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Abstract

The effective thermal expansion coefficient β∗ of a binary viscoelastic composite is shown

to be frequency dependent even if the thermal expansion coefficients βA and βB of both

constituents are themselves frequency independent. Exact calculations for binary viscoelas-

tic systems show that β∗ is related to constituent values βA, βB , volume fractions, and

bulk moduli KA, KB , as well as to the overall bulk modulus K∗ of the composite sys-

tem. Then, β∗ is determined for isotropic systems by first bounding (or measuring) K∗

and therefore β∗. For anisotropic systems with hexagonal symmetry, the principal values of

the thermal expansion β∗
⊥ and β∗

‖ can be determined exactly when the constituents form a

layered system. In all the examples studied, it is shown explicitly that the eigenvectors of

the thermoviscoelastic system possess non-negative dissipation — despite the complicated

analytical behavior of the frequency dependent thermal expansivities themselves. Methods

presented have a variety of applications from fluid-fluid mixtures to fluid-solid suspensions,

and from fluid-saturated porous media to viscoelastic solid-solid composites.
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1. Introduction

Viscoelastic relaxation dynamics can be important in many fields of science (Christensen,

1982; Lakes, 1999; Schmalholz et al., 1999; Angell et al., 2000; Hestholm et al., 2006). But

the role played by thermal expansion in complex situations with multiple viscoelastic con-

stituents present has seldom been addressed. Thermal expansion coefficients β in homoge-

neous (pure) materials are normally treated as being real quantities (Biot, 1956; Fei, 1995),

even in materials that are known to be viscoelastic. One goal of the present work is to

emphasize the importance of considering frequency dependence of thermal expansion, es-

pecially in viscoelastic composite materials, because it is not difficult to show (as we shall

see) that effective thermal expansion of composites will normally exhibit frequency depen-

dence (inherited from the viscoelastic constants of the constituents) even if all the individual

constituents have effectively frequency independent thermal expansion properties.

Frequency dependence of thermal expansion can come into play in two ways: First, a

sudden change of temperature on the sample surface will take time to migrate into the inte-

rior. This migration process can have different rates, associated with thermal conductivities

of the constituents in a composite medium. So the rate of thermal front (not necessarily

a very sharp front since this is a diffusive process) propagation into the composite will be

complicated. Then, in addition, the thermal expansion of each constituent interacts with the

local stress-strain fields. The final state (i.e., at long times, assuming no further changes in

temperature or external stress-strain state occur) will be achieved gradually over a period of

time with larger initial oscillations giving way to smaller ones as some of the excess energy

is lost due to viscoelastic dissipation. So it is natural (as we show here) that the thermal

expansion of a viscoelastic composite should be frequency dependent — acquiring its fre-

quency dependence from the viscoelastic constants, even if the individual constituents have

truly frequency-independent thermal expansion properties.

A second way in which frequency dependent thermal expansion may occur happens when a

viscoelastic composite is repeatedly stressed and released. Such cycling will produce viscous

losses of energy to the system, causing it to heat locally at different rates since we are

considering composite systems. Resulting thermal gradients will gradually smooth out as

temperature becomes more uniform. But, we see that this process results in a similar response

to that of suddenly imposed external temperature change. Again thermal expansion effects
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are nonuniform due to nonuniform local heating and will result in complicated interactions

between thermal expansion and viscoelastic creep losses to heat.

For a viscoelastic system, there are at last two distinct and important sets of constants:

one for zero frequency (very long times) and one for infinite freuqency (very short times)

(Vinogradov and Milton, 2005; Hsieh and Tuan, 2006; 2007). Therefore, much of the analysis

of viscoelastic systems can be concentrated on certain fixed frequencies (for example, f = 0

and f = ∞). So we will not dwell on the details of the frequency dependence of β∗ itself,

or that of the usual viscoelastic constants here, but rather concentrate on establishing the

complex nature of β∗ — thereby making the main point of the paper. Textbooks are available

(Christensen, 1982; Lakes, 1999) on the frequency dependent behavior of the viscoelastic

constants, and the time-dependent thermal expansion behavior then follows directly from

the formulas discussed here.

Methods similar to the main one used to relate overall thermal expansion coefficients

of composites to overall bulk modulus have also been used in other physical contexts by

various authors (Cribb, 1968; Schulgasser, 1989; Berryman and Milton, 1991; 1992). In

particular, the method has sometimes been called the “method of uniform fields” (Dvorak,

1990; Benveniste and Dvorak, 1990; 1992; Dvorak and Benveniste, 1992; 1997), although

it is nevertheless basically the same idea used by Cribb (1968) in the thermoelastic media

context. A similar approach applied in a much wider context has also been introduced by

Grabovsky et al. (2000).

We consider binary viscoelastic composites, and elaborate two cases: (1) composites hav-

ing overall statistically isotropic behavior, and (2) composites having hexagonal symmetry —

especially those having transversely isotropic symmetry due to layering of two constituents.

2. Isotropic binary viscoelastic composites

As illustrated in Figure 1, we first consider a binary composite containing two types of

constituents labelled respectively A and B. The shape of the constituent will play no role

in the present section of the paper, but it will come into play in the next section because of

assumed layering of the components.
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2.1 Thermal expansion for viscoelastic systems

If the volume strain is δε and the entropy per unit volume is δs, then small changes

in these quantities are related to small changes in pressure δp and temperature δθ by the

pertinent equations for a thermoelastic medium which are:




δε

δs



 =





1
K

3β

3β cp/T









−δp

δθ



 , (1)

where K is the (isothermal) bulk modulus, 3β is the (volume) thermal expansion coefficient,

cp is the heat capacity, T is the ambient system temperature measured in oK, and s = ρŜ

where ρ is the mass density and Ŝ is the entropy per unit mass (also known as the specific

entropy). The related adiabatic bulk modulus (for δs ≡ 0) is Kad = K(1 − 9β2KT/cp)
−1

(Ferry, 1970). We emphasize smallness of the independent and dependent variables with

the δ’s to limit the discussion to linear systems, in which case we do not need to consider

the dependence of the coefficients, K, β, and cp on the applied fields. When the overall

composite is isotropic and each of the constiuents is also isotropic, Eq. (1) applies separately

to each constituent’s behavior as well as to the overall behavior of the composite. We then

add subscripts A and B for the two constituents’ moduli, stresses (δp or δσ) and strains

(δε), as necessary, and use ∗ superscripts to indicate the overall behavior. In particular, the

(small) volume strain δε = δε11 + δε22 + δε33 is the sum of the linear strains in the x1, x2,

and x3 directions, respectively. The isotropic pressure change is δp and this is related to the

changes in the principal stresses σ11, etc., by −δp = (δσ11 + δσ22 + δσ33)/3. The change in

temperature is δθ. The change in entropy is δs, while cp is the specific heat per unit volume

at constant pressure (Landau and Lifshitz, 1986).

Effective overall thermal expansion coefficient β∗ for an isotropic composite composed of

isotropic constituents can be written as

β∗ = 〈β〉 +
βB − βA

1
KB

− 1
KA

(

1

K∗
−

〈

1

K

〉)

. (2)

If the volume fraction of the isotropic constituents are respectively fA and fB, then

〈β〉 ≡ fAβA + fBβB (3)

is the volume average of β and
〈

1

K

〉

≡
fA

KA

+
fB

KB

(4)
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is the inverse of the Reuss average (i.e., the harmonic mean) of the constituent bulk moduli

KA and KB. The effective overall bulk modulus of the (assumed) isotropic composite is K∗.

The elastic version of the result (2) is well-known (Levin, 1967; Cribb, 1968; Rosen and

Hashin, 1970; Christensen, 1979), but the formula will be rederived later in this subsection

for the viscoelastic case.

Also note that several other equivalent forms of (2) are available, the simplest of which

is probably Levin’s (1967):

β∗ − βA

βB − βA

=
1

K∗
− 1

KA

1
KB

− 1
KA

. (5)

This form is not symmetrical in A and B, whereas (2) is symmetrical. But there is a second

form of (5) that is also true (as will next be shown) and it is easily obtained by interchanging

the A and B subscripts. In fact, these two forms both follow (after some algebra) from (2),

and vice versa. Again note that (5) depends on volume fractions only through the implicit

dependence of the overall value on system bulk modulus K∗.

