center Apache Tomcat container

with TMDD SOAP

Services owner center

application

Owner center Postgres

database

oc_postgres Postgres database

containing owner center

data (XML formatted)

Owner center Mongodb

database (3 containers)

oc_mongodb0 Owner center Mongodb

replication cluster

containing owner center

data (json formatted)

oc_mongodb1

oc_mongodb2

Kafka (up to 9 containers) broker Kafka broker (not

clustered)

 zookeeper Zookeeper cluster

manager

 schema-registry (optional) Kafka schema registry for

message validation

 rest-proxy Kafka control interface

 connect Kafka connect service

(utilized for mongodb-

kafka interface)

 ksqldb server (optional Kafka ksqldb service

 ksqldb-cli (optional) Kafka ksqldb command

line interface

 ksqldatagen (optional) Kafka random data

generator

 control-center Kafka management user

interface

The external center on the right side of the figure is a docker stack composed of the following

services and containers:

Table 3-2 - External Center Docker Stack Elements
External Center Docker Stack Elements
Service Container(s) Description

External center SOAP service external_center Apache Tomcat container

with TMDD SOAP services

external center

application

TMDD Standards Update Recommendations – Data Transmission

8

External center Postgres

database

external_center_postgres Postgres database

containing external

center data (XML

formatted)

External center Mongodb

database (3 containers)

ec_mongodb0 External center Mongodb

replication cluster for

receiving owner center

data (json formatted)

ec_mongodb1

ec_mongodb2

In addition to the two docker stacks and their containers, at the top of the diagram are the

tools used by an administrator or user to manage and operate the owner and external center

components. These are installed on the user or administrator’s local machine, which can be the

same as the owner and external host machine. Users may substitute other similar tools based

on personal preference. Those used and tested include the following:

Table 3-3 - C2C Application Management Components
C2C Application Management Components
Service Description

Docker Desktop Used to manage docker deployment, images, and

containers

Google Chrome or other

internet browser

Used to access control center and SOAP exchange

validation report

Robo 3T Open source Mongodb management tool

DataGrip Commercial interface for Postgres management (Required

only for development – not for operation)

Intellij Community or Commercial integrated development

environment (Required only for development – not for

operation)

The design provides for the following:

• Isolation of SOAP and Kafka based implementations

• Automated application deployment and shutdown

• Control of individual message streams for each data message type

• Exchange of messages for the following:

o Organization

o Center Active Verification

o Ramp Meters

o Intersection Signals

o Sensors

o Dynamic Message Signs

• Exchange of different information types, such as:

o Inventories

o Status

TMDD Standards Update Recommendations – Data Transmission

9

o Data

o Maintenance History

Each of the two Docker stacks (owner center and external center) contain their own isolated

default networks which allow the containers within the stacks to communicate. In addition, the

two SOAP service containers (external_center and owner_center) communicate on the docker

host network. The owner centers connect container communicates with the external center

mongodb containers via a bridge network between the two Docker stacks, the oc_ec_bridge.

The next section of this document will describe installation and opportunities to configure the

application to run in different environments if desired.

TMDD Standards Update Recommendations – Data Transmission

10

This page left blank

intentionally

TMDD Standards Update Recommendations – Data Transmission

11

4. INSTALLATION INSTRUCTIONS

These installation instructions assume installation of the application on a single host.

Installation on multiple hosts may require changes to the installation parameters. The

instructions will identify installation elements that will require changes in order to install on

multiple hosts.

 INSTALLATION PREREQUISITES

Install the non-containerized local components on the host of the application. This includes an

internet browser such as Google Chrome, Docker, a mongodb management application such as

Robo 3T, a postgres management application such as DataGrip (optional – required for

development environments only), and a developer IDE such as Intellij (optional – required for

developer environments only). For non-development installations, any text editor may be used

instead of the developer IDE to make file edits required for operation. The application is

developed using Java, so any IDE selected should be capable of Java based development. The

version of the Java Development Kit (JDK) used in development is OpenJDK v1.8.0_282.

