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Area Law Unification
and the Holographic Event Horizon

Yasunori Nomura and Grant N. Remmen

Center for Theoretical Physics and Department of Physics
University of California, Berkeley, CA 94720, USA and

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract

We prove a new, large family of area laws in general relativity, which apply to certain
classes of untrapped surfaces that we dub generalized holographic screens. Our family of
area laws contains, as special cases, the area laws for marginally-trapped surfaces (holo-
graphic screens) and the event horizon (Hawking’s area theorem). In addition to these
results in general relativity, we show that in the context of holography the geometry of a
generalized holographic screen is related to the outer entropy of the screen. Specifically, we
show for spherically-symmetric spacetimes that the area of the largest HRT surface consis-
tent with the outer wedge can be computed in terms of the geometry of the general (not
necessarily marginally-trapped) codimension-two surface defining the wedge. This outer
entropy satisfies a second law of thermodynamics, growing monotonically along the gener-
alized holographic screen. In particular, this result provides the holographic dual for the
geometry of the event horizon for spherically-symmetric spacetimes.

e-mail: ynomura@berkeley.edu, grant.remmen@berkeley.edu

ar
X

iv
:1

80
5.

09
33

9v
2 

 [
he

p-
th

] 
 8

 A
ug

 2
01

8

ynomura@berkeley.edu
grant.remmen@berkeley.edu


Contents

1 Introduction 3

2 Generalized Holographic Screens 4
2.1 Formalism and Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Definition of Generalized Holographic Screens . . . . . . . . . . . . . . . . . . . 8
2.3 Area Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Alternate Construction of Screens . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Outer Entropy 14

4 Holographic Dual for Spherically-Symmetric Spacetimes 18
4.1 Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3 Cases of Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Small Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Large Λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.3 D = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.4 Vanishing entropy for (A)dS . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 The Second Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Conclusions 33

2



1 Introduction

Area laws for dynamical surfaces in spacetime have, both historically and recently, been im-
portant drivers of progress in theoretical physics. Under certain positivity conditions for the
flow of energy-momentum, general relativity constrains the dynamics of certain surfaces such
that their area only increases. The most well known example is Hawking’s area law for black
holes [1, 2], which mandates that the area of the event horizon always grows with time. This
provided the basis for the thermodynamic understanding of black holes [2–6]; in turn, black hole
thermodynamics helped inspire the development of holography [7–9]. In the context of string
theory, the AdS/CFT correspondence [10–13] has provided the prime example of a tractable
holographic model that can be explored in detail. Holography thus gives us powerful tools with
which to understand quantum gravity.

The areas of extremal surfaces in asymptotically-AdS spacetimes have proved to be of signif-
icance beyond their geometrical interpretation. They correspond to entanglement entropies of
regions in the boundary CFT, given by the Ryu-Takayanagi formula [14–16] for static slices and
more generally by the Hubeny-Rangamani-Takayanagi (HRT) prescription [17–19]. An under-
standing of the dynamics of these surfaces can shed light on the entanglement structure of the
boundary and vice versa, with the question being actively researched from both the gravitational
and field theory perspectives [20–28].

Building on earlier work [29,30], an interesting area theorem in general relativity was recently
proved [31–33] for holographic screens, a substantive extension of apparent horizons to timelike
or spacelike objects whose slices are marginally-trapped or -antitrapped surfaces [34]. Such
screens can be found in many spacetimes of interest, such as expanding universes and inside of
black holes, and it was shown that these surfaces have areas that grow in a particular direction
along the screen. While geometrically interesting in their own right, such surfaces—as their
name implies—have been suggested to have a holographic interpretation, as the surfaces on
which to formulate a “boundary” theory in general spacetimes beyond AdS [35–38], though
at present no explicit boundary theory is known for this more general conjectured form of
holography. Moreover, an entropic interpretation of the area of the holographic screen has been
demonstrated [39]: the area of an apparent horizon equals the area of the largest HRT surface
compatible with the domain of dependence of the spacetime outside the apparent horizon. That
is, the apparent horizon area can be viewed as an “outer entropy” of the spacetime. In contrast,
despite the success of Hawking’s area theorem in sparking black hole thermodynamics and the
holographic revolution, a valid holographic interpretation of the event horizon itself has remained
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elusive [40,41].
In this paper, we will show that both the holographic screen and the event horizon are special

cases of a much more general class of surfaces, which we will call generalized holographic screens,
all of which satisfy an area law. Thus, we will unify the area law discovered in Refs. [31,32] and
Hawking’s area law [1]. These generalized holographic screens extend the concept of holographic
screens to surfaces that are not marginally trapped; these new surfaces sweep out large portions
of the interior of a black hole and can also be constructed in cosmological spacetimes. These
results are proved purely in general relativity and are independent of holography.

Furthermore, we will show, for spherically-symmetric spacetimes, that the outermost space-
like portion of generalized holographic screens have an entropic interpretation analogous to that
of apparent horizons given in Ref. [39]. In particular, we will prove another new general rela-
tivity result, giving the area of the largest HRT surface compatible with the outer wedge of a
slice of the generalized holographic screen. The area of this maximal HRT surface is given by a
geometric quantity computable in terms of the area and curvature of the generalized holographic
screen. Viewed as a holographic statement, we compute the outer entropy of a non-marginally-
trapped surface inside a black hole. This implies that we find a new entry in the holographic
dictionary: the entropic interpretation of the event horizon (in terms of its area and curvature),
for spherically-symmetric spacetimes. Comparing the evolution of the maximal HRT area asso-
ciated with different slices, we show that the outer entropy satisfies a second law, despite being
a complicated function of geometric quantities on the generalized holographic screen.

The remainder of this paper is organized as follows. In Sec. 2, we define our terminology and
give the definition of generalized holographic screens, in particular proving in Sec. 2.3 that they
satisfy an area law. In Sec. 3, we review the definition of outer entropy and show that, for the
generalized holographic screen, it is upper bounded by the area of the screen in Planck units.
In Sec. 4 we compute the outer entropy for spherically-symmetric spacetimes; we discuss several
special cases of interest in Sec. 4.3 and prove the second law for the outer entropy in Sec. 4.4.
We conclude and discuss future directions in Sec. 5.

2 Generalized Holographic Screens

In this section, we derive our results based on classical general relativity. First, we will discuss
some differential geometry formalism and review the notion of (marginally-trapped) holographic
screens. We will then introduce the notion of generalized holographic screens and establish our
family of area laws, illustrating how Hawking’s area theorem for event horizons arises as a special
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case.

2.1 Formalism and Review

Throughout the paper, we will consider a smooth spacetime (M, gab) of dimension D ≥ 3

that is globally hyperbolic (or, in the asymptotically-AdS case, with appropriate boundary
conditions [42]). We will also assume the Einstein equations and the null energy condition
(NEC), Tabkakb ≥ 0 for energy-momentum tensor Tab and any null vector ka; equivalently, we
could assume the null curvature condition (NCC) Rabk

akb ≥ 0. We will use mostly-plus metric
signature and sign conventions Rab = Rc

acb and Ra
bcd = ∂cΓ

a
bd−∂dΓabc+ΓaceΓ

e
bd−ΓadeΓ

e
bc. We follow

the standard differential geometry notation, defining the chronological future (respectively, past)
of a set S as I±(S), the future (respectively, past) domains of dependence D±(S) as the set of
points p ∈M such that every past (respectively, future) inextendible causal curve through p in
M intersects S, and the domain of dependence D(S) as the union D+(S) ∪ D−(S). We use a
dot Ṡ, circle S̊, and bar S to denote the boundary, interior, and closure of a set S, respectively.
In our conventions, S 6⊂ I±(S), but S ⊂ D±(S).

Let us first review some results of Ref. [32]. We define a future holographic screen H to be
a smooth (codimension-one) hypersurface for which one can define a foliation (i.e., a partition
of H) into marginally-trapped codimension-two compact acausal surfaces called leaves. From
a leaf σ, we will call the two future-directed orthogonal null geodesic congruences k and l; the
marginally-trapped condition stipulates that, on σ,

θk = 0 and θl < 0, (1)

where θk = ∇ak
a and θl = ∇al

a are the null expansions for k and l, respectively. Defining
an area element δA, the expansions can equivalently be written as θk = ∇k log δA and θl =

∇l log δA, where ∇k = ka∇a and ∇l = la∇a are the covariant derivatives along the congruences.
Throughout, we will extend the definition of k and l to null vector fields over the entire spacetime
M . For a given H, this choice of k and l over all of M is not unique, but our results will hold
for all such choices.

We consider the case in which each leaf σ splits some Cauchy surface Σ into two disjoint
subsets, Σ = Σ+ ∪ σ ∪ Σ−, where σ = Σ̇± and we label Σ− as the outer portion (which we take
to be in the k direction) and Σ+ as the inner portion (which we take to be in the l direction); we
choose this notation and the ± convention for outer versus inner to match that of Ref. [32]. We
note that σ divides the spacetime into four disjoint portions, I±(σ) and D(Σ±); in particular,
I±(σ) and D(Σ±)− σ together constitute a four-part partition of M − σ, as shown in Fig. 2 of
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Ref. [43]. As proved in Ref. [43], the boundaries of these regions can be characterized by the
geodesic congruences k and l, truncating at any conjugate points (i.e., caustics) or intersections
of finitely-separated geodesics. This fact will be used frequently in our arguments that follow.

One can define a real parameter τ on H such that each leaf σ is a surface of constant, unique
τ . We can also write the tangent vector field ha parallel to the leaf-orthogonal curves within H
as

ha = αla + βka (2)

for some real parameters α and β, normalized so that ha(dτ)a = 1.
We can then make the following definitions of null surfaces:

N+k(σ) = İ+(Σ+)− Σ+ = Ḋ+(Σ−)− I−(D+(Σ−))

N−k(σ) = İ−(Σ−)− Σ− = Ḋ−(Σ+)− I+(D−(Σ+))

N+l(σ) = İ+(Σ−)− Σ− = Ḋ+(Σ+)− I−(D+(Σ+))

N−l(σ) = İ−(Σ+)− Σ+ = Ḋ−(Σ−)− I+(D−(Σ−)).

(3)

The result of Ref. [43] implies that the expressions on the right-hand side are independent of
the choice of Cauchy surface Σ and are indeed defined only by the leaf σ; that is, N±k and N±l
are light sheets, null surfaces defined up to caustics and nonlocal intersections of null geodesics.
We further define Nk(σ) = N+k(σ) ∪ N−k(σ) and Nl(σ) = N+l(σ) ∪ N−l(σ) and note that
σ = N+k(σ) ∩ N−k(σ) = N+l(σ) ∩ N−l(σ). Given the Cauchy-surface-independence, we define
the spacetime regions

K+(σ) = I+(Σ+) ∪D−(Σ+)−N−k(σ)

K−(σ) = I−(Σ−) ∪D+(Σ−)−N+k(σ)

L+(σ) = I+(Σ−) ∪D−(Σ−)−N−l(σ)

L−(σ) = I−(Σ+) ∪D+(Σ+)−N+l(σ),

(4)

so Nk(σ) = K̇+(σ) = K̇−(σ) and Nl(σ) = L̇+(σ) = L̇−(σ); see Fig. 1.
Finally, as in Ref. [32] we will take Rabk

akb + ς2k to be strictly positive on H, where ςk is the
shear tensor of the k congruence as defined in Ref. [44]. Along with the Raychaudhuri equation

∇kθk = − 1

D − 2
θ2k − ς2k −Rabk

akb (5)

and the NEC, this genericity assumption implies that θk is strictly positive (negative) to the
past (respectively, future) of σ. Note that the term involving the twist tensor is absent in Eq. (5)
because the congruence is surface-orthogonal.
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l k

K+(�)

K�(�) L�(�)

L+(�)

� �

Nl(�)Nk(�)

Figure 1: Generic Penrose diagrams for spacetime regions K±(σ) and L±(σ) defined in Eq. (4),
divided by the light sheets Nk(σ) and Nl(σ), respectively, defined in Eq. (3).

Given these conditions and additional technical assumptions,1 Ref. [32] then shows that
α < 0 everywhere on H. That is, ha points either (timelike) to the past or (spacelike) outwards.
As a result, the sets of K± are monotonic under inclusion: writing K±(τ) = K±(σ(τ)), one
obtains the inclusion relations

K
+

(τ1) ⊂ K+(τ2) (α < 0, any β)

K
−

(τ2) ⊂ K−(τ1) (α < 0, any β)
(6)

for τ1 < τ2. Analogously, if we can choose a region where β is constant throughout a leaf, with
the same sign at σ(τ1) and σ(τ2), the sets L±(τ) = L±(σ(τ)) are also monotonic under inclusion:

L
+

(τ2) ⊂ L+(τ1) (α < 0, β > 0)

L
−

(τ1) ⊂ L−(τ2) (α < 0, β > 0)

L
+

(τ1) ⊂ L+(τ2) (α < 0, β < 0)

L
−

(τ2) ⊂ L−(τ1) (α < 0, β < 0).

