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Abstract of the Dissertation

Astrophysical and Phenomenological Implications of

Bound States in Extensions of the Standard Model of

Particle Physics

by

Lauren Marie Wozniak Pearce

Doctor of Philosophy in Physics

University of California, Los Angeles, 2014

Professor Alexander Kusenko, Chair

While the Standard Model of particle physics has undoubtedly been an experimental success,

several questions remain unresolved. In particular, the Standard Model cannot account for

the observed cosmological preference for matter over dark matter, nor does it provide a

viable candidate for dark matter. This motivates us to consider extensions to the Standard

Model; in this thesis, we will focus on several extensions of the Standard Model in which the

formation of bound states is a significant factor. We will argue that the formation of bound

states produces new phenomena that can address these unsettled questions.

First, we consider a strongly-coupled version of the Minimal Supersymmetric Standard

Model. We demonstrate that in this model, electroweak symmetry breaking may be triggered

by the presence of squark bound states which mix with the fundamental Higgs boson. Next,

we show that this model has a viable phenomenology (e.g., it does not have large flavor-

changing-neutral-currents or break SUC(3) symmetry). Additionally, this strongly-coupled

version of the MSSM can relatively easily accommodate electroweak scale baryogenesis.

Following this, we turn our attention to the possibility of dark matter bound states in

asymmetric dark matter models. We first consider a simplistic scalar model and demonstrate

that bound state formation can produce a detectable gamma ray excess in certain regions
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of parameter space. This signal is produced through the decay of the dark force mediator

whose emission necessarily accompanies bound state formation. Next, we consider models

in which the dark matter self-interactions are described by a broken UD(1) gauge group.

We argue that in such models dark matter is generically multi-component, consisting of two

species of ions along with dark atoms. We then investigate the possibility of using these self-

interactions between the different species to alleviate tension between the cold dark matter

paradigm and observations of dwarf galaxies, while retaining the ellipticity of larger halos.

Finally, we consider the formation and growth of Q-balls (non-topological solitons) in a

simplified model inspired by the MSSM. In particular models, Q-balls can trigger a phase

transition once they reach a critical size. In certain regions of parameter space, small charge

Q-balls can be approximated using the Bethe-Salpeter equation. This allows us to study the

growth of small Q-balls; by joining this to the semi-classical regime at large charges, we can

analyze their growth from individual squarks to critical size. In our simplistic model, we

show that Q-balls can indeed reach critical size on cosmological time scales.
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CHAPTER 1

The Standard Model of Particle Physics and Its

Shortcomings

1.1 The Standard Model of Particle Physics

The Standard Model of Particle Physics is a quantum field theory that describes the strong,

weak, and electromagnetic interactions at the subatomic level. A pedagogical introduction

of the Standard Model can be found in [6]; in this chapter, I will give a quick summary of

the Standard Model and outline several of its shortcomings which will motivate the research

presented in this dissertation. Historically, the Standard Model is an amalgam of the work

of several researchers, most notably Sheldon Glashow, Stephen Weinberg, and Abdus Salem

[7–9].

Interactions in the Standard Model are described by gauge theories, which are closely

connected to symmetries of the Lagrangian [10]. The Standard Model gauge symmetry group

is SUC(3) × SUL(2) × UY(1). The SUC(3) part describes the strong interactions, while the

SUL(2)×UY(1) part describes electroweak interactions; this will be related to the observed

electromagnetic and the weak interactions in the following section. For simplicity, we will

illustrate gauge theories with a simpler example: the transformations of the Lagrangian

under the Abelian Uem(1) gauge group which gives rise to quantum electrodynamics (QED).

We begin by considering the action of non-gauged group on the fields which appear in the

Lagrangian. The fields are organized into multiplets which have well-defined transformation

1



properties under the symmetry; these are characterized by the charge carried by the members

of the multiplet. In our Uem(1) example, the electron Dirac spinor transforms as

ψ → ψ′ = e−ieχψ, (1.1)

where e is the charge of the electron and χ is a constant parameter that specifies which

transformation is being performed; for U(1), it can be thought of as an angle of rotation.

Similarly, the conjugate field ψ̄ transforms as1

ψ̄ → ψ̄′ = ψ̄e+ieχ. (1.2)

We see that ψ̄′ψ′ = ψ̄ψ, and thus the term ψ̄ψ is invariant. If, after transforming all of

the fields in the Lagrangian, the Lagrangian maintains the same form, we say that the

Lagrangian is invariant under the symmetry, or that the symmetry is a “good” symmetry.

For a symmetry that has not been gauged, the parameter(s) which describe the transfor-

mation (e.g., χ in our Uem(1) example) are constants. This type of symmetry is called a

global symmetry, as the same transformation is applied everywhere in spacetime. To pro-

mote a theory into a gauge theory, we turn the global symmetries into local symmetries, in

which we allow the transformation parameters to vary as a function of spacetime location.

(E.g., χ is replaced with χ(xµ).) We now demand that the Lagrangian be invariant under

these local transformations. Some terms, such as ψ̄ψ, are invariant under both local and

global symmetries. However, other terms are not; this is particularly true of the kinetic

terms (required for each field), which involve derivatives. As an example, the kinetic term

for an electron, ψ̄γµ∂µψ, is invariant under local but not global Uem(1) transformations, as

ψ̄′γµ∂µψ
′ = ψ̄γµ∂µψ − iψ̄γµψ∂µχ. (1.3)

Consequently, to maintain the invariance, derivatives generally must be replaced with

gauge-covariant derivatives. A gauge-covariant derivative involves a gauge field, whose trans-

formation properties are determined by the requirement that the Lagrangian be invariant.

1Throughout this work, the symbol † will be used for the Hermitian conjugate. For Dirac spinors, an
overhead bar is used to designate ψ†γ0.
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For our example, the derivative acting on the electron is replaced with

∂µ → Dµ = ∂µ + ieAµ,

where Aµ is the gauge field. As this is a quantum field theory, the gauge fields have their

associated quanta, which are the particles which mediate the force represented by the gauge

field. In our Uem(1) example, the quanta of Aµ field are identified as photons, and the

force mediated by this field is electromagnetism. Generically, promoting a symmetry to a

gauge symmetry introduces interactions between the fields which are members of a multiplet

with a nonzero charge; these interactions are mediated by the gauge fields introduced in the

gauge-covariant derivative.

These gauge symmetries are internal symmetries of the theory, in contrast with spacetime

symmetries. These are the more familiar symmetries of rotations and Lorentz boosts, which

are represented by the Lorentz group. Including translations gives the Poincaré group, which

is the most general group of spacetime isometries of Minkowski spacetime. (We will return

to this point in Ch. 3, when we introduce supersymmetry.) As with gauge symmetries,

quantum fields are also assigned to multiplets of the Poincaré group.

Finally, we briefly classify the particle content of the Standard Model. The gauge fields

include the photon, the gluons, the W± bosons, and the Z boson, all of which are spin-1. A

fifth boson, the spin-0 Higgs boson, will be discussed in more detail below. There are also

spin-1/2 fermions which can be divided into two classes: quarks and leptons. Quarks carry

color charge and thus participate in the SUC(3) strong interaction, while leptons do not.

Fermions can also be organized into generations; each includes two quarks and two leptons.

(On a technical level, this is advantageous because it is not sufficient that the Lagrangian

be invariant under a symmetry; quantum corrections known as anomalies can still ruin the

symmetry. However, if the fermions come in complete generations, then the Standard Model

is free from anomalies.)
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Three generations of fermions are currently known. The first generation consists of the

up quark, the down quark, the electron, and the electron neutrino; the second generation

consists of the charm quark, strange quark, muon, and muon neutrino; the third generation

consists of the top quark, bottom quark, tau, and tau neutrino. The typical energy scale

of each generation is greater than the previous one, although as yet there is no known

explanation of this phenomenon.

In Ch. 6, we will introduce a new gauge symmetry regarding dark matter. Furthermore,

this understanding of interactions as gauge theories is foundation to the Higgs mechanism,

which will appear several times in this work, and which we discuss next.

1.2 Spontaneous Symmetry Breaking

The above introduction to the Standard Model emphasized the role of symmetries; how-

ever, not all the symmetries underlying a theory may be evident in the quantized theory (even

if the theory is anomaly-free). It is possible for the vacuum state to not be invariant under a

symmetry, even if the Lagrangian is invariant under that same symmetry. Consequently, the

symmetry will not be evident in the particle spectrum of the resulting theory, and we say

that the symmetry is spontaneously broken. This can give mass to the otherwise massless

gauge bosons through the Higgs mechanism, which was first presented in Refs. [11–13].

As an example, we first discuss a simplified model of spontaneous symmetry breaking.

Consider a theory of a single complex field, ϕ, with the potential

V = −m2ϕ2 + λϕ4. (1.4)

This potential is invariant under the U(1) symmetry ϕ→ ϕ′ = eiαϕ, where α is an arbitrary

phase. However, ϕ = 0 is a local maximum, not minimum, of the potential, and the theory

should be quantized about a minimum. The minimum of the potential is at the vacuum

expectation value 〈ϕ0〉 = eiβm/
√
2λ, with the phase β arbitrary. (That is, there is a set of
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degenerate minima parameterized by β.) Without a loss of generality, we may choose β = 0

and expand the potential about this point, which is an appropriate vacuum state. As the

U(1) transformation alters β, the vacuum state is not invariant under the U(1) symmetry.

We will now consider the real and imaginary components of the field φ separately; the

expansion amounts to the replacement

ϕ→ ϕ0 +
1√
2
(ϕ1 + iϕ2) , (1.5)

where the
√
2 accounts for the different number of degrees of freedom in real and complex

fields; both ϕ1 and ϕ2 are real fields. Performing the expansion and dropping unphysical

constants gives

V ′ = m2ϕ2
1 +m

√
λ
(

ϕ1ϕ
2
2 + ϕ2

1ϕ2

)

+
λ

4
ϕ4
1 +

λ

4
ϕ4
2 +

λ

2
ϕ2
1ϕ

2
2, (1.6)

which is no longer invariant under the symmetry ϕ→ ϕ′ = eiαϕ (which takes ϕ1 to cos(α)ϕ1

and ϕ2 to sin(α)ϕ2). Thus, the symmetry present in the original theory is broken by the

choice of vacuum.

We also note that there is also no quadratic term of the form ϕ2
2; since such a term would

represent the mass of the ϕ2 field, this field is massless. This is a consequence of Goldstone’s

Theorem [14]; this is a general result which predicts a massless boson for each generator of

the symmetry group which is “broken” (that is, for each generator that, when it acts on the

vacuum, does not return that vacuum). The other field ϕ1 does have a mass term.

As the above example illustrates, a symmetry is spontaneously broken when the origin

is not the global minimum of the potential. Since quantum field theories do not include

terms linear in the fields (such terms can always be eliminated by a field redefinition), the

behavior of the potential near the minimum is generally determined by the quadratic (mass)

term. Thus, spontaneous symmetry breaking occurs when the potential has a quadratic

term of the form −m2φ2. (Although naively such a theory appears to contain fields with an
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imaginary mass, the final quantized theory expanded about the proper vacuum contains no

such physically unreasonable mass values.)

In the Standard Model, the electromagnetic interaction and the weak interaction are united

into one fundamental interaction, the electroweak interaction, corresponding to the gauge

group SUL(2) × UY(1). Experimental evidence, though, shows that this symmetry appears

not to be realized; the Standard Model accommodates this by having the symmetry be

spontaneously broken through the Higgs mechanism. This mechanism also gives mass to the

W± and Z bosons, and possibly all of the fermions.

The Standard Model Higgs field has an associated potential, which has the same form

as Eq. (1.4), although the Higgs field ϕ is a complex doublet, not a complex scalar. The

elements of the SUL(2)× UY(1) symmetry group act on the complex doublet field as

ϕ→ ϕ′ = eiα·σ/2+iβϕ, (1.7)

where σ are the Pauli matrices. The doublet ϕ can be written in terms of four real compo-

nents as

ϕ =
1√
2





ϕ1 + iϕ2

ϕ3 + iϕ4



 . (1.8)

When this is expanded about a minimum of the potential, the resulting theory is no longer

invariant under the SUL(2)× UY(1) transformations, although it remains invariant under a

residual Uem(1) gauge symmetry, which is identified with the electromagnetic interaction.

Following Goldstone’s Theorem, we would expect the theory to contain three massless

bosons, corresponding to the three generators of the SUL(2) × UY(1) group that do not

leave the vacuum invariant; however, no such bosons are observed. This apparent conflict

is resolved through the Higgs mechanism, in which these degrees of freedom are “eaten

up” giving mass to the W± and Z bosons, which are necessarily massless in the original

SUL(2) × UY(1) gauge theory. Mathematically, when one expands ϕ about the minimum
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ϕ0, the gauge-covariant derivatives produce the terms m2W+W− and m′2Z2. The massless

Goldstone bosons become the longitudinal degrees of freedom for these now-massive bosons.

The fourth degree of freedom in the complex doublet ϕ remains in the final theory; like

ϕ1 in our example, it is a massive scalar boson. This Higgs boson was recently discovered

by the ATLAS and CMS experiments at the Large Hadron Collider (LHC) [15, 16]. In the

research presented here, the Standard Model Higgs mechanism appears in two places: in

Ch. 3, we consider modifications to electroweak symmetry breaking in a strongly-coupled

supersymmetric theory, and secondly, in Ch. 5 the Higgs boson will enable the decay of dark

sector particles to Standard Model particles. Additionally, in Ch. 6 we introduce a Higgs

mechanism in the dark sector to give mass to a dark mediator boson; this has important

effects on the cosmology of the resulting model.

1.3 Shortcomings of the Standard Model

Despite its immense experimental success, the Standard Model alone cannot be a complete

description of the subatomic world. In this section, we will focus on some of its failings,

which lead us to consider extensions of the Standard Model which address these issues. In

particular, the Standard Model cannot explain the observed matter-antimatter asymmetry

of the universe, nor does it provide a candidate particle for dark matter.

As is well known, matter and antimatter annihilate with each other. However, antimatter

is mysteriously missing in the cosmos. Large regions of antimatter in contact with matter

would produce copious amounts of electromagnetic radiation, but astronomers do not see

signals of significant matter anti-matter annihilation. Furthermore, the presence of additional

antimatter in the early universe would have altered the abundances of light nuclei produced

in big bang nucleosynthesis. All the evidence points to a cosmological abundance of baryons

over antibaryons, which is described by the parameter η = (nB − nB̄)/s, where nB is the

number density of baryons, nB̄ the number density of antibaryons, and s the entropy density
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of the universe. η remains approximately constant as the universe evolves; our current

observational evidence supports η ≈ 10−10.

In 1967, Sakharov laid out three conditions necessary to generate a baryonic asymmetry

in the early universe [17]. First, there must be baryon number violation; that is, some

process must treat baryons differently than antibaryons. Secondly, CP -symmetry must be

broken; otherwise, equal numbers of left-handed baryons and right-handed antibaryons will

be produced, leading to no net asymmetry.2 Finally, the interactions must occur out of

thermal equilibrium; otherwise CPT -symmetry ensures that processes that increase baryon

number and processes that decrease baryon number will occur at equal rates3.

Since these three conditions are necessary, it is reasonable to ask whether they occur

in the Standard Model. While QCD and QED do not have processes that treat baryons

differently than antibaryons, transitions involving electroweak sphalerons do not conserve

baryon number. Furthermore, the vertex for a W± boson interacting includes an element

from the CKM matrix, which has a single nonzero phase which breaks CP -symmetry. Thus,

two of the three ingredients are present, but the third, thermal non-equilibrium, is not.

The only opportunity for weak interactions to fall out of thermal equilibrium is during

the electroweak phase transition, in which the Higgs boson acquires its nonzero vacuum

expectation value. However, for a Higgs mass of about 125 GeV (as has recently been

measured by the ATLAS and CMS collaborations at the Large Hadron Collider [15, 16]),

this phase transition is second order [18]. Thus, the system does not depart from thermal

equilibrium, and the Standard Model alone cannot account for the observed preponderance

of matter over antimatter. In Ch. 4 and Ch. 7, we will discuss baryogenesis in two extensions

of the Standard Model.

2CP symmetry is the product of applying C and P symmetry operators to a system; C symmetry is in
the interchange of particle and antiparticles, while P (parity) inverts the spatial axes.

3CPT is the product of the C and P operators, described in the previous footnote, with T , which is the
time-reversal operator.
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In the early 1930’s, astronomers Jan Oort and Francis Zwicky observed that the speeds of

certain astrophysical objects were too fast for the amount of luminous matter present [19,20];

Oort considered orbital velocities of stars in the Milky Way, while Zwicky studied the speeds

of galaxies in clusters. This work was expanded upon in the 1970’s by Vera Rubin, who

studied the motion of stars in distant galaxies [21]. In all of these systems, the radial velocity

of an object at a particular radius is determined by the amount of mass enclosed by a sphere

at that radius. However, while the luminous material dropped off significantly as a function

of radius, these observations showed that the mass did not. Consequently, one is forced

to conclude that much of the mass within an individual galaxy or cluster is non-luminous.

Today, we believe that between 20 percent and 30 percent of the total mass-energy of the

universe is this non-luminous material, known as dark matter [22].

Even without extending the Standard Model, one can propose several possibilities for this

non-luminous material, such as dark holes, neutrinos, or massive compact halo objects (e.g.,

a relatively large number of planets of the size of Jupiter). Each of these possibilities is

discussed in the review [23], but none of the the Standard Model candidates prove viable.

For example, measurements of gravitational microlensing disfavor (normal) black holes and

massive compact halo objects, and neutrinos inhibit rather than assist early structure for-

mation. While astronomical observations eliminate the Standard Model possibilities, they

do not provide much guidance as to how to extend the Standard Model.

Perhaps the best-motivated candidates are WIMPs- weakly interacting massive particles.

As the universe expands and cools, interactions may not be sufficient to maintain a particu-

lar species in thermal equilibrium. If that particle is sufficiently long-lived, then the number

density of that species of particle evolves only through the expansion of the universe. Gener-

ically, a heavy particle with interactions near the weak scale freezes out at approximately

the correct abundance to account for dark matter; this is known as the WIMP miracle.

Supersymmetry (which will be discussed in Ch. 3 and Ch. 4) naturally provides a WIMP

dark matter candidate, the lightest supersymmetric particle. An overview of WIMPs, and
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supersymmetric WIMPs in particular, is given in Ref. [24].

However, models outside the WIMP paradigm have also been considered. While colli-

sionless cold dark matter is frequently taken as a generic baseline model, self-interactions

between dark matter may be desirable. Such interactions are necessary if dark matter is a

thermal relic (such as a WIMP), but they may also be motivated on other grounds. They

enable momentum-transfer within dark matter halos, which can establish cored profiles, as

opposed to a cusps [25]. Furthermore, they may resolve the “too-big-to-fail” problem, in

which the observed number of dwarf halos is well beneath the value expected from collision-

less dark matter simulations [26–28]. These may be weak interactions, or there may be an

entire dark sector with its own set of interactions.

In models of asymmetric dark matter, dark matter is assumed to carry its own baryon-

number-like asymmetry; high-energy operators produce this asymmetry along with the ob-

served baryon asymmetry (for a review, see Ref. [29]). In Ch. 5 and Ch. 6, we will consider

self-interactions in asymmetric dark matter models, with a particular focus on the formation

of dark matter bound states. Further motivation for these models will be discussed in these

chapters.
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CHAPTER 2

The Bethe-Salpeter Equation

Bound states are a generic feature of strongly-interacting systems, which are notoriously

difficult to study. One popular technique to study such systems is to perform numerical

analysis on a lattice; in the final step, the lattice spacing is taken to zero. In addition to being

computationally intensive, this approach requires one to choose numerical values for most or

all the parameters of a theory. This is not beneficial for exploring the generic features of some

extension of the Standard Model with several unknown and lightly constrained parameters.

Such a numerical analysis could miss certain features due to a poor choice of parameters;

conversely, if a promising result is obtained, one must question whether this is a fortuitous

result from a lucky choice of numerical values. Thus, there is a need for analytical tools to

study bound states; one such tool is the Bethe-Salpeter equation.

The Bethe-Salpeter equation will be used extensively in Ch. 3, in which we use it to analyze

supersymmetry bound states, and in Ch. 7, in which we use it to approximate small charge

Q-balls. It will also be mentioned in Ch. 5, in the discussion of the mass of dark matter

bound states. Therefore, in this chapter we will introduce the Bethe-Salpeter equation in

some generality and illuminate the points that will be important to the subsequent chapters.

A pedagogical introduction to the Bethe-Salpeter equation as used in particle physics, and

the Wick-Cutkosky model in particular, can be found in [30].
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Q K(P, p, k)
Q

S

S

PP

P/2 + p

P/2− p

P/2 + p

P/2− p

P/2 + k

P/2− k

=

Figure 2.1: The exact Bethe-Salpeter equation in vertex form. The double line represents

the bound state which carries momentum P , and the single lines represent the constituent

particles.

The Bethe-Salpeter equation gives a relativistically covariant formalism for describing a

bound state in a quantum field theory [31]. Mathematically, it is frequently written as:

Q(P, p) =

∫

d4k

(2π)4
K(P, p, k)S(k − P/2)Q(P, k)S(k + P/2), (2.1)

where Q is the Bethe-Salpeter amplitude, K is the kernel, and S are the propagators of the

two legs. This is represented symbolically in Fig. 2.1.1 This form of the equation is applicable

when the bound state is made of two identical particles, or a particle and its antiparticle.

We can transform the Bethe-Salpeter equation from the vertex form to an equation for

the wavefunction using

Q(P, p) = S(P − p/2)−1S(P + p/2)−1Ψ(P, p), (2.2)

which gives

S(P + p/2)−1S(P − p/2)−1Ψ(P, p) =

∫

d4k

(2π)4
K(P, p, k)Ψ(P, k). (2.3)

In these equations, K is the total kernel, which includes (with appropriate weightings) all

of the possible particle exchanges that contribute to the bound state. Similarly, S represents

1A similar figure appears in Ch. 3, where we identify the particles involved as squarks and consider one
specific kernel.
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the complete propagators, summed to all orders of perturbation theory. However, to make

practical use of the Bethe-Salpeter equation, one typically considers only the lowest order

contributions to K and S. For example, if the constituent particles are bosons, one may take

S(q) =
i

q2 −m2
, (2.4)

while for fermions one may use

S(q) =
i(/q +m)

q2 −m2
. (2.5)

The kernel depends on the particular characteristics of the interactions in the model;

perhaps the most commonly used kernel is the exchange of a single massless scalar boson.

If additionally the constituent particles (“legs”) are identical spin-0 bosons, then this is the

well-known Wick-Cutkosky model [32, 33]. In this case, to lowest order, the kernel is

K(P, p, k) =
A2

(p− k)2 , (2.6)

where A is the coupling constant between the legs and the exchanged massless scalar particle.

If we define λ = A2/16π2, then the Bethe-Saltpeter equation for the wavefunction is
[

m2 +

(

P

2
+ p

)2
][

m2 +

(

P

2
− p
)2
]

Ψ(P, p) =
λ

π2

∫

d4q
Ψ(P, q)

(p− q)2 , (2.7)

after a Wick rotation.

In Ch. 3, we will consider a similar model, also involving scalars, but with a crossed-graph

kernel with massive bosons. We will specifically be interested in the case in which the bound

state has zero mass; we will now consider this case in the Wick-Cutkosky model. (These

results will inspire our trial wavefunctions in the variational approach used in Ch. 3.) If

P 2 =M2 = 0, the above equation simplifies to

(m2 + p2)2Ψ(P, p) =
λ

π2

∫

d4q
Ψ(P, q)

(p− q)2 . (2.8)

This equation has a spectrum of solutions, each with a corresponding eigenvalue λ. One

particular solution of interest is Ψ(P, q) = (p2 + m2)−3; we now proceed to demonstrate
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that this does indeed satisfy the integral equation. Let us name the right hand side I and

introduce a Feynman parameter:

I =
λ

π2

∫

d4q
1

(p− q)2(q2 +m2)3

=
λ

π2

∫

d4q

∫ 1

0

dx
3(1− x)2

[x(p− q)2 + (1− x)(q2 +m2)]4

=
λ

π2

∫

d4q

∫ 1

0

dx
3(1− x)2

[(q − xp)2 + (1− x)(m2 + xp2)]4
. (2.9)

The denominator in the integrand can be rewritten as a Gaussian using the identity

B−4 =
1

3!

∫ ∞

0

α3e−αB dα, (2.10)

which gives

I =
λ

2π2

∫

d4q

∫ 1

0

dx

∫ ∞

0

dα (1− x)2α3 exp
(

α[(q − xp)2 + (1− x)(m2 + xp2)]
)

. (2.11)

Although this appears complicated, we can now perform the d4q integral, as it is a Gaussian

integral; the result is

I =
λ

2π2

∫ 1

0

dx

∫ ∞

0

dα
π2

α2
· α3(1− x)2 exp

(

α(1− x)(m2 + xp2)
)

. (2.12)

Next the dα integral gives

I =
λ

2

∫ 1

0

(1− x)2 dx
(1− x)2[m2 + xp2]2

=
λ

2

∫ 1

0

dx

[m2 + xp2]2
, (2.13)

and the remaining integral is

I =
λ

2m2

1

m2 + p2
. (2.14)

This does indeed equal the left hand side of the Bethe-Salpeter equation

(m2 + p2)(m2 + p2)−3 =
1

m2 + p2
, (2.15)

if the eigenvalue is λ = 2m2. As mentioned, this result in the Wick-Cutkosky model will

be used to motivate our choice of trial wavefunctions in Ch. 3. As we will work with the

vertex form of the Bethe-Salpeter equation, we note that the corresponding vertex solution

is Q(0, p) = 1/(p2 +m2).
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In the general case in which the bound state mass is not zero, one can transform the integral

equation into a differential equation [33]. One way of writing this differential equation is [30]

d2Ψn

dt2
+

[

λ

t[m2(1 + t)2 −M2t2]
− n(n+ 2)

4t2

]

Ψn = 0. (2.16)

Although we will not repeat the derivation here, for sufficiently small λ, the eigenvalues of

this differential equation are approximately [33]

λ =
2

π

√

1−M2/4. (2.17)

Inverting this equation for the mass of the bound state, we find

M2 = 4m2 − λ2π2m2 = 4m2 − A4

256m2π2
, (2.18)

which, in the limit that A≪ 1, gives

M = 2m− A4

1024m3π2
, (2.19)

which we will see again in Ch. 7 as Eq. (7.22).