 APPLICATION COMPONENTS

The application is delivered within a single zip file. When unzipped, the following high level

directory structure is created:

/TMDD Modernization

/tmdd_owner_center

/tmdd_external_center

/Mongodata

/Images

tmdd_owner_center contains the code for the owner center, including java code, configuration,

and docker instructions for deployment

tmdd_external_center contains the code for the external center, including java code,

configuration, and docker instructions for deployment

Mongodata contains the data files for the owner center mongodb database

Images contains docker images for deployment

 INSTALLATION INSTRUCTIONS

To install the application on a single host, complete the following:

TMDD Standards Update Recommendations – Data Transmission

12

 OPEN THE JAVA PROJECTS (DEVELOPERS ONLY)

1. Copy or move the /tmdd_owner_center and /tmdd_external_center directories to the

directory where your Intellij IDE projects are located. (This step is optional, as generally

the project can be opened from any location – just nice from a point of keeping things

clean).

2. Open each of the projects within Intellij. You should see something similar to the

following:

Figure 2 - tmdd_owner_center Opened within Intellij

Figure 3 - tmdd_external_center Opened within Intellij

 CONFIGURE DOCKER DESKTOP

Docker desktop and your docker environment must be configured to run the application. To

configure your docker environment, complete the following:

1. Set up the Docker resources in Docker Desktop.

a. Open Docker Desktop and click the settings icon on the top right corner of the

application. ()

TMDD Standards Update Recommendations – Data Transmission

13

b. Click Resources.

c. Set the resources as shown in Figure 4. CPUs to a minimum of 8, memory to a

minimum of 10GB, swap to a minimum of 1.5 GB, and disk image size to a

minimum of 96 GB.

2. Set up Docker file sharing within Docker Desktop.

a. While you are still in Docker Desktop, click FILE SHARING under the Preferences,

Resources menu.

Figure 4 - Docker Desktop Resources Settings

TMDD Standards Update Recommendations – Data Transmission

14

Figure 5 - Docker Desktop File Sharing Settings
b. Click on the + button on the bottom right to add the full path of each location

where the tmdd_owner_center/owner_center/center_service,

tmdd_owner_center/owner_center/postgres,

tmdd_external_center/external_center/center_service, and

tmdd_external_center/external_center/postgres were created in your

development environment.

c. Click Apply & Restart in the docker Preferences screen.

3. Install the owner_center Postgres image.

a. Open a terminal window on the machine in which docker is installed.

b. Run the following command, substituting the PATH with the full path of the

directory where the postgres image was unzipped (the images directory in the

resulting file structure):

i. docker load < PATH/ocPostgresImage1.1.tar

 CONFIGURE THE TMDD_OWNER_CENTER PROJECT

Complete the following within the tmdd_owner_center project to configure it for operation:

1. For the SOAP services, complete the following:

TMDD Standards Update Recommendations – Data Transmission

15

a. THIS STEP IS NOT REQUIRED IF STARTING THE INSTALLATION FROM THE ZIP
FILE. IT IS ONLY REQUIRED IF STARTING FROM THE FIRST PULL FROM A GIT
REPOSITORY. The target WAR files are included within the zip files. If the source

of the tmdd_owner_center project is a git repository, you will need to build the

WAR files. To build the WAR files run a maven clean followed by maven package.

After the maven package process has successfully completed, copy the following

files from the target folder to the owner_center/center_service folder:

i. TMDDOwnerCenter-Arcadia.war

ii. TMDDOwnerCenter-ATMS.war

iii. TMDDOwnerCenter-County.war

iv. TMDDOwnerCenter-TSMSS.war

2. Configure the Kafka implementation as follows:

a. In the path where you unzipped the Mongodata folder, create two copies of the

directory and contents of

Mongodata/owner_center_ATMS_arcadia_1_hr_data/db0, creating the

following:

i. Mongodata/owner_center_ATMS_arcadia_1_hr_data/db0

ii. Mongodata/owner_center_ATMS_arcadia_1_hr_data/db1

iii. Mongodata/owner_center_ATMS_arcadia_1_hr_data/db2

This creates a set of data for each of the Mongodb instances within the owner

center’s replication cluster.

b. In the file tmdd_owner_center/owner_center/docker-compose.yml, change the

path for the volume mounts for each of the Mongodb instances to the full path

where you created the three directories holding the mongo data in step a above.

Figure 6 highlights the line where you change the full path for the mongodb0

data within the docker-compose.yml file. Make sure to leave as is the end of the

line “:/data/db” which references the path used within the container itself that is

mapped to your local path. Repeat the procedure for the mongodb1 and

mongodb2 data paths you created in step a above.