The derivation of these results for the viscoelastic (and therefore frequency dependent)

case follows from (1) by first asking whether it is possible to find combinations of δp and δθ

such that δp = δpA = δpB, δθ = δθA = δθB, while δε = δεA = δεB. If so, then

δε = −
δp

K∗
+ β∗δθ = −

δpA

KA

+ βAδθA = −
δpB

KB

+ βBδθB. (6)

These relations imply that

β∗ −
δp

K∗δθ
= βA −

δpA

KAδθA

= βB −
δpB

KBδθB

, (7)

and since — by hypothesis — both fields are uniform, we also have δp/δθ = δpA/δθA =

δpB/δθB. The implications that we can draw are therefore that

β∗ − βA =

(

1

K∗
−

1

KA

)

δp

3δθ
, (8)

β∗ − βB =

(

1

K∗
−

1

KB

)

δp

3δθ
, (9)

and most importantly the fact that this happens specifically for the ratio

δp

3δθ
=

βB − βA

1/KB − 1/KA

=
δpA

3δθA

=
δpB

3δθB

. (10)

Substituting the last expression into the previous two gives both (5) and its interchange

version (where A → B → A). Then averaging these two expressions with respect to volume
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fraction gives (2). Note that nothing in the derivation changes if we assume the moduli KA =

KA(ω) and/or KB = KB(ω), and K∗ = K∗(ω), are all functions of angular frequency ω =

2πf . So the form (2) holds true at every frequency ω, and β∗ = β∗(ω) inherits its frequency

dependence directly from KA(ω) and KB(ω) even if the constituent thermal expansions βA

and βB are not themselves functions of frequency.

As this derivation shows, there is no restriction on the nature of the thermal expansion

moduli, or the elastic(real)/viscoelastic(complex) moduli — time independent or time depen-

dent processes. There are however some implicit restrictions in that the thought experiment

itself assumes an overall uniform state, but is silent on how long it might take to achieve such

a state in practice — thereby, implicitly assuming long times (and therefore low frequencies).

Also, it is clear that the various moduli must not themselves be dependent on the magnitude

of the applied stresses, or strains, or temperatures. So this requirement is one of the linearity

of the equations, which for practical purposes means the applied physical changes must not

be too large in magnitude or the problem will become a nonlinear one. There may still be

some comparable statements possible under those high stress/temperature conditions, but

they will need to be carefully applied to derivatives of the appropriate energy functionals —

assuming that such exist for the corresponding problems of interest. However, we will not

pursue this extension of the methods here.

It is clear from (2) and (5) that β∗ for a viscoelastic composite is frequency dependent

if either KA or KB is frequency dependent. It is known that K∗ will also be frequency

dependent under these circumstances (Gibiansky and Milton, 1993), and exceedingly unlikely

that frequency dependencies on the right hand side of equations (2) and (5) would exactly

cancel out.

Another especially important point to consider is that, although microstructure does not

enter the formulas (2) and (5) explicitly, the influence of the microstructure is nevertheless

present because of the overall bulk modulus K∗ in both equations, and this bulk modulus

itself can be a strong function of the microstructure.

2.2 Bounds on bulk modulus K∗

When the details of the microstructure of the binary composite are unknown but it is

nevertheless known that an assumption of statistical isotropy is adequate, it is then ap-
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propriate to consider variational bounding methods (Gibiansky and Milton, 1993; Milton

and Berryman, 1997) for the complex moduli. The work of Gibiansky and Milton (1993) is

especially pertinent since the estimates we need are those on the complex bulk modulus K∗.

Defining the complex strain ε, complex stress σ, and complex stiffness C (which varies

in space because of the presence of two distinct constituents), we have the viscoelastic

constitutive relationship:

σ = Cε. (11)

We can usefully think of this as a 6× 6 system of equations: σ and ε are each 1× 6 complex

vectors, and C is a 6 × 6 matrix (using the Voigt convention for transforming elastic or

viscoelastic tensors into matrices).

If real parts are distinguished by single primes and imaginary parts by double primes,

then we can define real, composite vectors

j =





ε
′′

σ
′′



 and e =





−σ
′

ε
′



 , (12)

corresponding to the 12 × 12 system

j = De, (13)

where now

D =





(C
′′

)−1 (C
′′

)−1C
′

C
′

(C
′′

)−1 C
′′

+ C
′

(C
′′

)−1C
′



 (14)

is a 12 × 12 real matrix.

There is still a lot of work to do to produce the bounds, but now we have transformed

the problem so we can deal (for the moment) only with real quantities. We have to ana-

lyze the behavior of the average D matrix for our binary composite, but this is relatively

straightforward within the context of random media theory. We can for example generalize

the Hashin-Shtrikman variational principle for this more complicated problem. The results

are bounds on both complex bulk modulus (Gibiansky and Milton, 1993) and complex shear

modulus (Milton and Berryman, 1997). The details are contained in the quoted references,

so we will skip ahead to some pertinent developments concerning the quantities called the

“canonical functions” and Milton’s Y-tensor (Milton, 1987).

First, let us define a complex function Λ(u), which will be called “the canonical function
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for bulk modulus.” If the symbol 〈〉 is the spatial averaging operator, then

Λ(u) ≡

〈

1

K(~r) + 4
3
u

〉−1

−
4

3
u. (15)

The number u can be real or complex, and has the significance in many cases of being

a pertinent shear modulus for the system of interest. The number u will always have the

dimensions (GPa) of a bulk or shear modulus. Another function of similar type can be

defined for the shear modulus as

Γ(y) ≡

〈

1

G(~r) + y

〉−1

− y. (16)

This function is called by analogy “the canonical function for shear modulus.” When all

the moduli are real, the Hashin-Shtrikman upper and lower bounds (Hashin and Shtrikman,

1963) on K∗ can be expressed in terms of Λ(u) by setting u = either GA or GB. If Gmax is the

larger of the two, then Λ(Gmax) ≥ K∗ is the upper bound on the real bulk modulus, while

setting u = Gmin produces the lower bound. Setting u = 0 (or y = 0 for G) gives the Reuss

average (the harmonic mean), while taking u → ∞ (or y = ∞ for G) produces the Voigt

average (the arithmetic mean). The Hashin-Shtrikman-Walpole bounds (Walpole, 1969) for

shear modulus are similarly expressed by defining the two y values ymax = (Gmax/6)(9Kmax+

8Gmax)/(Kmax + 2Gmax), and ymin = (Gmin/6)(9Kmin + 8Gmin)/(Kmin + 2Gmin), where

Gmax = Max(GA, GB), Kmin = Min(KA, KB), etc.

These facts about real Λ (and also Γ) are not directly useful to us for the complex

(viscoelastic) problem, but nevertheless they perhaps help to motivate the use of the complex

version of the function for different purposes. In particular, for the viscoelastic problem,

Gibiansky and Milton (1993) show that four values of Λ(u) are important for the bounds on

complex K∗ – and, furthermore, they are exactly the same ones we have just discussed —

although now generalized to the complex plane. In particular, K1∗ ≡ Λ(GA), K2∗ ≡ Λ(GB),

Kh∗ ≡ Λ(0) =
〈

1
K(~r)

〉−1

, and Ka∗ = Λ(∞) = 〈K(~r)〉 = fAKA + fBKB. The functional form

is the same as that shown in (15), but now the constants appearing inside Λ (i.e., K(~r) and

u) are permitted to be complex numbers (but the volume fractions continue to have their

usual real significance).

Gibiansky and Milton (1993) define four arcs in the complex K-plane, each arc passing

through the first two points (i.e., p = K1∗, K2∗), and also through one of the remaining four
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points (p) according to:

Arc(K1∗, K2∗, Kh∗), Arc(K1∗, K2∗, Ka∗), Arc(K1∗, K2∗, KA), Arc(K1∗, K2∗, KB), (17)

where

Arc(p1, p2, p3) ≡ φ1p1 + φ2p2 −
φ1φ2(p1 − p2)

2

φ2p1 + φ1p2 − p3

, (18)

and the parameter φ1 = 1 − φ2 is real and varies along the interval [0, 1]. The resulting

function is a type well-known in complex analysis called a linear fractional, or bilinear,

transformation.