(7)

Finally, Ref. [32] shows that the holographic screen H satisfies an area law: A[σ(τ1)] < A[σ(τ2)],
so dA/dτ > 0.2 By reversing the time direction and swapping past for future in all of the
definitions, one can define past holographic screens, which are foliated by marginally-antitrapped
surfaces and which also satisfy an area law.
1Ref. [32] also assumes that every inextendible portion of H contains either a complete leaf or is completely
timelike and that the sets of points in H for which α is positive and negative share a boundary on which α
vanishes.

2Throughout, we will use round brackets for scalar arguments. For objects that take a set of points in M as an
argument, we will use round brackets if the object being defined is itself a subset of the spacetime (e.g., D(S)),
while we will use square brackets in the case of a quantity defined on the spacetime (e.g., A[S] for the area of
a surface S).
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l k

↵ > 0

� < 0

↵ < 0

� > 0

↵ < 0

� < 0

↵ > 0

� > 0

I�

I+

r = 0

Figure 2: Generalized (future) holographic screens inside a black hole formed from collapse. The
holographic screen H is shown in red and has both a timelike and spacelike portion. Several ex-
amples of generalized holographic screens H ′ are illustrated by the blue curves. In this example,
they can have both timelike and spacelike portions or can be purely spacelike. The limiting case
of the event horizon (blue dashed line) also corresponds to a generalized holographic screen. A
few representative light sheets Nk(σ) are illustrated by the green lines and on these light sheets
the codimension-two leaves σ of H (on which θk = 0) and the leaves σ′ of H ′ (on which θk 6= 0)
are represented by the black dots; for each σ′ ⊂ H ′ there exists σ ⊂ H for which σ′ ⊂ Nk(σ).
We will show that all of these screens obey an area law, with increasing area toward the past
and outward directions, as illustrated by the arrows pointing in the direction of increasing τ .

2.2 Definition of Generalized Holographic Screens

We will show that there is a much larger family of surfaces, beyond the holographic screens
discussed in Sec. 2.1, that also satisfy an area law. In particular, we are interested in relaxing
the requirement that the leaves be marginally trapped. Given a future holographic screen H as
described in Sec. 2.1, we will define a generalized future holographic screen H ′ as a surface to
the past (future) of H when H is spacelike (respectively, timelike), with H ′ being spacelike if
and only if the corresponding section of H is spacelike. A few examples of generalized future
holographic screens are shown in Fig. 2. We will later prove that H ′ satisfies an area law, but
before that let us first specify the conditions defining H ′ more precisely.

Formally, we define a generalized future holographic screen as a (codimension-one) hyper-
surface H ′ with a foliation into codimension-two leaves σ′ and tangent vector h′a = αla + βka
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(for some α and β) satisfying the following criteria:

1. For each σ′ ⊂ H ′, there exists σ ⊂ H for which σ′ ⊂ Nk(σ). For each p ∈ σ, we can identify
some p′ ∈ σ′ satisfying p′ ∈ Nk(p). If h is spacelike or null, then we require p′ ∈ N−k(p),
while if h is timelike or null, p′ ∈ N+k(p).

2. The signature and orientation of h′ at p′ ∈ σ′ matches that of h at p ∈ σ for which
p′ ∈ Nk(p).

3. θl < 0 on H ′.

For generalized past holographic screens, N±k are simply swapped in condition 1, while con-
dition 3 becomes θl > 0. By Eq. (6), Nk(σ(τ1)) ∩Nk(σ(τ2)) = ∅ for τ1 6= τ2, so the σ for which
σ′ ⊂ Nk(σ) is unique. That is, there is a function φ : R → R for which σ′(τ) ⊂ Nk(σ(φ(τ)).
Note that φ is not necessarily injective or surjective: there may be more than one slice σ′ ⊂ H ′

in the same Nk(σ) and there may be some σ ⊂ H for which Nk(σ) ∩H ′ = ∅.
Note that the event horizon itself is a generalized future holographic screen, corresponding to

the limit in which φ(τ) maps all numbers to infinity, where the leaves of the original holographic
screen σ(τ) go to I+ as τ → ∞. While the event horizon is teleologically defined (i.e., it
requires knowledge of the entire future history of the spacetime), the holographic screen is defined
quasilocally, in terms of metric and its derivatives measurable at a point, in a particular Cauchy
slicing. The generalized holographic screen shares characteristics of both of these definitions:
it is defined in terms of the holographic screen, but using past- or future-directed light sheets.
Hence, the event horizon is a generalized holographic screen in the particular limit in which all
σ′ are in N−k(σ) for the leaf σ = H ∩ I+ on the boundary of the spacetime.

2.3 Area Law

We now show that there is an area law on the generalized holographic screen H ′. By condition 1
in Sec. 2.2, for the region where H is timelike (respectively, spacelike), we have θk < 0 (respec-
tively, θk > 0) on H ′ by the Raychaudhuri equation (5) and the fact that θk = 0 on H. By
condition 2, we thus have θk ≤ 0 when H ′ is timelike (or null) and θk ≥ 0 when H ′ is spacelike
(or null).

Moreover, condition 2 implies that α < 0 on H ′, since α < 0 on H. That is, h′a is either
past- or outward-directed, so β < 0 when H ′ is timelike and β > 0 when H ′ is spacelike. Hence,
βθk ≥ 0 on H ′. By condition 3, θl < 0 on H ′, so αθl > 0. That is, we have shown that the
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general covariant definition of H ′ given in conditions 1 through 3 implies

αθl + βθk > 0 (8)

everywhere on H ′.
We can now adapt the zigzag argument of Ref. [32] to prove an area law on H ′. Let us

first consider the case in which σ′ is smooth; we will subsequently extend our result to the
more general case of non-smooth σ′. Since θl < 0 on H, by continuity there always exists a
surface near H with θl < 0 satisfying conditions 1 and 2, so choices of H ′ always exist. Given
smooth σ, there always exists a smooth surface σ′ ⊂ Nk(σ) by taking σ′ sufficiently near σ,
since by a theorem of Ref. [45], geodesics cannot exit the boundary of the future or past of
σ instantaneously. From σ′(τ) ⊂ H ′, consider the light sheet N−l(σ′(τ)) going in the past l
direction. From σ′(τ + dτ) ⊂ H ′, consider the null hypersurface Nk(σ

′(τ + dτ)), following both
the past and future k directions. Since α < 0, σ̃(τ, τ + dτ) = N−l(σ

′(τ)) ∩ Nk(σ
′(τ + dτ)) is

nonempty; see Fig. 3. For regions ofH ′ that are spacelike (β > 0), σ̃(τ, τ+dτ) ⊂ N−k(σ
′(τ+dτ)).

Conversely, for parts of H ′ that are timelike (β < 0), σ̃(τ, τ + dτ) ⊂ N+k(σ
′(τ + dτ)).

Since σ̃(τ, τ + dτ) ⊂ N−l(σ
′(τ)), we have

A[σ̃(τ, τ + dτ)]− A[σ′(τ)] = A[σ̃(τ, τ + dτ)]αθldτ (9)

for infinitesimal dτ , recalling the definition of θl = ∇l log δA. Similarly, the change in area from
σ̃(τ, τ + dτ) to σ′(τ + dτ) is

A[σ′(τ + dτ)]− A[σ̃(τ, τ + dτ)] = A[σ̃(τ, τ + dτ)]βθkdτ (10)

since θk = ∇k log δA. Hence,

A[σ′(τ + dτ)]− A[σ′(τ)] = A[σ̃(τ, τ + dτ)](αθl + βθk)dτ. (11)

By Eq. (8), we therefore have

A[σ′(τ + dτ)]− A[σ′(τ)] > 0, (12)

leading to an area law along H ′:
dA[σ′(τ)]

dτ
> 0. (13)

Specifically, writing the induced metric on σ′(τ) as γσ
′(τ)

ab , the area grows at the rate

dA[σ′(τ)]

dτ
=

∫
σ′(τ)

√
γσ′(τ)(αθl[σ

′(τ)] + βθk[σ
′(τ)]). (14)

10
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Figure 3: Zigzag construction proving the area law on a generalized holographic screen H ′ (blue
curve). From σ′(τ) (examples given by orange dots), we take the past l light sheet N−l(σ′(τ))
(orange lines), while from σ′(τ+dτ) (green dots), we take the k light sheet Nk(σ

′(τ+dτ)) (green
lines). The intersection σ̃(τ, τ +dτ) (black dots) is always nonempty. We have A[σ̃(τ, τ +dτ)] >
A[σ′(τ)] and A[σ′(τ + dτ)] > A[σ̃(τ, τ + dτ)], so area increases along H ′.

We thus have a general covariant geometric formulation of a generalized holographic screen that
is not a marginally-trapped surface but that nonetheless satisfies an area law.

Let us now generalize our result by relaxing the requirement that σ′ is so close to σ as to
be smooth. In particular, σ′ can now contain portions of caustics or nonlocal intersections in
Nk(σ), where null geodesics can enter or exit the light sheet defining the past or future of σ [43].
Even in this case, an area law can be proved. For a spacelike part of H ′, between σ̃(τ, τ + dτ)

and σ′(τ + dτ), it is possible for future-directed null geodesics to enter N−k(σ′(τ + dτ)), but
not to leave it (see, e.g., Refs. [44, 45]). Similarly, for a timelike part of H ′, it is possible for
future-directed null geodesics to leave but not enter N+k(σ

′(τ + dτ)) between σ′(τ + dτ) and
σ̃(τ, τ + dτ). Hence, in both cases A[σ′(τ + dτ)] − A[σ̃(τ, τ + dτ)] is lower-bounded by the
right-hand side of Eq. (10) and is therefore still positive.

We next consider the other light sheets defining σ̃(τ, τ +dτ), i.e. N−l(σ′(τ)). Future-directed
null geodesics cannot leave N−l(σ′(τ)); however, they can enter N−l(σ′(τ)) only when they
encounter a caustic or a nonlocal intersection with a null geodesic originating from elsewhere on
σ′ [43]. If they entered through a caustic, one would find that, moving from past to future, their
expansion θl jumps discontinuously from −∞ to +∞ at the entry point and then decreases
continuously toward σ′(τ). This implies that since θl is by definition negative on σ′(τ), we
can always choose dτ sufficiently small that a caustic is not encountered between σ′(τ) and
σ̃(τ, τ + dτ) on N−l(σ

′(τ)). It is also clear that dτ can always be chosen small enough that
the generators of N−l(σ′(τ)) do not encounter any nonlocal intersections between σ′(τ) and
σ̃(τ, τ + dτ). Hence, Eq. (9) still holds, and the right-hand side of Eq. (14) gives a lower bound
on the rate of area increase. We thus find that the area increase rate is still positive. Namely,
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we have an area law on the generalized holographic screen H ′ even if σ′ is not close to σ.
The original holographic screen H is a special case of our family of generalized holographic

screens H ′, taking the limit in which σ′ → σ for all τ , so that θk → 0. Hence, the area law for
H ′ reduces smoothly to the area law for the holographic screen H derived in Ref. [32].

Moreover, Hawking’s area theorem [1] is also a special case of our area law for generalized
holographic screens. In the case of a holographic screen H, the marginally-trapped condition
prescribes a particular foliation into leaves σ. For a region of a generalized holographic screen
H ′ where the mapping between leaves σ′ ⊂ H ′ and σ ⊂ H is one-to-one (i.e., the function
φ is injective), H ′ inherits the foliation of H. However, if we choose H ′ to have a finite null
region, then multiple leaves in H ′ lie within Nk(σ) for the same σ ⊂ H. In this region, the
foliation of H does not prescribe a foliation of H ′; under any foliation of a null portion of H ′

into leaves σ′, the area law proved above still applies by virtue of the positivity of θk. Similarly,
Hawking’s area theorem is independent of the spacelike Cauchy slicing: for any two spacelike
Cauchy slices Σ1 and Σ2 where Σ2 ⊂ I+(Σ1), the event horizon İ−(I+) grows in area, so
A[İ−(I+)∩Σ1] ≤ A[İ−(I+)∩Σ2] [45]. Hence, for any spacelike Cauchy slicing of the spacetime,
we can define a foliation of a null portion of H ′ simply via its intersection with the Cauchy
slices. In Hawking’s area theorem, the area law follows from proving that the expansion on the
horizon is nonnegative in a spacetime satisfying the NCC. In our present context, assuming an
asymptotically-stationary spacetime, so that the horizon is asymptotically marginally trapped,
implies that there exists a holographic screen H that asymptotes to the horizon. We can thus
define the horizon itself as a generalized holographic screen H ′, on which θk is positive by the
Raychaudhuri equation (5).