TMDD Standards Update Recommendations – Data Transmission

16

Figure 6 - Owner Center docker-compose.yml Modification for Mongodb

 CONFIGURE THE EXTERNAL CENTER PROJECT

Complete the following within the tmdd_external_center project to configure it for operation:

• For the SOAP services, complete the following:

a. THIS STEP IS NOT REQUIRED IF STARTING THE INSTALLATION FROM THE ZIP
FILE. IT IS ONLY REQUIRED IF STARTING FROM THE FIRST PULL FROM A GIT
REPOSITORY. The target WAR files are included within the zip files. If the source

of the tmdd_external_center project is a git repository, you will need to build the

WAR files. To build the WAR files run a maven clean followed by maven package.

After the maven package process has successfully completed, copy the following

file from the target folder to the owner_center/center_service folder:

i. TMDDExternalCenter.war

b. Set the owner center postgres username and password (optional).

i. In the tmdd_external_center/external_center folder, open the docker-

compose.yml file. In the postgres: service definition environment variable

for POSTGRES_PASSWORD, set the desired postgres password.

ii. In the external_center\center_service folder, open the

application.properties file set the value for postgres.qa.dataSource.pass

to match the password set in step i above.

c. Configure what data will be exchanged when running the SOAP service as

follows:

i. In the application.properties file opened in step 1.b.above, choose the

pipelines to be run by setting the pipeline.configFiles. As delivered, the

application is set to run the arcadia pipelines. Also available are the atms,

Change local path to match

Mongodb local data file path

TMDD Standards Update Recommendations – Data Transmission

17

county, and tsmss pipelines. An example of how to run multiple source

pipelines is included in the comment above the pipeline.configFiles.

ii. Set the subscription duration limit by entering the duration in seconds as

the value for the key subscription.duration.seconds. The delivered

application.properties value is set to 120 seconds. A maximum value is

86400 seconds (24 hours). Note that the subscription will end at midnight

of the day for which it was started regardless of the duration entered.

d. Configure the endpoint address for each pipeline SOAP service. These endpoint

addresses will point to the owner center SOAP service. These instructions

assume you are running both owner center and external center stacks on the

same local machine. You will need to adjust if the owner center and external

center stacks are running on separate machines.

i. Identify the local address of the host machine. On a mac based machine,

open the network preferences on your local machine (found in the

System Preferences application), choose the network you are currently

using in the list of available networks, click Advanced, and select the

TCP/IP tab. Note or copy the IPv4 address of the machine.

ii. Use the IPv4 address copied in step i above and paste that address in

each of the SOAP endpoint IP addresses for each pipeline sources’

endpoint and returnAddress. Replace only the ip address in each line and

leave the remaining url elements as is.

iii. If you are using two machines – one for external center and one for

owner center, the IP of the owner center should be used for the

“endpoint” address and the IP of the external center should be used for

the subReturnAddress element.

e. Configure the details of each pipeline startup. These are contained in each of the

pipline start yml files located in the

tmdd_external_center/external_center/center_service yml files (e.g.

_arcadiaPipelineStart.yml, _atmsPipelineStart.yml, etc.)

i. Each of the files are preconfigured to run. The name of the pipeline, its

communication type, subtype (if required), and subFrequency (if

required) are specified. For each specified, there is data within the

postgres database for the run specified. In general, use the following

definitions to understand what will run with the specified configuration.

1. name: the name of the dialog to be run

2. communication: the type of dialog – sync indicates a request

response, async indicates a subscription

3. subType: if async is specified for the communication parameter,

the subType must be specified as onChange for an onchange

subscription, periodic for a periodic subscription

4. subFrequency: if the subType is periodic, subFrequency must be

specified in seconds.

Note that it is critical that a supporting set of data be available within the

owner_center postgres instance for any desired SOAP dialog and communication

TMDD Standards Update Recommendations – Data Transmission

18

parameter combination. That can be determined by reviewing the materialized

views within postgres and verifying a set of data exists for the desired dialog and

accompanying parameters.

 COMPLETE AND VERIFY INSTALLATION

1. (Optional) Setup Mongodb replication set security keys. Each Mongodb replication set

(owner center and external center) consist of three individual Mondogb instances. Each

instance requires a security key that allows the instance to communicate with the other

instances within its replication cluster. A keyfile is provided with the software, however,

if a secure keyfile is desired, the provided keyfile can be replaced with a private, secure

keyfile. See the instructions for Mongodb keyfile creation in the Mongodb online

documentation at https://docs.mongodb.com/manual/tutorial/deploy-replica-set-with-

keyfile-access-control/.