These results can be usefully compared to the previously defined canonical functions

and also to the related Y -tensor (or Y -transform) of Milton (1987) If the actual effective

constants to be determined (or estimated using the bounding arguments) are K∗ and G∗

(bulk and shear moduli respectively), then we can define arguments YK and YG such that

K∗ = Λ(3YK/4) and G∗ = Γ(YG). (19)

The canonical functions are one-to-one, and they are analytically invertible. So we find

directly that

YK =
KAKB(K∗ 〈1/K〉 − 1)

〈K〉 − K∗
, (20)

and

YG =
GAGB(G∗ 〈1/G〉 − 1)

〈G〉 − G∗
. (21)

Thus, we have turned the canonical functions inside out to find formulas for the two Y ’s.

This process is useful because, if we can now obtain bounds directly on the Y ’s, then we

obtain rather tight bounds on both K∗ and G∗. For example, in the case of real constants,

the trivial bounds 0 ≤ YK , YG ≤ ∞ obviously result in the Reuss (1929) and Voigt (1928)

bounds for both moduli K∗ and G∗. The bounds 4Gmin

3
≤ YK ≤ 4Gmax

3
for YK result in

the Hashin-Shtrikman bounds on bulk modulus (Hashin and Strikman, 1963); and a similar

statement holds for G∗ and YG, where the Hashin-Shtrikman-Walpole points (Walpole, 1969)

become the bounds on YG for real moduli.

For the viscoelastic problem, we have the general Y -tensor given by:

Y (D∗, DA, DB) =





(y
′′

)−1 −(y
′′

)−1y
′

−y
′

(y
′′

)−1 y
′′

+ y
′

(y
′′

)−1y
′



 (22)
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by analogy to (14). And the 6 × 6 matrix y is defined by

y(C∗, CA, CB) = −fBCA − fACB + fAfB(CA −CB)(fACA + fBCB −C∗)−1(CA −CB). (23)

For isotropic composites, this matrix can be split out easily into its bulk and shear parts.

For example, when this has been done for the shear modulus (Milton and Berryman,

1997), we can show (recalling that single primed objects are real parts, and double primed

objects are imaginary parts) that:





1
2y′′

G

−
y′

G

y′′

G

−
y′

G

y′

G
′
2
[

y′′
G +

(y′

G
)2

y′′

G

]



− Z ≥ 0. (24)

Here Z is a 2×2 real comparison matrix. This statement says that the spectrum of the 2×2

matrix on the left must be nonnegative, so its eigenvalues must be nonnegative. After some

more algebra, we can show that this implies the point y′
G + iy′′

G must lie inside a definite

set of circles in the complex YG-plane. The matrix Z contains some parameters that we are

free to vary, and the final bounds lie inside the convex hull generated by considering all

these bounding circles. Similar statements are also possible for the quantity yK , of course,

although the results are quite a bit simpler in that case.

2.3 Bounds on thermal expansivity β∗

Now recall that
1

K∗ + YK

=
fA

KA + YK

+
fB

KB + YK

, (25)

which is closely related to “canonical function” Λ(u), since Λ(3YK/4) ≡ K∗. Using this

definition of K∗ to replace it in the earlier expression (2) for β∗, we find (after some more

algebra) that:

β∗ = 〈β〉 +
fAfB(βB − βA)(KB − KA)Yk

KAKB + 〈K〉YK

. (26)

Having this formula in hand, we can take over all the results from Gibiansky and Milton

(1993) directly to obtain bounds on the possible complex values of β∗.

Results are displayed in Figs. 2 and 3 for the example [from Gibiansky and Milton (1993)]

having (KA, GA) = (1 + 2i, i) and (KB, GB) = (1, 1) (all in units of 10 GPa). Recall that

typical units for bulk and shear moduli are SI units of GPa (= 109 N/m2). Units for the

constituents were chosen here to be 10 GPa times values used in this one example from the
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Gibiansky and Milton (1993) paper, since the real parts of their chosen values are smaller

than those for most solids by a factor of at least 10. Similarly, typical units for thermal

expansion are: ppm K−1 = 10−6 (oK)−1 (which is one microstrain per degree K). We have

also included a factor of 10 here (so the units shown are 10−5[oK]−1) again in order to bring

the chosen values more in line with those for typical materials of interest. Note that material

A has GA = i, so — having no real part of its shear modulus — this means we should think

of it as a viscous fluid.

Figure 2 displays the steps in the bounding process: (a) Shows the Gibiansky and Milton

(1993) bounds on YK . There are two other curves considered during the bounding process,

but the ones shown are the two outer most, and therefore are the ones that are pertinent. (b)

Shows the resulting bounds on the overall bulk modulus K∗ of the system for all isotropic

composites composed of materials A and B. (c) Shows the bounds on the overall thermal

expansion coefficient β∗. Results are also shown for the coherent potential approximation

(CPA) for K∗ (Soven, 1967; Gubernatis and Krumhansl, 1975; Berryman, 1980a,b; Willis,

1981), and for the center-of-mass (CM) location based on the bounding curves for β∗. We

see that K∗
CPA and K∗

CM are very close to each other for the case of fA = fB = 0.50 plotted

here. Table 1 also displays the values for the same case but for seven choices of fA. Figure

3 shows the bounding curves for β∗ for the same seven cases, plus the end points. K∗
CPA is

also included in each of the bounding sub-diagrams. We see that K∗
CPA is not so centrally

located in the other diagrams, for fA 6= 0.50, although the issue becomes moot as fA → 0.00

and also as fA → 1.00, since the bounding regions become very small in this limit.

3. Transversely isotropic binary composites

Binary composites need not have isotropic symmetry overall, so results for anisotropic

binary composites are also of interest.

Landau and Lifshitz (1986) show quite generally that, for anisotropic materials having

triclinic, monoclinic, and orthorhombic symmetry, the thermal expansion β has three inde-

pendent components (biaxial), while for tetragonal, rhombohedral, and hexagonal symmetry

two independent components (uniaxial), and for cubic or isotropic symmetry only one com-

ponent. We will now consider a transversely isotropic (or hexagonal symmetry) material

such as one might obtain by layering (or laminating) two isotropic materials [see (Backus,
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1962)], with the resulting composite then being uniaxial.

3.1 Hexagonal symmetry

Christensen (1979) (p. 325) shows that, for a binary (A,B) viscoelastic composite [note:

Christensen actually discusses only elastic composites in this part of his book, but as shown

here already the step from elastic to viscoelastic materials is immediate] composed of two

isotropic constituents, the effective overall thermal expansion tensor coefficient β∗ can be

written as

β∗
ij = δij 〈β〉 +

βB − βA

1
KB

− 1
KA

(

3S∗
ijmm − δij

〈

1

K

〉)

. (27)

Here S∗ is the compliance tensor, repeated subscripts m are summed, and the meanings

of the bracketed expressions are exactly as before. Transverse isotropy of the desired type

can easily be attained in practice through a layering or lamination process, as mentioned

previously.

Assuming that the axis of symmetry is x3, then it is straightforward to show that

S∗
11mm = δmnS

∗
22mn =

1 − ν∗
12

E∗
11

−
ν∗

13

E∗
33

=

(

1 −
c∗13
c∗33

)[

c∗11 + c∗12 −
2(c∗13)

2

c∗33

]−1

(28)

where E∗
11 and E∗

33 are the pertinent Young’s moduli, ν∗
12 and ν∗

13 are the pertinent Poisson’s

ratios, and β∗
11 = β∗

22 = β∗
⊥. We also find specifically that

S∗
33mm =

1 − 2ν∗
13

E∗
33

=

(

1 −
2c∗13

c∗11 + c∗12

)[

c∗33 −
2(c∗13)

2

(c∗11 + c∗12)

]−1

, (29)

which is needed for β∗
33 = β∗

‖ . For completeness, the expressions for both formulas in terms of

the corresponding stiffness c∗ij matrix elements also presented in (28) and (29), as this version

can be useful when measurements are obtained from acoustic or ultrasound data (Musgrave,

2003). It is easy to show that, for isotropic arrangements of the isotropic constituents, Eqs.