Our family of generalized holographic screens thus unifies two previously known area laws
associated with black holes, namely, those of the holographic screen and the event horizon. This
unification is nontrivial: while it is true that a convex combination of two monotonic functions
is itself monotonic, such intuition does not readily apply to spacetime geometries, in which the
notion of taking a combination of two surfaces is not in general well defined without specifying
additional geometric information for how to determine the new surface. Our definition in Sec. 2.2
provides precisely the requisite specifications, guaranteeing, as we have shown in this section,
an area law for the generalized holographic screen.

2.4 Alternate Construction of Screens

The definition of generalized holographic screens in Sec. 2.2 leads to immense freedom in choosing
H ′. The only requirements are those given in conditions 1 through 3.
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Figure 4: Illustration of the intersection construction of generalized holographic screens. Arrows
indicate the direction of increasing τ . Examples of leaves σ(τ) in the holographic screen H (red
curve) are given by the white dots and the corresponding σ(f(τ)) is given by the immediately
succeeding black dot. A leaf σ′ (blue dot) of the generalized holographic screen H ′ (blue curve)
is given by the intersection of Nl(σ(τ)) (yellow line) and Nk(σ(f(τ))) (green line) as shown in
Eq. (15). The function f(τ) ≥ τ equals τ precisely when H has null tangent (gray dot).

However, we can formulate an elegant alternative way of defining a particular subset of
generalized future holographic screens parameterized by a single real function. Let f : R → R
be a smooth function with df/dτ > 0 and f(τ) ≥ τ , with equality if and only if σ(τ) ⊂ H has
null tangent ha. In this subsection, we will also assume for simplicity that each leaf of H is
entirely timelike, spacelike, or null. Then we can remove conditions 1 and 2 and instead simply
define H ′ to be the hypersurface foliated by leaves

σ′(τ) = Nl(σ(τ)) ∩Nk(σ(f(τ))). (15)

We still require condition 3 that θl < 0. See Fig. 4 for an illustration of this construction. The
analogous construction for generalized past holographic screens can be defined similarly.

On the spacelike part of H (on which β > 0), for τ1 < τ2, Eq. (7) implies σ′(τ2) ⊂
N−l(σ(τ2)) ⊂ L

+
(σ(τ2)) ⊂ L+(σ(τ1)), while by Eq. (6), σ′(τ2) ⊂ N−k(σ(f(τ2))) ⊂ K

−
(σ(f(τ2)))

⊂ K−(σ(f(τ1))), since f(τ1) < f(τ2) by definition of f . Now, for any cross section σ̂ of
Nk(σ), K±(σ) = K±(σ̂), while for any cross section σ̂ of Nl(σ), L±(σ) = L±(σ̂). Hence,
K−(σ(f(τ1))) = K−(σ′(f(τ1))) and L+(σ(τ1)) = L+(σ′(τ1)). Again by Eq. (6), along with the
property f(τ) > τ , we have therefore shown that

σ′(τ2) ⊂ L+(σ′(τ1)) ∩K−(σ′(f(τ1))) ⊂ L+(σ′(τ1)) ∩K−(σ′(τ1)) = D̊(Σ−(σ′(τ1)), (16)

where Σ(σ′(τ1)) is a Cauchy surface split (into Σ±) by σ′(τ1). It will be convenient to define the
outer wedge OW (σ′) = D̊[Σ−(σ′)]. We thus find that every point in σ′(τ2) is spacelike separated
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from every point in σ′(τ1). Hence, using this alternative definition of the generalized holographic
screen, we automatically have that H ′ is spacelike and directed outward when the corresponding
portion of H is spacelike.

Similarly, on the timelike part of H (on which β < 0), we have σ′(τ2) ⊂ N−l(σ(τ2)) ⊂
L
−

(σ(τ2)) ⊂ L−(σ(τ1)) and further σ′(τ2) ⊂ N+k(σ(f(τ2))) ⊂ K
−

(σ(f(τ2))) ⊂ K−(σ(f(τ1))),
again by the condition df/dτ > 0. We further have in this case K−(σ(f(τ1))) = K−(σ′(f(τ1)))

and L−(σ(τ1)) = L−(σ′(τ1)). Hence, again using Eq. (6) and that f(τ) > τ , we have

σ′(τ2) ⊂ L−(σ′(τ1)) ∩K−(σ′(f(τ1))) ⊂ L−(σ′(τ1)) ∩K−(σ′(τ1)) = I−(σ′(τ1)), (17)

so every point in σ′(τ2) is in the chronological past of every point in σ′(τ1). Thus, we auto-
matically have that H ′ is timelike and past-directed when the corresponding portion of H is
timelike.

Therefore, with the simple requirements that df/dτ > 0 and f(τ) ≥ τ (with equality when
H is null), we have an elegant construction of a generalized holographic screen H ′, defined by
its leaves as in Eq. (15), that automatically has the correct tangent and thus, by the argument
in Sec. 2.3, satisfies an area law.

3 Outer Entropy

Having established the general relativity results of Sec. 2, we now would like to understand their
holographic interpretation. In AdS/CFT [10–12], certain geometric quantities in the bulk have
interpretations in terms of properties of the boundary CFT state. The most celebrated example
of this is the Ryu-Takayanagi relation [14,15] and its generalization to dynamical spacetimes by
Hubeny, Rangamani, and Takayanagi [17], which relates the area of certain extremal surfaces in
the bulk to the von Neumann entropy

S[ρ] = −tr ρ log ρ (18)

of the reduced density matrix ρ on the homologous region on the boundary. In particular, the
HRT prescription implies that, for a boundary state ρ corresponding to some classical bulk
geometry with an extremal surface XHRT, the von Neumann entropy satisfies

S[ρ] =
A[XHRT]

4G~
. (19)

For a two-sided geometry in AdS/CFT described by a pure state, this entropy gives a measure of
the entanglement between the boundary regions corresponding to the two sides of the spacetime
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split by the HRT surface. An extremal surface is defined to be a surface whose area is a
local extremum as a functional over all surfaces in the bulk. The HRT surface is chosen to be
homologous to the boundary and an extremal surface of minimal area; such a surface can be
identified using the maximin prescription [18]. One can show that the HRT surface is a surface
on which θk = θl = 0 and that there exists some Cauchy slice on which the area of the surface
equals the minimal cross section of the slice. While the HRT form of the entropy (19) has
been extensively tested in AdS/CFT [16, 19], our results in this section will not need all of the
structure of AdS/CFT for validity. Instead, our conclusions will carry over under the assumption
that the identification (19) can be made in any spacetime, that is, that there is some maximal
extremal surface inside the black hole to which one can associate a fine-grained entropy for the
ensemble. This is the same set of assumptions used in Ref. [39]. Moreover, if the holographic
screen does indeed provide a boundary description of the spacetime in terms of a pure state,
then this entropy would again equal the entanglement entropy between the boundary regions
corresponding to the two sides of the spacetime split by the HRT surface.

There are compelling reasons why it is desirable to seek some entropic interpretation of the
generalized holographic screens we considered in Sec. 2. It has been conjectured that holographic
screens play the role of the boundary of AdS in AdS/CFT for non-asymptotically-AdS space-
times, enabling a suitable generalization of holography to arbitrary geometries [35–38], although
the details of this duality, including the explicit boundary theory, are not yet known. If this is
the case, then it is well motivated to ask whether there is a sense of renormalization in these
holographic theories. In AdS/CFT, renormalization group flow can be cast as motion in the bulk
direction; formulating the theory on a surface at finite bulk coordinate yields a coarse-grained
version of the original CFT [46–50]. Thus, it is well motivated to ask whether the generalized
holographic screens of Sec. 2 play any similar coarse- or fine-grained role. Indeed, one can view
the area law discovered in Sec. 2.3 as evidence for some second law interpretation.

Furthermore, the fact that the event horizon itself is encompassed in the family of generalized
holographic screens makes the quest for an entropic interpretation of these surfaces especially
interesting. The laws of black hole mechanics [2–6] describing the dynamics of the event horizon
H have direct thermodynamic interpretations, including Hawking’s area theorem corresponding
to the second law of thermodynamics and the Bekenstein-Hawking entropy,

SBH =
A[H]

4G~
. (20)

Black hole thermodynamics was historically one of the original motivations for holography.
Despite this connection, however, there has previously been no direct interpretation of the event
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horizon itself from a holographic perspective. Indeed, there are arguments showing that certain
straightforward possibilities involving the area of the event horizon (i.e., the causal holographic
information [40]) cannot have a simple information-theoretic dual [41].

Previously, it was shown that the outermost spacelike portion of the holographic screen H
does possess a dual in terms of the von Neumann entropy [39]. Specifically, let us consider
an outermost marginally-trapped surface (i.e., an apparent horizon σ), where by outermost we
require that σ is homologous to the boundary, with a partial spacelike Cauchy surface connecting
σ with the boundary such that any surface circumscribing σ has area greater than that of σ.
Moreover, let us define the outer entropy associated with a codimension-two surface χ,

S(outer)[χ] = max
ρ̃

(S[ρ̃] : OW (χ)), (21)

as the entanglement entropy of one side of the entire boundary (computed via the HRT pre-
scription) associated with the geometry described by the holographic state ρ̃, maximized over all
possible ρ̃ corresponding to spacetimes M̃ , satisfying the NCC, for which the outer wedge OW (χ)

is held fixed. In this sense, the outer entropy can be viewed as arising from the coarse-graining of
the degrees of freedom associated with the (fine-grained) von Neumann entropy; equivalently, it
can be viewed as the maximum holographic entanglement entropy for one side of the boundary
consistent with the outer wedge. We recall from Sec. 2.4 that the outer wedge is defined as the
set of points in M spacelike separated from χ on the outer side, that is, OW (χ) = D̊(Σ−(χ)),
where Σ(χ) is a Cauchy surface split by χ. With these definitions, the main result of Ref. [39] is
that the outer entropy for the apparent horizon (the outermost spacelike part of the holographic
screen) is given by its area:

S(outer)[σ] =
A[σ]

4G~
. (22)

We wish to relate the geometrical properties of leaves σ′ of the outermost spacelike or null
part of the generalized holographic screen H ′ defined in Sec. 2 to their outer entropy. We will
show that S(outer)[σ′] is bounded from above by the area of σ′. Moreover, for the special case of
spherically-symmetric spacetimes, we will provide an explicit formula for S(outer)[σ′] in terms of
the geometry of σ′ (its area, curvature, etc.).

For the remainder of this paper, we will implicitly restrict ourselves to the outermost spacelike
or null part of a generalized holographic screen H ′, which we will write simply as H ′. That is, for
any leaf σ′ ⊂ H ′ we consider in this and the following sections, we will take σ′ to be in N−k(σ)

for σ ⊂ H such that σ is an outermost marginally-trapped surface in the sense of Ref. [39].
Furthermore, in addition to the NEC, we will also impose the cosmological-constant-subtracted
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dominant energy condition (ΛDEC). That is, writing the Einstein equation as

Rab −
1

2
Rgab + Λ gab = 8πGTab, (23)

we allow Λ to take either sign but impose the dominant energy condition (DEC) on Tab: −T abtb
is a causal, future-directed vector for all causal, future-directed vectors ta.3 This is essentially
a causality requirement, enforcing that the positive flux of null energy not be superluminal as
seen in any inertial frame. Finally, we will assume a generic condition on σ′, requiring that
θk be strictly positive (rather than merely ≥ 0) on σ′, so σ′ 6⊂ H, thus making the general-
ized holographic screen distinct from the original holographic screen. That is, the generalized
holographic screen we consider in this and the next sections is foliated by leaves that are each
normal surfaces (i.e., for which θl < 0 and θk > 0).

Let us first upper bound S(outer)[σ′] for some leaf σ′ ⊂ H ′. We can choose the spacetime in
the complement of OW (σ′) to be the one that maximizes the area of the HRT surface XHRT. By
definition, θk = θl = 0 on XHRT and further there exists some Cauchy surface Σ on which XHRT

is a surface of minimal cross-sectional area. If σ′ ⊂ Σ, we have A[σ′] ≥ A[XHRT] by definition
of Σ. Moreover, if σ′ ⊂ I+(Σ), then N−k(σ′) intersects Σ on some codimension-two surface X+,
while if σ′ ⊂ I−(Σ), then N+l(σ

′) intersects Σ on some codimension-two surface X−.4 Since
XHRT is a surface of minimal cross-sectional area on Σ, it follows that A[XHRT] ≤ A[X+] and
A[XHRT] ≤ A[X−]. By the Raychaudhuri equation (5) in the k direction and the fact that
θk > 0 on σ′, it follows that θk > 0 on the entire segment of N−k(σ′) between X+ and σ′, so
A[X+] < A[σ′]. Similarly, the Raychaudhuri equation in the l direction is

∇lθl = − 1

D − 2
θ2l − ς2l −Rabl

alb, (24)

where ςl is the shear of the l congruence and ∇l = la∇a. As a result, since θl < 0 on σ′, we have
θl < 0 on the entire segment of N+l(σ

′) between σ′ and X−, so A[X−] < A[σ′]. Since we have
been considering the spacetime in which the area of XHRT is maximal for fixed OW (σ′), we have
3Note that this is similar to, but somewhat stronger than, the null dominant energy condition (NDEC), which
requires the NEC plus the stipulation that −T a

bk
b be a causal vector for all null k. While the NDEC allows for

the cosmological constant contribution, for either sign of Λ, to be folded into Tab, it does not bound the sign of
Tkl on its own, which the ΛDEC does.