Thus far, we have only considered the scenario in which the two constituent particles are

identical; this is sufficient for the strongly-interacting MSSM scenario we investigate in Ch.

3 and Ch. 4. However, when we discuss the growth of small Q-balls in Ch. 7, we will have

different particles on the upper and lower legs. The more general Bethe-Salpeter equation

appropriate to this scenario is (after a Wick transformation)

[

(m+∆)2 + (p− iη1P )2
] [

(m−∆)2 + (p− iη2P )2
]

Ψ(P, p) =
λ

π2

∫

d4q
Ψ(P, q)

(p− q)2 , (2.20)

where m1 = m+∆, m2 = m−∆, and

η1 =
m1

m1 +m2

, η2 =
m2

m1 +m2

. (2.21)

We have inserted a kernel which corresponds to the exchange of a single massless boson, and

again the legs are also scalars. The eigenvalue is now λ = A1A2/16π
2, where A1 and A2 are

the couplings at the top leg and bottom leg respectively. As before, this integral equation
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can be transformed into a differential equation, and a change of variables transforms it to a

form reminiscent of the equal mass case (see the extended derivation in [30]). The resulting

differential equation is

d2Ψn

dt̃2
+

[

λ/(1−∆2/m2)

t̃[m2(1 + t̃)2 + ((M2 − 4∆2)/(1−∆2/m2))t̃]
− n(n+ 2)

4t̃2

]

ψn = 0. (2.22)

The similarities in form to Eq. (2.16) are evident. We conclude that if λ = F (M2) is the

eigenvalue spectrum in the equal mass case, then in the unequal mass case,

λ

1−∆2/m2
= F

(

M2 − 4∆2

1−∆2/m2

)

. (2.23)

Using Eq. (2.17), we write

λ

1−∆2/m2
=

2

π

√

1− 1

4

(

M2 − 4∆2

1−∆2/M2

)

, (2.24)

which, when solved for M2, gives

M2 = 4∆2 + 4m2

(

1− ∆2

m2

)[

1− λ2π2

4(1−∆2/m2)

]

. (2.25)

This relation will be used extensively in Ch. 7, where it appears as Eq. (7.25).
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CHAPTER 3

Strongly-Interacting Supersymmetry

3.1 A Brief Introduction to Supersymmetry

The introductory chapter discussed the important role of symmetries in the Standard

Model; consequently, a natural question is to what extent the symmetries of the Standard

Model can be extended. While the gauge symmetry group can be embedded in larger groups,

the same cannot be said of the Poincaré group which describes spacetime symmetries. This

important “no-go” theorem was proved by Coleman and Mandula in 1967 [34].

More precisely, they showed that, for a theory with non-trivial interactions between fields,

the underlying Lie algebra must be a direct product of the Lorentz algebra and an algebra

describing an internal (that is, gauge) symmetry group. The Lorentz algebra underlies

the Lorentz group and its non-simply-connected extension, the Poincaré group. Thus, the

Coleman-Mandula “no-go” theorem seemed to prove that the only possible way to extend

the Standard Model is to introduce new gauge interactions.

However, a loophole was discovered in 1971: one can build a quantum field theory based

on a superalgebra instead of an algebra [35, 36]. Superalgebras are a more general mathe-

matical concept than algebras; the defining relations between generators can include anti-

commutation relations. (Formally, superalgebras are algebras with a Z2 grading.) Super-

symmetric models extend the spacetime symmetries of the Standard Model using these su-

peralgebras; the simplest of these is the Minimal Supersymmetric Standard Model (MSSM).
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The new symmetry introduced by the superalgebra relates bosons (integer spin particles)

to fermions (half-integer spin particles). All supersymmetric models necessarily predict the

existence of an equal mass fermion for each boson and vice versa. These “superpartners” have

not been observed experimentally, and so it was immediately evident that supersymmetry

cannot possibly be a “good” symmetry. However, just as the Standard Model SUL(2) gauge

theory is spontaneously broken, supersymmetry may be a broken symmetry. Thus, although

supersymmetry is, by some measure, one of the most elegant extensions of the Standard

Model, its elegance is dramatically decreased by the ad hoc introduction of supersymmetry-

breaking terms.

There are two primary ways of breaking supersymmetry, gauge-mediated supersymmetry

breaking and gravity-mediated supersymmetry breaking. For our purposes, it is important

that supersymmetry breaking generically introduces trilinear terms into the Lagrangian of

the form:

AijQ
†
UiHuqUj + A′

ijQ
†
DiHdqDj + h.c. (3.1)

where Q is the squark SUL(2) doublet; the subscript U designates the up-type doublets and

D designates the down-type doublets. A lower-case q denotes SUL singlets, and again, U

and D subscripts distinguish up and down-type quarks. i and j are flavor indices, and the

Higgs doublets Hu and Hd are the up- and down-type doublets respectively. By strongly-

interacting supersymmetry, we will mean a model in which the scale of these couplings Aij

and/or A′
ij is large compared to the scale of the squark masses.

Given that supersymmetry must be a broken symmetry, one may question the motivation

of such extensions of the Standard Model. Here, we briefly give two. Although the Standard

Model is renormalizable, the renormalization procedure for the Higgs mass requires certain

“bare” parameters to be fine-tuned to many orders of magnitude, which is considered unnat-

ural. In unbroken supersymmetric models, the fermionic and bosonic loop corrections to the

Higgs mass exactly cancel, and no fine-tuning is necessary. Since supersymmetry is broken,
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the cancellation is not perfect, but a Higgs mass near or just above the electroweak scale

remains natural. In general, the divergences which require renormalization are far less severe

in supersymmetric models due to the cancellation of fermionic and bosonic contributions.

Secondly, many supersymmetric models include a charge which distinguishes supersym-

metric particles from Standard Model particles. If this charged is conserved, the lightest

supersymmetric particle cannot decay. As supersymmetric particles will generally be pro-

duced in the early universe and eventually decay into the lightest supersymmetric particle,

we expect a large number of these remain at present. These may interact weakly with Stan-

dard Model particles, and therefore, this lightest supersymmetry particle is a good dark

matter candidate.

3.2 Motivation for Strongly-Coupled Supersymmetry

The ATLAS and CMS experiments at the Large Hadron Collider have recently discovered

a Higgs boson with a mass of 125 GeV [15,16]. This mass is larger than the range predicted

for the lowest mass Higgs boson in the MSSM, and additionally, these experiments have

not yet observed any superpartners [37]. There have been a number of efforts to reconcile

these observations with low-energy supersymmetry (e.g., Refs. [38–40]). At least one of

these models [40] assumes strong couplings in the supersymmetry breaking sector. This is

perhaps somewhat unusual, because models with gauge-mediated supersymmetry breaking

generically predict a small trilinear supersymmetry-breaking coupling A. However, a large

value of this coupling is helpful in raising the range of the Higgs boson masses toward 125

GeV [38, 41]. Large trilinear terms can appear in gauge-mediated supersymmetry breaking

models, albeit some fine-tuning of parameters may be required in a realistic model [38].

It has already been established that the exchange of the (lighter) Higgs boson between

(heavier) squarks can lead to formation of bound states [42, 43]. Thus, large trilinear cou-

plings lead to a new strongly coupled realization of the Minimal Supersymmetric Standard
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Model (MSSM). In this chapter, we focus particularly on the possibility that supersymme-

try breaking may trigger electroweak symmetry breaking via the formation of squark bound

states with the same quantum gauge numbers as the fundamental Higgs boson. These new

states can mix with the Higgs boson and thus they also can acquire a nonzero vacuum ex-

pectation value (VEV). Consequently, the resulting multi-Higgs low-energy effective theory

may have a very different appearance from the usual weakly coupled MSSM.

Let us consider a simplified version of MSSM, in which we will focus only on the third

generation of squarks. For simplicity, we will further assume that only one of the trilinear

terms is large,

L = At(t̃L ·Hu)t̃R, (3.2)

where t̃L is the Y = 1/3 stop doublet under SUL(2), t̃R is the Y = 4/3 stop singlet, and Hu

is the Y = −1 Higgs doublet. (For clarity, we have not written the full potential; we assume

that it also includes the usual quartic H4
u term and mass terms.) To further simplify matters,

we additionally assume the squarks have a common massM of a few TeV, considerably larger

than the Higgs mass m.

We have suppressed the SUC(3) indices in Eq. (3.2), and we will concentrate on the

color-singlet bound state. We acknowledge that the same exchange of Higgs bosons will

generally also produce SUC(3) non-singlet bound states. However, the singlet is the only

bound state that can mix with the fundamental Higgs boson, and as will be discussed in

below, consequently there is a range of parameters in which this bound state alone has a

non-zero VEV. In this case, the SUC(3) symmetry underlying quantum chromodynamics

remains unbroken.

We have referred to the bound states as being made of squarks exchanging Higgs bosons.

However, this terminology requires some care. The trilinear coupling constant At will, in

general, evolve with scale. If it remains large at all scales, then there is no regime in which
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it is proper to speak of individual squarks, as they are never the appropriate degrees of

freedom to use in an effective theory. Furthermore, as mentioned in Sec. 3.1, one motivation

for supersymmetry is its high-energy behavior, in which the quadratic divergences present

in the Standard Model are weakened due to the (near) cancellation between fermionic loops

and bosonic loops. If the degrees of freedom that appear in the weakly-coupled MSSM do

not appear at high energy, this result is called into question.

We note that the analysis presented below will, in fact, assume only that |At| is large; the
specific sign of the coupling will not appear. If At is large and positive, the analysis of [38]

suggests that perturbativity is not regained as the energy scale increases. However, if |At|
is large while At itself is negative, then perturbativity may be regained, since At increases

as the renormalization scale increases. In this scenario, the desired loop cancellations are

certainly retained; the formation of bound states at low energies has no impact on the high

energy behavior. The difference with the MSSM is in the low-energy effective theory, which

contains different degrees of freedom: fewer squarks and more Higgs bosons, whose VEVs

produce a more complicated vacuum. In particular, in this vacuum the usual MSSM relations

between the gauge couplings and the scalar self-coupling do not hold, and, therefore, there

is no reason for the upper bound on the lightest Higgs boson to be the same as in the usual

version of MSSM. Hence, the tension between the MSSM and the observed Higgs mass is

ameliorated.

Thus, strongly-coupled supersymmetry may retain the beneficial aspects of supersymmetry

while addressing the relatively large observed Higgs mass; we are therefore motivated to

investigate the low-energy behavior of this theory. Due to the presence of additional bound

state Higgs-like doublets, a particular interest is electroweak symmetry breaking.
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=
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Q(P, k) K(k, p)
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P/2− p

Figure 3.1: The Bethe-Salpeter equation in vertex form. The double line represents the

bound state Φ with momentum P , and the single lines represent the constituent squarks.

3.3 Electroweak Symmetry Breaking By the Bound-State Higgs

The up-type Higgs boson that breaks electroweak symmetry in the MSSM must be a

CP+ scalar doublet with Y = 1; additional doublets, of any source, with the same quantum

numbers will generically modify electroweak-symmetry-breaking. Such a doublet does arise

in the strongly-coupled realization of supersymmetry considered here, as a (t̃Rt̃
†
L) bound

state. We might ask whether this bound state can possibly supplant the fundamental Higgs

boson in triggering electroweak symmetry breaking; this question will be investigated in this

section. (Note, however, that even if it is possible to trigger electroweak symmetry breaking

with the bound state, the fundamental Higgs boson is not superfluous; the bound state itself

is held together through the exchanged of members of the fundamental Higgs doublet.)

The bound state can be described by a Euclidean Bethe-Salpeter equation, as shown in Fig.

3.1. This Bethe-Salpeter equation is written in vertex form, where the internal lines represent

propagators and the usual Bethe-Salpeter wave function Ψ(P, p) is related to Q(P, p) by

[

(

P

2
+ p

)2

+M2

][

(

P

2
− p
)2

+M2

]

Ψ(P, p) = Q(P, p). (3.3)

A general discussion of the Bethe-Salpeter equation and its solutions is given in Ch. 2. We

present the Bethe-Salpeter equation in this form because it is reminiscent of the chiral gap

equation; indeed, we will derive a similar gap equation below. In chiral symmetry breaking,

the gap equation describes the mass splitting between the chiral states; our analogous gap
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equation will likewise describe the mass splitting between left- and right-handed stops. Since

a mass splitting between left- and right-handed states (or as it is more commonly described,

a mass term connecting left- and right-handed states) is a hallmark sign of electroweak

symmetry breaking, we can use our gap equation to determine when electroweak symmetry

breaking has occurred. Namely, if we find the condition for which the gap equation has a

non-trivial solution, we will have found the condition for the bound state Higgs doublet to

break electroweak symmetry, given some caveats to be specified below.

We have mentioned that the bound state will generically mix with the Higgs doublet, and

so the mass eigenstates will generally be mixtures of the two. We will incorporate this mixing

in the following section; in this section, we assume no mixing between the fundamental and

bound state Higgs doublets. This allows us to determine whether the bound state alone can

drive electroweak symmetry breaking.

We have already represented the Euclidean Bethe-Salpeter equation diagrammatically in

Fig. 3.1; mathematically, this equation is

Q(P, p) =
A4
t

(2π)4

∫

d4k Q(P, k)
1

[(P/2 + k)2 +M2][(P/2− k)2 +M2]
K(P, p, k). (3.4)

For simplicity, we have suppressed an SUL(2) spinor index on Q and a corresponding factor

δij on the kernel. The lowest-order contribution to the kernel is a crossed graph, as shown

in Fig. 3.2. In this figure, the line labeled (P/2) + p represents an outgoing t̃R, and the line

labeled (P/2) − p represents an outgoing t̃†L. The lines labeled L, R are the stops, and the

exchanged dashed lines are the fundamental up-type Higgs fields of the MSSM.

As discussed in Ch. 2, the Bethe-Salpeter equation has been solved exactly in the case

of the exchange of a single massless scalar particle; this is the well-known Wick-Cutkosky

model [32, 33]. Unfortunately, our kernel is complicated by two factors: first, we have

a crossed graph involving the exchange of two bosons, not one, and secondly, we cannot

approximate the exchanged bosons as massless. If this were the case, then we would be
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Figure 3.2: The lowest-order kernel for the Higgs-like bound state.

at the onset of spontaneous electroweak symmetry breaking due to the fundamental Higgs

boson; however, we are interesting in the possibility of breaking electroweak symmetry with

the bound state Higgs doublet. Due to these two complications, we have not been able to

perform a general analysis of the Bethe-Salpeter equation. If one were able to solve this

integro-differential equation for a general momentum P , the result would be a relationship

between the values of P at which the equation has a non-trivial solution and the coupling

At.

However, for our purpose of investigating electroweak symmetry breaking, the general

solution is unnecessary. Since P 2 = m2
BS, where mBS is the mass of the bound state, and

electroweak symmetry breaking occurs when the mass-squared become negative, we can look

at the specific value P 2 = m2
BS = 0, which corresponds to the onset of symmetry breaking.

Strictly speaking, at P = 0, we have four degenerate massless bound states, which correspond

to the two complex elements of the bound states SUL(2) doublet. As in the Standard Model

Higgs mechanism, at the onset of symmetry breaking, these states can also be considered as

states of a broken SUL(2)×UY(1) theory: here we have a zero-mass composite Higgs boson,

plus three zero-mass Nambu-Goldstone bosons.

The simplifications that result from setting P = 0 allow us to investigate the kernel, and

the resulting gap equation, with decent quantitative accuracy. We introduce the notation

K(p, k) = K(k, p) for the original kernel evaluated at P = 0. We first summarize our goal:

Eq. (3.4), with P = 0, is an integro-differential eigenvalue equation. These eigenvalues are
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proportional to A4
t ; if we imagine slowly increasing |At|, the equation will at first have no

non-trivial solutions. This does not mean that bound states do not exist; rather, they do

not satisfy the Bethe-Salpeter equation with P 2 = 0 (nor should they, since they have a

positive mass-squared). As |At| increases, it reaches the lowest eigenvalue, at which point

the gap equation has a non-trivial solution (namely, the corresponding eigenfunction). This

eigenfunction, which gives the bound state wavefunction, signals the presence of the massless

states discussed above. Hence, our goal is to find the lowest eigenvalue of the P = 0 equation,

which we can solve in turn for the value of the coupling |At| at which the bound state mass-

squared becomes zero.

In the general case of a Bethe-Salpeter equation evaluated at P = 0, the Bethe-Salpeter

wave function Ψ(P, p) is the Fourier transform of the matrix element1

ψ(X, x) =
〈

0
∣

∣T (t̃†L(x1)t̃R(x2))
∣

∣P
〉

(3.5)

with P conjugate to the center-of-mass coordinate X = (1/2)(x1 + x2) and p conjugate to

x1 − x2; the state |P 〉 is the bound state. At P = 0 this looks like a vacuum-to-vacuum

propagator ∆LR(x1 − x2), but one must be careful when using this language. The true

vacuum is a non-perturbative construct, which may in general be quite different from the

bare vacuum (as in superconductivity, for example). In our case, the true vacuum has

matrix elements connecting L and R stop squarks, which represent the usual mass terms.

This connection comes from a symmetry-breaking order parameter that is a mass splitting

δM2(p2) found in this LR propagator which mixes L and R squarks. The order parameter

obviously vanishes in the symmetric case. (This is analogous to the evolution of the ψψ

propagator in superconductivity as the temperature increases [44].)

To lowest order in this order parameter (that is, the matrix element connecting L and R

stop squarks), the diagonal propagators of the tL,R fields are just those already shown in the

1We continue to use t̃L and t̃R for the legs; however, in the general case the particles are not necessarily
squarks.
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Bethe-Salpeter equation,

∆LL(p) = ∆RR(p) =
1

p2 +M2
, (3.6)

while the LR mixing propagator is

∆LR(p) =
1

p2 +M2
δM2(p2)

1

p2 +M2
. (3.7)

Above, we discussed the interpretation of the Bethe-Salpeter equation evaluated at P = 0

at the onset of spontaneous symmetry breaking. Let us now consider the behavior one

expects as |At| is further increased. As mentioned, at the onset of symmetry breaking we

can think of the four massless states, previously considered as the elements of the complex

bound state Higgs doublets, as one (real) bosonic degree of freedom (the Higgs boson) and

three other (real) massless states. At larger |At| we expect a tachyonic (P 2 = m2
BS < 0)

solution [45]. When the theory is considered in the correct vacuum, one finds one massive

real boson and three massless bosons, which are “eaten up” giving mass to the W± and

Z bosons. This is completely analogous to the Standard Model, in which the Mexican-hat-

shaped potential is stabilized by the non-perturbative vacuum, which results in a condensate

and a massive Higgs boson.

Several times we have made reference to a gap equation. The gap equation is an integral

equation whose solution is the symmetry-breaking order parameter; hence, a non-trivial

solution corresponds to a non-trivial order parameter and hence symmetry breaking. To

connect this to the picture of symmetry breaking already presented, we will show explicitly

that the gap equation is essentially the Bethe-Salpeter equation at P = 0. Hence, the basic

equation we use in our analysis can be motivated either by considering the appearance of a

scalar field with negative mass-squared as the hallmark of electroweak symmetry breaking

as, or one can take the development of a mass term which mixes left and right state as

the hallmark sign. In the first case, one begins with the Bethe-Salpeter equation, and in

the second case, one begins the gap equation, but both of these ultimately give the same

equation. (Strictly speaking, the first scenario should be phrased in terms of the appearance
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Figure 3.3: Diagrams for the effective potential quadratic in δM2 (weights not shown).

of the massless Nambu-Goldstone bosons in the true vacuum, but these Nambu-Goldstone

bosons are also a consequence of a non-trivial solution of the gap equation [44]. See [46] for

a proof of this Nambu-Goldstone mechanism in gauge theories such as QCD.)

Let us derive the gap equation. We express the dynamics of symmetry breaking through

the usual two-particle irreducible (2PI) effective potential Γ [47], in which Γ is a functional

of δM2(p2). As mentioned, in this section we ignore a number of interesting phenomena,

including the VEV of the elementary Higgs field and its mixing with the bound-state Higgs;

therefore, the effective potential (in the notation of [47]) is

Γ =
1

2
Tr
(

ln(G) + [1−GG−1
0 ]
)

+ 2PI graphs, (3.8)

where the trace is over space-time as well as the other relevant indices. G is the exact

propagator, and G0 is the free propagator (when relevant; the term in square brackets is

omitted for the LR propagator). The Schwinger-Dyson equations of the theory can be found

by considering the extrema of Γ as the G are varied.

To lowest order in δM2, the effective action Γ is given by the diagrams shown in Fig. 3.3,

which give the following expression

Γ =
1

2

∫

d4p ρ(p2)[δM2(p2)]2 − A4
t

2(2π)4

∫

d4p

∫

d4k ρ(p2)δM2(p2)K(p, k)ρ(k2)δM2(k2),

(3.9)
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where

ρ(k2) =
1

(k2 +M2)2
. (3.10)

Variation of the quadratic terms in Γ with respect to δM2 yields

δM2(p2) =
A4
t

(2π)4

∫

d4k
1

k2 +M2
δM2(k2)

1

k2 +M2
K(p, k). (3.11)

This is the promised gap equation, and just as for chiral gap equations, it is the original

Bethe-Salpeter equation (in vertex form) at P = 0. (To see that this is identical to the

Bethe-Salpeter approach, set P = 0 in Eq. (3.3), and then identify Q(0, p) with δM2(p2).)

This illustrates again the necessary existence of composite Nambu-Goldstone bosons when

symmetries are broken without elementary Higgs fields [44,46]. This gap equation differs from

chiral symmetry breaking gap equations because the kernel is well-behaved in the ultraviolet

limit. The kernel falls like 1/p4 (modulo logarithms) at large momentum, implying the same

falloff for δM2; thus Eq. (3.11) is finite.

To analyze Eq. (3.11) we need to first study the kernel K(p, k), which has the form

K(p, k) =
1

(2π)4

∫

d4ℓ
1

[ℓ2 +M2][(p+ ℓ)2 +m2][(k + ℓ+ p)2 +M2][(k + ℓ)2 +m2]
. (3.12)

Next we introduce Feynman parameters in order to perform the spacetime integral. Then

K(p, k) =

∫

d4ℓ

(2π)4

∫

dx1 dx2 dx3 dx4
3!δ(1− x1 − x2 − x3 − x4)

D4
0

, (3.13)

where

D0 = x4(ℓ
2 +M2) + x3[(ℓ+ p)2 +m2] + x2[(ℓ+ p+ k)2 +M2] + x1[(k + ℓ)2 +m2], (3.14)

= (x1 + x2 + x3 + x4)ℓ
2 + 2ℓ · [x3p+ x2(k + p) + x1k] + x3p

2 + x2(k + p)2 + x1k
2

+M2(x2 + x4) +m2(x1 + x3). (3.15)

We define a new variable of integration, ℓ′ = ℓ+ x3p+ x2(k + p) + x1k. The integral over ℓ′

can be performed, which yields

K(p, k) =
1

16π2

∫

∏

i=1...4

dxi δ

(

1−
∑

i

xi

)

1

D2
, (3.16)
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where

D = k2(x1x2+x3x4)+p2(x1x4+x2x3)+(p+k)2x2x4+(p−k)2x1x3+M2(x2+x4)+m2(x1+x3).

(3.17)

We assume that the squarks are significantly heavier than the fundamental Higgs boson;

that is, M2 ≫ m2. In this case, x2, x4 must be small compared to the other Feynman

parameters, and so we write x2 = λx and x4 = λ(1− x), with the new integration variables

running from 0 to 1. The integral over λ will be dominated by small λ, so we can drop this

variable judiciously. Then approximately

∏

i=1...4

dxi δ

(

1−
∑

i

xi

)

= λ dλ dx dx1 dx3 δ(1− x1 − x3) (3.18)

and

D = x1x3(p− k)2 +m2(x1 + x3) + λ[ak2 + (1− a)p2 +M2], (3.19)

where

a = x1x+ x3(1− x), 0 ≤ a ≤ 1, (3.20)

and we dropped a term ∼ λ2 in D.

With this approximation, we can do the integral over λ explicitly, with the result

K(p, k) ≈ 1

16π2

∫

dx1 dx3 dx δ(1− x1 − x3)
[

1

A2
ln

[

A+B

B

]

− 1

A(A+B)

]

, (3.21)

where

A = [ak2 + (1− a)p2 +M2], B = x1x3(p− k)2 +m2. (3.22)

Let us discuss the high-energy behavior of the kernel. If k2 ≫ p2, we may drop the terms

in A and B which are proportional to p2. Then B no longer depends on x and the x integral

can be done analytically, giving

K → ln(k2)

8π2k4
. (3.23)
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Thus, the kernel vanishes rapidly at high momentum k; this confirms our earlier claim that

the kernel was well-behaved in the ultraviolet regime. (This is important because the kernel

goes inside an integral over d4k in the gap equation, Eq. (3.11). If the kernel became infinite

at large momenta k, the d4k integral in the gap equation would diverge, as does the chiral

gap equation.)

Now that we have reduced our kernel to the simpler form of Eq. (3.21), we return to

studying the gap equation (or P = 0 Bethe-Salpeter equation) given by Eq. (3.11). The

next step is to reduce it to a one-dimensional integral by integrating over the angles of k.

We observe that the angle between the four-momenta p and k appears only in logarithms or

in a term parametrically small with respect to M2; this allows us to make the approximation

∫

dΩkF [(p− k)2] ≈ 2π2
[

Θ(p2 − k2)F (p2) + Θ(k2 − p2)F (k2)
]

. (3.24)

This is exactly true for F = 1/(p − k)2 and for constant F , and it is acceptable for the

logarithmic functions we encounter.