(28) and (29) both reduce to 1/3K∗, since for isotropic systems we always have (1−2ν)/E =

1/3K. Thus, (27) reduces to (2), as expected in the isotropic limit.

For the transversely isotropic case, we finally have the formulas for the two distinct β∗’s:

β∗
⊥ = 〈β〉 + 3

βB − βA

1
KB

− 1
KA

(

1 − ν∗
12

E∗
11

−
ν∗

13

E∗
33

−

〈

1

3K

〉)

, (30)

and

β∗
‖ = 〈β〉 +

βB − βA

1
KB

− 1
KA

(

3(1 − 2ν∗
13)

E∗
33

−

〈

1

K

〉)

. (31)
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Note that for a medium having hexagonal symmetry, the effective overall bulk modulus

is given by the Reuss average, which is:

1

K∗
≡

1

K∗
R

=
2(1 − ν∗

12)

E∗
11

+
(1 − 4ν∗

13)

E∗
33

. (32)

So we have in general that

2β∗
⊥

3
+

β∗
‖

3
= 〈β〉 +

βB − βA

1
KB

− 1
KA

(

1

K∗
−

〈

1

K

〉)

, (33)

which can be viewed as a sumrule, and as such is in agreement with (2).

Furthermore, it will prove useful to make the definitions

1

K∗
⊥

≡
3(1 − ν∗

12)

E∗
11

−
3ν∗

13

E∗
33

(34)

and
1

K∗
‖

≡
3(1 − 2ν∗

13)

E∗
33

. (35)

Then, (32) is also seen as the statement

1

K∗
=

1

3

(

2

K∗
⊥

+
1

K∗
‖

)

. (36)

To derive equations (27), we first generalize (1) to















δε11

δε22

δε33

δs















=















S1111 S1122 S1133 β⊥

S2211 S2222 S2233 β⊥

S3311 S3322 S3333 β‖

β⊥ β⊥ β‖ c∗p/T





























δσ11

δσ22

δσ33

δθ















, (37)

with the understanding that the two constituents themselves have the same equations as

before, but these can be telescoped out into this same form as shown in (37) by noting that

the β’s are all the same for each constituent, and that SA
1111 = 1/EA, SA

1122 = −νA/EA, etc.

We consider two thought experiments this time. One for the strains in the horizontal

planes: δσ⊥ = δσ11 = δσ22, and a second one for the strains along the axis of symmetry

δσ‖ = δσ33. In each case, the stresses must be uniform, but not necessarily the same in

both cases, so δσ⊥ = δσ11 = . . . = δσ33 and δσ‖ = δσ11 = . . . = δσ33. But in general for

anisotropic media, the stresses pertinent to the argument are such that δσ⊥ 6= δσ‖. Then we

have

δε⊥ = S∗
11mmδσ⊥ + β∗

⊥δθ =

(

1 − 2νA

EA

)

δσ⊥ + βAδθ =

(

1 − 2νB

EB

)

δσ⊥ + βBδθ. (38)
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Also, since 1/3KA = (1 − 2νA)/EA, the equations in (38) are completely analogous to the

ones shown previously for the isotropic case — except that they differ by a factor of 3, since

δε⊥ is not the total strain, but only one of the three linear components of total strain. And

similarly for the thermal expansion along the axis of symmetry, we also have

δε‖ = S∗
33mmδσ‖ + β∗

‖δθ =

(

1 − 2νA

EA

)

δσ‖ + βAδθ =

(

1 − 2νB

EB

)

δσ‖ + βBδθ. (39)

In fact, the only difference (except for labeling) between (38) and (39) is the replacement of

S∗
11mm by S∗

33mm. We can conclude by making the analogy between the anisotropic and the

isotropic cases more precise using the the definitions (34) and (35), if desired.

Again, microstructure does not enter formulas (30) and (31) explicitly, but the influence

of the microstructure is felt directly through the overall Young’s moduli E∗
11 and E∗

33 as well

as through the corresponding Poisson’s ratios in both equations.

3.2 Averaging thin layers at low frequencies

Backus (1962) presents a very elegant method of determining the effective constants for a

layered medium composed of thin isotropic or anisotropic elastic layers. As we shall see, his

method also works equally well for viscoelastic layers. For simplicity and to be consistent with

the earlier parts of the paper, we assume here that the layers are all isotropic. If KA and GA

are the bulk and shear moduli of component A, then the Lamé constant λA ≡ KA − 2GA/3.

Similar definitions then apply to constituent B. The Voigt 6 × 6 notation for the stiffness

matrix then takes the form:



























σ11

σ22

σ33

σ23

σ31

σ12



























=



























λ + 2G λ λ

λ λ + 2G λ

λ λ λ + 2G

2G

2G

2G





















































ε11

ε22

ε33

ε23

ε31

ε12



























. (40)

We have chosen to define the strain tensor here in terms of the particle displacements ui

according to

εij =
1

2
(ui,j + uj,i) ≡

1

2

(

∂ui

∂xj

+
∂uj

∂xi

)

. (41)
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[This is not the only choice possible, and in fact it is not the most common one used in the

seismology community; these two choices differ by a factor of two for the cases when i 6= j. We

make this choice here to simplify the eigenvalue structure of the resulting stiffness matrix.]

The key step in Backus’s (1962) analysis [also see Milton (2002)] is to find a rearrangement

of (40) such that the rapidly varying coefficients multiply slowly varying stresses or trains.

Following this procedure, we find:


























σ11

σ22

−ε33

ε23

ε31

σ12



























=



























4λ(λ+G)
λ+2G

2Gλ
λ+2G

λ
λ+2G

2Gλ
λ+2G

4λ(λ+G)
λ+2G

λ
λ+2G

λ
λ+2G

λ
λ+2G

− 1
λ+2G

1
2G

1
2G

2G





















































ε11

ε22

σ33

σ23

σ31

ε12



























. (42)

The vector on the left contains the fast variables. The vector on the right contains the slow

variables, which (at sufficiently low frequencies) may be treated as constants. So (42) can

now be averaged essentially by inspection (Berryman, 1999). The result is:



























〈σ11〉

〈σ22〉

− 〈ε33〉

〈ε23〉

〈ε31〉

〈σ12〉



























=





























〈

4λ(λ+G)
λ+2G

〉

〈

2 Gλ
λ+2G

〉 〈

λ
λ+2G

〉

〈

2 Gλ
λ+2G

〉

〈

4λ(λ+G)
λ+2G

〉

〈

λ
λ+2G

〉

〈

λ
λ+2G

〉 〈

λ
λ+2G

〉

−
〈

1
λ+2G

〉

〈

1
2G

〉

〈

1
2G

〉

2 〈G〉























































ε11

ε22

σ33

σ23

σ31

ε12



























. (43)

The relationships among these averages and the stiffnesses of the hexagonal system are given

explicitly by:


























〈σ11〉

〈σ22〉

− 〈ε33〉

〈ε23〉

〈ε31〉

〈σ12〉



























=



























[c∗11 − (c∗13)
2/c∗33] [c∗12 − (c∗13)

2/c∗33] c∗13/c
∗
33

[c∗12 − (c∗13)
2/c∗33] [c∗11 − (c∗13)

2/c∗33] c∗13/c
∗
33

c∗13/c
∗
33 c∗13/c

∗
33 −1/c∗33

1
2c∗

44

1
2c∗

44

2c∗66





















































ε11

ε22

σ33

σ23

σ31

ε12



























. (44)

Equations (43) and (44) can be unraveled to yield formulas for the stiffnesses c∗ij associated

with the principal stresses in the anisotropic medium. The results are then given by the
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formulas:

c∗33 =

〈

1

λ + 2G

〉−1

, (45)

c∗11 = c∗33

〈

λ

λ + 2G

〉2

+ 4

〈

G(λ + G)

λ + 2G

〉

, (46)

c∗12 = c∗33

〈

λ

λ + 2G

〉2

+ 2

〈

Gλ

λ + 2G

〉

, (47)

and

c∗13 = c∗33

〈

λ

λ + 2G

〉

. (48)

The remaining two formulas for c44 and c66 are not required for the application under con-

sideration here, but are included nevertheless for the sake of completeness. These formulas

are:

c∗44 =

〈

1

G

〉−1

(49)

and

c∗66 = 〈G〉 , (50)

which are respectively the harmonic mean and the mean based on volume fraction averages)

of the shear moduli for the two constituents A and B.