4An intersection of Nl with Σ is guaranteed by a no-go theorem for topology change in general relativity: since
M is by hypothesis globally hyperbolic, it has a Cauchy surface andM ' Σ⊗R [51], so any causal hypersurface
that completely divides the spacetime—such as Nl(σ

′) or N−k(σ′) ∪N+l(σ
′) [43]—must intersect any Cauchy

surface in a codimension-two surface of finite area.
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S(outer)[σ′] = A[XHRT]/4G~. We thus obtain an upper bound on the outer entropy of σ′:5

S(outer)[σ′] ≤ A[σ′]

4G~
. (25)

4 Holographic Dual for Spherically-Symmetric Spacetimes

Beyond the upper bound in Eq. (25), we would like to have an explicit expression for the outer
entropy S(outer)[σ′], defined in Sec. 3, for the generalized holographic screen constructed in Sec. 2.
While there are subtleties for general spacetimes, we can derive an explicit expression in the
case of spherically-symmetric surfaces σ′.

Before assuming spherical symmetry, let us first establish some intermediate results. First,
we note that, for the σ ⊂ H for which σ′ ⊂ N−k(σ), there exists (since by hypothesis σ is an
outermost marginally-trapped surface) a partial Cauchy surface Σ ⊂ OW (σ) such that for any
slice ρ of Σ, which by definition subtends σ, A[ρ] > A[σ]. Such a partial Cauchy surface also
exists for σ′, since θk ≥ 0 between σ′ and σ and is positive at σ′: simply take the union of Σ

and N−k(σ) ∩ N+k(σ
′). Thus, there exists a Cauchy surface Σ′ ⊃ σ′ for which Σ′− connects σ′

with the boundary and such that every slice ρ ⊂ Σ′− satisfies A[ρ] > A[σ′].
We can prove that XHRT is in D(Σ′+), the closure of the domain of dependence of Σ′+, the

interior partial Cauchy surface ending on σ′. We recall that I±(σ′) and D(Σ′±) − σ′ form a
partition of M − σ′. Suppose that XHRT 6⊂ D(Σ′+). Then either N−l(XHRT) or N+k(XHRT)

intersects Σ′− on some surface ζ. We have A[ζ] > A[σ′]. Moreover, by the Raychaudhuri
equation along N−l(XHRT) and N+k(XHRT), we have A[XHRT] ≥ A[ζ]. Hence, A[XHRT] > A[σ′],
in contradiction with the result established in Sec. 3 that A[σ′] ≥ A[XHRT]. We therefore must
have XHRT ⊂ D(Σ′+).

4.1 Construction

In order to place a lower bound on S(outer)[σ′] for a spherically-symmetric σ′, it suffices to
analyze spacetimes that are also spherically symmetric in the interior of σ′; for these geometries,
we can find the maximal HRT surface and calculate its area. We will do this presently and
subsequently argue that our construction is optimal over all geometries, producing the HRT
surface of maximal area for fixed OW (σ′), so our lower bound is in fact saturated.

To construct our spacetime outside of OW (σ′), we will use the characteristic initial data for-
malism [53–59] as in Ref. [39]. Given a Cauchy surface formed by light sheets, the characteristic
5Ref. [52] reaches a similar conclusion.
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initial data formalism implies that a spacetime exists for self-consistent initial data satisfying the
constraint equations. For the null portion of a Cauchy surface in the k direction, the constraint
equations are [29,30,60–64]

∇kθk = − 1

D − 2
θ2k − ς2k −Gkk [Raychaudhuri]

Lkωi = −θkωi +
D − 3

D − 2
Diθk − (D · ςk)i +Gik [Damour-Navier-Stokes]

∇kθl = −1

2
R− θkθl + ω2 +D · ω +Gkl, [Cross-focusing]

(26)

while for a null portion of a Cauchy surface in the l direction, the constraint equations become

∇lθl = − 1

D − 2
θ2l − ς2l −Gll [Raychaudhuri]

Llωi = −θlωi −
D − 3

D − 2
Diθl + (D · ςl)i −Gil [Damour-Navier-Stokes]

∇lθk = −1

2
R− θkθl + ω2 −D · ω +Gkl. [Cross-focusing]

(27)

Here,R is the intrinsic Ricci curvature of the codimension-two slices at constant affine parameter
and Gab is the Einstein tensor, Rab − 1

2
Rgab. The twist one-form gauge field (the Há́iček one-

form) is ωi = 1
2
qibLklb, where qab = gab + kalb + lakb is the induced metric. Lie derivatives are

denoted by L, while D is the transverse covariant derivative within the codimension-two surface.
We use letters a, b for D-dimensional spacetime indices, i, j for (D − 2)-dimensional transverse
spatial indices in the codimension-two surface, and indices k and l for aD-dimensional spacetime
index contracted into null vectors ka and la, respectively.

The junction conditions mandate continuity of θk, θl, and ωi, while ςk and ςl can change dis-
continuously via an appropriate shock wave in the Weyl tensor [44] (i.e., gravitational waves [65,
66]). We choose k and l to be affinely parameterized tangent vectors to null geodesic congruences
originating orthogonally from the codimension-two surfaces we consider. We further specify the
relative normalization of these vectors to be k · l = −1, so gkl = −1. These choices eliminate
other terms that could have appeared in the Damour-Navier-Stokes equations in Eqs. (26) and
(27) [62]. On the k and l congruences, we can define affine parameters ν and µ, respectively,
normalized such that ∇ν = ∇k and ∇µ = ∇l. Using the Einstein equation (23), we can replace
Gkl by 8πGTkl − Λgkl = 8πGTkl + Λ, Gkk by 8πGTkk, and Gll by 8πGTll. The transverse
coordinates xi are chosen to always lie within the codimension-two surface of constant affine
parameter.

For now, we restrict to a spherically-symmetric spacetime in the interior of σ′, i.e., in D(Σ′+).
Requiring the energy-momentum tensor to respect the SO(D − 1) invariance of spherical sym-

19



metry, we must have Tik = Til = 0. Similarly, the shears ςk and ςl both vanish, as does the twist
one-form ωi. Hence, for spherical spacetimes satisfying the Einstein equation, the constraint
equations (26) and (27) become

∇kθk = − 1

D − 2
θ2k − 8πGTkk [Raychaudhuri]

∇kθl = −1

2
R− θlθk + 8πGTkl + Λ [Cross-focusing]

(28)

and
∇lθl = − 1

D − 2
θ2l − 8πGTll [Raychaudhuri]

∇lθk = −1

2
R− θlθk + 8πGTkl + Λ. [Cross-focusing]

(29)

While the NEC requires that Tkk and Tll be nonnegative, the ΛDEC imposes similar condition on
Tkl. We can rewrite the ΛDEC as the requirement that Tabta1tb2 ≥ 0 for all causal, future-directed
vectors t1 and t2. Making the particular choice t1 = k and t2 = l, we have Tkl ≥ 0.

For a spherically-symmetric spacetime, there is a nice relation between the intrinsic Ricci
curvature R and the null expansion. For a (D − 2)-sphere of radial coordinate r,

R =
(D − 2)(D − 3)

r2
, (30)

which implies ∇k(logR) = −(2/r)(dr/dν). Writing A ∝ rD−2 for the area of the constant-ν
cross section of N−k(σ′), we therefore have

θk =
∇kA

A
=
D − 2

r

dr

dν
= −D − 2

2
∇k logR. (31)

Given OW (σ′), let us now construct a particular spacetime and compute its HRT surface.
On N−k(σ′), we will choose data with Tkk = 0. Hence, we can solve the Raychaudhuri equation
in Eq. (28) to compute θk(ν) on N−k(σ′):

θk(ν) =

[
1

θk[σ′]
+

ν

D − 2

]−1
, (32)

where we define σ′ to correspond to the ν = 0 surface. Thus, N−k(σ′) encounters a caustic at
affine parameter

νc = −D − 2

θk[σ′]
. (33)

Using the relation (31), we have

R(ν) = R[σ′] exp

[
− 2

D − 2

∫ ν

0

θk(ν) dν

]
=

R[σ′][
1 + θk[σ′] ν

D−2

]2 =

[
θk(ν)

θk[σ′]

]2
R[σ′]. (34)
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Note that if R(ν) and θk(ν) diverge to +∞, they do so together, as r → 0. However, there exist
spacetimes that do not have r → 0 accessible along N−k(σ′) and hence do not possess a caustic.

Let us define a surface X ⊂ N−k(σ
′) on which θl = 0. For X to exist, we must choose our

data on N−k(σ
′) such that the affine parameter ν0 on which θl vanishes satisfies ν0 > νc. We

choose Tkl to vanish on N−k(σ′).6 Without loss of generality, let us write θl(ν) on N−k(σ′) as

θl(ν) =
θk[σ

′]θl[σ
′]q(ν)

θk(ν)
(35)

for some function q(ν) that satisfies q(ν = 0) = 1 and q(ν = ν0) = 0 on X, that is, for some
ν0 ∈ (νc, 0). Since we seek the first time θl vanishes when going from σ′ along the −k congruence,
without loss of generality we can take q(ν) > 0 for ν ∈ (ν0, 0]. The cross-focusing equation in
Eq. (28), combined with Eqs. (32) and (34), then becomes

(aν + b)3q′ + (aν + b)2(cq + d) = e, (36)

where the constants a, b, c, d, e are given by

a =
1

D − 2
, b =

1

θk[σ′]
, c =

D − 1

D − 2
,

d = − Λ

θk[σ′]θl[σ′]
, e = − R[σ′]

2(θk[σ′])3θl[σ′]
.

(37)

The general solution is

q(ν) =
e

(c− 2a)(aν + b)2
+m(aν + b)−

c
a − d

c
, (38)

where m is a constant of integration that we fix by demanding q(ν = 0) = 1. That is,

q(ν) =

[
1 +

θk[σ
′]ν

D − 2

]−(D−1)
+
D − 2

D − 1

Λ

θk[σ′]θl[σ′]

{
1−

[
1 +

θk[σ
′]ν

D − 2

]−(D−1)}

+
1

2

D − 2

D − 3

R[σ′]

θk[σ′]θl[σ′]

{[
1 +

θk[σ
′]ν

D − 2

]−(D−1)
−
[
1 +

θk[σ
′]ν

D − 2

]−2}
.

(39)

6We can make the choice of Tkl and Tkk vanishing on N−k(σ′) consistently with energy-momentum conservation
∇aTab = 0, the NEC, the ΛDEC, and smoothness via a regularization procedure, in which we consider a shell
of matter occupying a thin slice of N−k(σ′) adjacent to σ′, then take the limit as the shell thickness goes to
zero.
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Defining

ξ(ν) =
θk(ν)

θk[σ′]
,

ρ = −1

2

D − 2

D − 3

R[σ′]

θk[σ′]θl[σ′]
,

λ =
D − 2

D − 1

Λ

θk[σ′]θl[σ′]
,

(40)

we can rewrite q simply as

q(ν) = (1− ρ− λ)ξ(ν)D−1 + ρ ξ(ν)2 + λ. (41)

By definition, ρ > 0. For now, we will take D ≥ 4, postponing a discussion of the special
case of D = 3 to Sec. 4.3.3. The polynomial in Eq. (41) will have a single zero at some real
value of ξ = ξ0 > 1 if and only if

ρ+ λ > 1. (42)

See Fig. 5 for an illustration of q as a polynomial in ξ. This zero corresponds to the surface X
on which θl = 0, at affine parameter

ν0 =
D − 2

θk[σ′]

(
1

ξ0
− 1

)
. (43)

Since by assumption ξ0 ∈ (1,∞), we have ν0 ∈ (νc, 0), so X indeed exists with θk having no
caustic along N+k(X) ∩N−k(σ′) = Σ1. The area of X is

A[X] = A[σ′] exp

[∫ ν0

0

θk(ν)dν

]
=
A[σ′]

ξD−20

. (44)

For general ρ, λ, and D, there is no closed-form expression for the zero of Eq. (41), even if it
exists. For the present, we will continue to write the zero as ξ0 and will later consider the cases
in which either ρ or λ is negligible, allowing the zero to be analytically expressed.

From X, we will follow N+l(X), holding θl = 0 fixed, so that the area is stationary along the
light sheet. This requires setting Tll = 0 to satisfy the Raychaudhuri equation in Eq. (29). We
also set Tkl = 0 and hold R fixed.