Formally, this approximation is equivalent to projecting out the s-wave contribution to

the kernel. To lowest (quadratic) order in δM2, the relevant part of the effective potential Γ

is

Γ =
1

2

∫

dp2 p2ρ(p2)[δM2(p2)]2− A4
t

2(2π)4

∫

dp2 p2 dk2 k2ρ(p2)δm2(p2)K̂(p2, k2)ρ(k2)δM2(k2),

(3.25)

where K̂ is the s-wave projection of the kernel, which is Eq. (3.21) after the approximation

(3.24) has been made. Variation of this equation gives the s-wave projection of Eq. (3.11),

which is a standard one-dimensional homogeneous Fredholm integral equation with a discrete

spectrum of eigenvalues A4
t . From either perspective, one arrives at the equation

δM2(p2) =
A4
t

(2π)4

∫

dk
k3 δM2(k2)

(k2 +M2)2
K(p, k). (3.26)
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We seek the lowest eigenvalue of this equation using a variational principle: we insert a

trial function into Eq. (3.25) and perform the integrals numerically. We then minimize the

resulting eigenvalue with respect to the variational parameter that describes the family of

trial functions. To motivate our trial functions, we consider first the known exact results for

a kernel in which only a single, massless scalar is exchanged [32],

K ∼ 1

(p− k)2
. (3.27)

For the vertex form of the Bethe-Salpeter equation, given in Eq. (3.3), the lowest eigenfunc-

tion at P = 0 is

Q(0, p) ≡ δM2(p2) ∼ 1

p2 +M2
. (3.28)

(A proof of this is given in the discussion of the Bethe-Salpeter equation in Ch. 2.)

In the present problem the asymptotic behavior of the kernel is different (as shown in Eq.

(3.23)), so we chose the following as a zeroth-order trial function:

δM2
0 (p

2) ∼ 1

p4 + µ4
. (3.29)

We have studied other trial functions, such as 1/(p2 + µ2)2, with similar results. We

improve this first variational estimate by using δM2
0 as input to the right-hand side of Eq.

(3.25) and numerically calculating a new output δM2
1 . We made a simple but accurate fit

to δM2
1 , amounting to adding a term ∼ p to the denominator of Eq. (3.29). Then we used

the average δM2
2 ≡ (1/2)(δM2

0 + δM2
1 ) as a trial function, and calculated the output again.

This yields excellent agreement between the new input and output, as shown in Fig. 3.4, for

the specific value m/M = 0.05.

At this specific mass ratio, the critical coupling resulting from our numerical calculations

is
At
M
≈ 15.14. (3.30)
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Figure 3.4: A comparison of the input and output using the second-order eigenfunction δM2,

as a function of p2/M2, calculated numerically as described in the text. In the case of the

exact solution, the two curves would be identical.
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Figure 3.5: Behavior of the critical coupling as a function of the elementary Higgs mass.

Given our motivation of accommodating the observed Higgs boson mass of 125 GeV, it is

useful to compare this result with the value At/M =
√
6, which maximizes the lightest

Higgs mass in an approximate one-loop calculation [38, 48, 49]. We see that the coupling

which breaks electroweak symmetry is substantially larger. However, this is not the final

conclusion, since we have neglected mixing between the fundamental Higgs boson and the

bound state Higgs boson; this will be discussed below. Before we do so, though, the behavior

of the critical coupling as a function of the mass ratio is of interest. This is shown in Fig.

3.5. As expected, the critical coupling increases with increasing Higgs mass. We see that

even as m/M approaches zero, the critical coupling remains well above
√
6.
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3.4 Seesaw Symmetry Breaking: Effects of Including Mixing

The critical value determined above, At/M ≈ 15, has another significant drawback, from a

phenomenological perspective. To have a viable model, we must produce a Standard Model-

like vacuum state, in which SUL(2)×UY(1) is broken but SUC(3) remains a good symmetry.

Even in its traditional realization, the MSSM has a number of dangerous color breaking

minima, and even minima in which electric charge is not conserved [50–57].

If the Standard-Model-like vacuum is only a local minimum, one has to examine cosmolog-

ical evolution; in many cases the vacuum that is populated first is the one in which the color

symmetry is preserved. Thus, cosmological evolution may favor the vacuum with unbroken

SUC(3) even in some cases where it is not the global minimum of the potential [56, 58]. An

approximate criterion for the absence of dangerous color and charge breaking minima, based

on the analysis of [56], is
At
M

. 2.7, (3.31)

This is well-beneath the value of At/M ≈ 15 found above.

In fact, the problem is even more pronounced in our model. In addition to the color-singlet

states, the same trilinear scalar interactions can cause colored bound states to form. Since

the scalar exchange forces are essentially color-blind, the bound states with different SUC(3)

properties can have similar binding energies. Therefore, the analysis performed above applies

equally well to both the states carrying color and without color, and so we conclude that

at At/M ≈ 15 all acquire a nonzero vacuum expectation value, breaking SUC(3). Instead,

we prefer a vacuum in which SUC(3) is preserved, in which the colored bound states are

confined into color singlet through interactions with gluons, squarks, or quarks.

We will now show that by considering mixing between the fundamental Higgs boson and

the bound state Higgs boson, electroweak symmetry breaking can occur for smaller ratios of

At/M , which at least appears to allow us to escape the above problems. This alone is not
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sufficient to ensure that the resulting model is phenomenologically viable; these issues, along

with a more extended treatment of protecting color symmetry, are addressed in Ch. 4.

In our case, we must now re-examine the same issue of electroweak symmetry breaking,

taking into account a number of new effective degrees of freedom, including those carrying

color charge. While the full analysis is obviously complicated and the results will inevitably

be model-dependent, there is one feature of the color-singlet states that sets them apart from

the rest: they can have a mixing with the fundamental Higgs bosons. In fact, this mixing

proceeds via the same coupling as that which enters the Bethe-Salpeter equation, and so the

mass matrix in the bound-state-fundamental-Higgs basis necessarily has both diagonal and

off-diagonal terms.

As the trilinear coupling increases, the mass-squared of all of the bound states decreases,

as discussed above. However, due to the off-diagonal terms, a linear combination of the

fundamental Higgs boson and the colorless bound state can develop a nonzero vacuum ex-

pectation value while the diagonal terms are positive. Since one of these diagonal terms

represents the mass-squared of the colorless bound state, which is expected to be similar to

the mass-squared of the color-charge-carrying bound states, we conclude that this leads to

a vacuum in which SUC(3) is not broken by a colored bound state VEV.

Let us now discuss this possibility in more detail. In this case, electroweak symmetry

breaking occurs via a symmetry-breaking seesaw, when the following mass matrix has a

negative eigenvalue:

M2
H =





µ2
H m2

HB

m2
HB m2

BS



 . (3.32)

Here µ2
H is the Higgs mass-squared parameter, which is negative in the Standard Model,

but which we take to be positive; mHB is the mixing parameter calculated from the diagram

shown in Fig. 3.6, and mBS is the mass of the bound state. Our calculations above dealt with

m2
BS = P 2 = 0, which required the large value of At/M quoted in Eq. (3.30). However, in
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Figure 3.6: Mixing of the composite and fundamental Higgs fields.

the presence of mixing, the symmetry breaking can occur for a non-zero mBS and a positive

µ2
H , as long as

det(M2
H) = µ2

Hm
2
BS −m4

HB < 0. (3.33)

The value of the mixing parameter mHB is determined by the strong dynamics; theo-

retically it can be extracted from a general solution of the Bethe-Salpeter equation (with

nonzero bound state mass), with a proper wave function normalization. However, due to

the complicated kernel, this calculation remains infeasible. Therefore, we parameterize the

mixing as

mHB = Atξ, (3.34)

where ξ is dimensionless number (which may depend on At and on other parameters). The

critical coupling (the value of At at which the mass matrix develops a zero eigenvalue) is

generally different from that in Eq. (3.30); we have:

At
M

= min

{

1

ξ

√

µHmBS

M2
, 15

}

. (3.35)

Given that µH can be arbitrarily close to zero (and, in fact, µ2
H < 0 in the Standard

Model), the symmetry breaking can occur even for smaller values of At/M . Of course, if

µ2
H has to be fine-tuned to be small, the scenario in question becomes rather contrived. For

reasonable values of parameters and for the binding energy that is not as large as the mass,

which is the case for a smaller At, there is a self-consistent set of values, for example,

µH ∼ 102 GeV, MB ∼ 2M ∼ 2 TeV, At ∼
√
µHmBS

ξ
∼ 450 GeV

ξ
, (3.36)
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and, thus the critical coupling is
At

M
∼ 0.45

ξ
. (3.37)

We see that this is consistent with Eq. (3.31) for some reasonable range of parameters. Thus,

we conclude that electroweak symmetry breaking can occur for smaller values of the trilinear

coupling, when one includes the mixing between the Higgs doublets.

In this chapter, we have shown that the presence of squark bound states in a strongly-

interacting implementation of the MSSM can substantially modify electroweak symmetry

breaking. At sufficiently large couplings, the bound state itself can break the symme-

try; at smaller couplings, its presence is important due to the off-diagonal elements in the

fundamental-bound-state-Higgs mass matrix. These elements allow a linear combination of

the two states to break electroweak symmetry while protecting SUC(3).

This scenario is clearly different from the widely discussed technicolor models [59], includ-

ing walking technicolor [60, 61], models with color singlets [62], and the models in which

supersymmetry and technicolor are combined [63, 64]. This scenario has the potential to

relate the scales of supersymmetry breaking and electroweak breaking in a novel way, and it

is evident that the effects of squark bound states should not be ignored in models with large

trilinear supersymmetry breaking terms. However, we have not shown that strongly-coupling

supersymmetry produces a phenomenologically viable model; this will be addressed in the

following chapter.
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CHAPTER 4

Phenomenology of Strongly-Interacting

Supersymmetry

In the previous chapter, we introduced the seesaw-symmetry-breaking mechanism, in

which a symmetry is spontaneously broken through the mixing of a fundamental Higgs

field with a bound state. This was illustrated in a strongly-interacting version of the Mini-

mal Supersymmetric Standard Model (MSSM), which differs from the usual MSSM in that

the trilinear supersymmetry-breaking coupling is taken to be large [42, 43]. In this regime,

squarks form bound states via the exchange of fundamental Higgs bosons, creating additional

composite states, some of which can have nonzero vacuum expectation values (VEVs). In

this chapter we will explore the phenomenology of this strongly-coupled model.

This model has very different particle content in the low-energy effective theory as com-

pared to the usual MSSM; in particular, the model predicts more Higgs bosons and fewer

superpartners at the electroweak scale. Secondly, as mentioned in Ch. 3, the usual MSSM

bounds on the lightest Higgs mass are not applicable, because the bound-state quartic cou-

pling is not related to the gauge coupling. These point to the possibility of a very different

low-energy phenomenology than is typically associated with the MSSM, which is quite rele-

vant for the ongoing supersymmetric searches at the LHC.

In Ch. 3, we did address one phenomenological issue: preserving SUC(3) symmetry,

which motivated the introduction of the seesaw-symmetry-breaking mechanism. For the

self-completeness of this chapter on phenomenology, we will briefly review how this mecha-
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Figure 4.1: Kernels for squark bound states which produce SUL(2) singlets and triplets.

nism protects against color-breaking minima. Because squarks carry color charge, the bound

states come in both color octet and color singlet versions. If an octet state acquired a nonzero

VEV, it would break SUC(3), making the model phenomenologically unacceptable. However,

to acquire a nonzero VEV through the seesaw-symmetry breaking mechanism, the bound

state must mix with the fundamental Higgs boson, which is only possible for an SUC(3) sin-

glet state. Thus, it is the quantum numbers of the fundamental Higgs boson of the MSSM

that determine the pattern of symmetry breaking. Color symmetry is protected because the

fundamental Higgs doublet of the MSSM is colorless. (Please see Ch. 3 for more details.)

4.1 Description of Bound States

In Ch. 3, our primary focus was electroweak symmetry breaking, not phenomenology.

Therefore we did not give a complete accounting of all the possible squark bound states.

However, generically all of these states will appear in the low-energy effective theory. In

addition to the SUL(2) doublet which influences electroweak symmetry breaking, there are

SUL(2) singlets and SUL(2) triplets; examples of the relevant kernels are shown in Fig. 4.1.

The vertices in these bound states are all proportional to At; because Yukawa interactions

are attractive in all channels, all of these states exist if the doublet bound state exists. We

will assume that only |At| (and possibly |Ab|) is large enough to produce bound states; these

bound states appear in the up and down Higgs sectors respectively. We have summarized

the possible bound states, along with their quantum numbers, in Table 4.1.
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Squarks SUL(2) Charge SUC(3) Charge UY(1) Charge

1 t̃Lt̃L 2⊗ 2 = 3⊕ 1 3⊗ 3 = 6⊕ 3̄ 1/3

2 t̃∗Lt̃
∗
L 2̄⊗ 2̄ = 3̄⊕ 1 3̄⊗ 3̄ = 6̄⊕ 3 −1/3

3 t̃Rt̃R 1⊗ 1 = 1 3⊗ 3 = 6⊕ 3̄ 4/3

4 t̃∗Rt̃
∗
R 1⊗ 1 = 1 3̄⊗ 3̄ = 6̄⊕ 3 −4/3

5 t̃Lt̃
∗
R 2⊗ 1 = 2 3⊗ 3̄ = 1⊕ 8 −1/2

6 t̃Rt̃
∗
L 2̄⊗ 1 = 2̄ 3⊗ 3̄ = 1⊕ 8 1/2

7 t̃Lt̃
∗
L 2⊗ 2̄ = 3⊕ 1 3⊗ 3̄ = 1⊕ 8 0

8 t̃Rt̃
∗
R 1⊗ 1 = 1 3⊗ 3̄ = 1⊕ 8 0

Table 4.1: Quantum numbers of bound states; note that in SU(2), the anti-fundamental

representation 2̄ is identical to the fundamental representation 2. Line numbers are provided

for ease of reference in the text.

Let us summarize the states present in the model and their salient features. We observe

that rows 1 and 2 in Table 4.1 are Hermitian conjugates of each other; consequently, these

may be combined to form complex representations. Rows 3 and 4 may also be similarly

combined. Thus, the first two rows in the table describe a complex SUL(2) triplet and a

complex SUL(2) singlet, while the next two rows describe another complex SUL(2) singlet.

All of these states carry color charge, and they also have fractional electric charge. The

implications of these states will be discussed further in Sec. 4.6 on collider phenomenology.

Similarly, the next two rows (5 and 6) are also Hermitian conjugates of each other, which

may be combined into a complex SUL(2). This is the doublet discussed in Ch. 3, which

is responsible for the seesaw-symmetry-breaking mechanism. There are additionally eight

colored states which do not generally acquire vacuum expectation values. The last two rows

(7 and 8) describe two real singlets and one real triplet; these come in both colored and

colorless versions. As we will show in Sec. 4.3, the electroweak phase transition is generally

first order due to the two colorless singlets.
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Thus, strongly-interacting supersymmetry has a rather extended Higgs sector. With so

many degrees of freedom, it is important to ensure that none of the colored states acquire

a nonzero VEV, and not just the color octet SUL(2) states considered above. We note that

there are no terms which involve only a single colored field, because the Lagrangian must be

invariant under SUC(3). Thus, even if all color singlet states acquire nonzero VEVs, there is

no term linear in a colored field; such a term would necessarily induce spontaneous symmetry

breaking of SUC(3). Therefore, the effects of color singlet VEVs are limited to corrections to

the masses and couplings of the colored fields. Provided that the pre-electroweak symmetry

breaking masses are sufficiently large, the mass corrections will not drive the mass-squared

values negative, and SUC(3) will remain unbroken.

The full model, including both up and down sectors, is rather complicated. Therefore, we

will make the simplifying assumption that the sectors are relatively decoupled, and we will

only consider the up sector. It is also possible that the bound states form only in the up

sector, if |At| is large but |Ab| is not.

Now that we have characterized the bound states, we will consider the resulting phe-

nomenology. First, we will discuss flavor-changing neutral currents; this is a concern in any

model with additional Higgs doublets. Next, we will investigate the electroweak phase tran-

sition in this model. Finally, we will make some remarks regarding collider phenomenology.

4.2 Flavor-Changing Neutral Currents

Any model which introduces additional Higgs doublets must address flavor-changing neu-

tral currents (FCNCs), which are highly constrained experimentally and generically large

when additional SUL(2) doublets are introduced. One well-known method of suppressing

FCNCs is to have the doublets couple to different types of quarks; for example, in the

MSSM the Higgs doublet Hu couples to only up-type quarks and the doublet Hd couples to

only down-type quarks. This suppresses FCNCs provided that the mixing between the two
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doublets (after supersymmetry is spontaneously broken) is not too large; this assumption

that the sectors are relatively decoupled is made both by the MSSM and our model.

However, even if the up sector and down sector are decoupled, our model potentially

has large FCNCs because we have two doublets within each sector: both the fundamental

doublet Hu and the bound-state doublet Φu couple to up-type quarks. Therefore, we con-

sider a second way of suppressing FCNCs: if diagonalizing the quark matrix with respect

to interactions with one of the doublets also approximately diagonalizes the quark matrix

with respect to interactions with the other doublet, then FCNCs are small, because they

are proportional to the off-diagonal elements. Equivalently, FCNCs are suppressed if the

Yukawa couplings between the quarks and the first doublet are approximately proportional

to the Yukawa couplings between the quarks and the second doublet. This approach is fre-

quently disfavored because it typically requires fine-tuning, but we will demonstrate that

this condition is naturally satisfied in strongly-coupled supersymmetry.

The bound-state doublet is comprised of up squarks exchanging Hu bosons. We note that

there is no tree-level coupling between uū and ũ¯̃u; however, there is a tree-level coupling

between Hu and the quarks: the Yukawa coupling yq. Therefore, to lowest order, an up-type

quark sees only the Hu contribution in the bound state, and so the coupling between the

quark and the bound state is y′q = βyq. This argument is shown diagrammatically in Fig.

4.2; the lowest order contribution to the Yukawa coupling between a quark and the bound-

state Higgs doublet comes through the exchange of a true Higgs boson Hu. Therefore, it is

proportional to the Yukawa coupling yt, and the proportionality constant β describes the

mixing between Hu and the bound state Φu. This mixing is clearly independent of the

quark involved on the right-hand side of the diagram. Therefore, the Yukawa couplings

satisfy y′q = βyq with a single proportionality constant β. As claimed, FCNCs are indeed

suppressed naturally, without fine-tuning, at tree-level.
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Figure 4.2: The lowest order diagram for the Yukawa coupling between quarks and the bound

state Higgs doublet.

Φ
t̃∗

t̃

ū

u

X

Figure 4.3: The next order diagram for the Yukawa coupling between up quarks and the

bound state Higgs doublet.

We may be concerned about higher-order corrections, particularly to the extremely small

up quark Yukawa coupling. The next order corrections to this coupling come from diagrams

like those shown in Fig. 4.3; here, we take the squarks and quarks to be super-CKM eigen-

states. The X fermion must convert a stop squark into an up quark; therefore, it must be

either a gaugino or a higgsino. However, diagrams with a gaugino are suppressed by the

MSSM alignment between squark mass matrices and Yukawa matrices, while diagrams with

a higgsino are suppressed by off-diagonal CKM elements. Therefore, to suppress FCNCs

at one-loop level, strongly-interacting supersymmetry requires no more fine-tuning than is

present in the weakly-coupled MSSM.

For future reference, let us relate yq and y′q to the Yukawa couplings between the quark

and the mass eigenstates; this will be relevant in our discussion of baryogenesis in below.
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We write the mass eigenstates in terms of Hu and Φu by

Ψ1 = cos(θ)Hu + sin(θ)Φu

Ψ2 = − sin(θ)Hu + cos(θ)Φu. (4.1)

Then the relevant Yukawa couplings are given by

y1q = cos(θ)yq + sin(θ)y′q = (cos(θ) + β sin(θ)) yq

y2q = − sin(θ)yq + cos(θ)y′q = (− sin(θ) + β cos(θ)) yq. (4.2)

In particular we note that

y2q =
− sin(θ) + β cos(θ)

cos(θ) + β sin(θ)
y1q, (4.3)

and we expect β ∼ sin(θ) due to its close relation to the mixing.

4.3 Temperature Evolution and Effective Potential

In this section, we will discuss the low-energy effective potential. Before we do so, it is

useful to consider the evolution of the model with temperature. We recall from Ch. 3 that it

is |At|, and not At, which is relevant found bound state formation and electroweak symmetry

breaking. Since a Yukawa interaction is always attractive, the sign of the trilinear coupling

was completely irrelevant to our analysis. Ref. [38] shows that if At is negative (with |At|
large, as required for the bound states to exist), then At increases as the renormalization scale

increases. Consequently, at sufficiently high temperatures, the model behaves as the standard

(weakly interacting) MSSM. At lower temperatures, the model undergoes a phase transition

to a strongly interacting phase, and electroweak symmetry breaking takes place. This is in

somewhat analogous to QCD, which is described by quarks and gluons at high temperatures,

but at lower temperatures the bound-state baryons and mesons are the appropriate degrees

of freedom.

If At is large and positive, the same reference suggests that there is no energy scale in

which perturbativity is regained. Therefore, there is no regime in which it is appropriate to
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discuss individual squarks, and one may argue that the “bound states” should instead be

considered fundamental. For ease of exposition, we will assume that we are in the former

scenario, although the features of the baryogenesis phase transition to be discussed below

do not depend on this assumption. Additionally, as mentioned in Ch. 3, in this case it is

evident that the theory retains the ultraviolet behavior of the MSSM.

In the strongly-coupled phase, the model should be described by an effective Lagrangian

written in terms of the low-energy degrees of freedom, which include the bound states.

Ideally, one would like to calculate all the parameters in the effective potential in terms

of the parameters of high-energy weakly-coupled MSSM. However, because the theory is

strongly coupled, it is not feasible to calculate these parameters explicitly. A calculation

on the lattice may be possible [65], but no detailed results are available at present. In the

absence of such a calculation, one can only estimate the low-energy couplings using generic

values consistent with symmetries. (This is similar to the approach used to study strong

interactions before QCD was discovered and understood.) Obviously, the predictive power

of this approach is limited. However, since the values of “fundamental” MSSM parameters

in the high-energy Lagrangian are unknown and not strongly constrained, this approach

appears to be well justified.

We note that the colorless SUL(2) gauge singlets are not associated with any symmetry

breaking; therefore, they may acquire nonzero VEVs in the strongly-coupled phase. Such

vacuum expectation values have no physical meaning and may be removed with a field

redefinition that makes the tadpole diagrams vanish order by order in perturbation theory.

We will assume that this has been done in writing the effective potential. We have already

shown that the colored fields do not acquire nonzero VEVs, and we will neglect them for the

remainder of this section.

The notation used in this section is as follows: the complex SUL(2) doublet mass eigen-

states are Ψ1 and Ψ2, where Ψ2 has a negative mass-squared eigenvalue due to the seesaw
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symmetry-breaking mechanism, the real SUL(2) singlet mass eigenstates are S1 and S2, and

the real SUL(2) triplet field is V . Then the effective potential, including all the color singlet

fields mentioned in 4.1, can be written as

V (S1, S2,Ψ1,Ψ2, V ) = V2(S1, S2,Ψ1,Ψ2, V )

+ V3a(Ψ1,Ψ2, S1) + V3b(Ψ1,Ψ2, S2) + V3c(S1, S2, V ) + V3d(Ψ1,Ψ2, V ) + V3e(S1, S2)

+ V4a(Ψ1,Ψ2) + V4b(Ψ1,Ψ2, S1, S2) + V4c(Ψ1,Ψ2, V ) + V4d(S1, S2, V ) + V4e(S1, S2),

(4.4)

where the mass terms are

V2(S1, S2,Ψ1,Ψ2, V ) = −m2
1Ψ

†
1Ψ1 +m2

2Ψ
†
2Ψ2 +m2

S1S
2
1 +m2

S2S
2
2 +m2

V V
TV. (4.5)

One of the doublet mass eigenvalues is negative due to the seesaw symmetry breaking mech-

anism, and we emphasize that the triplet, V , is real. The cubic terms are

V3a(Ψ1,Ψ2, S1) = AS1S1Ψ
†
1Ψ1 + AS2S1Ψ

†
2Ψ2 + AS12S1Ψ

†
1Ψ2 + h.c.,

V3b(Ψ1,Ψ2, S2) = ÃS1S2Ψ
†
1Ψ1 + ÃS2S2Ψ

†
2Ψ2 + ÃS12S2Ψ

†
1Ψ2 + h.c.,

V3c(S1, S2, V ) = ASV S1V
TV + ÃSV S2V

TV,

V3d(Ψ1,Ψ2, V ) = AV 1Ψ
†
1(σ · V )Ψ1 + AV 2Ψ

†
2(σ · V )Ψ2 + AV 12Ψ

†
1(σ · V )Ψ2 + h.c.,

V3e(S1, S2) = ASS
3
1 + ÃSS

3
2 + A′S2

1S2 + A′′S1S
2
2 . (4.6)
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Finally, the possible quartic terms are

V4a(Ψ1,Ψ2) = λ1(Ψ
†
1Ψ1)

2 + λ2(Ψ
†
2Ψ2)

2 + λ12(Ψ
†
1Ψ1)(Ψ

†
2Ψ2) + λ′12(Ψ

†
1Ψ2)

2

+ λ1(Ψ1τΨ1) · (Ψ1τΨ1) + λ2(Ψ2τΨ2) · (Ψ2τΨ2)

+ λ3(Ψ1τΨ1) · (Ψ2τΨ2) + λ4(Ψ1τΨ2) · (Ψ1τΨ2),

+ λ′′12(Ψ
†
1Ψ2)(Ψ

†
2Ψ1) + h.c.

V4b(Ψ1,Ψ2, S1) = λS1S
2
1Ψ

†
1Ψ1 + λS2S

2
1Ψ

†
2Ψ2 + λ̃S1S

2
2Ψ

†
1Ψ1 + λ̃S2S

2
2Ψ

†
2Ψ2

+ λS12S
2
1Ψ

†
1Ψ2 + λ̃S12S

2
2Ψ

†
1Ψ2 + λ′S12S1S2Ψ

†
1Ψ2 + h.c.,

V4c(Ψ1,Ψ2, V ) = λV 1Ψ
†
1Ψ1V

TV + λV 2Ψ
†
2Ψ2V

TV + λV 12Ψ
†
1Ψ2V

TV + h.c.,

V4d(S1, S2, V ) = λSV S
2
1V

TV + λ̃SV S
2
2V

TV + λS12S1S2V
TV + λV (V

TV )2,

V4e(S1, S2) = λSS
4
1 + λ̃SS

4
2 + λ′SS

3
1S2 + λ̃′SS1S

3
2 + λSSS

2
1S

2
2 . (4.7)

We note that the following 8 parameters are generally complex: AS12, ÃS12, AV 12, λ
′
12, λS12,

λ̃S12, λ
′
S12, and λV 12.