2. Change the permissions for each owner center Mongodb keyfile. In a terminal session,

run the following command within the directory (3 directories) where the keyfiles are

located. They should be located in the tmdd_owner_center/owner_center/mongodb,

tmdd_owner_center/owner_center/mongodb1, and

tmdd_owner_center/owner_center/mongodb2 directories. Substitute the name of your

keyfile for key1.key if you created your own keyfile in step 1 above.

a. chmod 600 key1.key

3. Repeat step 2 for each external center Mongodb keyfile. Keyfiles are located in the

tmdd_external_center/external_center/mongodb,

tmdd_external_center/external_center/mongodb1,

tmdd_external_center/external_center/mongodb2 directories.

4. Build and start the owner center stack by completing the following:

a. Open a terminal window and navigate to the directory where you installed the

owner center and the docker_compose.yml file exists

(tmdd_owner_center/owner_center).

b. Type docker-compose up –-build and press return. Docker will download

the required images for installation, build the containers required and start the

application. Open docker desktop and when complete, the owner center stack

should look similar to Figure 7. Note that it is possible that one or more

containers may exit, as occasional timing issues may arise that cause an

application to not start. If that occurs, select the container that stopped, and to

the right of the container name, click start. This will generally fix the issue.

TMDD Standards Update Recommendations – Data Transmission

19

Figure 7 - Docker Desktop Display for Running Owner Center

5. Finalize configuration of the owner center Mongodb databases as follows:

a. Set up your Mongodb client to connect to the Mongodb instances. Follow the

instructions of your Mongodb client software to connect to each of the three

owner center Mongodb instances. You will want to create two connections to

each instance, one logged in as admin and a second logged in as

cc_qa_messages. The connection information for each is as follows (it is

recommended that you change the password after connecting – see Mongodb

documentation for instructions. If you change the password, update your

connection and the Kafka Connect configuration files located in the

tmdd_owner_center/owner_center/connect directory to reflect the password

change):

i. oc_mongodb0 – admin

1. address: localhost

2. port: 27019

3. database: admin

4. username: user_admin

5. password: Hummingbird (it is recommended that you change the

password after start – see Mongodb documentation for

TMDD Standards Update Recommendations – Data Transmission

20

instructions. If you change the password, update your connection

and the Kafka Connect configuration files located in the

tmdd_owner_center/owner_center/connect directory)

ii. oc_mongodb0 – cc_qa_messages

1. address: localhost

2. port: 27019

3. database: cc_qa_messages

4. username: db_owner

5. password: TurkeyVulture (it is recommended that you change the

password after start – see Mongodb documentation for

instructions. If you change the password, update your connection

and the Kafka Connect configuration files located in the

tmdd_owner_center/owner_center/connect directory)

iii. oc_mongodb1 – admin (same as oc_mongodb0-admin with the following

changes):

1. port:27020

iv. oc_mongodb1 – cc_qa_messages (same as oc_mongodb0-

cc_qa_messages with the following changes):

1. port: 27020

v. oc_mongodb2 – admin (same as oc_mongodb0-admin with the following

changes):

1. port:27021

vi. oc_mongodb2 – cc_qa_messages (same as oc_mongodb0-

cc_qa_messages with the following changes):

1. port: 27021

b. Verify the connection to each instance. Using your Mongodb client, create a shell

within the oc_mongdb0-admin connection you just verified. In Robo 3T you can

do this by right clicking on the connection in the left pane and selecting Open

Shell.

c. Within the shell, type rs.initiate() and execute the command (in Robo 3T, click

the green arrow in the top toolbar. In the results pane, expand the results and

verify the initiation of the cluster was successful.

d. Replace the rs.initiate command with the following: rs.add(‘oc_mongodb1’) and

execute the command. Expand the results and verify the command was

successful.

e. Repeat the rs.initiate command for oc_mongodb2.

f. Replace the rs.add command with rs.status(). Execute the command and verify

the replication cluster is operating. oc_mongodb0 should be the primary node in

the cluster, oc_mongodb1 and oc_mongodb2 should be secondary nodes. (Note,

it is possible during shutdown and subsequent restart of the owner center

docker stack that one of the secondary nodes becomes primary. This is normal,

but may cause confusion when subsequently executing commands for the

Mongodb via your Mongodb client. If a command fails, verify the primary node

TMDD Standards Update Recommendations – Data Transmission

21

via the rs.status() command. Any command requiring a write or change to the

database must be executed through the primary node.