Consider the polynomial q(ξ) = (1− ρ− λ)ξD−1 + ρξ2 + λ. From the fact that q(ξ = 1) = 1,
that ξ0 gives the unique real zero of q(ξ) for ξ0 > 1, and that q(ξ) < 0 for sufficiently large ξ,
we must have dq/dξ < 0 at ξ = ξ0. By Eq. (41), this requirement implies

(D − 3)ρξ20 + (D − 1)λ > 0. (45)
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Figure 5: Example of the polynomial q(ξ) = (1−ρ−λ)ξD−1+ρξ2+λ. By definition, q(ξ = 1) = 1
and ρ > 0, but λ is allowed to take either sign. For D ≥ 4, there is exactly one real zero at
ξ0 > 1 if and only if ρ+ λ > 1. For small ξ, the polynomial behaves like ρξ2 + λ, while for large
ξ, the dominant contribution is (1− ρ− λ)ξD−1.

Using Eq. (45), along with the definition of ξ in Eq. (40) and its relation to R(ν) in Eq. (34),
we therefore have

−1

2
R[X] + Λ = −1

2
ξ20R[σ′] + Λ =

θk[σ
′]θl[σ

′]

D − 2
[(D − 3)ρξ20 + (D − 1)λ] < 0. (46)

Hence, from the cross-focusing equation in Eq. (29), we find that ∇lθk < 0 on N+l[X], so there
will be some value µ0 of the affine parameter µ for which θk vanishes. The surface X̃ at µ = µ0

satisfies θk = θl = 0.
We can complete the entire spacetime by CPT reflection about X̃. Furthermore, defining

Σ2 = N−l(X̃) ∩ N+l(X), we observe that X̃ is a minimal cross section on the Cauchy slice Σ̃

formed by Σ′− ∪Σ1 ∪Σ2 and its CPT reflection. As a result, any other extremal surface X̂ will
have greater area than X̃, following the argument in Ref. [39]: by the Raychaudhuri equation
any slice of Nk(X̂) has area upper bounded by that of X̂ and furthermore the intersection of
Nk(X̂) with Σ̃ will have area lower bounded by that of X̃, so A[X̃] ≤ A[X̂]. Hence, X̃ is an HRT
surface, which we will henceforth label as XHRT. The area of XHRT equals A[X] by construction.
We have thus constructed a lower bound for S(outer)[σ′]:

S(outer)[σ′] ≥ A[XHRT]

4G~
=
A[X]

4G~
=

A[σ′]

4G~ξD−20

. (47)

Our construction is summarized in Fig. 6.
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Figure 6: Illustration of the construction of the HRT surface using the characteristic initial
data formalism. The outer wedge OW (σ′) (red shading) of σ′ (blue dot) is held fixed. We
flow along N−k(σ

′) until we reach a marginally antitrapped surface X. We then flow along
N+l(X) while keeping cross sections of the light sheet stationary, until we reach a surface XHRT

where θk = θl = 0 (black dot). The spacetime is completed (gray shading) by CPT reflection
across Nl(XHRT) (orange solid and dotted lines). The partial Cauchy surface Σ′− (white dashed
line) connecting σ′ with the boundary by hypothesis satisfies A[ρ] > A[σ′] for all cross sections
ρ ⊂ Σ′−. We note that XHRT has minimal cross-sectional area on the Cauchy slice formed by
the union of Σ′−, Σ1 = N−k(σ

′) ∩ N+k(X) (green solid line), and Σ2 = N+l(X) ∩ N−l(XHRT)
(orange solid line), along with their CPT reflections, so XHRT is indeed an HRT surface.

4.2 Optimization

We now argue that our construction in Sec. 4.1 is in fact optimal. Namely, for a spherically-
symmetric σ′ with its outer wedge fixed, the construction produces the spacetime that has the
HRT surface with the largest possible area (subject to the NEC and ΛDEC). This implies that
our lower bound in Eq. (47) is actually an equality.

We begin by considering an arbitrary spacetime satisfying our energy conditions and with
the outer wedge of σ′ fixed. Since XHRT ⊂ D(Σ′+), N−l(XHRT) ∩ N−k(σ′) is nonempty and, in
particular, is some codimension-two surface Y ; see Fig. 7. Now, A[Y ] ≤ A[σ′], since θk > 0 along
N−k(σ

′). The fact that θl = 0 on XHRT implies θl[Y ] ≥ 0, so since θl[σ′] < 0 by construction,
Y 6= σ′ and A[Y ] < A[σ′]. By continuity, there must be some surface Z ⊂ N+k(Y )∩N−k(σ′) for
which θl[Z] = 0. We have A[Z] < A[σ′] and, if Z 6= Y , A[Z] > A[Y ].

Recalling the definition of Σ as a Cauchy surface on which XHRT has minimal cross-sectional
area, we can define the codimension-two surface W = Nl(Z) ∩ Σ, which by definition satisfies
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Figure 7: Illustration of various definitions appearing in the procedure for maximizing the area
of the HRT surface while keeping the outer wedge OW (σ′) (red shading) of σ′ (blue dot) held
fixed. The HRT surface XHRT (black dot) must appear in the closure of the inner domain of
dependence D(Σ′+) (blue shading) of a Cauchy surface Σ′ passing through σ′ (white dashed
line), so the surface Y = N−l(XHRT) ∩ N−k(σ′) exists, on which θl ≥ 0. By continuity, there
must exist a surface Z ⊂ N+k(Y )∩N−k(σ′) on which θl = 0. By definition, there exists a Cauchy
surface Σ ⊃ XHRT for which XHRT has the minimal cross-sectional area. Since A[Z] ≥ A[W ],
where W = Nl(Z) ∩ Σ, it follows that A[Z] ≥ A[XHRT].

A[W ] ≥ A[XHRT]. Since θl = 0 on Z, it follows from the Raychaudhuri equation (24) that slices
of Nl(Z) have areas upper bounded by A[Z], so A[W ] ≤ A[Z] and hence A[Z] ≥ A[XHRT].

To compute S(outer)[σ′], we must maximize the area of the HRT surface or, equivalently,
minimize the quantity

∆A = A[σ′]− A[XHRT] (48)

over all spacetimes with the geometry of σ′ held fixed. Let us write ∆A as the sum of ∆A1 and
∆A2, where

∆A1 = A[σ′]− A[Z]

∆A2 = A[Z]− A[XHRT].
(49)

We note that ∆A1 > 0 and ∆A2 ≥ 0. A sufficient condition for minimizing ∆A is to simultane-
ously minimize ∆A1 and ∆A2.

While we have taken σ′ to be spherically symmetric, the quantity S(outer)[σ′] is in general
maximized over all possible spacetimes with OW (σ′) held fixed; in particular, N−k(σ′) could
a priori break spherical symmetry. Even if this happens, we would take the affine parameter ν,
which is now defined separately for each generator of N−k(σ′), to respect spherical symmetry at
σ′. Specifically, we choose ν = 0 at σ′ and take the normalization of ν such that θk is uniform
over σ′.

Let us first choose the data on N−k(σ
′) ∩ N+k(Z) to minimize ∆A1. Because of the Ray-
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chaudhuri equation (5) and the NEC, a given area element δA can only decrease toward the
−k direction (recalling that θk = d log δA/dν). Hence, we optimize the area of Z by taking
ςk = Tkk = 0 along each null geodesic generating N−k(σ′). This implies that without a priori
assuming spherical symmetry, we have deduced that the area elements at surfaces of constant ν
are maximized if they are all given by a simple rescaling of the original area element:

δA(ν) = δA[σ′] exp

[∫ ν

0

θk(ν)dν

]
= δA[σ′]

[
1 +

νθk[σ
′]

D − 2

]D−2
. (50)

In particular, the metric on a constant-ν surface is given simply by conformally rescaling that on
σ′, so it is spherically symmetric. Hence, our optimization of ∆A1 implies, given a spherically-
symmetric surface σ′, that N−k(σ′) is also spherical on surfaces of constant affine parameter.7

Since we now know that the geometry on N−k(σ′) respects spherical symmetry, we expect to
have ωi = Tik = 0 there as well. This conclusion can also be understood as a consequence of the
ΛDEC and our choice of Tkk = 0, via the following argument. By the ΛDEC, −T abtb is a causal
vector for all causal t, so in particular va = −T ak is causal. By choosing Tkk = 0 along N−k(σ′),
we have v · k = 0, so v ∝ k. Since the transverse coordinates are by definition orthogonal
to k, vi vanishes, so Tik = 0; see Ref. [67]. By our choice Tkk = ςk = 0, the Raychaudhuri
equation implies that Diθk = 0, as seen in Eq. (50). Hence, the Damour-Navier-Stokes equation
in Eq. (26) becomes simply Lkωi = −θkωi, which, given the initial condition that ωi[σ′] = 0 (by
spherical symmetry of σ′), implies that ωi = 0 along the entirety of N−k(σ′) as expected.

The above choice of the data, ςk = Tkk = 0, only minimizes ∇kθk. To actually minimize
∆A1, we must also make ∇kθl as large and negative as possible, in order to bring the θl = 0

surface, Z, to its minimum affine distance from σ′; see Eq. (50). By Eq. (28), this can be done
by taking Tkl = 0 along N−k(σ′) ∩N+k(Z). Strictly speaking, we have thus far minimized ∆A1

by optimizing each free term of definite sign in the Raychaudhuri and cross-focusing equations
in Eq. (26), which is consistent with taking Z to be a surface of constant affine parameter. The
remaining term in the cross-focusing equation, D · ω, has indefinite sign and one could a priori
imagine using this term to bring Z closer to σ′ along some generators of N−k(σ′). However,
taking ω to be nonzero along N−k(σ′) requires turning on (D · ςk)i or Tik by the Damour-Navier-
Stokes equation, which in turn implies positive ς2k or Tkk, which take δA(ν) away from its optimal
profile (50). Moreover, since D·ω integrates to zero over any slice of N−k(σ′), taking this term to
be nonzero shifts some areas of Z closer to σ′ and some farther away, in a manner that averages
to zero for small ω. Since δA(ν) is convex in ν, integrating δA(ν) over the angular directions for
7This conclusion is closely related to the light-cone theorem [67], which uses stronger assumptions about the
energy conditions but a more general geometric setup.
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a distribution of ν values averaging to ν̄ always gives a smaller quantity than integrating δA(ν̄)

for constant ν̄. Hence, a nonzero D · ω term only increases ∆A1, so our procedure thus far has
indeed achieved the minimum value of ∆A1 consistent with our energy conditions and spherical
symmetry of σ′.

We next consider ∆A2. The constraint equations in Eq. (27) imply that we can achieve
the optimal configuration of ∆A2 = 0 by taking Y = Z, so that θl vanishes at Y , and setting
ςl = Tll = 0 along N+l(Y ) until we reach a surface with θk = 0. That is, we hold constant affine
parameter slices of N+l(Y ) to be stationary, so that each slice has the same area, while keeping
ωi = Tkl = 0. This part of our setup is the time-reversed and k ↔ l analogue of the construction
in Ref. [39].

We have now minimized ∆A1 and ∆A2 simultaneously, producing the HRT surface of max-
imal area consistent with the outer wedge for spherically-symmetric σ′. The generality of the
argument implies that this construction is indeed optimal. Since the construction is precisely
what we followed in deriving Eq. (47) in Sec. 4.1, the inequality there is in fact an equality:

S(outer)[σ′] =
A[σ′]

4G~ξD−20

. (51)

In particular, this implies that any successful algorithm for maximizing the area of the HRT
surface, not necessarily that of Sec. 4.1, would be guaranteed to reproduce Eq. (51).8

We emphasize that ξ0 in Eq. (51) can be computed entirely from geometrical data on σ′.
We therefore have a new entry in the holographic dictionary: the spherical outer entropy of
σ′ is a holographic quantity defined by the geometry of this leaf of the generalized holographic
screen. The outer entropy expression in Eq. (51) is one of the main results of this work, giving an
entropic interpretation to the generalized holographic screen. This is especially interesting in the
case in which σ′ corresponds to the event horizon: Eq. (51) provides the first valid interpretation
of the event horizon in terms of an entropic, holographic quantity computable from the horizon
geometry.

4.3 Cases of Interest

Though it is not possible to obtain an analytic expression for ξ0 from Eq. (41) in complete
generality, we can compute it in several cases of interest. The first is the case of negligible λ,
8For example, had we instead followed N+l(σ

′) to a surface X ′ on which θk = 0 and then followed N−k(X ′) to
an HRT surface, the optimal construction would have yielded a surface of the same area as given by Eqs. (44)
and (51); this follows from the manifest symmetry of Eqs. (44) and (51) under swapping k ↔ l: ξ0 is a zero of
the polynomial given in Eq. (41), with coefficients given in Eq. (40) that are invariant under k ↔ l.
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which corresponds to three possible situations: (i) an asymptotically-flat spacetime with Λ = 0,
(ii) a black hole in which R � |Λ|, i.e., a black hole much smaller than the (A)dS scale, and
(iii) folding Λ into Tab and, instead of the ΛDEC requirement, simply requiring the DEC on
this entire Tab. Another case of interest is that of negligible ρ, corresponding to a black hole
much larger than the length scale of the cosmological constant. Other particular situations to
consider are three-dimensional spacetimes and surfaces in pure (A)dS or Minkowski space. We
will compute S(outer)[σ′] for each of these cases in turn.