Due to the negative mass squared of Ψ1, the origin of the potential is not a local minimum

and the neutral component of doublet Ψ1 acquires a nonzero vacuum expectation value. The

terms AS1S1Ψ
†
1Ψ1 and ÃS1S2Ψ

†
1Ψ1 produce terms linear in S1 and S2 respectively, and so

consequently neither 〈S1〉 = 0 nor 〈S2〉 = 0 can be a local minimum. Hence, once Ψ1 acquires

a nonzero vacuum expectation value, the singlets also acquire a nonzero vacuum expectation

value.

When both Ψ1 and the singlets have acquired nonzero vacuum expectation values, the

neutral component of the other doublet, Ψ2, must also acquire a nonzero VEV due to terms

such as S1Ψ
†
1Ψ2; however, the charged component does not acquire a nonzero VEV. Next let

us consider the triplet; we parameterize it as V a = (V1, V2, V3). The cubic terms in Eq. 4.6

include

Ψ†
1σ

aV aΨ1 = Ψ†
1





V3 V1 − iV2

V1 + iV2 V3



Ψ1 = Ψ†
1





V 0/2 −V +/
√
2

−V −/
√
2 −V 0/2



Ψ1, (4.8)
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where we have identified the charge states. When the neutral component of Ψ1 acquires a

nonzero VEV, Ψ†
1σ

aV aΨ1 produces a term linear in V 0; consequently, this field also acquires

a nonzero vacuum expectation value. (The consequences of this for the ρ0 parameter and

neutrino masses are discussed in Sec. 4.5 below.)

The presence of gauge singlet Higgs states and the existence of tree-level cubic couplings

generically make the phase transition strongly first order. Because of these singlets, the

potential includes cubic terms. When the fields are expanded about their vacuum expectation

values, the cubic terms give terms linear in the VEVs. Such linear terms produce a barrier

which results in a strongly first order phase transition. This is identical to the manner in

which singlets produce a barrier in the Next-to-Minimal Supersymmetric Standard Model

(NMSSM) [66–69]. This is in contrast with the Standard Model and MSSM, in which the

cubic terms are forbidden by the SUL(2) symmetry. In the Standard Model, the transition

is not first order for a Higgs mass above 45 GeV. In the MSSM, the transition is weakly first

order, and only for such parameters for which the two-loop corrections generate a sufficient

barrier in the potential [70–73].

We note that in strongly-coupled supersymmetry, finite temperature corrections produce

terms proportional to T 2M2 in the potential, where M2 are the mass eigenvalues of the

shifted fields as functions of the VEVs; this is the same as in the Standard Model [74,

75]. Hence, increasing the temperature will restore electroweak symmetry. However, a

comprehensive study of the temperature evolution of the potential is infeasible due to the

large number of parameters in the cubic and quartic terms. However, simply because there

are so many parameters, we expect there to be a region of parameter space in which the

phase transition occurs at a temperature of the order of the electroweak scale and with

vu =
√

| 〈Ψ1〉 |2 + | 〈Ψ2〉 |2 . 247 GeV, with the difference to be provided by the down

sector.
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4.4 Baryogenesis

The strongly first-order phase transition reopens the possibility of baryogenesis at the

electroweak scale [76, 77]. In addition to the first-order phase transition, additionally CP

violation beyond that in the Standard Model CKM matrix is necessary. The full potential

written in Sec. 4.3 has eight complex parameters; two of these may be eliminated by rotating

the complex doublets Ψ1 and Ψ2. This leaves six physical phases representing new sources

of CP violation. If |Ab| is large, there are similar phases in the down sector, and mixing

between the sectors can give additional CP -violating phases.

This CP violation in the Higgs sector must be communicated to the matter sector for suc-

cessful baryogenesis. This can be accomplished through interactions in the bubble wall with

the top quark; only the top quark Yukawa coupling is sufficiently large for the interactions

to be in thermal equilibrium during the phase transition. Our analysis will follow that of

Ref. [78], which considered a simpler model with two Higgs doublets and a complex singlet,

of which only one doublet and the singlet acquired a nonzero VEV.

In general, both mass eigenstates Ψ1 and Ψ2 couple to up-type fermions, and thus the

effective Lagrangian contains terms of the form

−yqǫabT a
LΨ

b
1t̄R − y′qǫabT

a
LΨ

b
2t̄R + h.c., (4.9)

where TL = (tL, bL) is the doublet which includes the left-handed top and bottom quarks,

and a, b are SUL(2) indices. We recall that yq and y′q are proportional to each other, as

described by Eq. 4.3, which suppresses FCNCs. If we write the vacuum expectation values

of the doublets after spontaneous symmetry breaking as

〈Ψ1〉 =





0

ξ1e
iθ1



 , 〈Ψ2〉 =





0

ξ2e
iθ2



 , (4.10)

then these terms become
(

yqξ1e
iθ1 + y′qξ2e

iθ2
)

tLt̄R + h.c.. (4.11)
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Figure 4.4: One of the diagrams that modifies the phase of the top quark Yukawa coupling.

This is the usual top quark mass term; the nonzero phase is absorbed in a rotation of the

top quark. To simplify our analysis, we will assume that ξ1 ≫ ξ2; this is expected since the

mass term of Ψ1 in the effective potential is negative but the mass term of Ψ2 is positive.

Therefore, the dominant contribution to the top quark’s mass is from the Yukawa coupling

between Ψ1 and the top quark, and thus we take yt ≈
√
2mt/v = 0.996. We will define the

other vacuum expectation values to be 〈S1〉 = ξ3, 〈S2〉 = ξ4, and 〈V3〉 = 2 〈V 0〉 = ξ5.

When we consider the nonzero vacuum expectation values of the other fields, this top quark

Yukawa coupling is modified, and these modifications can introduce a nonzero physical phase

into the coupling. An example of one such contribution is shown in Fig. 4.4. The tree-level

corrections to the top quark Yukawa coupling after spontaneous symmetry breaking are given

by

ytf = yt + ỹtf +
y′t
m2

2

(

AS12ξ3 + ÃS12ξ4 + AV 12ξ5 + λ′′
12ξ1ξ2e

i(θ1−θ2) + λ′
12ξ1ξ2e

i(θ2−θ1)

+ λ′
S12ξ3ξ4 + λV 12ξ

2
5 ) , (4.12)

where ỹtf summarizes the contributions from diagrams that do not contribute a net phase.

(We have used the freedom to rotate Ψ1 and Ψ2 to make the parameters λS12 and λ̃S12 real;

we also recall that we have set up our effective Lagrangian such that the singlets have zero

VEV before spontaneous symmetry breaking.)
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Let us assume that the corrections are small with respect to yt; then this corrected Yukawa

coupling may be written as

ytf ≈ yte
iφf , (4.13)

where

φf =
y′t

ytm2
2

ℑ
(

AS12ξ3 + ÃS12ξ4 + AV 12ξ5 + λV 12ξ
2
5 + λ′′

12ξ1ξ2e
i(θ1−θ2) + λ′

12ξ1ξ2e
i(θ2−θ1)

+λ′
S12ξ3ξ4) (4.14)

This change of phase in the Yukawa coupling can be transformed according to the standard

techniques [79, 80]; the quarks are rotated by an amount proportional to their hypercharge

to eliminate the phase, which introduces a new kinetic term for the top quark which violates

CP . The phase φt can be approximated as space independent, although time dependent,

because the mean free path of the top quarks and gauge bosons is small compared to the

scale on which φt varies (which is approximately the thickness of the electroweak bubble

walls). Then this additional term in the Lagrangian has the form of a chemical potential

for baryon number. Consequently, during the transition the free energy is minimized for

nonzero baryon number. The equilibrium baryon density is

nB,eq = α
T 2

6
φ̇t, (4.15)

where α is a constant of order 1; for a simple two-doublet model, it is 72/111 [79]. During the

phase transition, the sphaleron-induced B − L violation processes drive the system toward

this equilibrium value at the rate [81]:

dnB
dt

= 18
Γsp
T 3

nB,eq, (4.16)

but the minimum of the free energy is not reached because the transition occurs too quickly.

The sphaleron transition rate is [76, 77, 80]

Γsp =











κ(αWT )4, mW ≤ σαWT,

γ(αWT )−3M7
W e−Esp/T ≈ 0, mW > σαWT,

(4.17)
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where κ, σ, and γ are dimensionless constants. For the Standard Model, κ is expected to

be between 0.1 and 1 [82], while σ is expected to be between 2 and 7 [81]. Integrating the

above rate gives the baryon asymmetry produced during the phase transition,

nB = 3ακα4
WT 3∆φt, (4.18)

where ∆φt is the change in the phase of the top quark Yukawa coupling during the phase

transition; this is not necessarily φf because the sphaleron B+L-violating interactions may

go out of thermal equilibrium before the phase transition is complete. The entropy density

is

s =
2π2

45
gS(T )T

3, (4.19)

and so baryon-to-entropy ratio after the phase transition is

nB
s

=
135α

2π2gS(TEW )
κα4

W∆φt. (4.20)

To match the observed value of nB/s ∼ 10−10, the change in phase must be of order 10−2

(assuming gS(TEW ) ∼ 100). This is a reasonable number; given the form of Eq. (4.14), we

expect this to be satisfied for a relatively large region of the parameter space of the effective

potential. Thus, we conclude that the electroweak phase transition in the strongly-coupled

MSSM can account for the observed matter asymmetry.

4.5 Implications of the Triplet Vacuum Expectation Value

We have noted in Sec. 4.3 that it is an unavoidable consequence of this model that the

neutral component of the hypercharge Y = 0 Higgs triplet acquires a nonzero vacuum

expectation value. In this section, we discuss the phenomenological consequences of this.

Models in which a single Y = 0 Higgs triplet acquires a vacuum expectation value have been

considered [83–87]; the low-energy behavior of this theory was described in detail in Ref. [88].

Such models are quite constrained by precision measurements of the ρ0 parameter, which is

experimentally measured to be ρ0 = 1.0004+0.0003
−0.0004 [89]. A Y = 0 triplet nonzero VEV 〈V 0〉
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modifies ρ0 by [88]

∆ρ0 =
4| 〈V 0〉 |2

v2u
. (4.21)

We recall that we must have vu ≤ 246 GeV; this means that we must have | 〈V 0〉 | = | 〈V3〉 |/
2 . 2.5 GeV, or equivalently,

| 〈V3〉 |
vu

≤ 10−2. (4.22)

If vu ≈ | 〈Ψ1〉 |, we expect | 〈V3〉 | ≈ AV 1v
2
u/m

2
V ; the above condition becomes

AV 1vu
m2
V

≤ 10−2. (4.23)

We expect AV 1 and mV , like the other parameters in the effective Lagrangian, to be

near the electroweak scale. The exact values of AV 1 and mV are determined from the

high-energy (MSSM) Lagrangian through strong dynamics, and it is infeasible to calculate

analytic expressions for them. It may be that a lattice calculation shows that triplet states

are less strongly bound than the singlet states, and thus have larger masses, or it may be

that this model requires some fine-tuning to satisfy this condition. We note that if AV 1 and

vu are both on the 100 GeV scale, then we only require mV ∼ O(TeV).

Another concern with the triplet acquiring a nonzero vacuum expectation value is that

generically such vacuum expectation values may produce large neutrino masses [90–93]. We

recall the seesaw mass matrix of the neutrino sector,

Mν =





δ M

M D



 , (4.24)

where δ andD are Majorana mass terms for the left- and right-handed neutrinos respectively,

and M is the Dirac mass term. Phenomenologically, it is required for δ to be small; since D

is assumed to include a large contribution from high energy physics, any large corrections to

M can be offset by requiring a larger contribution to D. We argue that the nonzero triplet

VEV does not alter any of these terms.
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We note that lepton number is conserved in our high-energy theory (MSSM), and forming

squark bound states will not break lepton number conservation. Consequently, lepton num-

ber is conserved in our low-energy effective theory, and this symmetry forbids our low-energy

theory from generating Majorana mass terms, including δ. (Of course, as in the MSSM, if

one wishes to use the seesaw mechanism to produce small neutrino masses, one must insert

lepton-number breaking terms “by hand” to create the Majorana masses; in this respect,

our model is no different than the MSSM. Our point is that despite having a nonzero triplet

VEV, we naturally do not have large contributions to the Majorana masses.) Furthermore,

regarding the Dirac mass term, we note that V → ν̄LνR diagrams are forbidden by SUL(2)

symmetry, and therefore the triplet VEV does not alter M either. Thus, although our triplet

does acquire a nonzero vacuum expectation value, it does not affect neutrino masses in any

way.

4.6 Collider Phenomenology

Finally, we make some qualitative remarks regarding the collider phenomenology of this

model. As we have shown in Table 4.1, this model has a rather extended Higgs sector, with

numerous states. As a result, it will be difficult to discern individual states at an experiment

such as the Large Hadron Collider, although broad excess may be detected. There may

also be additional observable consequences, although further study (including numerical

simulations) would be necessary to make concrete predictions.

The gauge singlet states can be detected via deviations of the Higgs decay branching ratios

from the predictions of the Standard Model [94, 95]. Many of the Higgs states present in

this model carry color charge; this is in contrast to the Standard Model and the weakly

interacting MSSM, in which the Higgs sector contains only colorless states. Again, due to

the large number of such states they may be difficult to discern individually; however, these

states may influence the number and structure of jets observed in high-energy scattering
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processes.

Secondly, we have noted the presence of a Y = 4/3 triplet which carries color charge. Since

SUC(3) symmetry is preserved, these states must form a colorless combination by joining

with other colored particles, most frequently by pulling quarks from the quantum vacuum.

This process produces jets with an integer charge. However, some of these jets will carry

charge ±2, for example, if a t̃Lt̃L bound state combines with an up quark. These unusual

jets may be experimentally detectable.

Additionally, this model predicts numerous charge ±1 states; these arise from the extra

doublet as well as the triplets. The Standard Model, in contrast, only has an electrically

neutral Higgs boson, while the MSSM has one set of ±1 charged Higgs bosons. Further-

more, some of the singly charged states carry color charge, again in contrast to the MSSM.

Therefore, searches for charged scalar bosons may produce evidence for strongly-coupled

supersymmetry.

4.7 Conclusions

As an example of a strongly-interacting extension of the Standard Model with novel fea-

tures, we have considered strongly-interacting supersymmetry. In Ch. 3, we showed a par-

ticularly interesting theoretical feature: that the resulting bound states can mix with the

fundamental Higgs doublet, driving electroweak symmetry breaking. Although we illus-

trated this seesaw-symmetry-breaking mechanism with strongly-interacting supersymmetry,

the mechanism has broader applications to any model in which bound states can mix with

other scalar states. As applied to supersymmetry, it has the theoretical advantage of uniting

supersymmetry breaking, which produces the large trilinear couplings that lead to bound

states, and electroweak symmetry breaking.
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However, it is not sufficient for a model to be theoretically interesting; it also must pass

a series of rigorous constraints set by decades of experimental observations. In Ch. 4, we

studied the phenomenology of strongly-interacting supersymmetry. In particular, we found

that in addition to protecting SUC(3) symmetry, the strongly-interacting MSSM naturally

avoided large flavor-changing neutral currents. Furthermore, this model can easily accom-

modate electroweak scale baryogenesis, in contrast to the Standard Model and the MSSM.

Thus, we have seen that going beyond the perturbative limit can lead to interesting theo-

retical possibilities and novel phenomenology that may be absent in weakly-coupled versions.
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CHAPTER 5

Indirect Detection Signals in Asymmetric Dark Matter

Models

5.1 A Brief Introduction to Asymmetric Dark Matter

We now turn our attention away from bound states in strongly-interacting supersymmetry

and to dark matter bound states. As was discussed in Ch. 1, one shortcoming of the Standard

Model is that it fails to provide a candidate particle for dark matter, and so numerous

extensions have been proposed. In this chapter and the next, we consider asymmetric dark

matter models. In these models, dark matter carries its own conserved particle number, and

interactions between the dark sector and the Standard Model gave rise to the observed baryon

asymmetry of the universe along with a corresponding asymmetry in the dark sector [96–116].

(For a recent review, see Ref. [29].)

Asymmetric dark matter models typically include self-interactions; this is necessary for

particles and antiparticles to annihilate in the universe, leaving a remnant determined by

the asymmetry. Such self-interactions may be also be motivated by several inconsistencies

between numerical simulations of collisionless cold dark matter and astronomical observa-

tions [25–28,117–128]. Self-interactions between dark matter particles can facilitate momen-

tum transfer and angular momentum transfer in halos, creating cored rather than cuspy

density profiles in both dwarf spheroidal galaxies and in larger halos. Secondly, the number

of subhalos of Milky-Way-sized dark matter halos produced in the simulations exceeds the

number of observed dwarf galaxies of the Milky Way, and furthermore, the most massive
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subhalos produced in the simulations are too dense to fail to produce bright stars. Self-

interactions can significantly modify small halos, although too much interaction can destroy

the ellipticity of large halos.

These self-interactions can take a number of different forms in asymmetric dark matter

models. Examples include hidden-sector particles with gauge bosons [124], Yukawa interac-

tions [129], and even non-topological solitons with a large enough geometrical size [120]. We

will consider two different types of interactions. In this chapter, we study a simplistic model

consisting only of scalars. In Ch. 6, we introduce a spontaneously broken gauge symmetry

in the dark sector.

In this chapter, we will demonstrate that although the typical indirect detection sig-

nal from self-annihilation is absent in asymmetric dark matter models, dark matter bound

state formation can provide a detectable signal. We will also discuss potential signals from

bremsstrahlung emission of the dark mediator, although we will the it is difficult to produce

a detectable signal above the large astrophysical backgrounds.

While this chapter is narrowly focused on the question of indirect detection signals, the

subsequent chapter considers a variety of topics. In particular, we will argue that in this

atomic dark matter model (with a broken U(1) gauge symmetry), dark matter in generally

multi-component, including dark atoms. The cosmology is consequently more involved, and

the possibility of several species with multiple inter- and intra-species interactions alters

the parameter space in which self-interactions modify halos. Thus, these two chapters will

establish that dark matter bound states have implications for indirect detection searches,

cosmology, and astrophysics.
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5.2 Scalar Self-Interacting Asymmetric Dark Matter Model

In most asymmetric dark matter models, indirect detection signals from dark matter self-

annihilation are absent at present, as it is assumed that dark matter today consists of an

asymmetric population of dark particles with few, if any, antiparticles. We will investigate

the possibility of generating indirect detection signals via bound state formation (Sec. 5.3)

and bremsstrahlung emission of a dark mediator (Sec. 5.4). We will consider a fairly generic

model of scalar dark matter S interacting through the exchange of a lighter scalar field σ,

both of which are singlets of the Standard Model gauge group. The mediator field σ can have

a nonzero mixing with the Higgs boson, and, therefore the σ boson can decay into photons

and other Standard Model particles, even if its couplings to Standard Model particles are

otherwise highly suppressed. This decay can ultimately produce a detectable signal.

We begin this section by introducing the minimal particle physics model that we will use.

Following this, we discuss the dark matter halo within the Milky Way. We then discuss the

relevant constraints on the parameters present in the model, although detailed discussion of

the implementation of these constraints is contained in later sections where the signal from

bremsstrahlung and bound state formation is explicitly calculated. Then finally we discuss

the decay of the dark force mediator in flight in the dark matter halo.

We supplement the Standard Model with a complex scalar SUC(3)×SUL(2)×UY(1) singlet

S; we also introduce a global US(1) symmetry, analogous to baryon number, under which

S → eiαS, S† → e−iαS†. (5.1)

Without a loss of generality we assume S particles carry unit US(1) charge, and because

of conservation of this charge, the S particles are completely stable. We assume that dark

matter today is composed of S particles, and the correct abundance is generated in some

process similar to or combined with baryogenesis. We do not assume that dark matter is

necessarily a thermal relic.
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The symmetries of the theory allows the term λS(S
†S)4; which results in a velocity-

independent scattering cross section for the S particles. It is difficult to have such a cross

section large enough to resolve the problems with small halos without violating astronomical

bounds [25, 28]. A velocity-dependent cross section, which arises when an interaction is

mediated by a light particle, can more easily reproduce our observations [27,130]. Therefore,

we also introduce an additional singlet scalar field σ, which is also neutral under the global

US(1). The most general potential, after the Standard Model electroweak symmetry is

spontaneously broken, is

V = M2h0σ +m2
SS

†S +
m2
σ

2
σ2 +

m2
h

2
(h0)2 + Ah(h

0)3 + Aσσ
3 + AσSS

†Sσ + Aσh(h
0)2σ

+ Ahσσ
2h0 + AhSS

†Sh0 + λS(S
†S)2 +

λσ
4
σ4 +

λhS
2

S†S(h0)2 +
λh
4
(h0)4

+
λσS
2

σ2S†S +
λσh
4

σ2(h0)2, (5.2)

where h0 is the Standard Model Higgs boson. The Higgs boson h0 and σ carry identical

quantum numbers and therefore mix. The mass eigenvalues are

m2
1,2 =

1

2

(

m2
h +m2

σ ±
√

(m2
h −m2

σ)
2 +M4

)

, (5.3)

and the eigenstates are

φ1 = cos(θM/2)h0 + sin(θM/2)σ,

φ2 = − sin(θM/2)h0 + cos(θM/2)σ, (5.4)

where the mixing angle is

tan(θM) =
M2

m2
h −m2

σ

. (5.5)

We will require that the mixing between the Higgs field and the σ field be small; this

can be accomplished by setting the free parameter M appropriately. Then we may speak

of the σ field and the Higgs field as approximate mass eigenstates with masses mh and mσ

respectively; this allows the mass mσ to be small even though no light scalar boson has been

observed. We further assume that any interactions between the dark sector particles (S, S†,

and σ) and Standard Model particles are highly suppressed.
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We note that the relevant unitless coupling for the attractive Yukawa interaction between

the S and σ particles is α = A2
σS/16πm

2
S. This can be established in two ways. First, one

may consider the non-relativistic limit of two particle scattering. We recall that quantum-

field-theoretic wavefunctions include a normalization factor of 1/
√
2mS for each S particle.

Therefore, the relevant prefactor before the overlap integral for one particle exchange is

4πα = A2
σS/4m

2
S, which gives α = A2

σS/16πm
2
S. Secondly, it is well known that the Bethe-

Salpeter equation reproduces the ground state energy of the hydrogen atom. Setting the

binding energy from the Bethe-Salpeter equation, A4
σS/1024π

2m3
S, equal to the hydrogen-

like ground state energy for identical particles, α2mS/4, again gives α = A2
σS/16πm

2
S. If

one instead defines α = A2
σS/4πm

2
S (as in e.g. [131]), then additional factors of 4 must be

introduced in other equations, e.g., the bound state mass.

Now that we have specified the particle physics of our dark matter model, let us consider

the Milky Way dark matter halo. We assume that the correct abundance of S particles

is determined by some process that is similar to baryogenesis or related to baryogenesis,

as in the models reviewed in Ref. [116]. The absence of antiparticles in today’s universe

eliminates the possibility of a signal from SS† annihilation. We use the Navarro-Frenk-

White profile [132] to approximate the spatial mass distribution of dark matter,

ρ(r) =
ρ0

(r/Rs)(1 + r/Rs)2
. (5.6)

We do not expect this profile to be accurate near the center of the galaxy; indeed, one of

the motivations of self-interacting dark matter is to remove the cusp at r = 0 in the NFW

profile. Therefore, we will cut off our integrals at scales of 1 kpc, and we emphasize that our

results are not dependent on the sharp cusp present in the NFW profile. The parameters ρ0

and Rs are related to the virial mass, virial radius, and concentration by

Rs =
rvir
C

,

ρ0 =
Mvir

ln(1 + C)− C/(1 + C)

1

4πR3
s

. (5.7)
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For the Milky Way, we use the parameters Mvir = 1.0 · 1012M⊙, rvir = 258 kpc, and C = 12

[133]. This gives Rs = 3.4 · 1036 GeV−1 and ρ0 = 1.4 · 10−42 GeV4.

In this chapter, we will ignore the cosmological history of the dark sector. This is especially

questionable in the strongly-interacting regime, in which one generally expects significant

bound state formation in the early universe. In general, the cosmology of self-interacting

asymmetric dark matter models may be quite non-trivial; this will be explored in the next

chapter for a slightly different model. If desired, we can imagine the following scenario: in the

early universe, dark matter consists of one or more heavy species, with interactions sufficient

to annihilate to the necessary dark asymmetry. At a later time, once the recombination

process has frozen out, these particles decay into the particles considered here. These may

form bound states only when gathered into dense halos.

In calculating the cross sections for bremsstrahlung emission of σ particles and bound state

formation, we will need to average over the relative velocities of the S particles. Therefore,

we need the velocity distribution P (v(r)) as a function of the distance from the center of the

galaxy. If the dark matter has virialized, then its average circular velocity should decrease

near the galactic center, except for a small region near the super-massive black hole. However,

the dark matter radial velocity profile and dispersion are currently unknown. Because of these

uncertainties, we will instead use a Maxwellian distribution with the effective temperature

Teff chosen such that the average velocity is 220 km/s. We note that simulations support

the assumption of a locally Gaussian velocity distribution even for cold dark matter [134],

and the isothermal approximation is better for self-interacting dark matter [25, 130]. The

velocity distribution for two non-relativistic S particles is

P (v1, v2) dv1 dv2 = (4π)2
(

mS

2πTeff

)3

e−m(v21+v
2
2)/2Teffv21v

2
2 dv1 dv2. (5.8)

In terms of the total velocity vT = v1 + v2 and the relative velocity vrel = v1 − v2, the

distribution is

P (vrel, vT ) dvrel dvT =
(4π)2

8

(

mS

2πTeff

)3

e−mS(v
2
rel

+v2T )/4Teffv2relv
2
T dvrel dvT . (5.9)
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We integrate over the total velocity to find the relative velocity distribution (in a reference

frame at rest with respect to the Milky Way),

P (vrel) dvrel =
4π√
8

(

mS

2πTeff

)3/2

e−mSv
2
rel
/4Teffv2rel dvrel. (5.10)

Because the S particles are moving non-relativistically, this distribution also applies in their

center of momentum frame. We observe that this is peaked at slightly larger velocities than

the velocity distribution of a single particle.

The potential Eq. (5.2) contained several parameters, which cannot be set arbitrarily if

dark matter is to be comprised entirely of S particles as outlined above. There are numerous

constraints on these parameters, from both astrophysics and particle physics. In this section,

we will give only a general discussion of these constraints; the specifics of how we implement

them will be discussed when particular values for the parameters are chosen, which will

be done separately for bremsstrahlung emission (Sec. 5.4) and bound state formation (Sec.