6. Build and start the external center stack by completing the following:

a. Open a terminal window and navigate to the directory where you installed the

external center.

b. Type docker-compose up –-build and press return. Docker will download

the required images for installation, build the containers required and start the

application. Open docker desktop and when complete, the external center stack

should look similar to Figure 8. Note that it is possible that one or more

containers may exit, as occasional timing issues may arise that cause an

application to not start. If that occurs, select the container that stopped, and to

the right of the container name, click start. This will generally fix the issue.

Figure 8 - Docker Desktop Display for Running External Center

7. Finalize configuration of the external center Mongodb databases as follows:

a. Set up your Mongodb client to connect to the Mongodb instances. Follow the

instructions of your Mongodb client software to connect to each of the three

external center Mongodb instances. As with the owner center cluster, you will

want to create two connections to each instance, one logged in as admin and a

second logged in as cc_qa_messages. The connection information for each is as

follows (it is recommended that you change the password after connecting – see

Mongodb documentation for instructions. If you change the password, update

your connection and the Kafka Connect configuration files located in the

tmdd_owner_center/owner_center/connect directory to reflect the password

change):

i. ec_mongodb0 – admin

1. address: localhost

TMDD Standards Update Recommendations – Data Transmission

22

2. port: 27030

3. database: admin

4. username: user_admin

5. password: Hummingbird (it is recommended that you change the

password after start – see Mongodb documentation for

instructions. If you change the password, update your connection

and the Kafka Connect configuration files located in the

tmdd_owner_center/owner_center/connect directory)

ii. ec_mongodb0 – ec_qa_messages

1. address: localhost

2. port: 27030

3. database: ec_qa_messages

4. username: db_owner

5. password: TurkeyVulture (it is recommended that you change the

password after start – see Mongodb documentation for

instructions. If you change the password, update your connection

and the Kafka Connect configuration files located in the

tmdd_owner_center/owner_center/connect directory)

iii. ec_mongodb1 – admin (same as ec_mongodb0-admin with the following

changes):

1. port:27031

iv. ec_mongodb1 – ec_qa_messages (same as ec_mongodb0-

ec_qa_messages with the following changes):

1. port: 27031

v. ec_mongodb2 – admin (same as ec_mongodb0-admin with the following

changes):

1. port:27032

vi. ec_mongodb2 – ec_qa_messages (same as ec_mongodb0-

ec_qa_messages with the following changes):

1. port: 27032

b. Verify the connection to each instance. Using your Mongodb client, create a shell

within the ec_mongdb0-admin connection you just verified. In Robo 3T you can

do this by right clicking on the connection in the left pane and selecting Open

Shell.

c. Within the shell, type rs.initiate() and execute the command (in Robo 3T, click

the green arrow in the top toolbar. In the results pane, expand the results and

verify the initiation of the cluster was successful.

d. Replace the rs.initiate command with the following: rs.add(‘ec_mongodb1’) and

execute the command. Expand the results and verify the command was

successful.

e. Repeat the rs.initiate command for ec_mongodb2.

f. Replace the rs.add command with rs.status(). Execute the command and verify

the replication cluster is operating. ec_mongodb0 should be the primary node in

the cluster, ec_mongodb1 and ec_mongodb2 should be secondary nodes. (Note,

TMDD Standards Update Recommendations – Data Transmission

23

it is possible during shutdown and subsequent restart of the owner center

docker stack that one of the secondary nodes becomes primary. This is normal,

but may cause confusion when subsequently executing commands for the

Mongodb via your Mongodb client. If a command fails, verify the primary node

via the rs.status() command. Any command requiring a write or change to the

database must be executed through the primary node.

8. Finalize configuration of the Kafka Connect instance as follows:

a. Open the Kafka Control Center. On the local machine it will be located at

http://localhost:9021. You should see something similar to Figure 9.

Figure 9 - Kafka Control Center Home

TMDD Standards Update Recommendations – Data Transmission

24

b. Click on the controlcenter.cluster tile. You should see something similar to Figure

10. Do not be concerned if the number of topics is different. However, there

should be at least 1 broker and 1 connect cluster.