The most important point about the analysis just shown (and the reason for repeating

it here) is to emphasize that nowhere are there any energy arguments used, only arguments

based on simple algebra. Thus, the formulas apply equally well to elastic or viscoelastic

media. All the coefficients and formulas relating them to constituent properties may therefore

be correctly treated as complex.

3.3 Eigenvalues of the complex stiffness matrix

It may not be obvious to some readers that the complex stiffness matrix will have complex

eigenvalues, and that these eigenvalues must have non-negative imaginary parts in order for

the analysis to make physical sense (otherwise negative dissipation would necessarily ensue,

which implies the absurd situation in which the system is generating energy without any

need for external sources). The way to check for the presence or absence of this conceptual

problem is to evaluate the imaginary parts of all the complex eigenvalues of the complex
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stiffness matrix and determine their signs. Four of these are very simple, and occur in pairs:

γ3 = 2c44 = 2

〈

1

G

〉−1

, (51)

and

γ4 = 2c66 = 2 〈G〉 . (52)

Eigenvalue γ3 = 2c44 appears explicitly twice in the equation for the case of hexagonal

symmetry:


























σ11

σ22

σ33

σ23

σ31

σ12



























=



























c11 c12 c13

c12 c11 c13

c13 c13 c33

2c44

2c44

2c66





















































ε11

ε22

ε33

ε23

ε31

ε12



























, (53)

while γ4 appears once explicitly, and once implicitly because of the transverse isotropy

condition c11−c12 = 2c66 = γ4. The remaining two eigenvalues are determined by a quadratic

characteristic equation, having the solutions:

γ± =
1

2

[

c11 + c12 + c33 ±
√

(c11 + c12 − c33)2 + 8c2
13

]

. (54)

The cij ’s for the present problem are given explicitly by the formulas quoted already in

(45)–(50). For the plus sign in (54), we have γ1 ≡ γ+ ' 3K∗, by which we mean that this

eigenvalue acts somewhat like 3 times the bulk modulus at intermediate values of volume

fraction, and reduces exactly to 3 times the unique bulk modulus as fA → 0.00 or 1.00.

Similarly, γ2 ≡ γ− ' 2G∗, by which we mean this eigenvalue acts somewhat like 2 times the

shear modulus at intermediate values of fA, and reduces exactly to twice the unique shear

modulus at both volume fraction end points.

Figure 4 displays the results of these computations. It is clear that all six eigenvalues of

complex stiffness exhibit non-negative imaginary parts, and therefore non-negative dissipa-

tion (as is expected on physical grounds – i.e., energy conservation, or energy loss coupled

with an increase of entropy).
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3.4 Examples of β∗
⊥ and β∗

‖

Figure 5 illustrates the results for β∗
⊥ and β∗

‖ based on Eqs. (30) and (31), using the right

hand sides of (28) and (29), together with (45)–(50) for the effective stiffness coefficients.

Note that the imaginary parts of K∗
R and K∗

⊥ are all positive, whereas the sign of the

imaginary parts of the β∗’s are mixed, as are the imaginary parts of K∗
‖ . The dotted line at

zero has been added as an aid to the eye, to show where the imaginary part of 1/K∗
‖ becomes

positive. Recall that Figure 4 shows all the eigenvalues of the complex stiffness matrix

have non-negative dissipation, so these observed changes of sign in the complex thermal

expansion coefficients are not related to any unphysical behavior of the model. Figure 4

also demonstrates however that this behavior, although unusual, is not unphysical as the

eigenvalues themselves always have non-negative imaginary parts – so it is impossible to

excite separately any unphysical combination of these specially defined moduli. The lesson

seems to be that it is best to write all the moduli in terms of the eigenvalues and the

modes of excitation in terms of the eigenvectors, so as not to permit unnecessary confusion

in interpretation to arise in this context. This leads us to Section 4 where we study the

eigenvalues of the complex coupled system in more detail. We find that the mixed behavior

of the imaginary parts of the β’s does not affect the anticipated result that the dissipation

will be non-negative for all the modes of the coupled system.

4. Eigenvalues of the coupled system

Now we have already shown that viscoelastic part of the overall system of equations

has non-negative dissipation at all times. It is however still not obvious whether the fully

coupled system, including both the thermal expansion and heat capacity effects, also has

this property. In fact, we have not checked this issue for the isotropic problem yet either.

We will do this first for the 2× 2 system (1), to show explicitly the types of steps needed —

and then we will repeat the process for the more complicated 4 × 4 system.

4.1 Eigenvalues for the 2 × 2 system

The first difficulty with studying the eigenvalues of these coupled systems is the fact that

the components of the 2 × 2 matrix typically have inconsistent units. So it is necessary to
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transform this problem to one having either no units (i.e., dimensionless), or to one having

uniform (consistent) units. There is more than one way to achieve the desired result, and

we will present two of the choices here.

First, Biot (1956) has considered the thermoelastic problem, and treated both the

anisotropic and isotropic cases. He chose to express the change in entropy as

δs ≡
δh

T
= βKδε + cvδθ/T, (55)

where δh is the increment of heat, cv is heat capacity at constant volume, and the reference

temperature is T for the unstrained/unstressed sample.

Then, the thermoelastic relations for the (hexagonal) anisotropic problem can be written

as














σ11

σ22

σ33

−δs















=















c11 c12 c13 −β⊥K

c12 c11 c13 −β⊥K

c13 c13 c33 −β‖K

−β⊥K −β⊥K −β‖K −cv/T





























ε11

ε22

ε33

δθ















. (56)

For the isotropic problem, this equation reduces to





−δp

−δs



 =





K −3βK

−3βK −cv/T









δε

δθ



 , (57)

where — as before — we have −δp ≡ (σ11 + σ22 + σ33)/3, and δε ≡ ε11 + ε22 + ε33. We

note that δp and δh [the increment of heat from (55)] have the same dimensions. Strain ε is

dimensionless, as is the ratio δθ/T . So multiplying the bottom row of the matrix (and also

the left-hand vector) by T , and then multiplying the right-hand column of the matrix by T ,

and dividing δθ by T gives the following result:





−δp

−Tδs



 =





K −3βKT

−3βKT −cvT









δε

δθ/T



 . (58)

Similar transformations can be performed on (56) with similar looking results. We find in

both cases that the transformed equation has a right-hand vector that is dimensionless,

a left-hand vector that has dimensions of pressure, and a matrix that also has consistent

dimensions of a pressure. The eigenvalues q± from the quadratic characteristic equation are:

q± =
1

2

[

K − cvT ±
√

(K + cvT )2 − 36(βKT )2
]

. (59)
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It is of course possible to rewrite (2) in a similar fashion, but it will be important to

arrange the matrix for the isotropic case so the upper left hand corner remains unchanged

as 1/K. To accomplish this, we arrive at the following transformed equation:




δε/K

Tδs/K2



 =





1/K 3βT/K

3βT/K cpT/K2









−δp/K

δθ/T



 . (60)

The vector on the right is now dimensionless. The vector on the left has dimensions of

inverse pressure. The transformed matrix now has dimensions of compliance (which is also

inverse of pressure). So we have arrived at another consistent form, although it is not quite

as simple as the one for Biot’s formulation. Also, it is impotant to recognize that these two

matrices are not simply inverses of each other, as the choices of pairings of the independent

and dependent variables are different.

It is straightforward now to find the two complex eigenvalues (Q±) of this transformed

2 × 2 matrix. The results that follow from the characteristic quadratic equation are:

Q± =
1

2K2

(

K + cpT ±

√

(K − cpT )2 + 36(βKT )2

)

. (61)

This form is natural in the sense that, if the off-diagonal elements (proportional to β) vanish,

the results are just the diagonal elements of the matrix as expected.