5.3). Since we aim to produce an observable indirect detection signal, we must satisfy all

experimental constraints except those from indirect detection experiments.

First, we demand that this model make only insignificant modifications to the branching

ratio for the decays of the Higgs boson. We forbid the decay h0 → SS† by requiring

mS > mh0/2 ≈ 63 GeV, using the recent Higgs mass measurements [15, 16]. The decay

h0 → σσ can be arbitrarily suppressed by taking AσH to be sufficiently small; this parameter

is not used elsewhere in our analysis. We also demand that the mixing angle θM be small

enough that the apparent branching ratio for h0 → σ is less than the branching ratio for the

h0 → γγ decay.

There are many well-known bounds on the self-interaction cross section of dark matter. As

explained in [129], these constraints more appropriately restrict σT , the momentum-transfer

cross section. (For identical particles, the closely-related viscosity cross section should be

used instead [135]. In the limit mS v̄/mσ ≫ 1, which will be valid for our parameters, these
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differ by O(1) and so we will ignore this complication.) The bullet cluster bound requires

σSS/mS . 0.7 cm2/g [136], and bounds from the evaporation of galactic halos favor σSS/

mS . 0.1 cm2/g [28]. Naively, these bounds appear to be in conflict with the preferred range

to eliminate cuspy profiles, 0.56 cm2/g . σSS/mS . 5.6 cm2/g [118,119].

However, because these bounds affect vastly different scales, they may be resolved by

considering a velocity-dependent cross section, as naturally arises in the Yukawa exchange

of a light boson [137], [129]. Furthermore, such a cross section may additionally solve the

“too big to fail” problem [26–28]. (It was this desire for a velocity-dependent cross section

motivated the introduction of the σ boson above.) For an attractive Yukawa interaction,

as we have introduced above, the bounds are consistent for provided that the masses mS

and mσ satisfy particular relations given in [27,138]. The precise constraint is a function of

vmax =
√

2αmσ/πmS, the velocity at which vσT peaks at a transfer cross section equal to

σmax
T = 22.7/m2

σ.

Additional bounds on the self-interaction cross section arise from observations of halo

ellipticity, as introduced in Ref. [139]. Self-interactions are desirable in resolving the above-

mentioned problems with small halos, but too much self-interaction can isotropize large

halos, which are observed to be elliptical. The specific bounds are model-independent;

Yukawa couplings are discussed in Ref. [125]. This reference considered dark matter masses

up to 4 TeV; however, we will consider larger masses, which will require us to extend these

bounds. Additionally, Ref. [28] has observed that these bounds may be somewhat weaker due

corrections from the triaxial distribution of dark matter outside of the core; however, as they

note, more detailed simulations are required to firmly establish this conclusion. Therefore, we

will parameterize this uncertainty by the coefficient F ; the numerical simulations discussed

in Ref. [28] could be interpreted as favoring F ∼ 0.1 for the particular halo model considered.

To extend the analysis of Ref. [125], we note that a dark matter halo will be spherical, as

opposed to elliptical, if collisions which change the particle velocities by factors of order 1
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mS (TeV)

mσ = 3 MeV, F = 1
mσ = .5 MeV, F = 1
mσ = .5 MeV, F = .1

Figure 5.1: A plot of the critical coupling α = A2
σS/16πm

2
S as a function of mS. Couplings

below the critical coupling are consistent with the elliptical shape of large dark matter halos.

happen frequently enough. The rate at which these collisions occur is

Γk =

∫

d3v1 d
3v2 f(v1)f(v2)(nSvrelFσT )(v

2
rel/v

2
0), (5.11)

where σT is the momentum-transfer cross section, given by σT =
∫

dΩ (dσ/dΩ)(1− cos(θ)),

and f(v) is the dark matter velocity distribution. The analytic fit for σT , the distribution

functions, and the relevant parameters for NGC 720 are all available in Ref. [125]. We note

that quantum corrections to the cross section become important if the limit mS v̄/mσ ≫ 1

is violated; however, all of our parameters will be in this regime. If not, corrections such

as those discussed in Ref. [135] should be included. We extrapolate the plot of the critical

coupling α = A2
σS/16πm

2
S tomS = 12 TeV in Fig. 5.1. We show the results formσ = 0.5 MeV

and for mσ = 3 MeV, considering both F = 1 and F = 0.1. As an example of the effect of

this uncertainty, the critical coupling is decreased from 0.93 to 3.6 for mσ = 0.5 MeV and

mS = 10 TeV.
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Figure 5.2: The minimum value of mσ for which α = 2 or α = 1 is consistent with large

elliptical halos.

We will see in Sec. 5.3 that a large coupling is desirable to produce a significant signal

through bound state formation. This is generally a problem with halo ellipticity bounds;

however, these become weaker as mσ increases. Therefore, we also calculate the minimum

mσ for which α = 2 or α = 1 is consistent with the observed ellipticity of large halos, as

a function of mS. The results are shown in Fig. 5.2. Again we see that taking F ∼ 0.1

dramatically weakens the bound.

Next we consider constraints from direct detection experiments. Experiments such as

XENON100 [140] and CDMS [141] have set an upper bound on the cross section for the in-

teraction between S particles and nucleons; because this interaction primarily occurs through

Higgs boson exchanges, this constrains AhS. The stability of neutron stars generally imposes

stronger constraints on AhS [142–145] but these constraints do not apply to scalar dark

matter with masses at the TeV scale or above [146]. We will not use AhS in our analysis;

therefore, it can be set arbitrarily small. These constraints can also restrict the quartic

couplings [147]; we may also set these arbitrarily small because they will not be used in our

analysis.
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We note that while we can arbitrarily suppress the S-nucleon interaction which occurs

through the exchange of a Higgs boson, there is an additional diagram in which the S boson

emits a σ boson, which transforms into a Higgs boson via the mixing, which then interacts

with the nucleon. This diagram involves the coupling AσS and the mixing angle θM , and we

cannot take either of these parameters to zero without eliminating the signal we are trying

to produce. (Although we will see that the mixing angle may be quite small while still giving

a detectable signal.) Thus, in principle, one cannot arbitrarily decrease the S-nucleon cross

section while maintaining a detectable indirect detection signal; there is a minimum value

set by this diagram. We will now show that the contribution of this diagram is indeed quite

small and is not in tension with direct detection bounds.

The oscillation time scale τosc = 2πE/∆m2 is generally many orders of magnitude smaller

than the interaction time scale, which can be estimated by considering the overlap of the

wavefunctions. Consequently, averaging over the “detector scale” (nucleon size), along with

the source location, will simply give a factor of 1/2. (This is in contrast with neutrino

oscillation experiments, for which τosc is large in comparison to other experimental scales,

due to the small ∆m2. In this scenario, ∆m2 ∼ m2
h.) The S particles under consideration

are generally much heavier than the protons; we will consider masses between 4 and 10 TeV.

Therefore, in the center of momentum reference frame the S particles are approximately

stationary, while the protons approach at speeds of approximately 220 km/s. The momentum

transfer is approximately 2mpv = 1.5 MeV, which is far below the scale at which the nucleon

form factors must be included.

In calculating the matrix element, the particle exchanged should be taken to be one of the

mass eigenstates given in Eq. (5.4). The mass eigenstate will carry a 4-momentum on the

scale of pµ = (mS v̄
2/2,mSv̄), which is relatively small. Therefore, the diagram in which the

exchanged eigenstate is mostly comprised of σ (that is, φ2) will dominate. We will calculate

this diagram in the laboratory reference frame, in which the denominator of the propagator
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is m2
2 −m2

S v̄
4/4 +m2

S v̄
2 ≈ m2

S v̄
2 and the relevant matrix element is

−iM≈ 3ū
i

m2
S v̄

2
AσS cos

(

θM
2

)

mq

v
sin

(

θM
2

)

u,

where v is the vacuum expectation value of the Higgs boson and u, ū are spinors for the

proton. This yields

|M|2 ≈ 9

m4
S v̄

4

A2
σSm

2
qm

2
n

v2
cos2

(

θM
2

)

sin2

(

θM
2

)

.

Because the velocities are non-relativistic, the initial energy squared is approximately (mS+

mn)
2 ≈ m2

S, which gives an approximate cross section

σ ≈ 1

16πm2
S

· 9

m4
S v̄

4

A2
σSm

2
qm

2
n

v2
cos2

(

θM
2

)

sin2

(

θM
2

)

.

Let us consider one choice of parameters (which we will use below): mS = 4 TeV and

AσS = 20 TeV, corresponding to α = 2. For the average effective mass of a quark, we use 3

MeV, and we choose θM = 10−3. This gives σ ∼ 10−18 GeV−2. All of our other choices for

parameters give a cross section below this value. This is well beneath the limits from direct

detection experiments, which are 10−43 cm2 (10−16 GeV−2) [140, 141].

At present, there is significant uncertainty in the contribution of the s-quark to the effective

quark mass, and since the Higgs coupling to s is much larger than the couplings to u and

d, even a relatively small contribution of the sea quarks with higher masses can dominate

the cross section. The measured s quark contribution, manifest as the nuclear pion-nucleon

sigma term, is uncertain, and the resulting uncertainty in the cross section can be as large

as an order of magnitude [148]. However, the cross section calculated above is at least two

orders of magnitude beneath the lowest cross sections experimentally accessible. Therefore,

direct detection experiments do not currently constrain the vast majority of the available

parameter space.

Thus, in conclusion, the primary constraints that we must impose on the masses and

coupling AσS consist of the velocity-dependent constraints from astronomical observations
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(e.g., the bullet cluster) and constraints from halo ellipticity. We will explicitly verify that

we satisfy these when we consider specific parameter choices in Sec. 5.3 and Sec. 5.4.

Thus far, we have not addressed how we are going to produce an indirect detection signal.

We will consider emission of σ particles from either bremsstrahlung or bound state formation.

Although this particle’s interactions with Standard Model particles are assumed to be small,

it can decay through its (small) mixing with the Standard Model Higgs boson. It therefore

has the same decay modes as the Higgs boson (provided they are kinematically allowed),

although the amplitudes are suppressed by the σ-Higgs mixing parameters. Since we have

seen that astrophysical constraints require a small mass mσ, we consider the decays σ → γγ

and σ → e+e−. For mσ ∼ a few MeV, the dominant decay is σ → e+e−. The decay rate in

the rest frame of the σ boson is

Γe+e− =
g2Wm2

emσ sin
2(θM/2)

32πm2
W

(

1− 4m2
e

m2
σ

)3/2

, (5.12)

where gW is the weak coupling constant. If mσ < 2me, the decay σ → e+e− is kinematically

forbidden, and instead the dominant decay is σ → γγ. In the σ particle’s rest frame, the

decay rate is

Γγγ =

sin2

(

θM
2

)

α2
emg

2
W

1024π3

m3
σ

m2
W

∣

∣

∣

∣

∑

i

Ncie
2
iFi

∣

∣

∣

∣

2

. (5.13)

In this equation, αem ≈ 1/137, Nci is the number of color states of the particle in the loop,

and ei is this particle’s electric charge. The dominant contributions to the loop will be from

electrons, up quarks, and down quarks, for which

F = −τ (1 + (1− τ)f(τ)) , (5.14)

where τ = 4m2
i /m

2
h, and

f(τ) =











(

arcsin
(

√

1/τ
))2

τ ≥ 1,

− (ln(η+/η−)− iπ)2 τ < 1,

(5.15)
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Figure 5.3: Diagrams for the scattering of σ particles with dark matter.

and η± = 1 ±
√
1− τ . In a reference frame in which the σ particle is moving with speed

v, the lifetime is τ = γ/Γ due to time dilation. For the decay products to be observed, the

σ particles must decay in flight before they travel the ∼ 8 kpc separating Earth from the

galactic center. For our choice of parameters, the mean distance traveled in one lifetime is

significantly shorter than this distance.

However, constant scattering can act like a quantum Zeno experiment that prevents the

decay. Therefore, we must also show that the mean free path for σ particles in the Milky

Way is greater than the distance they travel in one lifetime (measured in the Milky Way

reference frame). Since the quartic coupling λσS and the cubic coupling Aσ may be made

arbitrarily small, we assume that the scattering is dominated by the Sσ interaction mediated

by an S boson; there are two diagrams that contribute, which are shown in Fig. 5.3.

In the Milky Way reference frame, the σ particle is moving relativistically with energy Eσ,

while the S particle is moving nonrelativistically with velocity v of order 10−3. We do not

assume any relation between Eσ and the kinetic energy of the S particle. Since the cross

section is a relativistic invariant, we may evaluate it in the center of momentum frame, which

is attained by boosting by β = Eσ/(Eσ +mS). Keeping only the largest terms, we find that
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the initial and final four-momenta in the CM frame are

pµσ,i = (γβmS, 0, 0, γβmS),

pµS,i = (γmS, 0, 0,−γβmS),

pµσ,f = γβmS, γβmS sin(θ), 0, γβmS cos(θ)),

pµS,f = (γmS,−γβmS sin(θ), 0,−γβmS cos(θ), (5.16)

where we have used the fact that the collision is elastic. The matrix element is

−iM = − A2
σS

m2
S − (pS,i − pσ,f )2

− A2
σS

m2
S − (pS,i + pσ,i)2

,

= − A2
σS

m2
S −m2

S + 2pS,i · pσ,f
− A2

σS

m2
S −m2

S − 2pS,i · pσ,i
,

= − A2
σS

2γ2βm2
S + 2γ2β2m2

S cos(θ)
− A2

σS

−2γ2βm2
S − 2γ2β2m2

S

,

= − A2
σS

2γ2m2
S

(

1 + cos(θ)

(1 + β)(1 + β cos(θ))

)

, (5.17)

which yields the cross section

σ =
1

64π2

∫ |M|2
γ2(1 + β)2m2

S

dΩ,

=
A4
σS

128πγ6(1 + β)4m6
S

∫ π

0

(

1 + cos(θ)

1 + β cos(θ)

)2

sin(θ) dθ,

=
A4
σS

64πm6
S

2β + (1− β2) ln((1− β)/(1 + β))

γ6β3(1 + β)5
. (5.18)

The mean free path is ℓ = (σnS)
−1, where nS can be found using Eq. (5.6). Since nS

depends on r, the mean free path will also depend on r; it is the smallest as we approach the

galactic center. Although we will avoid small radii due to the central cusp, let us evaluate

the mean free path at 1 pc as an extreme example. For mS = 5 TeV, AσS = 3 TeV, and

Eσ = 1 TeV, the mean free path of order 1036 m; if we decrease Eσ to 1 MeV, it increases

only to ′(1035 m). These are much greater than the 1020 m between the galactic center and

the Solar System; therefore, scattering will not decohere the oscillations.
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We are now certain that the σ bosons produced in the Milky Way will decay to γγ or

e+e−, potentially providing an indirect detection signal. To determine the signal, we also

need to know the width of the energy distribution of the decay products. The decay channels

considered are two body decays; therefore, the energy spectrum of the decay products is a

sharp line at mσ/2 in the rest frame of the mσ particle. This energy spectrum must be

boosted into the Milky Way reference frame, in which the σ particles are moving with speed

v =
√

E2
σ −m2

σ. Because the σ boson is spinless, the resulting energy distribution is flat.

Consequently, for decays to an electron and positron, the energy distribution is

P (Ee) =
1

√

(E2
σ −m2

σ)(1− 4m2
e/m

2
σ)

(5.19)

for Ee between the values of

Ee,max, Ee,min =
Eσ

2
±
√

(E2
σ −m2

σ)(1− 4m2
e/m

2
σ)

2
. (5.20)

Similarly, for decays to two photons, the energy distribution is

P (Eγ) =
1

√

E2
σ −m2

σ

(5.21)

for Ee between the values of

Eγ,max, Eγ,min =
Eσ

2
±
√

E2
σ −m2

σ

2
. (5.22)

In this section, we have outlined a minimal scalar self-interacting asymmetric dark matter

model. We have also discussed the constraints we must impose on the parameter space, and

the decays of the dark force mediator that may produce a detectable indirect detection signal.

However, we have not considered the production of the σ bosons, nor have we considered the

spectrum of the signal that would be observed at the Solar System. We will next complete

the analysis for the emission of σ bosons in bound state formation; following this, we consider

bremsstrahlung emission in Sec. 5.4.
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5.3 Signal From Dark Matter Bound State Formation

It has previously been noted that many models of self-interacting dark matter, including

supersymmetric models, permit the existence of dark matter bound states [131]. The same

reference notes that the decay of emitted force carrier particles could, in theory, produce a

signal for indirect detection experiments. In this section, we will by explicitly calculate this

signal for the above asymmetric scalar dark matter model. We will show that it is indeed

possible to produce a signal above current observational bounds, establishing the possibility

of indirect detection of self-interacting asymmetric dark matter. However, we will further

show that the limit α≪ 1, as taken in Ref. [131], does not produce a detectable signal.

For illustrative purposes, we choose specific points in parameter space, taking care to

satisfy the constraints discussed in Sec. 6.1. To facilitate the formation of bound states, we

desire a large coupling AσS; we will choose α = A2
σS/16πm

2
S = 2. Although calculations

in strongly-interacting regimes are notoriously difficult, the astrophysical bounds discussed

in Refs. [125, 138] may be extrapolated to large α; the transfer cross section used in both

references includes corrections for strong interactions. We will also consider α = 1 and show

that this is not sufficient to produce an observable signal.1

First, we ensure that our parameters are consistent with large elliptical halos; as discussed

in Ref. [125], the restriction on α becomes weaker as mσ is increased. Fig. 5.2 shows the

minimum mσ as a function of mS for which we may consistently take α = 2. The choice

mS = 4 TeV requires mσ & 30 MeV; we will choose mσ = 40 MeV. Similarly, for mS =

4 TeV and α = 1, we must satisfy mσ & 20 MeV; we choose mσ = 25 MeV. We must also

ensure that our parameters are consistent with the velocity-dependent bounds based on the

bullet cluster and other astrophysical observations. The velocity for which 〈vσT 〉 = σmax
T

is vmax =
√

2αmσ/πmS; this is 1100 km/s and 2000 km/s respectively for the two sets

1Readers familiar with atomic dark matter models may be concerned because for a gauge vector mediator,
the ground state has nonzero angular momentum at such large coupling constants. This does not hold for
the exchange of scalars considered here.
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of parameters above. To be consistent with astrophysical data, we then must have σmax
T /

mS ≤ 100 GeV−3 [138]; the above numbers correspond to 0.2 GeV−3 and 9 GeV−3. Finally,

bound state formation is hindered if a real σ boson cannot be emitted. Therefore, we must

also take mσ ≪ B, where the binding energy B = α2mS/4. For the first set of parameters

chosen, the binding energy is 4 TeV, and for the second set of parameters, B = 1 TeV.

For both, mσ ≪ B. Hence, these two points in parameter space satisfy all the requisite

constraints.

The rate of formation of bound states, neglecting charge depletion, is given by

dNBS

dt
=

∫

nS(r)
2σBSvrel dV, (5.23)

where nS(r) = ρ(r)/mS is the number density of S particles and σBS is the cross section for

bound state formation. Because the S particles do not escape to infinity, this cross section

cannot be approximated using the Born approximation. However, we are in the classical

regime (mS v̄/mσ ≫ 1) even though the coupling is strong; therefore we do not need to

include additional quantum corrections such as those calculated numerically in Ref. [135].

We now proceed to calculate this cross section in the classical limit.

We will approximate the σ boson as massless. The cross section for non-relativistic

electrons and positrons to form a bound state through photon exchange was calculated

in Ref. [149]; we adapt this derivation for scalar fields. The matrix element is

M = −i
∫

Ψ∗
f (r1, r2)

(

∑

n=1,2

Ane
−ik·rn

)

Ψi(r1, r2)d
3r1 d

3r2(2π)δ(Ei − Ef − Eσ). (5.24)

In this equation, r1 and r2 are the locations of the two S particles respectively, Ψf is

the wavefunction of the bound state, and Ψi is the wavefunction for the two incoming S

particles. The factor e−ik·rn represents the wavefunction of the σ particle, and the sum

is over the two S particles it can couple to. In this equation, the wavefunctions have the

standard normalization in quantum field theory; however, since we are interested in the
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non-relativistic limit, let us use wavefunctions that are normalized to one. Then the matrix

element is

M = −i AσS

2mS

∫

Ψ∗
f (r1, r2)

(

e−ik·r1 + e−ik·r2
)

Ψi(r1, r2)d
3r1 d

3r2(2π)δ(Ei − Ef − Eσ).

(5.25)

Next we define

R =
r1 + r2

2
, r = r1 − r2, (5.26)

and write the wavefunctions as

Ψi(r2, r1) = eiQ·RΨi(r), Ψf (r2, r1) = eiP ·RΨf (r), (5.27)

where Q = p1 + p2 is the total momentum of the initial particles. Similarly, P is the

momentum of the bound state. Performing the d3R integral yields

M = −i AσS

2mS

∫

Ψ∗
f (r)

(

eik·r/2 + e−ik·r/2
)

Ψi(r)d
3r(2π)4δ(Ei − Ef − Eσ)δ

3(Q− k − P ).

(5.28)

The reduced matrix element is

M̄ =

∫

Ψ∗
f (r)

(

eik·r/2 + e−ik·r/2
)

Ψi(r)d
3r, (5.29)

and the differential probability is

dW =
TV

(2π)22Eσ

A2
σS

4m2
S

δ(Ei − Ef − Eσ)δ
3(Q− k − P )|M̄|2|k|2 d|k| dΩ d3P, (5.30)

where V is the normalized volume, T is the interaction time, and dΩ is the solid angle for

the σ particle. The remaining integrals enforce momentum and energy conservation; we

may perform them by directly imposing these constraints in our calculation. The transition

probability per unit volume and unit time is

dw =
A2
σS

4m2
S

|k|2dΩ
2Eσ(2π)2

|M̄|2. (5.31)

If mσ ≪ B, then Eσ ≈ |k| and this simplifies to

dw =
A2
σS

4m2
S

|k|dΩ
2(2π)2

|M̄|2. (5.32)
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The differential cross section is dσ = dw/vrel where vrel is the relative velocity of the particles

in the initial state. We define the relative momentum by p = µvrel where µ = mS/2 is the

reduced mass. |p| is also the momentum of one of the incoming particles in the center of

momentum frame; we now specialize to this frame. (We note that the cross section is Lorentz

invariant, and therefore still applicable to other reference frames.) Then

dσ =
A2
σS

4mS

|k|dΩ
|p|(2π)2 |M̄|

2. (5.33)

The free S particles do not escape to infinity; they exist only in the initial state. Therefore,

at large r, Ψi(r) must be a superposition of a plane wave and an outgoing spherical wave,

which we approximate as a Coulomb wave. This approximation should be reasonable in the

classical regime. The appropriate wavefunction with these limits is [150] (also discussed in

Ref. [149])

Ψi(r) = eπζ/2Γ(1− iζ)F (iζ, 1, i(pr − p · r))eip·r, (5.34)

where ζ = AσSmS/4|p|mS = AσS/4|p|, and F is the confluent hypergeometrical function.

This has the same normalization as a plane wave. We note that the cross section will be

very sensitive to the ratio AσS/|p| ∼ AσS/mS due to the first exponential.

For the final state Ψf (r), we adapt the hydrogen ground state wavefunction; this is reason-

able in the approximation that mσ is negligible. For the actual hydrogen atom, in which the

interaction is mediated by a vector gauge boson, the ground state carries non-zero angular

momentum for α ≥ 1/2. However, the derivation of this result depends on the fact that the

mediator is a vector gauge boson, while our mediator is a scalar boson.2 Thus we take

Ψf =

√

η3

π
e−rη, (5.35)

2In QED, the gauge derivatives in the field equation give rise to (E− e2/r)2, which gives a term ∼ e4/r2.
This combines with ℓ(ℓ+1)/r2 and leads to the α > 1/2 requirement. In the scalar exchange considered here,
there are no gauge derivatives and we simply insert the potential ∼ α exp(−mr)/r into the field equation.
No term like α2/r2 appears.
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where η = ζ|p| = AσS/4; this is the radius of the bound state. The reduced matrix element

is

M̄ =

√

η3

π
eπζ/2Γ(1− iζ)

∫

eip·r−rη
(

eik·r/2 + e−ik·r/2
)

· F (iζ, 1, i(pr − p · r)) d3r. (5.36)

To evaluate the integral, we differentiate the identity [151]

∫

ei(p−κ)·r−ηrF (iζ, 1, i(pr − p · r))d
3r

r
= 4π

[|κ|2 + (η − i|p|)2]−iζ
[(p− κ)2 + η2]1−iζ

(5.37)

with respect to η. The result is

∫

ei(p−κ)·r−ηrF (iζ, 1, i(pr − p · r)) d3r

= 8π
[|κ|2 + (η − i|p|)2]−iζ
[(p− κ)2 + η2]2−iζ

[

ζ
(η − i|p|)[(p− κ)2 + η2]

[|κ|2 + (η − i|p|)2] − iη(1− iζ)

]

≡ g(κ, χ), (5.38)

where χ is the angle between p and κ. We observe that g(κ, π−χ) = g(−κ, χ). If the angle
between k and p is Υ, the reduced matrix element is

M̄ =

√

η3

π
eπζ/2Γ(1− iζ)

(

g

( |k|
2
,Υ

)

+ g

(

−|k|
2
,Υ

))

. (5.39)

This can be evaluated numerically. The last remaining unknown quantity in (5.33) is |k|,
which can be found from the energy conservation equation

2m+
|p|2
m

= (2m− B) +
|k|2

2(2m− B)
+ |k|, (5.40)

where we have noted that in the center of momentum reference frame, the bound state also

has momentum |k|. We find the total cross section by numerically integrating (5.33). We

must also average over a relative momentum distribution P (|p|); the total averaged cross

section is given by

σBS =

∫∫

A2
σS

4mS

|k||M̄|2
|p|(2π)2P (|p|) d|p| 2π sin(Υ) dΥ. (5.41)

We note that in the non-relativistic limit the momentum difference of the two particles is

independent of reference frame; therefore we can calculate P (|p|) in any convenient frame
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even though we specialized to the center of momentum reference frame above. The total cross

section is, of course, Lorentz invariant. Using Eq. (5.10), we find the relative momentum

distribution

P (|p|) d|p| = 4π
√
8

m3
S

(

mS

2πTeff

)3/2

e−|p|2/mSTeff |p|2 d|p|. (5.42)

This gives us the desired cross section for bound state formation.