Figure 10 - Kafka Cluster Overview Screen

c. Click on the Connect cluster tile. You should see something similar to Figure 11.

The number of total connectors may be different.

Figure 11 - Kafka Connect Cluster Screen
d. Click on the connect-default cluster in the list of Connect clusters. You should see

something similar to Figure 13. The specific connectors listed and the number of

TMDD Standards Update Recommendations – Data Transmission

25

connectors may be different in your screen. If this is the first install, there will be

0 connectors.

Figure 12 - Kafka Connectors Screen (No Connectors)

Figure 13 - Kafka Connectors Screen with Connectors

TMDD Standards Update Recommendations – Data Transmission

26

e. Connectors required for a specific pipeline are provided in pairs.

The first connector in a pair reads from the owner center Mongodb database for

a specific data source (Arcadia or ATMS) and for a specific data type (such as

intersection signal status). Connectors are configured so that the first time the

connector starts, it reads all data from the collection and then monitors the

Mongodb collection for any new records. It places each record in the collection

in a Kafka topic for that source and data type. If a topic does not yet exist, it

creates the topic before populating the topic. The naming standard for this type

of connector begins with a prefix of “OwnerCenter”, followed by the source

name (“ATMS” or “Arcadia”) and the followed by the data type being

transmitted.

The second connector in the pair reads from the topic and writes the messages

from that topic into the external center’s Mongodb database. The external

center’s Mongdodb collection that is written to is specific only to the datatype

being transmitted, and is not specific to the source (Arcadia or ATMS). The

naming standard for this type of connector begins with the prefix “OC_to_EC”

followed by the source name and then the data type being transmitted.

If no connectors exist, or a desired connector does not exist, there are

predefined connectors specified within connector config files located within the

tmmd_owner_center/owner_center/connect/connector_config_files directory.

Figure 14 provides a list of the connector config files that are installed with the

application.

TMDD Standards Update Recommendations – Data Transmission

27

Figure 14 - Provided Connector Config Files

To create a data pipeline for a source/datatype combination, first complete one

of the following:

(1) If you have no current connectors, click on the Add

Connector button (see Figure 12). A screen similar to

Figure 15 will be displayed. Click on the “upload connector

config file” button.

TMDD Standards Update Recommendations – Data Transmission

28

Figure 15 - Add Connector Screen – First Connector

(2) If you have already existing connectors, click on the

“upload connector config file” button on the Kafka Control

Center connectors screen (see Figure 13).

TMDD Standards Update Recommendations – Data Transmission

29

Figure 16 - Add a Connector

f. In the file dialog, select and open the connector config file starting with

“connector_OwnerCenter” that matches the data source and data type for which

you wish to create a pipeline. A screen similar to Figure 16 should be displayed.

Note that Kafka connect and control center will not allow duplicate named

connectors. If the connector already exists and you attempt to create the

connector with the same name, it will display an error. If you want the same

connector as one that already exists, you must change the name of the

connector in the Name field. Scroll to the bottom and click the Next button. You

should see something similar to Figure 17. If you have changed the connector

configuration in any way and want to save a configuration file for later use, click

download connector file and follow the instructions to save the connector

configuration. Click Launch to start the connector. Upon launch Kafka Control

Center will return to the list of connectors and you should see the newly created

connector in the list. It may begin in a failed state, but should change to a

Running status shortly. If you click the Topics link on the Control Center left

menu, you should see the new topic being filled with the message(s) from the

appropriate Mongodb collection.

TMDD Standards Update Recommendations – Data Transmission

30

Figure 17 - Add connector Screen 2

g. Repeat steps e and f for the second connector in the pair for your desired data

source and data type pipeline. Remember, this connector name will be prefixed

with OC_to_EC, and the configuration file will be

“connector_OC_to_EC_DATASOURCE_DATATYPE_config.json. Select the file

when uploading for the same data source and data type selected for the first

connector of the pair.

h. Open your Mongodb client and review the external center target collection for

the pipeline created. The names of these collections begin with the prefix

“xmlSourced.” followed by the data type (such as IntersectionSignalStatus). The

collection should start to fill with records from Connect, thereby transferring the

data from the owner center to the external center.

i. Repeat steps e through h for each pipeline you want to create.