4.3.1 Small Λ

Let us first consider the case in which Λ is negligible in the polynomial in Eq. (41), i.e., cases (i),
(ii), or (iii) above. We can then drop λ, so the zero in q occurs at

ξ0 = (1− ρ−1)− 1
D−3 . (52)

Note that ρ → ∞ corresponds to the apparent horizon, where θk[σ′] → 0. Since R[σ′] > 0,
θk[σ

′] > 0, and θl[σ
′] < 0, we have ρ > 0. Moreover, the condition (42) for the zero requires

ρ > 1 (which is automatically satisfied for a spherically-symmetric normal surface), so ξ0 > 1.
Therefore, for generalized holographic screens with a geometry on σ′ satisfying ρ > 1, the
spherical outer entropy is

S(outer)[σ′] =
A[σ′]

4G~

(
1− 1

ρ

)D−2
D−3

. (53)

This provides us with an explicit entropic formula for the geometry of a generalized holographic
screen, including the event horizon, for any outer wedge associated with a spherically-symmetric
normal surface on which the cosmological constant is negligible. It is then straightforward to
compute ρ for various spacetimes of interest and substitute into Eq. (53) to yield the outer
entropy.

4.3.2 Large Λ

Let us now consider the opposite limit, in which the cosmological constant dominates over the
intrinsic curvature of the generalized holographic screen. Since our construction in Sec. 4.1
required ρ+ λ > 1, in the limit in which Λ dominates we must consider a negative cosmological
constant Λ < 0 in order to have λ > 0 (by Eq. (40), recalling that θk[σ′] > 0 and θl[σ′] < 0),
so we are in an asymptotically-AdS spacetime. We consider a black hole much larger than the
AdS length. In this case, we can drop ρ from the polynomial in Eq. (41) and solve for ξ0:

ξ0 = (1− λ−1)− 1
D−1 . (54)
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Note that λ → ∞ corresponds to the apparent horizon, θk[σ′] → 0, for fixed Λ. The condi-
tion (42) for the zero requires λ > 1, so ξ0 > 1. We thus have the outer entropy given by the
geometry on σ′ in the large black hole limit:

S(outer)[σ′] =
A[σ′]

4G~

(
1− 1

λ

)D−2
D−1

. (55)

This is an entropic dual of the geometry of the generalized holographic screen, including the
event horizon, for a black hole large compared to the AdS scale.

4.3.3 D = 3

If D = 3, the analysis above needs to be modified. In particular, in three spacetime dimensions,
the polynomial in Eq. (41) becomes

q(ν) = (1− λ)ξ(ν)2 + λ, (56)

so the terms involving ρ cancel. Note that, despite the factor of D − 3 in the denominator of
ρ in Eq. (40), there is also a factor of D − 3 in the numerator arising from the intrinsic Ricci
curvature given in Eq. (30), so the cancellation of ρ is well defined. We therefore have

ξ0 =
(
1− λ−1

)− 1
2 , (57)

so that the solution behaves like the Λ-dominated case of Sec. 4.3.2. This implies that a surface
with θl = 0 can only be reached in D = 3 for Λ < 0.

We can understand what is happening here from the cross-focusing equation for ∇kθl in
Eq. (28). Even without assuming spherical symmetry, R vanishes in D = 3, since σ′ is simply
a curve, which does not have intrinsic curvature. Hence, the only term in Eq. (28) that can
be negative—and thus allow θl to reach zero somewhere on N−k(σ

′)—is Λ. This requirement
of negative cosmological constant accords with the fact that in D = 3 there are no black holes
in asymptotically-flat or asymptotically-dS spacetimes, but there do exist BTZ black holes in
asymptotically-AdS spacetimes [68].

4.3.4 Vanishing entropy for (A)dS

Suppose that σ′ is in a region of pure AdS for a black hole formed from collapse; for example,
σ′ can be in the innermost region of AdS-Vaidya spacetime. In Ref. [41], this spacetime was
given as a counterexample to show that the area of the causal surface in this region cannot
have a straightforward holographic interpretation as a von Neumann entropy. This conclusion
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follows from rigidity of the bulk vacuum, which implies that any spacetime one can construct
with OW (σ′) fixed would have no HRT surface for σ′ located in a pure AdS region.

We can see how the expression of our entropy in Eq. (51) remains consistent in this setup.
For pure AdS spacetime,9 the metric is given by

ds2 = −
(

1 +
r2

L2

)
dt2 +

1

1 + r2

L2

dr2 + r2dΩ2
D−2, (58)

where
Λ = −(D − 1)(D − 2)

2L2
. (59)

For the radial null vectors k and l, with k · l = −1, we can choose the relative normalization to
be equal:

ka, la =
1√
2

 1√
1 + r2

L2

, ±
√

1 +
r2

L2
, ~0

 . (60)

With this choice, dr/dν =
√

(1 + (r2/L2))/2 and

θk = −θl =
D − 2√

2r

√
1 +

r2

L2
. (61)

From the definitions in Eq. (40), along with Eqs. (30), (59), and (61), we find that for a
spherically-symmetric leaf σ′ in a pure (A)dS region,

ρ =

(
1 +

r20
L2

)−1
,

λ =
r20
L2

(
1 +

r20
L2

)−1
,

(62)

where r0 represents the location of σ′. We thus find that for spacetimes locally AdS, dS, or
Minkowski around σ′, spherical light sheets obey Eq. (41) with

ρ+ λ = 1. (63)

In these special cases, q(ν) does not have a zero for ξ(ν) > 1, since the requirement in Eq. (42)
is violated. In particular, θl → −∞ when θk → +∞ as ν → νc, which corresponds to the
light sheets converging to a point at r = 0. This implies that there is no HRT surface, so
S(outer)[σ′] = 0. Formally, setting ρ + λ = 1 in Eq. (41), q(ξ) becomes ρξ2 + 1 − ρ, which has
9For the straightforward extension to dS spacetime, one can simply take L2 to be negative.
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no zero in (1,∞) for positive ρ; in this case, as ξ → ∞ (as θk → ∞), Eq. (35) implies that
θl → −∞. If we instead take the limit as ρ + λ → 1, the zero satisfies ξ0 → ∞, so Eq. (51)
implies that S(outer)[σ′] → 0. Thus, the outer entropy we derived in Eq. (51) does not suffer
from the problem that the causal holographic information (which was given simply by the area,
i.e., Eq. (51) without the ξD−20 factor) had encountered.

4.4 The Second Law

Let us now compute how S(outer)[σ′] changes as we evaluate it for different leaves σ′(τ) along
the generalized holographic screen H ′. By definition, the outer wedges for consecutive leaves
along H ′ are nested, OW (σ′(τ1)) ⊃ OW (σ′(τ2)) for τ1 < τ2. This implies that the spacetime
region held fixed when we scan possible spacetimes in finding the HRT surface of maximal area
becomes progressively smaller. Since a maximum evaluated on consecutively larger domains
can only grow, it follows that we should have ∇τS

(outer)[σ′(τ)] ≥ 0. We will now see explicitly
how this comes about for the spherical outer entropy given by Eq. (51), which will serve as a
nontrivial check on our result. Note that the area law computed for H ′ in Sec. 2.3 does not
a priori guarantee a second law for Eq. (51), since S(outer)[σ′(τ)] is not simply the area of σ′;
instead, we will find that the increase in the area of σ′(τ), along with the behavior of ξ0(τ), will
combine to give a second law for S(outer)[σ′(τ)].

Even though the root ξ0 of the polynomial in Eq. (41) cannot be expressed in closed form
for general D, ρ, and λ, we can still prove the second law for S(outer)[σ′(τ)]. Recalling that the
tangent vector along H ′ is h′a = αla + βka, we have

∇τ logS(outer)[σ′(τ)] = α∇l logS(outer)[σ′] + β∇k logS(outer)[σ′]

= α[θl − (D − 2)∇l log ξ0] + β[θk − (D − 2)∇k log ξ0],
(64)

where for the rest of this section, we will suppress the implicit argument of σ′(τ) in variables on
the right-hand side. Let us take the ∇k derivative of

q(ν0) = (1− ρ− λ)ξD−10 + ρξ20 + λ = 0 (65)

to get
(1− ρ− λ)

[
(D − 3)ρξ20 + (D − 1)λ

]
∇k log ξ0

=
[
ξ20 + λ(1− ξ20)

]
∇kρ+

[
1− ρ

(
1− ξ20

)]
∇kλ,

(66)

where we have used the condition (65) again to write ξD−10 in terms of ξ20 . The analogous
equation also holds for the ∇l derivative.
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From the definitions in Eq. (40), using the constraint equations in Eq. (28) along with
Eq. (31), we find

∇kρ = ρ
(
R−1∇kR− θ−1k ∇kθk − θ−1l ∇kθl

)
= ρ

(
D − 3

D − 2
θk +

R
2θl
− Λ

θl
+

8πG

θk
Tkk −

8πG

θl
Tkl

)
= ρ

[
D − 3

D − 2
θk(1− ρ)− D − 1

D − 2
θkλ+ 8πG

(
Tkk
θk
− Tkl

θl

)] (67)

and
∇kλ = −λ

(
θ−1k ∇kθk + θ−1l ∇kθl

)
= λ

(
D − 1

D − 2
θk +

R
2θl
− Λ

θl
+

8πG

θk
Tkk −

8πG

θl
Tkl

)
= λ

[
D − 1

D − 2
θk(1− λ)− D − 3

D − 2
θkρ+ 8πG

(
Tkk
θk
− Tkl

θl

)]
.

(68)

Hence, from Eq. (66) we obtain, again using the definition of the zero in Eq. (65) and after some
rearrangement,

∇k log ξ0 =
8πG

θkθl

ξD−10

(D − 3)ρξ20 + (D − 1)λ
(Tklθk − Tkkθl) +

θk
D − 2

. (69)

Using this relation and the analogous one for ∇l, Eq. (64) becomes

∇τS
(outer)[σ′(τ)] = −8πG(D − 2)ξD−10 S(outer)[σ′(τ)]

θkθl[(D − 3)ρξ20 + (D − 1)λ]
[(αθl + βθk)Tkl − αTllθk − βTkkθl]

= − 2π(D − 2)ξ0A[σ′]

~θkθl[(D − 3)ρξ20 + (D − 1)λ]
[(αθl + βθk)Tkl − αTllθk − βTkkθl] .

(70)

Let us consider the signs of the factors appearing in Eq. (70) in turn. The term in brackets
in the denominator, (D− 3)ρξ20 + (D− 1)λ, is guaranteed to be positive by Eq. (45). Moreover,
by Eq. (8), αθl +βθk > 0. In particular, we have α < 0 and θl < 0 on σ′ from the definition of a
generalized holographic screen given in Sec. 2.2, while β > 0 and θk > 0 since we are considering
the outermost spacelike portion of H ′. Together with ξ0 > 1, we thus conclude that the entire
prefactor in front of the last set of square brackets in Eq. (70) is positive. Now, the NEC requires
that Tkk and Tll are both nonnegative, while the ΛDEC implies that Tkl ≥ 0. Thus, all the terms
in the last set of square brackets in Eq. (70) are nonnegative. This proves that the outer entropy
given in Eq. (51) obeys the second law of thermodynamics,

∇τS
(outer)[σ′(τ)] ≥ 0, (71)

along the generalized holographic screen. Interestingly, Eq. (70) is reminiscent of a Clausius
relation, with dS ∝ dQ for some flow of energy-momentum.
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5 Conclusions

In this work, we identified a large new class of codimension-one surfaces, the generalized holo-
graphic screens, that extend the concept of holographic screens [31] to surfaces that are not
marginally trapped. The family of generalized holographic screens connect the concept of holo-
graphic screens with event horizons, as both are members of this larger class of geometric objects.
We showed in Sec. 2 that all generalized holographic screens satisfy an area theorem (13), thus
relating the previously known area theorems of Ref. [1] and Ref. [32] (as well as the related area
laws of Refs. [38,69–71]).

Further, we showed in Secs. 3 and 4 that generalized holographic screens have an entropic
interpretation. In Eq. (51), we calculated the outer entropy—the largest von Neumann entropy,
computed via the HRT formula, for fixed outer wedge—for leaves of the generalized holographic
screen for spherically-symmetric spacetimes and subsequently showed that this entropy obeys
the second law of thermodynamics.