We will next show some examples of these results for the isotropic case in Figure 6. We

need numerical values for cp and for T . A typical value for T is nominal room temperature,

which is T ' 300oK. For water, the value of cp ' 4 × 106 N/m2oK, or cp ' 4 MPa/oK. A

typical value for rubber is cp ' 2 MPa/oK, which is the value we will use in the examples.

So cpT ' 600 MPa = 0.6 GPa, at room temperature.

4.2 Eigenvalues for the 4 × 4 system

Next, we seek a formula that is automatically of the right type to permit complex eigen-

value analysis and that is also a straightforward generalization of (60). We find that the

4 × 4 transformed matrix that replaces (60) for hexagonal symmetry is:














δε11/K

δε22/K

δε33/K

τδs/K















=















S1111 S1122 S1133 β⊥τ

S1122 S1111 S1133 β⊥τ

S1133 S1133 S3333 β‖τ

β⊥τ β⊥τ β‖τ χτ





























δσ11/K

δσ22/K

δσ33/K

δθ/τK















, (62)
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where (in order to simplify the notation) we introduced the definitions τ = T/K ′, and

χ = cp/K
′, where K ′ = Re(KR). [This choice differs from the one made in (60). And other

choices are also possible as well. Some further discussion of this point will be given later

together with the examples. But the main reason for these choices is that the order of the

resulting eigenvalue problem in (60) was only 2, and was therefore easily solved using the

quadratic formula. However, Eqn. (62) is fourth order. As we shall soon see, it is easily

reduced to a cubic equation. But, the complication of having complex normalization factors

such as KR makes it more difficult than seems necessary to the application (e.g., keeping

track of these three complex branches as fB changes seems unnecessarily tedious). However,

this problem goes away altogether when we introduce a real factor such as K ′ = Re(K)

in place of the complex KR itself.] We also made use of the symmetries: S1111 = S2222,

S1122 = S2211, and S1133 = S2233 = . . ., etc. This equation will now be analyzed to determine

the natures of the four resulting eigenvalues.

First, it is easy to see that one of the four eigenvector/eigenvalue pairs is trivial, since

δσ11 = −δσ22 is an obvious shear mode, and also an eigenvector of the combined system

with eigenvalue S1111 − S1122 = 1/2c66 ≡ Q4. This fact will allow us to reduce the size of

the eigenvalue problem from the 4 × 4 shown to a 3 × 3 system. This result is most easily

accomplished by considering the determinant corresponding to the characteristic equation

for the eigenvalues Q, which is

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

S1111 − Q S1122 S1133 β⊥τ

S1122 S1111 − Q S1133 β⊥τ

S1133 S1133 S3333 − Q β‖τ

β⊥τ β⊥τ β‖τ χτ − Q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (63)

We can proceed with some standard manipulations of the determinental form.

First, subtract the second column from the first column; then, the second row from the

first row. Follow this by multiplying the resulting first row by 1
2

and adding it to the second

row. Then, multiplying the resulting first column by 1
2
, and adding it to the second column.
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The resulting equation for the determinant is now:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2(S1111 − S1122 − Q) 0 0 0

0 1
2
(S1111 + S1122 − Q) S1133 β⊥τ

0 S1133 S3333 − Q β‖τ

0 β⊥τ β‖τ χτ − Q

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (64)

Thus, both the first column and row can now be eliminated while noting that (S1111−S1122−

Q = 0 is exactly the equation of the shear mode having Q = Q4 that we already discussed.

The 3 × 3 system determinant is now:
∣

∣

∣

∣

∣

∣

∣

∣

∣

(S1111 + S1122 − Q) 2S1133 2β⊥τ

S1133 S3333 − Q β‖τ

β⊥τ β‖τ χτ − Q

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (65)

where we have multiplied the top row of the determinant (65) by a factor of 2 in order to

put this expression into the form of an eigenvalue problem for the reduced 3 × 3 matrix.

This form provides the cubic equation that determines the three nontrivial eigenvalues Q1,

Q2, and Q3 that we seek.

Even in the absence of the frequency dependent thermal expansion effects, the remaining

modes of this system are not usually simple. Common modes such as δσ11 = δσ22 = δσ33 —

which is a simple uniform pressure (and might therefore result in a uniform contraction or

expansion for an isotropic system) — and δσ11 = δσ22 = −1
2
δσ33 — which is a type of shear

stress (the author calls this the “uniaxial shear stress”) are not eigenmodes of an anisotropic

elastic (or viscoelastic) system. Without coupling through thermal expansion, we would have

quasi-compressional and quasi-shear modes each of which have mixed physical character, and

often not easily interpreted. This situation is further complicated by the presence of the heat

capacity and thermal expansion effects included here. Indeed, if eigenvalue Q1 corresponds to

something like a quasi-compressional mode, and Q2 corresponds to a quasi-shear mode, then

presumably we can also speak of the eigenvalue Q3 corresponding to a quasi-thermal mode

— being mostly a change of the heat content due to a temperature change, but also having

some coupling to the stress-strain changes through the presence of the thermal expansion

coefficients.

Our point is that there is not likely to be any further simplification of the eigen-

value/eigenvector structure for this problem. The equation of interest that needs to be
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solved is (63). We could write this out as a third-order polynomial in Q, but all the informa-

tion is contained in (63), and perhaps it is in its most interpretable form already. So we will

not provide any further details of the analysis (see some important details of the solution

process presented in Appendix A), and go straight to the examples.

Results for the three nontrivial eigenvalues for the anisotropic case are presented in Figure

7. Figs. 7(a) and 7(b) show two different views of the same results for the eigenvalues Q1,

Q2, and Q3 from (65). The results show clearly that the two eigenvalues associated with

inverse compressional Q1) and shear (Q2) moduli – but including coupling through the

complex thermal expansion coefficients, still have negative imaginary parts, which translate

to positive dissipation in all cases. The third eigenvalue is actually associated with the

complex extension of the heat capacity cp; the positive imaginary part of this eigenvalue is

also associated with positive dissipation. Recall that the mixed character of the matrix we

study here means that two of the eigenvalues are related to compliances, while the third

related to the heat capacity, which is more properly thought of as a stiffness (since those are

its natural units). So opposite signs of the imaginary parts are expected. [A physical stiffness

should have positive imaginary part, while a physical compliance has negative imaginary

part. Q3 has dimensions of a compliance due to our normalizations, but the pertinent physical

quantity cp itself has dimensions of stiffness. Some of these conceptual complications could

have been avoided by using Biot’s formulation (56). We will leave this easier case as an

exercise for the reader.]

Fig. 7(c) shows the real and imaginary parts of the inverses of the first two complex

eigenvalues Q−1
1 and Q−1

2 [again from (65)] plotted versus the volume fraction fB. Fig. 7(d)

shows the same two eigenvalues plotted in the complex plane. These two figures may be

compared directly with Figs. 4(a) and 4(c), since the units are the same and the examples

shown here also act approximately like 3× the quasi-bulk modulus and 2× the quasi-shear

modulus, respectively.

5. Applications

The methods presented have a variety of applications from fluid-fluid mixtures to fluid-

solid suspensions, and from fluid-saturated porous media to viscoelastic solid-solid compos-

ites.
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If the viscoelastic media being mixed are fluids (so ReG = 0 for both constituents), and

if furthermore both constituents have ImG = 0, then we have an exact result for the bulk

modulus of the isotropic system, which is

K∗ = 〈K〉−1 =

(

fA

KA

+
fB

KB

)−1

. (66)

Furthermore, the same result also holds for the layered case, as it is well-known that Backus’s

(1962) formulas reduce to Hill’s (1963) equation if the shear modulus is the same in both

constituents; and, since both are zero in the situation under discussion, Hill’s equation

reduces to the harmonic mean. Substituting (66) into (2) then produces the appropriate

formula for β∗.

If the viscoelastic medium is a fluid-solid suspension, that implies that the fluid is the

dominant component and the solids (think of them as particles) are suspended in the fluid.