9. Verify SOAP service operation by opening the data validation report for SOAP services.

The report can be located within your browser at the URL

http://localhost:8081/TMDDExternalCenter/. A report similar to Figure 18 should be

displayed. Note that the message counts for the subscription dialogs may be different,

as messages are replayed based on the current time and the collection time, matching

what would have been received from the field during the current time period.

Request/Response message counts should always be 1 for a successful data exchange.

TMDD Standards Update Recommendations – Data Transmission

31

Figure 18 - SOAP Service Validation Report
10. While not required, it is recommended that after first start, you change the owner

center and external center postgres instances. Complete the following to change the

owner center and external center postgres passwords:

a. The owner center postgres image is a fully populated database within the image.

The external center is a fully structure database (users, roles, tables, etc.) that

has not yet be populated with TMDD data. Upon first run of the application

however, the data is populated within the external center database.

b. In the Intellij IDE tmdd_owner_center project, enter the postgres password you

choose within the

tmdd_owner_center/owner_center/center_service/application.properties file.

To do this, change the line within the file starting with

postgres.qa.dataSource.pass replacing the password in the file with the desired

password.

c. In the postgres database, using the DataGrip postgres management tool or your

preferred postgres management tool, change the password to match the

password you set in the application.properties file.

d. In Docker Desktop, restart the owner_center SOAP services container.

TMDD Standards Update Recommendations – Data Transmission

32

e. Repeat steps a through c for the external center postgres instance. For step b,

the location of the application.properties file is

tmdd_external_center/external_center/center_service/.

f. Restart the external center SOAP services container in Docker Desktop.

g. Allow the SOAP services to run and upon completion verify success in the SOAP

Service Validation Report (Figure 18).

 INSTALLATION COMPLETE

Installation is now complete and operation of the services has been completed. Both SOAP and

Kafka traffic data services are installed and operation has been verified.

TMDD Standards Update Recommendations – Data Transmission

33

5. OPERATING INSTRUCTIONS

The application, once installed, is for the most part self-operating. The Kafka services will

continue to listen for changes in the owner center Mongodb database and upon detecting a

change in a collection for which a connector pair is established will transfer the data to the

external center Mongodb database. The SOAP services however are generally a one-time

operation that can be restarted by stopping and restarting the external center container within

Docker Desktop. If changes to the dialogs or sources are desired within the SOAP services, the

user can alter the application.properties and individual SOAP pipeline config files prior to

restarting the external center SOAP services container as described in the installation

instructions.

These operating instructions will provide instructions for the following:

• How to restart the SOAP services pipeline

• How to restart from scratch an existing Kafka pipeline to demonstrate the pipeline with

the data contained within the owner center’s Mongodb collection for that pipeline.

 RESTART A SOAP SERVICES PIPELINE

The SOAP services pipeline starts under the following conditions

• There is a properly configured owner center application/container available with

associated and connected Postgres database with available data

• There is a properly configured external center SOAP application/container available with

associated and connected Postgres database

The SOAP services start automatically upon startup of the external center services container.

Upon startup, the external center service will retrieve the pipeline configuration to execute

(located in the application.properties file). The pipeline configuration includes the list of

pipeline config files to execute, subscription duration, report directory, and endpoint of each

owner center service to connect to. See Figure 19 for an example application.properties file.

TMDD Standards Update Recommendations – Data Transmission

34

Figure 19 - External Center application.properties

The pipeline configuration also consists of each source pipeline config file specified at the top of

application.properties. These files are located in the

tmdd_exernal_center/external_center/center_service directory. See the installation

instructions, Section 4.3.4, for instructions on editing the pipeline config files to change the

active data pipelines.

TMDD Standards Update Recommendations – Data Transmission

35

Since the pipelines start upon container start, if it is desired to run again, the easiest method is

to stop the container in Docker Desktop by clicking the stop icon to the right of the

external_center container (see Figure 20).

Figure 20 - Stop external center SOAP service container

If desired, alter the pipeline sources to run by altering the pipeline config file list in the

application.properties file. If desired, alter which pipelines to run and the type of pipeline

(request/response [sync] or subscription[async] and type of subscription and parameters) by

changing the pipeline config file for the selected source. The center_service folder is mounted

in the container, so the container does not require a rebuild. Simply restart the external center

container in Docker desktop by clicking the start icon (replaces the stop icon when the

container is stopped). The SOAP pipelines will automatically start as the container starts. You

can watch the log to see the log messages for data flow by clicking on the external_center

container icon in the Docker Desktop application. See Figure 20 for container icon location and

Figure 21 for example logs. The service does take several seconds after container start to begin

processing the data.