The interpretation of the event horizon geometry through some relation to the von Neumann
entropy—via a well defined holographic prescription—has hitherto been unknown in AdS/CFT.
In this paper, we have found such a connection, expressing a particular geometric quantity
defined on the event horizon—notably, not simply the area—in terms of the outer entropy. This
outer entropy gives the maximum area of the HRT surface for the collection of geometries with
fixed causal wedge; equivalently, this expresses the maximal entanglement entropy between the
two sides of the black hole for a pure boundary state.

We note that the specific details of the construction of the generalized holographic screen
in Sec. 2 are in fact not necessary to obtain the area law result in Eq. (13) or the second law
result in Eq. (71).10 Instead, it is sufficient to require that the outer wedges of infinitesimally
separated leaves σ′(τ) be nested in the outer spacelike direction (α < 0 and β > 0) and that
σ′(τ) is a normal surface (θk > 0 and θl < 0). This is possible, e.g., even if σ′(τ) is not entirely
within N−k(σ) for some single σ ⊂ H as required for a general holographic screen in Sec. 2. In
fact, a weaker set of conditions guaranteeing αθl +βθk > 0 is sufficient to obtain the area law of
Eq. (13), while the second law of Eq. (71) requires the related condition of positivity of Eq. (70).
A related example is the monotonicity theorem for renormalized leaf areas given in Ref. [38].

The generalized holographic screenH ′ and holographic screenH are related to each other by a
network of coarse- and fine-graining relationships. As illustrated in panels a) and b) of Fig. 8, the
second law onH associated with increase of the outer entropy can be understood from the nesting
10We thank Raphael Bousso for discussion on this point.
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of outer wedges of leaves σ ⊂ H, i.e., coarse-graining of the data held fixed in the direction of
increasing τ , and similarly for H ′. Meanwhile, each leaf σ′ ⊂ H ′ is by definition in Nk(σ) for
some leaf σ ⊂ H. For spacelike H ′, σ′ ⊂ N−k(σ) and we can therefore view the process of going
from H to H ′ as a fine-graining (i.e., more data is being held fixed), since OW (σ′) ⊃ OW (σ),
as shown in panel c) of Fig. 8, illustrating the upper bound S(outer)[σ′] ≤ A[σ]/4G~. Finally, in
the case of a spacelike generalized holographic screen formed via the intersection construction
of Sec. 2.4, for each leaf σ′ ⊂ H ′ there is also a leaf in H for which σ′ is on the −l light sheet
and for which the outer wedge contains OW (σ′), as illustrated in panel d) of Fig. 8; in this
direction, going from H to H ′ can be viewed as a coarse-graining. In this case, the area of the
corresponding leaf on H provides a lower bound on S(outer)[σ′].

This work leaves numerous avenues for future research. Investigation of the explicit boundary
formulation of the outer entropy for non-marginally-trapped surfaces, in terms of boundary
operators (cf. Ref. [39]) and the boundary density matrix, could prove fruitful. Moreover, it
would be very interesting to explore the meaning and utility of the outer entropy of generalized
holographic screens in more general spacetimes as a compelling geometric quantity in the context
of classical general relativity.

Acknowledgments

We thank Ning Bao, Raphael Bousso, Sean Carroll, Netta Engelhardt, Illan Halpern, and Pratik
Rath for useful discussions and comments. The work of Y.N. was supported in part by the
National Science Foundation under grant PHY-1521446, by the Department of Energy, Office
of Science, Office of High Energy Physics under contract No. DE-AC02-05CH11231, and by
MEXT KAKENHI Grant Number 15H05895. G.N.R. is supported by the Miller Institute for
Basic Research in Science at the University of California, Berkeley.

34



H

l k

H

H H

H 0 H 0

H 0 H 0

a) b)

c) d)

Figure 8: Generic Penrose diagrams illustrating the relationship between the outer wedges of
the holographic screen H (red line) and generalized holographic screen H ′ (blue line), in the
spacelike case. In the direction of increasing τ (arrows), outer wedges of leaves of H are nested,
as shown in panel a). Similarly, wedges of H ′ are nested as τ increases, as shown in panel b).
This nesting mandates an increase in outer entropy on H and H ′. For spacelike screens, each leaf
σ′ ⊂ H ′ is in N−k(σ) for some leaf σ ⊂ H, leading to the nesting OW (σ′) ⊃ OW (σ) illustrated
in panel c). In the case of a generalized holographic screen constructed via intersections as
in Sec. 2.4, the opposite nesting also occurs, as shown in panel d). Outer wedges attached to
leaves on H (H ′) are shown in translucent red (respectively, blue), with darker shades indicating
increasing τ .

35



References

[1] S. W. Hawking, “Gravitational radiation from colliding black holes,” Phys. Rev. Lett. 26
(1971) 1344.

[2] J. M. Bardeen, B. Carter, and S. W. Hawking, “The four laws of black hole mechanics,”
Commun. Math. Phys. 31 (1973) 161.

[3] J. D. Bekenstein, “Black holes and the second law,” Lett. Nuovo Cim. 4 (1972) 737.

[4] J. D. Bekenstein, “Black holes and entropy,” Phys. Rev. D7 (1973) 2333.

[5] S. W. Hawking, “Black hole explosions,” Nature 248 (1974) 30.

[6] S. W. Hawking, “Particle creation by black holes,” Commun. Math. Phys. 43 (1975) 199.
[Erratum: Commun. Math. Phys. 46, 206 (1976)].

[7] G. ’t Hooft, “Dimensional reduction in quantum gravity,” in Conference on Highlights of
Particle and Condensed Matter Physics (SALAMFEST), vol. C930308, p. 284. 1993.
arXiv:gr-qc/9310026 [gr-qc].

[8] L. Susskind, “The world as a hologram,” J. Math. Phys. 36 (1995) 6377,
arXiv:hep-th/9409089 [hep-th].

[9] R. Bousso, “The holographic principle,” Rev. Mod. Phys. 74 (2002) 825,
arXiv:hep-th/0203101 [hep-th].

[10] J. M. Maldacena, “The Large-N Limit of Superconformal Field Theories and
Supergravity,” Int. J. Theor. Phys. 38 (1999) 1113, arXiv:hep-th/9711200 [hep-th].

[11] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from
noncritical string theory,” Phys. Lett. B428 (1998) 105, arXiv:hep-th/9802109
[hep-th].

[12] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253,
arXiv:hep-th/9802150 [hep-th].

[13] O. Aharony, S. S. Gubser, J. Maldacena, H. Ooguri, and Y. Oz, “Large N field theories,
string theory and gravity,” Phys. Rept. 323 (2000) 183, arXiv:hep-th/9905111
[hep-th].

36

http://dx.doi.org/10.1103/PhysRevLett.26.1344
http://dx.doi.org/10.1103/PhysRevLett.26.1344
http://dx.doi.org/10.1007/BF01645742
http://dx.doi.org/10.1007/BF02757029
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://dx.doi.org/10.1038/248030a0
http://dx.doi.org/10.1007/BF02345020, 10.1007/BF01608497
http://arxiv.org/abs/gr-qc/9310026
http://dx.doi.org/10.1063/1.531249
http://arxiv.org/abs/hep-th/9409089
http://dx.doi.org/10.1103/RevModPhys.74.825
http://arxiv.org/abs/hep-th/0203101
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://arxiv.org/abs/hep-th/9802109
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://arxiv.org/abs/hep-th/9802150
http://dx.doi.org/10.1016/S0370-1573(99)00083-6
http://arxiv.org/abs/hep-th/9905111
http://arxiv.org/abs/hep-th/9905111


[14] S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from
AdS/CFT,” Phys. Rev. Lett. 96 (2006) 181602, arXiv:hep-th/0603001 [hep-th].

[15] S. Ryu and T. Takayanagi, “Aspects of holographic entanglement entropy,” JHEP 08
(2006) 045, arXiv:hep-th/0605073 [hep-th].

[16] A. Lewkowycz and J. Maldacena, “Generalized gravitational entropy,” JHEP 08 (2013)
090, arXiv:1304.4926 [hep-th].

[17] V. E. Hubeny, M. Rangamani, and T. Takayanagi, “A covariant holographic entanglement
entropy proposal,” JHEP 07 (2007) 062, arXiv:0705.0016 [hep-th].

[18] A. C. Wall, “Maximin surfaces, and the strong subadditivity of the covariant holographic
entanglement entropy,” Class. Quant. Grav. 31 (2014) 225007, arXiv:1211.3494
[hep-th].

[19] X. Dong, A. Lewkowycz, and M. Rangamani, “Deriving covariant holographic
entanglement,” JHEP 11 (2016) 028, arXiv:1607.07506 [hep-th].

[20] R. M. Wald, “Black hole entropy is the Noether charge,” Phys. Rev. D48 (1993) R3427,
arXiv:gr-qc/9307038 [gr-qc].

[21] M. Van Raamsdonk, “Building up spacetime with quantum entanglement,” Gen. Rel.
Grav. 42 (2010) 2323, arXiv:1005.3035 [hep-th]. [Int. J. Mod. Phys. D19, 2429-2435
(2010)].

[22] J. Maldacena and L. Susskind, “Cool horizons for entangled black holes,” Fortsch. Phys.
61 (2013) 781, arXiv:1306.0533 [hep-th].

[23] X. Dong, “Holographic entanglement entropy for general higher derivative gravity,” JHEP
01 (2014) 044, arXiv:1310.5713 [hep-th].

[24] T. Faulkner, M. Guica, T. Hartman, R. C. Myers, and M. Van Raamsdonk, “Gravitation
from entanglement in holographic CFTs,” JHEP 03 (2014) 051, arXiv:1312.7856
[hep-th].

[25] N. Bao, J. Pollack, and G. N. Remmen, “Splitting spacetime and cloning qubits: linking
no-go theorems across the ER=EPR duality,” Fortsch. Phys. 63 (2015) 705,
arXiv:1506.08203 [hep-th].

37

http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/hep-th/0603001
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://dx.doi.org/10.1088/1126-6708/2006/08/045
http://arxiv.org/abs/hep-th/0605073
http://dx.doi.org/10.1007/JHEP08(2013)090
http://dx.doi.org/10.1007/JHEP08(2013)090
http://arxiv.org/abs/1304.4926
http://dx.doi.org/10.1088/1126-6708/2007/07/062
http://arxiv.org/abs/0705.0016
http://dx.doi.org/10.1088/0264-9381/31/22/225007
http://arxiv.org/abs/1211.3494
http://arxiv.org/abs/1211.3494
http://dx.doi.org/10.1007/JHEP11(2016)028
http://arxiv.org/abs/1607.07506
http://dx.doi.org/10.1103/PhysRevD.48.R3427
http://arxiv.org/abs/gr-qc/9307038
http://dx.doi.org/10.1007/s10714-010-1034-0, 10.1142/S0218271810018529
http://dx.doi.org/10.1007/s10714-010-1034-0, 10.1142/S0218271810018529
http://arxiv.org/abs/1005.3035
http://dx.doi.org/10.1002/prop.201300020
http://dx.doi.org/10.1002/prop.201300020
http://arxiv.org/abs/1306.0533
http://dx.doi.org/10.1007/JHEP01(2014)044
http://dx.doi.org/10.1007/JHEP01(2014)044
http://arxiv.org/abs/1310.5713
http://dx.doi.org/10.1007/JHEP03(2014)051
http://arxiv.org/abs/1312.7856
http://arxiv.org/abs/1312.7856
http://dx.doi.org/10.1002/prop.201500053
http://arxiv.org/abs/1506.08203


[26] N. Bao, J. Pollack, and G. N. Remmen, “Wormhole and entanglement (non-)detection in
the ER=EPR correspondence,” JHEP 11 (2015) 126, arXiv:1509.05426 [hep-th].

[27] G. N. Remmen, N. Bao, and J. Pollack, “Entanglement conservation, ER=EPR, and a
new classical area theorem for wormholes,” JHEP 07 (2016) 048, arXiv:1604.08217
[hep-th].

[28] N. Bao and G. N. Remmen, “Bulk connectedness and boundary entanglement,” EPL 121
(2018) 60007, arXiv:1703.00018 [hep-th].

[29] S. A. Hayward, “General laws of black-hole dynamics,” Phys. Rev. D49 (1994) 6467,
arXiv:gr-qc/9303006 [gr-qc].

[30] S. A. Hayward, “Energy and entropy conservation for dynamical black holes,” Phys. Rev.
D70 (2004) 104027, arXiv:gr-qc/0408008 [gr-qc].

[31] R. Bousso and N. Engelhardt, “New area law in general relativity,” Phys. Rev. Lett. 115
(2015) 081301, arXiv:1504.07627 [hep-th].

[32] R. Bousso and N. Engelhardt, “Proof of a new area law in general relativity,” Phys. Rev.
D92 (2015) 044031, arXiv:1504.07660 [gr-qc].