In fact, we are interested in the rate of bound state formation, which we recall is given by

Eq. (5.23). We should average the whole equation over the relative momentum (instead of

simply substituting the average cross section), using

dNBS

dt
=

∫

nS(r)
2dV

∫∫

2|prel|
mS

σ(|prel|)P (|p|) d|prel|. (5.43)

The first set of parameters discussed above corresponds to a cross section of 4.11·10−2 GeV2,

which gives the rate dNBS/dt = 2.1·1014 GeV. In one year, 9.8·1045 bound states are formed,

which means that during the lifetime of the Milky Way, 1.3 · 1056 would have formed. This

is indeed negligible in comparison to the total number of S particles between 1 kpc and 8

kpc, which is 7.2 · 1063. This justifies our neglect of charge depletion. If we decrease α to

1, then the cross section drops by two orders of magnitude, to 5.76 · 10−4 GeV2. The rate

is also two orders of magnitude smaller, dNBS/dt = 2.9 · 1012 GeV. Again, we may neglect

charge depletion.

The S particles do not interact electromagnetically. Therefore, when a bound state is

formed, the excess energy is carried off by emission of a σ particle. Although the binding

energy is large enough that a Higgs boson could be emitted instead, the σ particle dominates

because it is lighter and has a stronger coupling to the S particles. Because of the nonzero

σ-Higgs mixing, this σ particle may decay into Standard Model particles. Given our choices

for mσ, the dominant decay is σ → e+e− for both α = 2 and α = 1.
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In the rest frame of the Milky Way, the σ particles will have a typical energy equal to

the binding energy; the additional energy the σ particle may carry from the kinetic energy

of the nonrelativistic S particles is negligible. Using Eq. (5.13), we find that the lifetime of

the σ boson, in the Milky Way’s rest frame, is 1.46 · 1025 GeV, or 9.61 s, for the first set of

parameters. The distance that they travel before decaying is 109 m, which is significantly

less than the distance from the galactic center to the Solar System. For the second set of

parameters, the lifetime is 9.36 · 1024 GeV ≈ 6.17 s, and they similarly decay in flight.

As explained in Sec. 5.2, the resulting electrons and positrons have a flat energy distribu-

tion; their spectrum is

dNe

dEe dt
=

1
√

(B2 −m2
σ)(1− 4m2

e/m
2
σ)

dNBS

dt
. (5.44)

These particles have typical energies on or just below the TeV scale; they lose energy through

synchrotron radiation and inverse Compton scattering rapidly, within about 1 kpc [152].

Therefore, few of these high-energy electrons and positrons will be observed near Earth.

There are three sources of background photons: the cosmic microwave background (CMB)

radiation, starlight, and the starlight reprocessed by dust (including the extra-galactic back-

ground light, which is the starlight re-emitted by dust outside Milky Way). Outside the

central molecular zone, the cosmic microwave background radiation dominates the photon

number density [153]. For the signal from distances between 1 and 8 kpc from the galactic

center, one may safely neglect scattering from photons other than CMB photons.

Because of the smallness of the IC mean free path, other propagation effects are not

significant; we will show explicitly that we can neglect the energy loss due to synchrotron

radiation, which is described by
dEe

dt
= −bsyncE2

e , (5.45)

where the unitless coefficient bsync is given by

bsync =
4σT
3me

B2

8π
. (5.46)
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σT is the Thomson cross section. Since we consider a spherical region extending from 1

kpc to 8 kpc, very few of the fermions will be created in the galactic plane. Therefore, the

appropriate magnetic field is 1 µG [154,155], which gives bsync = 6 · 10−43.

This is to be compared to the energy loss of a single fermion due to inverse Compton

scattering, which is described by the equation

dEe

dt
= −bICSE

2
e , (5.47)

where now the unitless coefficient is

bICS =
4σKNwph
3m2

e

. (5.48)

σKN is the Klein-Nishina cross section, which reduces to the Thomson cross section when

relativistic corrections are negligible. For scattering with scattering CMB photons, bICS =

5.2 · 10−41 and is approximately independent of energy, for the set of parameters with α = 2.

For the parameters with α = 1, we have bICS = 5.3 · 10−41 instead. Since this is two orders

of magnitude larger than the corresponding value for synchrotron radiation, we may neglect

energy loss due to synchrotron radiation.

Now we proceed to calculate the photon energy spectrum from inverse Compton scattering

with CMB photons. The cosmic microwave background radiation is a blackbody at TCMB =

2.73 K; therefore the photon density per unit energy is

nph(ǫ) ≡
d2Nph,CMB

dV dǫ
=

1

π2

ǫ2

exp(ǫ/TCMB)− 1
, (5.49)

where ǫ is the energy of the unscattered photon. For inverse Compton scattering, the number

of scattered photons per unit energy per unit time produced by an electron or positron with

Lorentz factor γ is given by [156,157]

d2Nγ

dE dts
(E, γ) =

∫ ∞

0

dǫ nph(ǫ)σKN(E, ǫ, γ), (5.50)
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where σKN(E, ǫ, γ) is

σKN(E, ǫ, γ) =
3σT
4ǫγ2

G(q,Γ) (5.51)

and

G(q,Γ) = 2q ln(q) + (1 + 2q)(1− q) + 2ηq(1− q),

Γ =
4ǫ

me

, η =
ǫE

m2
e

, q =
E

Γ(me − E)
.

We have put a subscript on tS in Eq. (5.50) to denote that this variable measures the time

during which the fermion scatters against CMB photons. We use the symbol E for the final

energy of the scattered photon. The Thomson limit corresponds to Γ≪ 1 which is applicable

here. By energy conservation, only energies E between the following values are allowed:

Emin(γ, ǫ) =
γmeΓ

4γ2 + Γ
, Emax(γ, ǫ) =

γmeΓ

1 + Γ
, (5.52)

which we enforce by writing

d2Nγ

dE dtS
(E, γ) =

∫ ∞

0

dǫ nph(ǫ)σKN(E, ǫ, γ)Θ(Emax(γ, ǫ)− E)Θ(E − Emin(γ, ǫ)). (5.53)

This equation gives the number of photons per unit energy per unit time scattered by an

electron or positron with energy γme. From the fermion energy distribution given in Eq.

(5.19), the corresponding distribution is

P (γ) =
me

√

(B2 −m2
σ)(1− 4m2

e/m
2
σ)

(5.54)

for γ between the values

γmax, γmin = ±
√

(B2 −m2
σ)(1− 4m2

e/m
2
σ)

2me

. (5.55)

Averaging d2Nγ/dE dt over the γ distribution gives

d2Nγ

dE dtS
(E) =

∫ γmax

γmin

P (γ)

∫ ∞

0

dǫ nph(ǫ)σKN(E, ǫ, γ)Θ(Emax(γ, ǫ)− E)Θ(E − Emin(γ, ǫ)).

(5.56)
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Figure 5.4: dNγ/dE, given by Eq. (5.58), evaluated for the first set of parameters (α = 2,

mS = 4 TeV, mσ = 40 MeV).

This equation gives us the number of photons scattered per electron (or positron) per unit

time; however, we require the total number of photons scattered by one electron before it

loses all of its energy. Properly, we should integrate over tS; this is complicated because γ is

a function of tS. Therefore, we will approximate

dNγ

dE
≈ d2N

dE dtS
· T, (5.57)

where T = 1/bICSEe = 1/bICSγme is the relevant time-scale for energy loss. This gives

dNγ

dE
(E) =

1

bICSme

∫ γmax

γmin

P (γ)

γ

∫ ∞

0
dǫ nph(ǫ)σKN(E, ǫ, γ)Θ(Emax(γ, ǫ)− E)Θ(E − Emin(γ, ǫ)).

(5.58)

This equation describes the total number of scattered photons of a particular energy, for

a single electron or positron. In Fig. 5.4 we have evaluated this equation for the α = 2

parameters for energies between 1 GeV and 10 GeV. We observe that the number of photons

drops off rapidly as a function of energy. To find the total number of photons per unit energy

per unit time, we must multiply by the rate of production of the high energy fermions, which
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yields

dNγ,tot

dE dt
(E) =

dNBS

dt

2

bICSme

∫ γmax

γmin

P (γ)

γ

∫ ∞

0

dǫ nph(ǫ)σKN(E, ǫ, γ)

·Θ(Emax(γ, ǫ)− E)Θ(E − Emin(γ, ǫ)). (5.59)

From this result, the number of photons produced per unit energy per unit time, we can find

the flux of gamma rays at the Solar System.

The scalar σ particles emitted in bound state formation are not emitted preferentially

in any direction; therefore we expect an isotropic flux of these particles about the galactic

center. Similarly, as a scalar particle, its decay products are emitted isotropically. Since

the CMB is also isotropic, the distribution of scattered photons will be isotropic about

the galactic center. Therefore, the photon flux per unit area may be approximated by an

equivalent point source at the galactic center. This a rather crude approximation to the

true diffuse flux is only meant to demonstrate that a detectable signal is possible. If such

a signal were to be observed, more careful analysis should be done before attempting to fit

this scenario to the data. Integrating out to r = 8 kpc will include the flux (as seen from

Earth) from the hemisphere centered on the galactic center. Thus, we divide by 2π st to

find the average flux per unit area per unit angle. We emphasize that this is an average;

as a function of solid angle, we expect the signal to be greater near the galactic center and

smaller further away from it.

Furthermore, we note that the production of the dark force mediator bosons σ scales as

the density squared, which increases towards the galactic center. Since the σ bosons only

travel 109 m before decaying into the fermions which scatter the CMB photons, the signal

is dominated by the innermost region we consider. Since we have cut off our calculation

at an inner radius of 1 kpc to avoid the known cusp in the NFW profile, the signal comes

predominantly from the region near this cut. Therefore, the point source approximation is

better than one may naively expect.
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Figure 5.5: Depending on the model parameters, the signal can range from undetectable

to already excluded. The signal is shown for mS = 4 TeV, mσ = 40 MeV for α = 2,

and mσ = 25 MeV for α = 1. For comparison, we also show data from Fermi LAT space

telescope [158].

The average flux over the hemisphere centered on the galactic center, neglecting the galac-

tic center itself, is

Φ =
dNγ,tot

dE dt
· 1

2π st
· 1

4π(8 kpc)2
. (5.60)

To compare with the the sensitivity of the Fermi-LAT Gamma Ray Telescope, we evaluate

E2Φ; this function is plotted in Fig. 5.5. The signal for α = 1 is peaked at a lower energy

and falls off more sharply, as we would expect because the binding energy is smaller. We

see that α = 2 produces a signal that is one order of magnitude larger than the values

measured by Fermi-LAT, but the signal produced by α = 1 is two orders of magnitude too

small. Therefore, we conclude that sufficiently large couplings may produce a detectable

signal. This suggests that WIMPonium models [131], which assume α≪ 1, will not produce

a detectable signal through bound state formation.

One can also show that the resulting signal is rather insensitive to the precise value of mσ,

provided that σ → e+e− remains the dominant decay. However, this parameter is highly
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constrained by the astrophysical bounds discussed in Sec. 5.2. Finally, we also note that this

signal depends relatively weakly on the cutoff we imposed to avoid the center cusp of the

NFW profile. If we cut off the integral at 1 pc instead of 1 kpc, the signal would only be

about 20 percent greater. Hence, including a central core is not likely to be raise the α = 1

signal to detectable levels.

Next we will briefly discuss the possibility of producing a detectable positron or electron

signal. This is a particularly interesting question because of the positron excess observed by

PAMELA [159], which was confirmed by Fermi-LAT [160] and more recently AMS-II [161].

In order to travel from the galactic center to the Solar System relatively unimpeded, the

fermions would need to be lower energy than those discussed above, which lost significant

energy due to inverse Compton scattering. Energy loss due to inverse Compton scattering

is somewhat suppressed for energies on the GeV scale.

The energy of the fermions produced by the decay of the dark force mediator depends

only on the mass of the S particles and α, and to produce a significant number of dark force

mediator particles, we must keep α relatively large. (Smaller values of α suppress the bound

state formation cross section.) Therefore, to produce 10 GeV-scale positrons and electrons,

we must decrease mS to the scale of a few hundred GeV. This is below the scale typically

discussed in the WIMPonium literature.

Naively, these parameters appear to run into difficulties with the halo ellipticity bounds [125];

for example, mS = 100 GeV with α = 2 appears to require mσ be at least 232 MeV, for

which the dominant decay is to muons instead of e+e−. (However, it should be noted that

the analytic approximation for the cross section begins to break down at mσ ∼ 100 MeV).

This appears to eliminate the possibility of an observable electron or positron excess. We

have noted that a more detailed analysis of the bounds by [28] suggests that these bounds

should be about an order of magnitude weaker. When we considered these bounds in Sec.

5.2, we parameterized this uncertainty with the parameter F , which is one if the consider-
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ations of [28] are ignored. If one assumes F ∼ 0.1, then a small region of parameter space

remains which is consistent with the halo ellipticity bounds and mσ is small enough (50-80

MeV) that the decay to e+e− dominates.

The analysis proceeds as above, up to the calculation of the inverse Compton scattering.

For these lower energy electrons and positron, we do not expect inverse Compton scattering

to be a significant effect. However, other effects can influence the shape of the spectrum ob-

served at Earth. For example, positron annihilation may dramatically decrease the detected

positron fraction, and we expect these particles to lose energy due to bremsstrahlung. A

detailed analysis could be run using cosmic ray propagation software such as GALPROP.

However, we believe that it is unlikely that the resulting spectrum could reproduce the

observed positron excess observed in PAMELA, Fermi-LAT, and AMS-II. The energy spec-

trum of fermions produced through the decay of dark force mediator particles is flat, and

while this spectrum will no doubt be modified by a detailed analysis of propagation from

the galactic center to the Solar System, we think the resulting E3Φ is unlikely to be as flat

as that observed by PAMELA. Furthermore, the positron excess extends to higher energies

beyond that which can be accommodated by our model. Hence, we conclude that bound

state formation in self-interacting asymmetric dark matter models is unlikely to account for

this observed excess.

Finally, we note that it may be possible to adjust the parameters so that an excess of

positrons or electrons above PAMELA’s observations is produced, although again careful

analysis of the propagation of the fermions would be necessary. If such an excess can be

produced, we would expect it decrease at or before the TeV scale, at which point the spectrum

would be limited due to inverse Compton scattering energy losses. Since no such behavior is

observed in PAMELA’s spectrum, one would translate this into bounds on the parameters.

However, since the parameter space in which such a signal is potentially possible is already

quite small, any resulting constraints (if any) would be quite weak.
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5.4 Signal From Bremsstrahlung Emission of Dark Force Media-

tors

In this section, we discuss the signal produced by bremsstrahlung emission of a σ boson

which decays to photons. We will see that the resulting signal is significantly beneath

observational limits due to the substantial background at lower energies. In bremsstrahlung

emission, the energy of the emitted σ boson is comparable to the kinetic energy of the S

particles. Since these have a velocity of order 10−3, the typical energy scale of bremsstrahlung

emission will be 6 orders of magnitude below mS. We will require mσ ≪ v̄2mS/2 because

we do not want an additional suppression from the difficulty of emitting real σ bosons.

This will influence the implementation of the constraints discussed in Sec. 5.2. (We note,

however, that due to the contribution of the tail of the relative velocity distribution, we do

not necessarily expect a sharp cutoff at the average kinetic energy).

Additional constraints come from the astrophysical considerations discussed in Sec. 5.2.

As has been noted, Ref. [138] explores bounds for velocity-dependent cross sections; they

present their results as a function of vmax =
√

2αmσ/πmS. If vmax ∼ 10 km/s, then the

astrophysical constraints are consistent if 22.7/m2
σmS . 35 cm2/g = 16000 GeV−3 [27].

Combining this with mσ ≪ v̄2mS/2 yields

mS ≫
(

22.7 · 4
v̄4 · 16000 GeV−3

)1/3

= 1.3 TeV. (5.61)

Let us choose mS = 10 TeV and mσ = 0.5 MeV.

This does not include observations of large elliptical halos; now that we have set the

masses, this will constrain the coupling of AσS. From our results in Sec. 5.2 extending the

analysis of Ref. [125], we must take α = A2
σS/16πM

2
S . 0.93 (for the masses chosen above). If

we choose to saturate this bound, we find AσS = 68 TeV. These values give vmax ≈ 50 km/s,

consistent with our initial assumption that vmax ∼ 10 km/s.
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Figure 5.6: Diagrams contributing to the emission of a bremsstrahlung σ boson. The solid

lines represent S bosons, while the dashed lines represent σ bosons. The top line shows

t-channel scattering, while the bottom line shows u-channel scattering.

The σ boson can be emitted by either of the S particles, or it could also be emitted by

the σ boson exchanged between the S particles through the Aσ coupling, which is thus far

unconstrained. In order to enhance the signal, we will saturate the perturbativity bound,

taking Aσ = 3.5 MeV. On the other hand, we will also consider Aσ = 0, which is equivalent

to neglecting the two diagrams on the right of Fig. 5.6. While this certainly will not help

to increase our signal, the properties of the signal will be qualitatively different in the two

cases in interesting ways.

Next, we find the cross section for bremsstrahlung emission of a soft σ boson, which

involves evaluating the 10 diagrams shown in Fig. 5.6. Note that the t- and u-channel

diagrams cancel to lowest order in the mσ → 0 limit. Therefore, the resulting cross section

is smaller than what one may naively expect. Let us denote the incoming four-momenta

as p1 and p2, the outgoing momenta of the two S particles as p3 and p4, and the outgoing
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momentum of the bremsstrahlung σ particle as p5. The matrix element is then

−iM = − A3
σS

(m2
σ − (p3 − p1)2)(m2

S − (p4 + p5)2)
− A3

σS

(m2
σ − (p2 − p4)2)(m2

S − (p3 + p5)2)

− A3
σS

(m2
σ − (p3 − p1)2)(m2

S − (p2 − p5)2)
− A3

σS

(m2
σ − (p2 − p4)2)(m2

S − (p1 − p5)2)

− A2
σSAσ

(m2
σ − (p2 − p4)2)(m2

σ − (p3 − p1)2)
+ (p3 ↔ p4), (5.62)

where the last term, in which the momenta p3 and p4 are switched, represents the contribution

of the bottom row of diagrams. We will specialize to the center of mass frame; we note that

the total cross section is a relativistic invariant and therefore it is irrelevant what frame it

is calculated in. Without a loss of generality we write the momenta as

pµ1 =

(

mS +
|pI |2
2mS

, 0, 0, |pI |
)

,

pµ2 =

(

mS +
|pI |2
2mS

, 0, 0,−|pI |
)

,

pµ3 =

(

mS +
|p3|2
2mS

, |p3| sin(θ3) cos(φ3), |p3| sin(θ3) sin(φ3), |p3| cos(θ3)
)

,

pµ4 =

(

mS +
p23
2mS

, |p4| sin(θ4) cos(φ4), .|p4| sin(θ4) sin(φ4), |p4| cos(θ4)
)

,

pµ5 =
(

√

m2
σ + |p5|2, |p5| sin(θ5), 0, |p5| cos(θ5)

)

. (5.63)

The cross section is given by

σbrem =

∫ |M|2
4(E1 + E2)2

(2π)4δ4(p1 + p2 − p3 − p4 − p5) dLips, (5.64)

where the extra 1/2 comes from the two identical particles in the final state and dLips is the

well-known Lorentz-invariant phase space for the final state particles,

dLips =
5
∏

i=3

d3pi
(2π)32Ei

. (5.65)

In the phase space denominators, we may make the approximation E1 = E2 = E3 = E4 =

mS, and we integrate over the three-momentum delta function, setting p3 = −p4 − p5.

When the S particles are nonrelativistic, the energy delta function is

δ

( |pI |2
mS

− |p4|2
2mS

− |p4 + p5|2
2mS

−
√

m2
σ − |p5|2

)

. (5.66)
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Let us define θ45 to be the angle between p4 and p5. The delta function enforces

|pI |2
mS

− |p4|2
mS

− |p5|2
2mS

− |p4||p5| cos(θ45)
mS

−
√

m2
σ + |p5|2 = 0, (5.67)

which can be solved for |p4| in terms of |p5| and θ45:

|p4| = −
|p5| cos(θ45)

2
+

1

2

√

|p5|2 cos2(θ45)− 2|p5|2 + 4|pI |2 − 4mS

√

m2
σ + |p5|2. (5.68)

We must of course ensure that the result is positive. By our choice of coordinates, the dφ5

integral is trivial; this leaves the integrals over θ4, φ4, θ5, and d|p5| to be done numerically.

This integral is not infrared divergent due to the nonzero mass of the σ boson. Since the

initial momentum in the center of momentum frame is pI = vrel/2mS, the above calculation

gives the cross section as a function of vrel. We can then average over the relative velocity

σbrem =

∫

P (vrel)σ(vrel) dvrel (5.69)

using Eq. (5.10).

Finally, we address Sommerfeld factors, which multiply the cross section and naively can

have a large impact at low velocities. (Note that this is a multiplicative factor in addition to

the typical 1/v behavior of the cross section). These describe the formation of a quasi-bound

state during the interaction; the modified cross section is

σSomm =
πα/v

1− exp(−πα/v)σ. (5.70)

For the parameters under consideration, these factors can be extremely large, of order 103 or

104. However, it has been argued that in this regime the Sommerfeld factor as written above

is unreliable; additional diagrams beyond the ladder diagrams implicitly summed in the

above equation must be taken into account and a proper resummation suggests the factors

are of order O(1) to O(10) [162]. This is supported by some experimental evidence [163,164],

including more recent observations at BABAR [165]. We will argue below that even these

large Sommerfeld factors (if correct) would not be sufficient to produce a detectable signal

through bremsstrahlung emission.
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Evaluating the cross section numerically, including averaging over the relative velocity of

the incoming particles, gives σbrem = 0.0108 GeV−2. This is the same order of magnitude as

the α = 2 cross section for bound state formation; we note, however, that we did not have

to increase the coupling α into the non-perturbative regime in order to reach this value. In

general, for comparable values of α, the bremsstrahlung cross sections are significantly larger

than the bound state formation cross section.

The rate of production of bremsstrahlung σ bosons is

dNσ

dt
=

∫∫

nS(r)
2vrelσbrem(vrel)P (vrel) dV dvrel, (5.71)

where nS(r) = ρ(r)/mS is the number density of dark matter S particles and ρ(r) is given

by Eq. (5.6). We have also averaged over the relative velocity of the S bosons, and the

integration extends from 1 kpc to 8 kpc, the distance from the solar system to near the

galactic center, ignoring the central cusp. When we saturate the perturbativity bound with

Aσ, we find dNσ/dt = 3.21 ·1013 GeV, or 4.87 ·1037 s−1. As might be expected, for Aσ = 0 we

find the lower rate dNσ/dt = 1.45 · 1011 GeV−1 = 2.20 · 1035 s−1. The substantial difference

(two orders of magnitude) shows that the first case is dominated by the diagrams in which

the emitted σ boson comes from the exchanged σ boson. Since the two cases are dominated

by different diagrams, we expect qualitative differences in their spectra.

We will show that bremsstrahlung emission does not produce a detectable signal, while

we found that bound state formation can make such a signal for sufficiently large couplings.

Since this is perhaps a surprising result, one may find it beneficial to compare the calculations.

We emphasize, however, that such comparisons must be made carefully, since the bound state

calculations were performed in a different region of parameter space. We wish to emphasize

that for any fixed perturbative value of α, the rate of bremsstrahlung production will always

be much greater than the rate of bound state formation, as one would expect. However, if

one compares the value of dNσ/dt found above with dNBS/dt given in the previous section,

which are evaluated at different parameters, one finds that dNBS/dt is larger by about an
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order of magnitude, even though we have chosen parameters such that the cross sections

are comparable. This is a result of taking mS = 10 TeV here as opposed to 4 TeV above;

increasing mS decreases the number density nS(r).

The spectrum of the emitted σ bosons (per SS → SSσ event) is

dNσ

dEσ

=
1

σbrem

dσbrem

dEσ

. (5.72)

As we might expect, this spectrum is peaked at 600 keV, which is on the same scale as the

kinetic energy. The resulting spectrum of the total produced σ bosons per unit time is

d2Nσ

dt dEσ

=

(∫

nS(r)
2 dV

)∫

vrel
dσbrem

dEσ

P (vrel) dvrel. (5.73)

For mσ = 0.5 MeV, the dominant decay mode of the σ boson is σ → γγ, which is described

by Eq. (5.21). If we assume the mixing angle between the σ boson and the Higgs boson is

10−3, then the typical lifetime of the produced σ bosons is 105 s, during which they travel

about 1014 m, which is significantly less than the 1020 m between the galactic center and the

Solar System. Therefore, they will decay in flight, and the spectrum of the resulting photons

is given by
d2Nγ

dEγ dt
= 2

∫

d2Nσ

dt dEσ

P (Eγ, Eσ) dEσ, (5.74)

where the distribution of photon energies, as a function of the initial σ boson energies, is

given by Eq. (5.21). (The Eγ dependence appears in evaluating the Heaviside step functions.)

As we would expect, this spectrum is peaked around 300 keV. We note that the tail of the

spectrum is larger for smaller Aσ values. As a result, the signal for Aσ = 0 will be skewed

towards higher energies.

The production of dark force mediator particles results in an isotropic flux of these particles

about the galactic center; similarly, we expect the flux of their decay products to be isotropic

about the galactic center. Again we estimate the flux using an equivalent point source at
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the galactic center,

Φ =
1

4πd2
· 1

2π st

d2Nγ

dEγ dt
, (5.75)

where d = 8 kpc is the distance from the galactic center to the solar system. As before, since

we have calculated the number of produced σ bosons out to a radius of 8 kpc, the signal

included here comes from the hemisphere centered on the galactic center, which explains the

2π st in the denominator. The true flux will be somewhat greater towards the galactic center

and somewhat less towards the edges; however, this is a relatively small effect, contributing

perhaps an order of magnitude increase as we approach the center. (We remind our reader

that we are already neglecting the contribution from the cusp at the galactic center itself.)

Again, with the same caveats as above, let us compare with the bound state case. The

photon energies here are spread out over the scale of 100 keV, whereas the photon signal

from CMB scattering we produced from the bound state production is spread over the

scale of 100 GeV. However, a single high energy fermion produces about 102-103 GeV-scale

photons through scattering off with CMB photons, while each σ boson produced through

bremsstrahlung produces a mere two photons. As a result, the estimated ratio of fluxes is

Φbrem/ΦBS ∼ 104 or 105. We note that since the two scenarios are in different regions in

parameter space, this cannot be interpreted as the ratio of actual bremsstrahlung-produced

photons to bound state produced photons in the galaxy.