Stop icon

Container icon

TMDD Standards Update Recommendations – Data Transmission

36

Figure 21 - SOAP Services External Center SOAP Service Logs

Verify that the service completed after the subscription duration has elapsed by reviewing the

SOAP services validation report.

 RESTART A KAFKA PIPELINE

As discussed during the installation procedure, Section 4.3.5, paragraph 8.e, each Kafka pipeline

is defined within a pair of Kafka connectors:

• A connector that:

o Reads all data initially, and then monitors for updates, from the owner center

Mongodb collection containing a set of data for a single source

o Places the data read from Mongodb into a Kafka topic

• A second connector that:

TMDD Standards Update Recommendations – Data Transmission

37

o Pulls the data from the Kafka topic

o Writes the data from the topic to the external center Mongodb replication

cluster in a collection specific to the data type being sent from the owner center

As a result, once the initial data is loaded, there will be no further activity once the initial data

transfer is complete without one of two actions:

• New data records are added to the owner center source collection for the pipeline

• A new connector is added that will restart the data flow (it is recommended that to keep

clutter down in the list of connectors, that any time a connector is added to restart data

flow, that the connector be deleted upon completion of data transfer)

In a production system, new data would regularly flow into the Mongodb source collection as

data is received from field units. However, in an isolated environment such as this application,

there is no external source. Records can be manually added if desired and the user should have

an appropriate set of data and consult the Mongodb documentation on how to insert records.

To restart a pipeline with a new connector, complete the following:

1. Open the Mongodb client and delete all documents in the external center Mongodb

target collection. The collection name will be prefixed with “xmlSourced.” and will be

named based on the data type being transferred within the pipeline. Note that you can

only delete the documents from a connection to the cluster or from the primary node of

the cluster. If you are using Robo 3T, you can right click on the pipeline target collection

and select “Remove All Documents…” as illustrated in Figure 22. The transfer will

proceed without this step, but since the documents are duplicates of what was originally

transferred, it is easier to verify that the transfer was completed via the record count

within the collection. Verify that the collection now has 0 documents using the

“Statistics…” option in the collection context menu.

TMDD Standards Update Recommendations – Data Transmission

38

Figure 22 - Mongodb Collection Delete All Documents
2. Open the Kafka Control Center in your browser and navigate to the list of connectors.

TMDD Standards Update Recommendations – Data Transmission

39

Figure 23 - List of Kafka Connectors

3. Click on the “Upload connector config file” button. In the file dialog box, navigate to and

select the connector configuration file for the pipeline you wish to restart. Select the

configuration file for which the name begins with “OwnerCenter” followed by the

pipeline source (ATMS or Arcadia) and the data type for the pipeline. The Control Center

will load the configuration file and display the Add connector screen populated with the

parameters for the selected connector (Figure 23).

TMDD Standards Update Recommendations – Data Transmission

40

Figure 24 - Add Connector Screen

4. Change the connector name (Kafka Connect will not allow duplicate connectors). Scroll

down to the bottom of the screen and click Next. Control Center will display the pipeline

configuration and the Launch button will be displayed (Figure 25). Click Launch to start

the connector.

Figure 25 - Launch Connector Screen

TMDD Standards Update Recommendations – Data Transmission

41

5. Connect will start the connector and Control Center will now list the new connector

within the list of connectors. If you see a connector fail status, give the connector a few

seconds to see if it starts before troubleshooting.

6. Verify that the data is flowing.

a. You can verify that the Kafka topic that is being populated is receiving data in the

Control Center Topics screen for the topic receiving data (click Topics on the

Control Center left menu and then select the topic for the specific source and

data type to see the topic screen for that pipeline topic. The production and

Consumption graphs should indicate data is flowing.

b. You can verify the data is being received within the external center Mongodb

database collection by returning to the Mongodb client and checking the

document count for the target collection. You should see the document count

increase from 0 to the number of documents within the owner center source

collection.

7. It is recommended that you delete the added connector or the original connector to

ensure only one Mongo – Topic connector is running at any time for a specific source

and data type.

TMDD Standards Update Recommendations – Data Transmission

42

This page left blank

intentionally