[33] F. Sanches and S. J. Weinberg, “Refinement of the Bousso-Engelhardt area law,” Phys.
Rev. D94 (2016) 021502, arXiv:1604.04919 [hep-th].

[34] R. Bousso, “Holography in general space-times,” JHEP 06 (1999) 028,
arXiv:hep-th/9906022 [hep-th].

[35] Y. Nomura, N. Salzetta, F. Sanches, and S. J. Weinberg, “Toward a holographic theory
for general spacetimes,” Phys. Rev. D95 (2017) 086002, arXiv:1611.02702 [hep-th].

[36] Y. Nomura, P. Rath, and N. Salzetta, “Classical spacetimes as amplified information in
holographic quantum theories,” arXiv:1705.06283 [hep-th].

[37] Y. Nomura, P. Rath, and N. Salzetta, “Spacetime from unentanglement,” Phys. Rev. D97
(2018) 106010, arXiv:1711.05263 [hep-th].

[38] Y. Nomura, P. Rath, and N. Salzetta, “Pulling the boundary into the bulk,”
arXiv:1805.00523 [hep-th].

38

http://dx.doi.org/10.1007/JHEP11(2015)126
http://arxiv.org/abs/1509.05426
http://dx.doi.org/10.1007/JHEP07(2016)048
http://arxiv.org/abs/1604.08217
http://arxiv.org/abs/1604.08217
http://dx.doi.org/10.1209/0295-5075/121/60007
http://dx.doi.org/10.1209/0295-5075/121/60007
http://arxiv.org/abs/1703.00018
http://dx.doi.org/10.1103/PhysRevD.49.6467
http://arxiv.org/abs/gr-qc/9303006
http://dx.doi.org/10.1103/PhysRevD.70.104027
http://dx.doi.org/10.1103/PhysRevD.70.104027
http://arxiv.org/abs/gr-qc/0408008
http://dx.doi.org/10.1103/PhysRevLett.115.081301
http://dx.doi.org/10.1103/PhysRevLett.115.081301
http://arxiv.org/abs/1504.07627
http://dx.doi.org/10.1103/PhysRevD.92.044031
http://dx.doi.org/10.1103/PhysRevD.92.044031
http://arxiv.org/abs/1504.07660
http://dx.doi.org/10.1103/PhysRevD.94.021502
http://dx.doi.org/10.1103/PhysRevD.94.021502
http://arxiv.org/abs/1604.04919
http://dx.doi.org/10.1088/1126-6708/1999/06/028
http://arxiv.org/abs/hep-th/9906022
http://dx.doi.org/10.1103/PhysRevD.95.086002
http://arxiv.org/abs/1611.02702
http://arxiv.org/abs/1705.06283
http://dx.doi.org/10.1103/PhysRevD.97.106010
http://dx.doi.org/10.1103/PhysRevD.97.106010
http://arxiv.org/abs/1711.05263
http://arxiv.org/abs/1805.00523


[39] N. Engelhardt and A. C. Wall, “Decoding the apparent horizon: a coarse-grained
holographic entropy,” arXiv:1706.02038 [hep-th].

[40] V. E. Hubeny and M. Rangamani, “Causal holographic information,” JHEP 06 (2012)
114, arXiv:1204.1698 [hep-th].

[41] N. Engelhardt and A. C. Wall, “No simple dual to the causal holographic information?,”
JHEP 04 (2017) 134, arXiv:1702.01748 [hep-th].

[42] S. J. Avis, C. J. Isham, and D. Storey, “Quantum field theory in anti-de Sitter
space-time,” Phys. Rev. D18 (1978) 3565.

[43] C. Akers, R. Bousso, I. F. Halpern, and G. N. Remmen, “Boundary of the future of a
surface,” Phys. Rev. D97 (2018) 024018, arXiv:1711.06689 [hep-th].

[44] R. M. Wald, General Relativity. The University of Chicago Press, 1984.

[45] S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time. Cambridge
University Press, Cambridge, England, 1973.

[46] E. T. Akhmedov, “A remark on the AdS/CFT correspondence and the renormalization
group flow,” Phys. Lett. B442 (1998) 152, arXiv:hep-th/9806217 [hep-th].

[47] E. Álvarez and C. Gómez, “Geometric holography, the renormalization group and the c
theorem,” Nucl. Phys. B541 (1999) 441, arXiv:hep-th/9807226 [hep-th].

[48] V. Balasubramanian and P. Kraus, “Space-time and the holographic renormalization
group,” Phys. Rev. Lett. 83 (1999) 3605, arXiv:hep-th/9903190 [hep-th].

[49] K. Skenderis and P. K. Townsend, “Gravitational stability and renormalization group
flow,” Phys. Lett. B468 (1999) 46, arXiv:hep-th/9909070 [hep-th].

[50] J. de Boer, E. P. Verlinde, and H. L. Verlinde, “On the holographic renormalization
group,” JHEP 08 (2000) 003, arXiv:hep-th/9912012 [hep-th].

[51] R. P. Geroch, “Domain of dependence,” J. Math. Phys. 11 (1970) 437.

[52] N. Engelhardt and A. C. Wall, “Coarse graining holographic black holes,”
arXiv:1806.01281 [hep-th].

39

http://arxiv.org/abs/1706.02038
http://dx.doi.org/10.1007/JHEP06(2012)114
http://dx.doi.org/10.1007/JHEP06(2012)114
http://arxiv.org/abs/1204.1698
http://dx.doi.org/10.1007/JHEP04(2017)134
http://arxiv.org/abs/1702.01748
http://dx.doi.org/10.1103/PhysRevD.18.3565
http://dx.doi.org/10.1103/PhysRevD.97.024018
http://arxiv.org/abs/1711.06689
http://dx.doi.org/10.7208/chicago/9780226870373.001.0001
http://dx.doi.org/10.1016/S0370-2693(98)01270-2
http://arxiv.org/abs/hep-th/9806217
http://dx.doi.org/10.1016/S0550-3213(98)00752-4
http://arxiv.org/abs/hep-th/9807226
http://dx.doi.org/10.1103/PhysRevLett.83.3605
http://arxiv.org/abs/hep-th/9903190
http://dx.doi.org/10.1016/S0370-2693(99)01212-5
http://arxiv.org/abs/hep-th/9909070
http://dx.doi.org/10.1088/1126-6708/2000/08/003
http://arxiv.org/abs/hep-th/9912012
http://dx.doi.org/10.1063/1.1665157
http://arxiv.org/abs/1806.01281


[53] A. D. Rendall, “Reduction of the characteristic initial value problem to the Cauchy
problem and its applications to the Einstein equations,” Proc. Roy. Soc. Lon. A 427
(1990) 221.

[54] P. R. Brady, S. Droz, W. Israel, and S. M. Morsink, “Covariant double null dynamics:
(2+2) splitting of the Einstein equations,” Class. Quant. Grav. 13 (1996) 2211,
arXiv:gr-qc/9510040 [gr-qc].

[55] Y. Choquet-Bruhat, P. T. Chruściel, and J. M. Martín-García, “The Cauchy problem on a
characteristic cone for the Einstein equations in arbitrary dimensions,” Annales Henri
Poincaré 12 (2011) 419, arXiv:1006.4467 [gr-qc].

[56] J. Luk, “On the local existence for the characteristic initial value problem in general
relativity,” arXiv:1107.0898 [gr-qc].

[57] P. T. Chruściel and T.-T. Paetz, “The many ways of the characteristic Cauchy problem,”
Class. Quant. Grav. 29 (2012) 145006, arXiv:1203.4534 [gr-qc].

[58] P. T. Chruściel, “The existence theorem for the general relativistic Cauchy problem on the
light-cone,” SIGMA 2 (2014) e10, arXiv:1209.1971 [gr-qc].

[59] P. T. Chruściel and T.-T. Paetz, “Characteristic initial data and smoothness of Scri. I.
Framework and results,” Annales Henri Poincare 16 (2015) 2131, arXiv:1403.3558
[gr-qc].

[60] R. H. Price and K. S. Thorne, “Membrane viewpoint on black holes: properties and
evolution of the stretched horizon,” Phys. Rev. D33 (1986) 915.

[61] E. Gourgoulhon and J. L. Jaramillo, “A 3+1 perspective on null hypersurfaces and
isolated horizons,” Phys. Rept. 423 (2006) 159, arXiv:gr-qc/0503113 [gr-qc].

[62] S. A. Hayward, “Angular momentum conservation for dynamical black holes,” Phys. Rev.
D74 (2006) 104013, arXiv:gr-qc/0609008 [gr-qc].

[63] L.-M. Cao, “Deformation of codimension-2 surface and horizon thermodynamics,” JHEP
03 (2011) 112, arXiv:1009.4540 [gr-qc].

[64] K. Sousa, G. Miláns del Bosch, and B. Reina, “Supertranslations: redundancies of horizon
data, and global symmetries at null infinity,” Class. Quant. Grav. 35 (2018) 054002,
arXiv:1707.02971 [hep-th].

40

http://dx.doi.org/10.1098/rspa.1990.0009
http://dx.doi.org/10.1098/rspa.1990.0009
http://dx.doi.org/10.1088/0264-9381/13/8/015
http://arxiv.org/abs/gr-qc/9510040
http://dx.doi.org/10.1007/s00023-011-0076-5
http://dx.doi.org/10.1007/s00023-011-0076-5
http://arxiv.org/abs/1006.4467
http://arxiv.org/abs/1107.0898
http://dx.doi.org/10.1088/0264-9381/29/14/145006
http://arxiv.org/abs/1203.4534
http://dx.doi.org/10.1017/fms.2013.8
http://arxiv.org/abs/1209.1971
http://dx.doi.org/10.1007/s00023-014-0364-y
http://arxiv.org/abs/1403.3558
http://arxiv.org/abs/1403.3558
http://dx.doi.org/10.1103/PhysRevD.33.915
http://dx.doi.org/10.1016/j.physrep.2005.10.005
http://arxiv.org/abs/gr-qc/0503113
http://dx.doi.org/10.1103/PhysRevD.74.104013
http://dx.doi.org/10.1103/PhysRevD.74.104013
http://arxiv.org/abs/gr-qc/0609008
http://dx.doi.org/10.1007/JHEP03(2011)112
http://dx.doi.org/10.1007/JHEP03(2011)112
http://arxiv.org/abs/1009.4540
http://dx.doi.org/10.1088/1361-6382/aa9669
http://arxiv.org/abs/1707.02971


[65] J. Luk and I. Rodnianski, “Local propagation of impulsive gravitational waves,” Commun.
Pure Appl. Math. 68 (2015) 511, arXiv:1209.1130 [gr-qc].

[66] J. Luk and I. Rodnianski, “Nonlinear interaction of impulsive gravitational waves for the
vacuum Einstein equations,” arXiv:1301.1072 [gr-qc].

[67] Y. Choquet-Bruhat, P. T. Chruściel, and J. M. Martín-García, “The light-cone theorem,”
Class. Quant. Grav. 26 (2009) 135011, arXiv:0905.2133 [gr-qc].

[68] M. Bañados, C. Teitelboim, and J. Zanelli, “Black hole in three-dimensional spacetime,”
Phys. Rev. Lett. 69 (1992) 1849, arXiv:hep-th/9204099 [hep-th].

[69] A. Królak, “Definitions of black holes without use of the boundary at infinity,” General
Relativity and Gravitation 14 (1982) 793.

[70] A. Ashtekar and B. Krishnan, “Isolated and dynamical horizons and their applications,”
Living Rev. Rel. 7 (2004) 10, arXiv:gr-qc/0407042 [gr-qc].

[71] I. Booth, “Black hole boundaries,” Can. J. Phys. 83 (2005) 1073, arXiv:gr-qc/0508107
[gr-qc].

41

http://dx.doi.org/10.1002/cpa.21531
http://dx.doi.org/10.1002/cpa.21531
http://arxiv.org/abs/1209.1130
http://arxiv.org/abs/1301.1072
http://dx.doi.org/10.1088/0264-9381/26/13/135011
http://arxiv.org/abs/0905.2133
http://dx.doi.org/10.1103/PhysRevLett.69.1849
http://arxiv.org/abs/hep-th/9204099
http://dx.doi.org/10.1007/BF00756161
http://dx.doi.org/10.1007/BF00756161
http://dx.doi.org/10.12942/lrr-2004-10
http://arxiv.org/abs/gr-qc/0407042
http://dx.doi.org/10.1139/p05-063
http://arxiv.org/abs/gr-qc/0508107
http://arxiv.org/abs/gr-qc/0508107

	Introduction
	Generalized Holographic Screens
	Formalism and Review
	Definition of Generalized Holographic Screens
	Area Law
	Alternate Construction of Screens

	Outer Entropy
	Holographic Dual for Spherically-Symmetric Spacetimes
	Construction
	Optimization
	Cases of Interest
	Small 
	Large 
	D=3
	Vanishing entropy for (A)dS

	The Second Law

	Conclusions