As noted, the relevant energy scale for bremsstrahlung emission is on the scale of hundreds

of keV. Astrophysical backgrounds are significantly larger at this smaller scale; the SPI in-

strument on the INTEGRAL experiment records E2
γΦ on the order of 1-10 keV/cm2 s st

for energies between 20 keV and 1000 keV [166]. The flux of bremsstrahlung-emission pro-

duced photons cannot be distinguished from this large background. The resulting signal is

shown in Fig. 5.7; the larger Aσ = 3.5 MeV signal is about 7 orders of magnitude beneath

INTEGRAL’s observations. We also can see the qualitative difference in the signal shapes

alluded to above; this is because for Aσ = 3.5 MeV, the rightmost two diagrams of Fig.
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Figure 5.7: The flux of gamma rays produced by bremsstrahlung emission of σ particles and

their subsequent decay for mS = 10 TeV, mσ = 0.5 MeV.

5.6 dominate, whereas these are absent if Aσ = 0. Without these diagrams, the signal is

significantly smaller, but it is peaked at higher energies.

We have noted above we have not included the Sommerfeld enhancement. Even if we

assume that the naive Sommerfeld factor given by Eq. (5.70) is accurate to arbitrarily large

scales, this enhancement is not sufficient to produce a detectable signal. For the parameters

in the range discussed, the naive enhancement is of order 103 or 104, which is still too small

to produce the seven orders of amplification required for the signal to be detectable.

The signal can be increased by increasing the couplings; and indeed, as discussed in Sec.

5.2, there is some uncertainty in the halo ellipticity bounds (which set the upper bound on

AσS). However, producing a detectable signal requires increasing the coupling α to ∼ 103,

well outside the perturbative regime and far beyond what can be made consistent with the

halo ellipticity bounds. It is true that Aσ is unrestricted by astrophysical bounds, but in

order to amplify the two relevant diagrams to the scale of INTEGRAL’s observations, we
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would need to take Aσ/mσ ∼ 103, which is again unreasonably large.

Finally, even if the signal produced near the Milky Way’s galactic center is not detectable,

perhaps such processes enhance the gamma ray or x-ray emission of nearby dwarf galaxies

sufficiently to be detectable; however, a simple estimate reveals that this is not the case.

Even if the signal calculated above, for the Milky Way galaxy, was somehow shrunk into a

dwarf galaxy 40 kpc from us which covered a 3◦-by-3◦ patch of the sky, the number of counts

expected in an ideal 1 m2 detector is of order 10−5 keV−1 s−1, which is again well below the

background emission. Therefore, we conclude that bremsstrahlung emission of dark force

mediator particles cannot produce significant indirect detection signals.

5.5 Summary

We have considered indirect detection signals produced by a minimal scalar asymmet-

ric self-interacting dark matter. Due to the asymmetry, dark matter today cannot self-

annihilation, and this typical indirect detection signal is absent. However, the decays of a

mediator particle can potentially produce high energy cosmic rays, reopening the possibility

of indirect detection. We considered two processes that can produce a significant number of

dark mediators: bremsstrahlung emission and dark bound state formation. The first process

produced a large flux; however, it was at lower energies where the background is larger. We

saw that for sufficiently large couplings, bound state formation can potentially produce a

signal above current observational limits.
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CHAPTER 6

Atomic Dark Matter with a Massive Gauge Mediator

The previous chapter was concerned with the possibility of indirect detection in a minimal

scalar self-interacting asymmetric dark matter model. As noted, we ignored issues of cos-

mology, which allowed us to assume that dark matter today is single-component. Here, we

return to these questions in a slightly different model, inspired by the Standard Model. The

fields that make up normal matter are the fermionic quarks and electrons; therefore, we like-

wise take dark matter to be fermionic. As discussed in Ch. 1, the Standard Model is defined

in terms of its gauge group; therefore, instead of considering Yukawa interactions in the dark

sector, we will introduce a gauge interaction. In this chapter, we will explore the nature of

dark matter in the resulting model, showing that it is generally multi-component, with two

species of ions and dark atoms. Therefore, there are several types of intra- and inter-species

interactions, and so we return to the issues surrounding scattering in dark matter halos.

6.1 Atomic Dark Matter Model

Thermal relic dark matter (whether asymmetric or not) assumes the existence of inter-

actions which efficiently annihilate dark matter until it reaches the observed density. In

asymmetric dark matter models, the existence of a particle-antiparticle asymmetry reduces

the annihilation rate, and therefore, to reach a particular relic density a larger annihilation

cross section is required. The cross section does not need to be much larger; if the annihilation

cross section is about 2.4 times larger than the canonical thermal value, then antiparticles

contribute less than 1 percent of the total dark matter density [168]. The annihilation cross

section to Standard Model particles is constrained by direct detection experiments and col-
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lider experiments; for asymmetric dark matter, these constraints push the interaction scale

above the weak scale [170–173]. To avoid these constraints, one can consider a model in

which dark matter does not annihilate directly into Standard Model particles; one possibil-

ity is that it annihilates into other dark sector particles, which may or may not subsequently

decay into Standard Model particles.

As means of generating these interactions, we consider a model with a new Abelian gauge

group in the dark sector (see e.g. [113, 114, 174]). An advantage of this type of interaction

is that it can result in an accidental particle number symmetry at low energies, which is

necessary in asymmetric dark matter models. We will refer to this conserved particle number

as the dark baryon number BD. In this section, we argue that the dark matter in this model

is multi-component in much of the relevant parameter space.

6.1.1 Massless Mediator Boson

First, we argue for the multi-component nature of dark matter in the case of a perfect

UD(1) gauge symmetry, in which case the dark photon is exactly massless. The dark baryon

number asymmetry must be generated by interactions which are invariant under this gauge

symmetry. Therefore, of the relic particles with the net dark baryon number, half must be

positively charged under UD(1), and half negatively charged. In general, we expect dark

matter to consist of the lightest positively charged dark particle and the lightest negatively

charged dark particle. A comparison can be made to the Standard Model; the baryonic

asymmetry carried by protons is inevitably associated a net positive electric charge. However,

the universe as a whole is electrically neutral due to a corresponding negative charge carried

by electrons. As the lightest positively charged and negatively charged particles in the

Standard Model, both protons and electrons are stable. Consequently, we will call the two

stable dark ions the dark proton pD and the dark electron eD. We will designate their masses

by mp and me, their UD(1) charges by qp and qe, etc. We will further assume that these

particles are fermions, and we assume mp ≥ me.
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The low-energy effective Lagrangian of this model is

L = p̄D(i /D −mp)pD + ēD(i /D −me)eD −
1

4
FDµνF

µν
D , (6.1)

where F µν
D = ∂µAν

D−∂νAµ
D. (As in QED, we will use Aµ

D for the field in the Lagrangian, and

γD for the dark photon when discussing processes such as eDpD → γDγD.) We note that there

is no problem in writing mass terms for the dark electron and dark proton, as they are singlets

under the Standard Model gauge group. The covariant derivative is Dµ = ∂µ+iqigA
µ
D, where

g is the UD(1) coupling constant; we will generally use αD = g2/4π instead. For this to be

an asymmetric dark matter model, we must have a dark matter population which carries

a net dark baryon number BD; this implies the existence of high-energy interactions which

generate gauge-invariant and BD-violating effective operators, which are suppressed at low

energies.

Since the relic dark matter population consists of oppositely charged dark protons and

dark electrons, they may form dark hydrogen atoms, of mass mH = mp + me − ∆, where

∆ = µDα
2
D/2 is the binding energy. (The dark reduced mass is µD = mpme/(mp + me).)

This must satisfy the consistency condition

4µD ≤ mH +∆. (6.2)

Dark matter today generically consists of dark protons, dark electrons, and dark hydrogen

atoms; thus it is naturally multi-component. The cosmology of this scenario is discussed in

Ref. [175], and we will use some of these results in Sec. 6.2 below.

6.1.2 Massive Mediator Boson

While long-range self-interactions are desirable insofar as they ameliorate disagreements

between simulations of cold non-interacting dark matter and astrophysical observations,

these self-interactions cannot be infinitely long-ranged; as one example, such interactions

would influence the clustering of matter at very large distances. Consequently, dark matter
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self-interactions must be screened, for example, due to the mediator having a nonzero mass.

This is the case we consider; we assume the dark photon has a small but nonzero mass MD.

Since this requires the UD(1) symmetry to be broken, we introduce a dark Higgs field, a

complex scalar φD with charge qφ. The additional terms in the Lagrangian are

Lφ = Dµφ
†
DD

µφD − λ(φ2
D − v2D)

2. (6.3)

At zero temperature, the field φD has a nonzero vacuum expectation value 〈φD〉 = vD.

Consequently, the dark photon acquires a mass

MD = (8πq2φαD)
1/2vD. (6.4)

(Since vD will not appear elsewhere in our analysis, we will treat MD as a free parameter.)

We expand about the vacuum in the unitary gauge, in which φD = vD + ϕD/
√
2. The

physical Higgs boson has a mass m2
ϕ = 4λv2D, and the interaction terms involving the dark

Higgs boson and the dark photon are

Lint = (2πq2φαD)ϕ
2
DAµA

µ + (4πq2φαD)
1/2MDϕDAµA

µ −
(πq2φαD)

1/2m2
ϕ

MD

ϕ3
D −

πq2φαDm
2
ϕ

2M2
D

ϕ4
D.

(6.5)

Now that the dark photon is massive, it may be able to decay. We augment our model

with a kinetic mixing between the dark photon and the hypercharge mediator field, involving

the renormalizable operator [176,177]

Lmix =
ǫ

2
FY µνF

µν
D . (6.6)

This allows the decay into Standard Model fermions if MD > 1.022 MeV at a rate [178]

ΓγD→f+f− =
fEM
3

ǫ2αDMD, (6.7)

where fEM counts the number of available decay channels. If this coupling exists but the

dark photon is lighter, it may still decay into neutrinos via the resulting mixing with the Z

boson, or to three photons through a loop diagram. However, these decay rates are severely

suppressed. For completeness, we also note that the dark Higgs may mix with the Standard

Model Higgs boson through the term λφHφ
2
DH

2
SM .
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As in the Standard Model, finite temperature corrections will restore the UD(1) symmetry

at high temperatures; therefore, the cosmology of this model includes an additional phase

transition, discussed in detail in Sec. 6.2 below. This UD(1)-breaking phase transition occurs

at a dark sector temperature of

TD,PT ∼ vD = MD/(8πq
2
φαD)

1/2. (6.8)

As long as this phase transition takes place after the BD-asymmetry generation, our previous

arguments from the massless model apply, and this establishes that equal asymmetries of pD

and eD must be generated.

BD-asymmetry generation must take place before annihilations diminish the dark matter

abundance below the observed dark matter density, that is, when

Yp = np/s > ΩDMρc/(s0mp) ≈ 10−11(100 GeV/mp). (6.9)

Here np is the number density of dark protons, s is the entropy density of the universe, ρc

and s0 are the critical density and entropy density of the universe today, and ΩDM ∼ 0.2.

For thermal dark matter, this implies mD/Tasym < 25+ ln(mD/100 GeV), where Tasym is the

dark-sector temperature at the time of the dark asymmetry generation. In realistic models

one expects BD-asymmetry generation to occur at larger temperatures, but let us consider

the lower bound of this constraint (replacing the thermal relic with the dark proton, mp).

This is still necessarily above the UD(1) phase transition temperature if

MD . (8πq2φαD)
1/2mp/25. (6.10)

(Note that this assumes that the dark sector and Standard Model sectors are in thermal

equilibrium when the asymmetry is generated, as expected if the same process is responsible

for the baryon asymmetry as well as the BD-asymmetry. If this is not the case, there would

be logarithmic corrections involving the ratio of the sectors’ temperatures.)

If the UD(1) symmetry is unbroken when the asymmetry is generated, the gauge invariance

argument in Sec. 6.1.1 applies; thus this condition implies the creation of an eD asymmetry
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along with the pD asymmetry. (It does not automatically ensure the survival of a significant

eD abundance at late times. After the breaking UD(1), the dark electron no longer carries a

conserved quantum number, and the produced asymmetry may be washed out. To determine

whether there is a significant abundance of dark electrons today, we will need to consider

the sequence of various cosmological events, and therefore, we postpone a discussion of the

relic dark electron abundance until Sec. 6.2.4.)

We note that it is not necessary to use the Higgs mechanism to give the dark photon a

mass; instead one may use the Stückelberg mechanism. In this case, the particles charged

under the UD(1) gauge group still couple to the dark photon through a conserved current,

and the above arguments from gauge invariance apply. Hence, equal asymmetries of pD and

eD are again generated.

Although we will consider halo dynamics more carefully in Sec. 6.3, we will present some

crude estimates here considering only dark proton-dark proton scattering. This will show

that condition 6.10 is satisfied in much of the parameter space of interest, in which ion colli-

sions are significant but compatible with the ellipticity of larger halos. These desiderata fit

together most comfortably if the self-scattering is long range, which occurs if the momentum

transfer dominates over the mass of the mediator, or mpv/2 & MD. For dwarf-galaxy-size

halos (with v ∼ 10 km/s) and larger, this implies

MD . 2 · 10−5 mp. (6.11)

The region of parameter space that fulfills condition (6.10) generally contains the long-

range scattering regime where Eq. (6.11) is satisfied; specifically, this holds for couplings

αD & q2φ · 7 · 10−9. Taking into account the minimum value of αD required for efficient

annihilation in the early universe, this corresponds to mp & q−2
φ · 45 keV, which covers all of

the range of interest for qφ ∼ O(1). In other words, if one wants significant scattering in dark

matter halos in even this rather minimal model, one must consider the regime in which dark
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Figure 6.1: The left plot demonstrates the region of parameter space in which dark asymme-

try is generated in two species; the right plot shows the same for parameter choices relevant

to halo structure. αmin is the minimum coupling for efficient annihilation of the symmetric

dark matter component. (These plots are for qφ = 1; αD > 4π exceeds the perturbativity

bound.)

matter is multi-component. Even if one doesn’t necessarily require the pDpD interaction to

be long ranged, condition (6.10) encompasses much of the parameter space ion which this

scattering can affect the dynamics of smaller halos. We illustrate this in Fig. 6.1.

The first plot shows clearly that dark matter is generally multi-component across a wide

range of dark proton masses, although the condition depends somewhat weakly on the cou-

pling αD and ξ̃ann, the ratio of the temperature between the dark and visible sectors when

dark proton self-annihilations freeze out. Increasing the coupling αD increases the parameter

space in which dark matter is multi-component. To the right of the golden dashed line, dark

proton collisions are long range in halos with v ∼ 10 km/s; in this regime, self-interactions

may modify the shape of smaller halos. As claimed, this region is entirely contained in the

multi-component regime.
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The second plot focuses on choices of parameters relevant for large and small halos. For

the blue lines, we have chosen the minimum value of αD for which (under the assumption

of single-component dark matter) there can be a significant effect on the dynamics of small

halos, corresponding to σpp/mp = 0.5 cm2/g at v = 10 km/s. (Because the cross section

decreases with speed, the ellipticity of larger halos is retained at this value.) The green

lines refer to the opposite limit; we have taken σpp/mp = 1 cm2/g at v = 220 km/s, which

gives the maximum value of αD that is currently considered compatible with the observed

ellipticity of large halos. To the left of the dot-dashed line, αD < αD,min and the scenario

does not appear viable, that is, naively the dark proton self-interaction in halos is too strong.

As we discuss in Sec. 6.3, this region of parameter space may produce viable scenarios when

the formation of dark atoms is taken into account. (αD,min will be defined in Sec. 6.2.)

Thus, we see that in much of the parameter space an abundance of both dark electrons

and dark protons is produced, and if these ions survive until late times, they may form

UD(1) neutral bound states. In the non-relativistic regime and for a massive dark photon,

the interaction between the pD and eD ions is given by a Yukawa potential

V = −αD
r
e−MDr, (6.12)

which has bound state solutions if MD < µDαD. These bound states can be found by solving

Schrödinger’s equation using a Hulthén potential [179,180]. (Note that as αD becomes large,

the Dirac equation must be solved instead; if αD ≥ 1/2, the ground state has nonzero angular

momentum.) The binding energy of the bound state is approximately

∆ ≈ αDµ
2
D

2

(

1− MD

αDµD

)2

. (6.13)

Dark atoms form via the process pD + eD → HD + γD(ω), where ω is the energy of the

emitted dark photon γD, which is given by

ω +
ω2 −M2

D

2mH

= ∆+
µDv

2
rel

2
, (6.14)
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where vrel is the relative velocity of the pD and eD ions in the center-of-momentum frame.

This process only occurs if ω > MD, and note that for ∆ + µDv
2
rel/2 ≪ mH , the energy is

approximately ω ≈ ∆+ µDv
2
rel/2.

Although the cosmological evolution of this model will be discussed more thoroughly in

the subsequent section, for now we note that bound states form when the temperature drops

beneath the binding energy. Thus the condition for their formation in the early universe is

MD < ∆ ≈ 1

2
α2
DµD. (6.15)

This constraint is stronger than the condition for bound states to exist, and it is also stronger

than Eq. (6.10), the condition for the asymmetry to be generated in the dark sector before

UD(1) is broken.

6.2 Cosmology

Although this atomic dark matter model is rather minimal, with only a single Abelian

gauge group necessarily broken in order to screen large-scale effects, it has a complex cos-

mology. We generically expect two phase transitions: one when the UD(1) symmetry is

broken and another when the ions form bound states at T ∼ ∆. Additionally, there are

several other cosmologically important events, such as dark asymmetry generation and the

thermal freeze-out of annihilation reactions. A generic sequence of events in this model is

given in Table 6.1; however, other orderings are possible.

6.2.1 Kinetic Equilibrium Between the Standard Model and Dark Sectors

The cosmological sequence outlined below will depend in some detail on the ratio of tem-

peratures in the dark and Standard Model sectors. We assume, as is typical in asymmetric

dark matter scenarios, that the baryon number and dark baryon number asymmetries are

generated when the two sectors are in thermal equilibrium at a common temperature Tasy
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Event Temperature Scale

Dark asymmetry generation Tasy

Thermal decoupling of dark and Standard Model sectors Tdec

Freeze-out of pDp̄D annihilations TD,p,fo ≈ mp/30

Freeze-out of eDēD annihilations TD,e,fo ≈ me/30

Dark recombination ∆ & TD,DR & ∆/50

UD(1)-breaking phase transition TD,PT ∼MD/(8πq
2
φαD)

1/2

Dark photon chemical decoupling TD,γD ∼MD/[40(8πq
2
φαD)

1/2]

Big Bang Nucleosynthesis TV,BBN ≈ 1 MeV

Table 6.1: One possible sequence of cosmological events and temperature scales. The sub-

scripts D and V refer to the dark and Standard Model sectors; for asymmetry generation

and thermal decoupling of the two sectors we assume a common temperature.

and that the sectors later decoupled at Tdec. Afterwards, the comoving entropy is separately

conserved in each sector, which means that the two temperatures TD and TV are related by

gDT
3
D

gV T 3
V

=
gD,dec
gV,dec

, (6.16)

where gD and gV are the number of relativistic degrees of freedom in thermal equilibrium in

the dark and Standard Model (visible) sectors respectively. We define the ratio ξ ≡ TD/TV ;

this can take values ≶ 1 depending on the number of degrees of freedom in each sector and

the order in which they decouple. ξ will evolve in time; as an example, if the mass scale of

the dark sector is large, then these degrees of freedom will decouple first, resulting in ξ > 1.

However, the later decoupling of degrees of freedom in the visible sector will push ξ to lower

values. In the following, we will find it useful to define

ξ̃ = min[1, ξ]. (6.17)

We note that if the dark photon (or the dark Higgs boson φD) is sufficiently long-lived,

it can contribute to the relativistic energy density of the universe, which is constrained by
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observations. In this case, these observations require ξ < 1. However, our considerations

include scenarios in which the dark photon can decay into Standard Model particles through

the kinetic mixing introduced in Sec. 6.1; hence we consider both cases with ξ < 1 and ξ > 1.

A more thorough discussion of the fate of the dark sector photons and scalar bosons is given

in Sec. 6.2.4 below.

If other processes bring the dark sector and visible sector into equilibrium, we will again

have ξ = 1 at later times. The only such process in this minimal model is the kinetic mixing

between the dark photon and the hypercharge boson. The energy transfer between the two

sectors occurs predominantly via scattering of ordinary electrons on the lightest charged

species of the dark sector, which is either eD or φD, with rate

dρ

dt
≈ nend

∫

δELv
dσ

dΩ
dΩ, (6.18)

where δEL ∼ k(1 − cos(θ)) with k ∼ 3
√
2T is the longitudinal energy (and momentum)

transfer per collision in a plasma at temperature T ; here we have assumed we are in the

relativistic regime. ne and nd are the number densities of (ordinary) electrons and the

lightest charged species of the dark sector. The momentum-transfer cross section is

∫

dΩ(1− cos(θ))
dσ

dΩ
≈ 4πǫ2αDαEMµ2

ed

k4
ln [csc(θmin/2)] , (6.19)

where µed is the reduced mass of the scattering particles (an electron and either φD or eD).

The mass of the Higgs boson, mφ, is a temperature-dependent quantity; we are considering

the situation before UD(1)-symmetry breaking. After the dark phase transition, the scat-

tering of the physical scalar ϕD with ordinary electrons is loop-suppressed, as can be seen

from Eq. (6.5). θmin is the minimum scattering angle, which can be estimated as csc(θmin/

2) = 1 + (2λDebyek)
2/(ǫ2αEMαD), where λDebye = min(λV , λD) is the smallest of the Debye

screening lengths of the ordinary and dark plasma, with λD = T/[4πmax(neαEM , nDαD)].

This scattering process does not bring the sectors into equilibrium if

1

ρ

dρ

dt
< H, (6.20)
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where H is the Hubble parameter and ρ ∼ (π2/30)g∗T
4 is the energy density of either sector.

For relativistic number densities of charged particles in the two sectors, (1/ρ)dρ/dt ∝ 1/T ;

due to the long-range nature of the interaction, the energy exchange rate becomes larger

as the temperature drops. Consequently, this condition should be evaluated at the latest

time when both sectors have significant number densities of relativistic charged particles,

at T ∼ max[me,SM/3,min(me/3, vD)] ∼ max[me,SM,md]/3, where we have defined md =

min(mφ,me). We have used TPT ∼ vD as the latest time the φD particles can participated

in the energy exchange between the two sectors. After one of the species becomes non-

relativistic, the energy transfer is further suppressed. This yields roughly the condition

ǫ2αD . 10−20

(

max(me,SM,md)
3

me,SM min(me,SM,md)2

)

, (6.21)

where we have approximated ln[csc(θmin/2)] ∼ 20. Obviously, the term in the parentheses

is greater than 1 and the bound becomes more relaxed the heavier the dark-sector charged

particles are.

We emphasize that it is improper to consider this a constraint on the model; if satisfied,

it simply allows for ξ 6= 1. Furthermore, this is a sufficient but not necessary condition;

the sectors would also be hindered from reaching equilibrium if the dark photons decay or

become non-relativistic before this process would bring the sectors into equilibrium.

6.2.2 Efficient Annihilation of Dark Matter

To develop an significantly asymmetric dark matter population, it is necessary that the

processes pDp̄D → γDγD and eDēD → γDγD annihilate away the symmetric dark matter

components; the cross section for this process is

(σv)ann =
πα2

D

m2
i

S, (6.22)

where mi = mp,me and S is the Sommerfeld enhancement factor, which is relevant only at

large couplings αD. (Note that a similar cross section holds for pDp̄D → eDēD.)
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The self-interaction cross section for thermal relic dark matter is constrained by the ne-

cessity of producing the correct abundance at freeze-out; specifically, (σv)sym ≈ ξ̃ann · 6 ·
10−26 cm3/s, where ξ̃ann = 1 if the dark sector dominates the energy density of the universe

when annihilations freeze out, and ξ̃ann = ξann = (TD/TV )ann if the ordinary-sector energy

density dominates [125]. (This is for non-self-conjugate dark matter, and considering only

s-wave annihilation.) For symmetric dark matter, this fixes the coupling as a function of the

dark matter mass mDM :

αD,sym(mDM) = (4 · 10−3)

(

ξ̃ann
Ssym

)1/2
( mDM

102 GeV

)

. (6.23)

The Sommerfeld enhancement factor Ssym becomes important for mDM & 800 GeV (see e.g.

[135]). Asymmetric dark matter models require efficient annihilation in the early universe to

eliminate the symmetric component of dark matter, leaving only the asymmetric component.

Thus, if one parametrizes the annihilation cross section as (σv)ann = f × (σv)sym, then one

must require f > 1.4 for dark antiparticles to be less than 10 percent of the dark matter

density; for antiparticles to contribute less than 1 percent, one must have f > 2.4 [168].

Thus, instead of an equality, we have a minimum value of αD set by the dark proton mass.

Taking into account the two annihilation channels and taking f = 1.4, the condition for

efficient annihilation is

αD > αD,min = (3.4 · 10−3)

(

ξ̃ann
Ssym

)1/2
( mp

102 GeV

)

. (6.24)

This constraint can be relaxed if more annihilation channels exist, although this would

require a more complicated dark sector.