The fluid component will always have ReG = 0 (by definition), but fluids can in principle

be viscous (water, oil) or nonviscous (low temperature liquid helium is one example). So

ImGfluid = 0 may or may not hold, depending on the nature of the suspending fluid. For

the nonviscous fluid, Gfluid ≡ 0, and this case reduces essentially to the previous one having

(66) as the exact result for the overall bulk modulus of the system. Substituting (66) into

(2) again produces the appropriate formula for β∗. But, when the fluid is viscous, the overall

behavior is more complicated and some effective medium theory [such as the one discussed

by Berryman (1980b)] might be a better approach for estimating the effective K∗ to use in

(2). Note that all the examples in this paper have GA = i, making constituent A a viscous

fluid.

A fluid suspension model of the type just described might be a useful model as well of

the glass transition in glass-forming liquids (Dyre, 2006). In fact, it has been noted recently

that the specific heat cp should itself be ω dependent in glass-forming liquids (Christensen

et al., 2007), so it is perhaps not surprising to be finding, as we have done here, that the

thermal expansion coefficient can also be frequency dependent.

Fluid-saturated porous media have microgeometries opposite to the preceding case, hav-

ing fluid on the inside and solid acting as container. This situation always has ReG∗ 6= 0,

since this is the defining characteristic of a solid. The situation is complicated further by the

fact that the external boundary conditions make a difference to the results. If the porous

medium is fully drained, the fluid can move in and out freely, and has little effect on the
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overall behavior. Then, the key bulk modulus in the system is the overall drained bulk mod-

ulus K∗
d (which can be complex). If however the fluid is trapped or experiences undrained

boundary conditions, then the pertinent overall bulk modulus will be K∗
u ≡ the undrained

bulk modulus, which for a nonviscous fluid (or for very low frequency behavior) is determined

by Gassmann’s (1951) equation. See Coussy (2004) for a discussion of the thermoporoelastic

case. Then, the present work leads naturally to a discussion of the extension to thermo-

poroviscoelastic cases. For viscous fluids or higher frequencies, the behavior of such systems

requires further study to determine the correct value of K∗
u. There is ongoing work in this

general area of study concerning bulk moduli for both isotropic and anisotropic porous

media, as is exemplified by the recently published work of Giraud et al. (2007).

If the viscoelastic composite is a solid-solid composite, then we have the case that the

majority of readers were probably considering throughout most of this paper. In this sit-

uation, the shear moduli of both constituents are nonzero and both might be viscoelastic.

The overall bulk modulus K∗ of the system is then strongly dependent on the composite

microstructure, and the bounding methods described in section 2 are the most general way

to analyze these problems. The alternative is to estimate K∗ for particular microstructures.

For design purposes, this is the recommended approach. For analysis of data such as ultra-

sound or seismic data, effective medium theories (Berryman, 1980a;b) can play a useful role

again.

In all these cases it is important to consider how the thermal expansion affects the overall

response, and especially so at higher frequencies.

6. Discussion and conclusions

Another important point to discuss is the fact that the relationships (2), (27), (30), and

(31) between the thermal expansivities β∗, β∗
⊥, β∗

‖ and the bulk moduli K∗ of the overall

composite system are general, and apply to any type of microstructure as long as the true

system symmetry (isotropic, hexagonal) is appropriate for the formulas quoted. If in addition

we know the microstructure, as in the case of layered or laminated media, then it is also

possible to obtain formulas for the overall bulk moduli K∗ and, therefore, formulas for the

thermal expansivities β∗
⊥ and β∗

‖ as well. However, in the case of isotropic media, there exists

literally an infinite variety of available microstructures. So, in these cases, one very useful
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approach (rather than trying to enumerate a very small subset of the many possibilities) is

to provide general bounds over all possible microstructures. This was the approach pursued

here.

Another approach that was briefly mentioned in the examples is to make use of effective

medium theories, such as the coherent potential approximation (CPA) (Soven, 1967; Guber-

natis and Krumhansl, 1975; Berryman, 1982), or the differential scheme (DS) (Norris, 1985;

Garboczi and Berryman, 2001), to provide specific estimated values for complex overall K∗.

Because these two specific theories are known to have definite microstructures associated

with them (Milton, 1985; Avellaneda, 1987), they are (at least in principle) realizable and

therefore the values will always lie inside the rigorous bounds. Those microstructures may

however not always be realistic representations of the microstructure of interest in a particu-

lar application. Nevertheless, in some cases these values may be of direct interest, especially

if the actual microstructure of the systems of interest does somehow mimic that of the ef-

fective medium models — which has been shown to happen sometimes in practice (Berge et

al., 1993; Berryman and Berge, 1996).

To illustrate the differences in the overall bulk modulus K∗ for the isotropic and hexago-

nal (here due to layering) symmetries, Figure 8 plots the results for the effective K∗ for the

layered problem together with five of the bounding regions for the isotropic examples. We

see that these bounding regions do overlap the unique curve for the layered example. So the

bulk moduli in both situations are somewhat comparable, and not disjoint. In contrast, the

harmonic mean Kh of the constituent moduli is also plotted and we see that this estima-

tor differs significantly from both K∗
R and the bounding regions for the isotropic composite

media. A reasonable conclusion is that Kh is not an appropriate estimator for these prob-

lems, whereas K∗
R, K∗

CPA, and a few other effective medium estimates such as those for the

differential scheme, may be appropriate estimators for these viscoelastic constants.

Once good estimates of the overall bulk modulus K∗ are known, then the formulas for

the overall thermal expansion coefficient β∗ provide an excellent tool for determining the

time and frequency dependent behavior of composite viscoelastic media.

A final point concerns the fact that, although we have shown the eigenvalues of those

coupled systems considered here have proper behavior, i.e., the dissipation is always non-

negative, it would nevertheless be desirable (but necessarily beyond our current scope) to

prove that this result is always true for such systems. This line of inquiry will for now be
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left to future work.
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Appendix A: Solving the complex cubic eigenvalue problem

The eigenvalue problem resulting from the determinental equation (65) is the following

cubic equation:

F (Q) ≡ (Q − Q1)(Q − Q2)(Q − Q3) = Q3 − Q2S + QC − P = 0, (67)

where the coefficients are given explicitly by

S = Q1 + Q2 + Q3 = S1111 + S1122 + S3333 + χτ, (68)

C = Q2Q3 + Q3Q1 + Q1Q2 = [(S1111 + S1122)S3333 − 2S2
1133]

+χτ(S1111 + S1122 + S3333) − (2β2
⊥ + β2

‖)τ
2,

(69)

and

P = Q1Q2Q3 = χτ [(S1111 + S1122)S3333 − 2S2
1133]

−β2
‖τ

2(S1111 + S1122) + 4β‖β⊥τ 2S1133 − 2β2
⊥τ 2S3333.

(70)

We refer to these three coefficients respectively as the sum (S), the cross check (C), and the

product (P ) for the cubic equation.

One technical point concerning the solution of the resulting complex cubic equation should

be elaborated. It is straightforward to set up this problem as a Newton-Raphson iteration

scheme (Hildebrand, 1974; Press et al., 1988):

qi+1 = qi − F (qi)/F
′(qi), (71)
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where qi is the most recent iterate i (or a starting value for i = 0), and F ′ is the first

derivative of the cubic polynomial. But it turns out that only one of the three distinct roots

is found easily this way. The solution of the entire cubic can then be found using one step

of deflation, i.e., reducing the size of the problem one level from cubic to quadratic. We

can easily solve the remaining quadratic equation for the two remaining roots once we have

found the most stable root of the cubic using the Newton-Raphson iterative procedure. If

qfinal is the result of the finitely terminated Newton-Raphson process, then the deflated

equation for the quadratic problem remaining to be solved is:

Q2 − Q(S − qfinal) +
P

qfinal

= 0. (72)

We can check that the first result qfinal is actually one of the three roots by performing a

cross check showing that

qfinal(S − qfinal) +
P

qfinal

→ C, (73)

to the desired level of precision.

Equation (72) is a second order equation for finding the two remaining roots, and it can

be solved using the quadratic formula. The only remaining difficulty is that the continuity

of the results for plotting purposes can be problematic in the kinds of displays shown here

when the volume fractions (fB) are changing. It is important to distinguish (and properly

identify) the three roots. To do so we must make a decision at each step as to which of the

solutions of the quadratic should be associated with which one of the three roots. The author

found this part of the problem became relatively straightforward when the factors used to

normalize (i.e., create uniform units in) the matrix were all real. Then, it was sufficient to

assign the eigenvalues so the ones that had the same signs (one will be positive, the other

negative) for the imaginary part of the square root of the solution of the quadratic equation.

However, there did not appear to be a simple solution to this problem if the normalizing

factors were chosen to be complex. For then the complex character of K interacted with the

other complex factors present in a way not easy to disentangle; so this is why real factors

are recommended in the text. The author tried three choices of these factors: 1/Re(K),

Re(1/K), and 1/Abs(K) = Abs(1/K). All three choices gave very similar — though not

identical — results in the form of curves that were equally simple to plot and interpret. So,

there was not a very strong reason to choose one of these over the other two possibilities

listed. It was however observed that the choice 1/Re(K) gave the smoothest curves, and
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this characteristic seemed to indicate better analytical behavior than that of the other two

choices mentioned.
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Table 1. Effective medium theory (coherent potential approximation) values for the bulk

K∗ and shear G∗ moduli, as well as for the complex thermal expansion coefficient β∗, of

the two component composite considered in the text for some selected values of the

(dimensionless) volume fraction fA. For comparison, the center-of-mass points β∗
CM of each

bounding region obtained using the Gibiansky and Milton (1993) theory are also listed.

fA K∗
CPA (10 GPa) G∗

CPA (10 GPa) β∗
CPA (10−5[oK]−1) β∗

CM (10−5[oK]−1)

0.01 1.01410 +i1.96140 0.01894 +i0.99890 1.98451 −i0.00649 1.98839 −i0.00718

0.08 1.09773 +i1.71914 0.14321 +i0.98460 1.88366 −i0.04671 1.90578 −i0.05217

0.22 1.20339 +i1.32970 0.35910 +i0.92587 1.70880 −i0.10341 1.73741 −i0.11483

0.50 1.25675 +i0.74134 0.69974 +i0.71052 1.41619 −i0.14336 1.41767 −i0.14392

0.78 1.16619 +i0.28738 0.93043 +i0.37323 1.16744 −i0.10051 1.15595 −i0.08200

0.92 1.07156 +i0.09713 0.99137 +i0.14992 1.05724 −i0.04513 1.05178 −i0.03175

0.99 1.00976 +i0.01161 1.00034 +i0.01982 1.00685 −i0.00630 1.00618 −i0.00405
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FIG. 1: Illustrating a cross-section through a statistically isotropic binary composite in which

ellipsoids of one viscoelastic material are imbedded in another viscoelastic material. The theory

presented does not depend however on the shape of the inclusions.
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FIG. 2: Figure (a) shows the bounding curves that are given by the Gibiansky and Milton (1993)

analysis for complex bulk modulus K∗, when (KA, GA) = (1 + 2i, i) and (KB , GB) = (1, 1) (all in

units of 10 GPa). These bounds are phrased in terms of the complex yK-transform as discussed in

the text, and are independent of the volume fraction. Also see Figure 3 of Gibiansky and Milton

(1993). Figure (b) shows the corresponding bounds on the actual complex bulk modulus K∗ itself

for the case fA = 0.50. Figure (c) shows the resulting bounds for the complex thermal expansion β∗

when βA = 1.0, βB = 2.0 (both in units of 10−5[oK]−1), and the volume fractions are fA = fB = 1
2 .

Also plotted are the values of β∗
CPA for the coherent potential approximation estimate of β∗, as

well as the estimate obtained by computing the center-of-mass of the bounding curves themselves

β∗
CM .
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FIG. 3: Illustrating bounds (the closed curves) and CPA estimates (the dots) for the complex

thermal expansion coefficient β∗ as the value of the volume fraction fA changes. When fA = 0.0,

β∗ = βB = 2.0; when fA = 1.0, β∗ = βA = 1.0. The bounding region is largest when fA = 0.5,

and smallest as fA → 0.0, or fA → 1.0. We will call this the “necklace diagram” as the individual

bounding regions resemble gem stones, and the array of these regions resembles a display of gems

on a necklace. There are obviously an infinite number of the bounding regions (as fA changes

continuously) that could be plotted, but we have chosen a very small and select subset to display

for the sake of clarity.
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FIG. 4: Figure (a) shows the first two complex eigenvalues γ1 = γ+ and γ2 = γ− from (53) and

(54) plotted versus the volume fraction fB. Figure (b) shows the remaining two distinct complex

eigenvalues γ3 and γ4 plotted versus the volume fraction fB. These two eigenvalues both have

multiplicity 2 in the layered medium model. Figure (c) shows the same information contained in

(a) and (b), but plotted instead in the complex plane. The main purpose of this entire figure is to

illustrate that all the stiffness eigenvalues of the examples in the text have non-negative imaginary

parts, and therefore non-negative dissipation.
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FIG. 5: Figure (a) plots the real (solid lines) and imaginary (dashed lines) parts of the inverse

complex bulk modulus K∗
R for a layered system as a function of fB, as well as the same for K∗

⊥ and

K∗
‖ as defined in the text. The layer properties (A,B) are the same as in previous figures. Figure

(b) shows the estimates obtained for the two complex thermal expansion coefficients β∗
‖ and β∗

⊥.

Note that the imaginary parts of K∗
R, K∗

⊥, and are all positive, whereas the imaginary parts of the

β∗’s are mixed, as are the imaginary parts of K∗
‖ . The dotted line at zero has been added as an

aid to the eye, to show where the imaginary part of 1/K∗
‖ becomes positive. Figure 4 shows that

all the eigenvalues of the complex stiffness matrix have non-negative dissipation, so these observed

changes of sign in the complex thermal expansion coefficients are not related to any unphysical

behavior of the model.
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FIG. 6: Figure (a) shows the bounding curves that are given by the Gibiansky and Milton

(1993) analysis for the complex eigenvalue Q+ from Eq. (61), when (KA, GA) = (1 + 2i, i) and

(KB , GB) = (1, 1) (all in units of 10 GPa). The volume fractions here are fA = fB = 0.5. These

bounds correspond to the curves for bulk modulus K∗ in Figure 2. Figure (b) shows the bounds

on eigenvalue Q−, also from (61). Figure (c) shows the bounds on 1/Q+, which may be usefully

compared to the bounds in Fig. 2(b), since for weak coupling the two quantities (K∗ and 1/Q+)

become nearly identical.
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FIG. 7: Figures (a) and (b) show two different views of the same results for the eigenvalues Q1,

Q2, and Q3 from (65). The results show clearly that the two eigenvalues associated with inverse

compressional Q1) and shear (Q2) moduli – but including coupling through the complex thermal

expansion coefficients, still have negative imaginary parts, which translate to positive dissipation

in all cases. The third eigenvalue (Q3) is actually associated with the complex extension of the

heat capacity cp; the positive imaginary part of this eigenvalue is also associated with positive

dissipation. Figure (c) shows the real and imaginary parts of the inverses of the first two complex

eigenvalues Q−1
1 and Q−1

2 [again from (65)] plotted versus the volume fraction fB. Figure (d)

shows the same two eigenvalues plotted in the complex plane. These two figures can be compared

directly with Figs. 4(a) and 4(c), since the units are the same and the examples shown here are

also approximately like 3× quasi-bulk modulus and 2× quasi-shear modulus, respectively.
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FIG. 8: Illustrating bounds (the closed curves) for the complex bulk modulus K∗ as the value of

the volume fraction fA changes for an overall isotropic binary composite. For comparison, the bulk

modulus K∗
R for the layered case already illustrated in Fig. 5(a) is shown as well, and so is the

harmonic mean Kh = (fA/KA+fB/KB)−1. We see that K∗
R tracks the isotropic bounds reasonably

well, whereas the harmonic mean is not nearly so close.
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