The annihilation of the dark fermions freezes-out around TD,fo ∼ mi/xfo, with [167–169]

xfo ≈ 30 + ln

(

mi

100 GeV

ξ̃2ann(σv)ann
10−24 cm3/s

)

. (6.25)

This typically occurs before dark recombination.
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6.2.3 Dark Recombination and Residual Ionization Fraction

Once the temperature of the dark sector drops below the binding energy of dark atoms,

it becomes energetically favorable for the dark ions to form atoms. There are three regimes

describing this dark recombination process [175]. For large αD or small masses, the recom-

bination process is quite efficient and can be described well by the Saha equation until this

process freezes out. On the other hand, for small αD or large masses, recombination is very

weak and most dark matter remains ionized. In the intermediate regime, recombination

occurs in quasi-equilibrium and the details of atomic transport are important. (Dark mat-

ter also remains ionized if the dark photon mass is greater than the binding energy.) The

residual ionization fraction can be approximated by [175]

xD ≈



















min

[

1, 10−10 ξ̃DR

α4
D

(mHµD

GeV2

)

]

, MD <
α2
DµD
2

1, MD >
α2
DµD
2

,

(6.26)

where ξ̃DR = min[1, ξDR] and ξDR = (TD/TV )DR is the temperature ratio at dark recom-

bination. This equation is less than satisfactory when xD . 1; however, due to the α4
D

dependency, the region near but below 1 is only a small slice of parameter space. Using

thermodynamic equilibrium equations, we can estimate the temperature at which the re-

combination process freezes out, TD,fo = ∆/xrec,fo, where

xrec,fo ≈ 53 + ln

[

ξ̃DR

(αD
0.1

)5
(

(10 GeV)3

mHµ2
D

)]

. (6.27)

This temperature may be either above or below the temperature of the UD(1)-breaking phase

transition. If it is above the temperature of this phase transition, everything proceeds as

above. Even if the UD(1)-symmetry is broken, we expect Eq. (6.26) and Eq. (6.27) to be

reasonable approximations since they are based primarily on equilibrium thermodynamics,

which is nearly unchanged for a small photon mass.

The dark atoms produced by recombination may bind into molecules, particularly H2
D.

While the process HD + HD → H2
D + γD is slow, it can be catalyzed by the presence
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of a small ionized component, through the process HD + pD → H2+
D + γD followed by

H2+
D +HD → H2

D + pD. Because the binding energy of dark molecules is (slightly) smaller

than the binding energy of dark atoms, this process requires a slightly tighter condition on

the mass of the dark photon. In the following, we neglect the possibility of dark molecule

formation, which merits a dedicated study. Some discussion of the scattering properties of

dark molecules is given in [181].

6.2.4 The Dark Phase Transition and Late-Time Dark Electron Abundance

We have determined the condition to generate an asymmetry in both dark electrons and

dark protons, Eq. (6.10), and we have noted that if dark ions remain until late times, they

may form dark atoms. The dark protons are, by assumption, the lightest particles that carry

the conserved dark baryon number; consequently, they cannot decay and their abundance

must remain. However, after the UD(1)-breaking phase transition, the dark electron no

longer carries any conserved quantum numbers. Thus, it is possible for this asymmetry to

be washed out and the dark electron abundance to be diminished by eDēD annihilations.

The survival of a significant abundance of dark electrons depends particularly on qφ, the

charge of Higgs field. For specific values of qφ, dark electrons may acquire a Majorana mass

or Majorana-type mass mixing with other species. As a specific example, we consider qφ = 2,

which allows for the coupling

L ⊇ −yL
2
φDē

c
D,LeD,L −

yR
2
φDē

c
D,ReD,R + h.c., (6.28)

where eD,L and eD,R are the left- and right-chirality components of eD, and yL and yR are

dimensionless Yukawa couplings. (We recall that eD is a singlet under the Standard Model

gauge group and so the L and R indices do not imply any SUL(2) charge assignments.)

These terms give a Majorana mass to dark electrons after UD(1) is broken, which allows

oscillations between eD and ēD, potentially washing out the observed asymmetry. As eD

is a singlet under the Standard Model gauge group, it may also have a normal Dirac mass
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term without breaking SUL(2). If the Majorana contribution is small with respect to the

Dirac mass (that is, |yL − yR|vD/me ≪ 1), the mass eigenstates are approximately the

self-conjugate fields

eD,1 ≈
i√
2

(

eD,L + ecD,L − eD,R − ecD,R
)

, eD,2 ≈
1√
2

(

eD,L + ecD,L + eD,R + ecD,R
)

,

(6.29)

with masses m1,2 = me∓yvD where y = (yL+yR)/2. These eigenstates have the interactions

Le =
1

2
ēD,1i/deD,1 +

1

2
ēD,2i/deD,2 −

1

2
(me − yvD)ēD,1eD,1 −

1

2
(me + yvD)ēD,2eD,2

− y

2
√
2
ϕD (ēD,2eD,2 − ēD,1eD,1) +

iqeg

2
Aµ
DēD,1γµeD,2 + h.c., (6.30)

where we have set φD = (vD + ϕD/
√
2) exp(iθ). As this is a case of near maximal mixing,

eD − ecD oscillations are rapid and may erase the UD(1) asymmetry carried by the dark

electrons completely. (For typical parameters, H . ωosc is easily satisfied.)

However, the formation of pDeD bound states can severely hinder the eD− ēD oscillations.

The oscillation of a dark electron bound in a dark atom is energetically forbidden if the energy

gain from oscillation is insufficient to unbind the dark electron. The energy difference between

the mass eigenstates is 2yvD, while the expectation values of the kinetic and potential energies

of a dark atom are 〈EK〉 = ∆, 〈EP 〉 = −2∆ and the total energy is −∆. For an p+Dē
+
D bound

state with the same wavefunction (or the same superposition of plane waves), 〈EK〉 = ∆,

〈EP 〉 = 2∆, giving a total energy of 3∆. Thus if 2yvD < 4∆, dark atoms are energetically

stable. This sets an upper bound on the Yukawa coupling

y . 20α
1/2
D (∆/MD), (6.31)

where we have take qφ = 2. The right hand side cannot be arbitrarily small; for bound

state formation we must have ∆/MD > 1 and requiring sufficient annihilation in the early

universe sets a lower limit on αD. Of course, for bound states to hinder wash-out due to

oscillation, dark recombination must occur before the dark phase transition which generates

the eD Majorana mass term. Equivalently, this requires TD,PT < ∆/xrec,fo, or

MD < (32παD)
1/2 ∆/xrec,fo. (6.32)
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When this is satisfied, dark matter today remains at least partially atomic, even if the

asymmetry in free dark electrons is washed out and they self-annihilate. Note that this

condition is stronger than Eq. 6.15, the condition to form bound states.

If dark atoms have not formed before eD − ēD oscillations begin, then these oscillations

can erase the UD(1) asymmetry carried by the dark electrons. However, they cannot alter

the total abundance of dark electrons and anti-electrons if eDēD annihilations are inefficient

when the oscillations regenerate the ēD population; then the abundance of eD ions can only

decrease by a factor of at most 1/2. In this scenario, the abundance of dark electrons after

the freeze-out of annihilations and before oscillations occur is

Ye,fo = ne,fo/s = np, fo/s = ΩDMρc/(mps0), (6.33)

where ρc is the critical energy density and s0 the critical entropy density today. Annihilations

are inefficient if Γann < HPT, where Γann = sPTYe,fo(σv)e,ann and HPT ≈ 1.66
√
gPTT

2
PT/

mP l. These are the annihilation rate and Hubble parameter at the time of the dark phase

transition; also gPT, TPT = TD,PT/ξ̄PT and sPT = (2π2/45)gPTTPT are the number of effective

relativistic degrees of freedom, the temperature, and the entropy density at the same time.

(σv)e,ann is the self-annihilation cross section times relative velocity of dark electrons, given

by Eq. (6.22). Substituting these expressions and using condition (6.10) yields

MD . 10−11ξ̃PT(32παD)
1/2α−2

D mpm
2
e/GeV2. (6.34)

If this is satisfied, then the relic eD abundance changes by at most a factor of 2. For a

more detailed treatment of the coupled effect of oscillations, annihilations and scatterings,

see Ref. [182].

In Fig. 6.2, we plot conditions (6.32) and (6.34), which shows the region of parameter space

where dark matter at late times is necessarily multi-component, either because dark atoms

are present along with dark protons or a significant density of dark electrons remain. We see

that generally the region where Eq. (6.34) is satisfied is within the region where Eq. (6.32)
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Figure 6.2: Condition (6.2) is satisfied beneath the black lines; then dark matter includes

dark atoms. Condition (6.34) is satisfied beneath the red lines; then the dark electrons

abundance remains significant even without the formation of dark atoms. (We have set

αD = 0.1 and qφ = 2).

is satisfied. Although the parameter space in which dark matter is multi-component is more

limited than the general case without Majorana masses (Fig. 6.1), a significant portion of

the region with long-range scattering will be multi-component for light dark electron masses.

(The entire region shown in the plot is in the regime in which the asymmetry is generated

in both dark electrons and dark protons.)

As seen in this figure, the range of dark photon masses encompassed by either condition

(6.32) or (6.34) decreases as me decreases. However, the dark electrons cannot be arbitrarily

light without implications. If me < MD, then the annihilation of non-relativistic electrons

in dark photons is forbidden. Then dark electrons decouple while relativistic, and their relic

density is generically large, which influences later cosmology. Consequently, there would

be significant cosmological bounds on the temperature ratio between the sectors. (It is

possible that additional annihilation channels allow the electrons to decay into lighter degrees
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of freedom, but similar reasoning would constrain the cosmological abundances of these

particles; additionally, this would be a less minimal model.) Therefore, even if Majorana

masses are generated, a significant region of parameter space remains in which dark matter

is multi-component.

Again, though, we emphasize that these conditions only apply for a limited range of qφ

values, namely those for which a Majorana mass or Majorana-type mixing is generated for

the dark electrons. In a generic model, this is not the case and the only condition for dark

matter to be multi-component at late times is that the asymmetry be generated in both

dark electrons and dark protons (Eq. (6.10)). The absence of these terms corresponds to

the conservation of a global U(1) remnant symmetry under which eD is charged. In analogy

to the Standard Model, we will call this symmetry dark lepton number LD. By a linear

transformation, we can define the quantum numbers of the dark ions to be BD(pD) = 1,

BD(eD) = 0 and LD(pD) = −LD(eD) = 1. In this scenario, the high-energy processes

which generate the BD asymmetry conserve LD, and equal asymmetries in pD and eD are

generated. As the dark electron is the lightest particle charged under LD, it is stable and

thus its asymmetry is preserved.

If condition (6.10) is satisfied, and either Eq. (6.32) or Eq. (6.34) if necessary, then dark

matter is multi-component at late times. Consequently, considering only dark proton col-

lisions in halos does not accurately represent the dynamics of dark matter self-interaction;

one should include the different intra- and inter-species collisions. We give such an analysis

in Sec. 6.3.

6.2.5 The Fate of Dark Photons

Although dark protons and dark electrons decouple from the dark photons at the end of

dark recombination, the dark photons and the scalar field ϕD remain chemically coupled via

the annihilations ϕ∗
DϕD ↔ γDγD until one of these species becomes non-relativistic. We will
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assume that ϕD is heavier than γD; this is true for λ > 2πq2φαD. This leads to constraints

on the abundance of dark photons after the chemical decoupling. It is straightforward to

reverse this assumption; then the constraints apply to the ϕD abundance instead.

The UD(1)-breaking phase transition takes place at a temperature T = TD,PT ∼ vD.

Immediately after the phase transition, γD and ϕD are moving at least quasi-relativistically,

if not relativistically. The heavier ϕD bosons become non-relativistic at TD . mϕ/3. The

dark photons become non-relativistic at

TD .
MD

3
=

mϕ

√

2πq2φαD/λ

3
. (6.35)

Over a substantial region of parameter space MD is within one order of magnitude of mϕ.

Therefore, we expect the dark photons to become non-relativistic shortly after the ϕD bosons

do so. The annihilation cross section for ϕDϕD → γDγD is

(σv)ϕDϕD↔γDγD ≈
44πq4φα

2
D

m2
ϕ

(

1− 20M2
D

11m2
ϕ

+
12

11

M4
D

m4
ϕ

)(

1− M2
D

m2
ϕ

)1/2

, (6.36)

The ϕD bosons freeze-out with an abundance

xϕ,fo ≡ mϕ/TD ≈ 41 + ln
[

q4φα
2
Dξ̄

2(GeV/mϕ)
]

. (6.37)

In the parameter space of interest, mϕ ≪ mp, and the ϕD annihilation cross section is

comparatively large. Consequently, the relic abundance is small in comparison to that of the

dark protons, and so it is cosmologically insignificant. Additionally, if mϕ > 2MD, then the

ϕD bosons decay rapidly into dark photons after they decouple; if mD +1.022 MeV < mϕ <

2MD, they may decay into ϕD → γDe
+e− via a virtual dark photon and its kinetic mixing

with hypercharge.

The ϕDγD chemical decoupling also determines the abundance of dark photons. During

decoupling the temperature is TD,γD = mϕ/xϕ,fo, and therefore

xγD ≡
MD

TD,γD
=

xϕ,foMD

mϕ

∼ xϕ,fo

(

2πq2φαD

λ

)1/2

. (6.38)
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Once decoupled, the dark photons may decay into Standard Model charged fermions via their

hypercharge mixing (Eq. 6.6) at the rate given by Eq. (6.7) if MD > 1.022 MeV. For smaller

masses, the dark photons may be long-lived (although they can still decay into neutrinos, or

to three photons via a loop diagram). Either case has potential implications for cosmology.

The decay of the dark photon abundance into Standard Model particles injects relativistic

energy density, which can affect Big Bang Nucleosynthesis (BBN) and the Cosmic Microwave

Background Radiation (CMB). On the other hand, if a significant relic abundance survives

until very late, it can affect the time of matter-radiation equality or contribute to the matter

density of the universe. Thus, we must require either that the dark photons decay before

BBN or that their energy density be sufficient small (to be specified below).

Decay Before BBN: A basic requirement for this scenario is that the dark photons must

have acquired their mass before BBN (that is, the dark phase transition must occur before

BBN): TV,PT > TV,BBN ∼ 3 MeV. This occurs if

ξPT < 6.6

(

10−2

q2φαD

)1/2
(

MD

10 MeV

)

. (6.39)

Requiring TV,decay > TV,BBN gives the condition

ǫ >
10−10

f 1/2

(

10 MeV

MD

)1/2

. (6.40)

All of these must be satisfied for dark photons to decay before BBN.

Survive through BBN: If either of the above inequalities does not hold, or MD <

1.022 MeV, then dark protons survive through BBN. If they are relativistic at this time,

observations require ξBBN . 0.6; this corresponds to the relativistic energy density of one

extra neutrino species, as allowed by current data [183]. Dark photons will be relativistic

during BBN if MD < 3ξBBNTV,BBN ≈ ξBBN ·9 MeV; if the dark photons are heavier than this,

they are non-relativistic during BBN and no constraint is set on ξBBN.
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Furthermore, we must require that the abundance of dark photons does not alter the time

of matter-radiation equality, and if dark photons remain until today, they must be a sub-

dominant component of the dark matter. The number density of dark photons, normalized

with respect to the entropy density s, is

Y ≡ nγD
s
≈ ξ3γD

g∗,S(tγD)
h(xγD), (6.41)

where g∗,S(tγD) is the effective number of relativistic degrees of freedom at the time of dark

photon decoupling, and xγD is given by Eq. 6.38. The function h(x) is

h(x) =
135

4π4

∫ ∞

x

dy
y
√

y2 − x2

ex − 1
≈











0.8, x < 3,

0.4x3/2e−x, x & 3.

(6.42)

Depending on when (and if) the dark photons become non-relativistic, there are three

possible cases:

1. Dark photons alter the time of matter-radiation equality if they become non-relativistic

and dominate the energy density of the universe at some temperature TV,dom ≥ TV,eq,

where TV,eq ∼ 5 eV is the temperature of matter-radiation equality. In this case, when

TV = TV,dom, sY (γD)MD ≈ ρU = (π2/90)g∗T
4
V , where ρU is the energy density of

the universe. This gives TV,dom ≈ 4Y (γD)mD. Putting together the constraints MD/

TV,dom > 3 and TV,dom ≥ TV,eq yields

1.25 eV

MD

<
ξ3γDh(xγD)

g∗,S(tγD)
< 0.08. (6.43)

In this case we must require that photons decay before they would dominate, or

TV,decay > TV,dom, which requires

ǫ > 6 · 10−9f−1/2
ξ3γD

g∗,S(tγD)

(

MD

10 MeV

)1/2

h(xγD), (6.44)

in addition to MD > 1.022 MeV.

2. If Eq. (6.43) is not satisfied, then the dark photons do not dominate the energy density

of the universe before matter-radiation equality. We need only require that if the dark
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photons have become non-relativistic today, their relic abundance is not the dominant

component of the dark matter. Their contribution to the matter density of the universe

is Ω(γD) = s0Y (γD)MD/ρc, and to have Ω(γD) < 0.01 requires

ξγD < 0.02

(

g∗,S(tγD)

10

)1/3(
100 keV

MD

)1/3

h(xγD)
−1/3, (6.45)

which also implies that TV,dom < TV,eq. This condition holds if

MD > 3ξ0TV,0 ≈ ξ0 · 7 · 10−4 eV, (6.46)

where the subscript 0 refers to the present.

3. If Eq. 6.46 is not satisfied, then dark photons are still relativistic today, and the only

applicable bound is ξBBN . 0.6. This case includes the limit of a massless dark photon.

The various constraints are illustrated in Fig. 6.3 for the case ǫ→ 0. If ǫ 6= 0, these con-

straints can only be relaxed due to the possibility of dark photon decay, although condition

(6.21) provides an upper bound. Additionally, ǫ is constrained by experimental results; for a

compilation of bounds, see Ref. [184], and for minicharged particles, see Ref. [185]. Bounds

on very light dark photons mixing with hypercharge are given in Ref. [186]. Additionally,

this kinetic mixing opens direct detection channels, although a study of direct detection

requires considering the both the inelastic and elastic scattering of each different species

with matter [187–189]. Related studies of direct detection of multi-component dark matter

with long-range interactions can be found in Refs. [190–193]. Furthermore, if a significant

fraction of dark matter remains ionized today, dark atoms can potentially form in the dense

environment of halos [131, 194]. In the previous chapter, we discussed how the decay of the

emitted mediator may produce observable indirect detection signals.

6.2.6 Dark-Matter Kinetic Decoupling and Large-Scale Structure

If dark matter remains coupled to a thermal bath of dark photons until later times, this

can affect the matter power spectrum and gravitational clustering. In particular, the acoustic
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Figure 6.3: Bounds on the ordinary-to-dark temperature ratio, ξ = TD/TV , assuming ǫ→ 0.

In the blue region, the extra radiation due to relativistic dark photons exceeds the BBN limit;

this constraint applies to ξBBN. In the red regions, the relic abundance of dark photons may

alter the time of matter-radiation equality or dominate the dark matter density. These

apply to ξγD . To the right of the grey line, the dark photons may decay into Standard Model

fermions, which can relax or eliminate the bounds.
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oscillations of the coupled dark matter and dark-radiation system can imprint a new char-

acteristic scale on the matter power spectrum, which can affect the CMB temperature and

polarization spectra [124, 175, 195, 196]. Thus, observations of the CMB and galaxy surveys

give additional constraints on αD.

In this model, dark matter and dark radiation remain coupled mostly via Compton scat-

tering of dark photons on dark ions and Rayleigh scattering of dark photons on neutral dark

atoms [175]. The scale of dark acoustic oscillations is [196]

ΣDAO ≡ αD

(

eV

∆

)(

GeV

mH

)1/6

, (6.47)

assuming a significant fraction of the dark ions are in bound states. Observations of the

CMB and galaxy surveys require ΣDAO ≤ 10−4.5 if the inequality ξBBN . 0.6 is saturated;

lower values of ξBBN relax this bound [196]. For our model, with a massive dark photon, we

note that these constraints are applicable only if the dark photons are relativistic when the

CMB is generated; that is, MD/TD,CMB . 3, or MD . 3ξCMBTV,CMB ≈ ξCMB · 15 eV. Thus,

these constraints limit only a rather small range of dark photon masses, and we will see that

constraints from the ellipticity of large halos are generally stronger.

6.3 Dark Matter Self-Interaction in Halos

As we have noted in the introduction to this chapter, one motivation for considering

self-interacting dark matter is that such interactions can modify the dynamics of small

halos, alleviating the tension between cold dark matter simulations and observations. For

definiteness, we will assume that in the entire parameter space, dark matter is made of equal

amounts of p+D and e−D, with no relic antiparticles present, and that these dark matter ions

may be bound into atoms, with an ionization fraction given by Eq. (6.26). This is inevitable

only if condition (6.10) holds (and, if qφ = 2, also (6.32) or (6.34)); as noted above, these are

sufficient but not necessary for all models. As this covers much of our parameter space, we

focus on the multi-component case; for a study of halos for a single-component dark matter
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coupled to a vector boson, see Refs. [128,135].

6.3.1 Dark Matter Scattering Rates

To determine the effect of dark matter self-interaction on halo shapes, we first need the

scattering rates for the various dark interactions (i.e., ion-ion, ion-atom, atom-atom). We

assume that dark matter has a velocity distribution which is locally Maxwellian

f(v, v̄) =

(

3

2πv̄2

)3/2

e−3v2/2v̄2 , (6.48)

where v̄ = v̄(r) is the rms average velocity, which is generally a function of position inside

the halo. Let Γp, Γe, and ΓH be the average rates of momentum-changing collisions for dark

protons, dark electrons, and dark hydrogen atoms respectively; each of these rates includes

contributions from scattering with each other species,

Γp = Γpp + Γpe + ΓpH ,

Γe = Γep + Γee + ΓeH ,

ΓH = ΓHp + ΓHe + ΓHH . (6.49)

Γij is the average momentum-loss rate from species i to species j [175],

Γij =
ṗij
p̄i

, (6.50)

where p̄i = miv̄ is the average rms momentum of species i and p̄ij is the average momentum-

loss rate of species i due to collisions with species j in the halo. We estimate this as

ṗij = nj(r)

∫

d3vi f(vi, v̄)

∫

d3vj f(vj, v̄)|vi − vj|
∫

dΩ
dσij
dΩ

δpij,

= nj(r)

∫

d3v f(v, v̄rel)v

∫

dΩ
dσij
dΩ

δpij, (6.51)

where nj(r) is the number density of species j, dσij/dΩ is the differential cross section for ij

scattering, δpij is the momentum transfer from i to j, and finally v̄rel =
√
2v̄. Both the cross

section and momentum transferred depend depend only on the relative velocity |vi−vj| and
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the scattering angle θ. The momentum transfer is

δpij =
mimj

mi +mj

vg(θ). (6.52)

The angular function g(θ) depends on whether the total, longitudinal, or transverse momen-

tum transfer is considered,

gtot(θ) =











2 sin(θ/2), i 6= j,

2min[sin(θ/2), cos(θ/2)], i = j,

glong(θ) =











1− cos(θ), i 6= j,

min[1− cos(θ), 1 + cos(θ)], i = j,

gtr(θ) = | sin(θ)|. (6.53)

The case i = j takes into account that forward and backward scattering of identical par-

ticles are equivalent. In recent self-interacting dark matter simulations, the longitudinal

momentum transfer is used and distinguishable particles are assumed, with the resulting

momentum-transfer cross section defined as

σT =

∫

dΩ(1− cos(θ))
dσ

dΩ
. (6.54)

For the ion-ion collisions, governed by a Yukawa potential, we use existing analytical

formulas for σT . In the small coupling regime, rij ≡ 4αDµij/MD ≪ 1 where µij = mimj/

(mi + mj), the Born approximation is valid and the momentum-transfer cross section is

[197–199]

σborn
T,ij =

2πβ2
ij

M2
D

[

ln

(

1 +
rij
βij

)

− rij
βij + rij

]

, (6.55)

where βij = αDMD/v
2µij and v is the relative velocity of interacting pair. For larger cou-

plings, the Born approximation is inapplicable, but the classical approximation becomes
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valid. In this regime, the attractive eDpD cross section is

σclass
T,ep ≈



































4π

M2
D

β2
ep ln

(

1 +
1

βep

)

, βep . 10−1,

8π

M2
D

β2
ep

1 + 1.5β1.65
ep

, 10−1 . βep . 103,

0.81π

M2
D

[

ln2(βep) + 2 ln(βep) + 2.5 +
4

ln(βep)

]

, βep & 103.

(6.56)

This classical approximation is valid only if rep/βep > 1; for 1 < rep < βep, the scattering

cross section exhibits resonances due to the contribution of virtual bound states [128, 135].

These resonances affect only a small part of parameter space, and we will ignore them

for simplicity. Hence, we use the classical approximation everywhere outside of the Born

approximation’s range of validity.

For the repulsive pDpD and eDeD scattering in the classical regime we use [125,199]

σclass
T,ii =















2π

M2
D

β2
ii ln

(

1 +
1

β2
ii

)

, βii . 1

π

M2
D

(ln(2βii)− ln(ln(2βii)))
2 , βii & 1.

(6.57)

While the ion-ion collisions are significantly affected by the nonzero dark photon mass,

the atom-atom and atom-ion collisions are less affected. The nonzero mass modifies the

interatomic potential at distances r & 1/MD, while even in the massless case the interatomic

potential is significant only within a Bohr radius a0 = (µDαD)
−1 (See Ref. [181] and references

therein.) In the regime in which an asymmetry is generated in dark electrons and dark

protons (i.e., which satisfies Eq. (6.10)), the Bohr radius is smaller than 1/MD and so the

effects of the finite photon mass are minimal. Consequently, we will use the atom-atom and

atom-ion scattering rates determined using a massless dark photon.

However, even in the limit of a massless dark photon, this is currently considerable un-

certainty in the existing literature about the atom-atom and atom-ion collision rates. We
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present results following two different approaches, developed in [181] and [175]. First, though,

we summarize the differences in the approaches.

The authors of Ref. [181] calculated the low-energy atom-atom scattering cross section by

the direct computation of the phase shifts induced by interatomic potentials. The atom-atom

cross section exhibits a rich resonant structure due to the multiple states of hydrogen-like

atoms, but away from the resonance the energy dependence of the transverse energy-transfer

cross section can be fit across a wide energy range by

σTE ≈ (µDαD)
−2

[

b0 + b1

(

mHv
2

4µDα2
D

)

+ b2

(

mHv
2

4µDα2
D

)2
]−1

, (6.58)

where the energy-transfer cross section is defined as

σTE ≡
∫

dΩ sin2(θ)
dσ

dΩ
. (6.59)

The use of σTE rather than σT may be well-motivated by physical arguments; however, as

simulations use σT , this choice makes it difficult to compare with simulations. The parame-

ters b0, b1, and b2 are determined by numerical fits and depend mildly on the ratio mp/me.

To cover a continuum range of the ratio mp/me, we interpolate the parameters between the

values provided in Ref. [181].

However, Ref. [181] does not address atom-ion scattering; thus we ignore atom-ion colli-

sions when adopting this approach. This is justified because atom-ion collisions are either

subdominant or insignificant throughout the entire parameter space. Atomic interactions

are screened on the scale of the Bohr radius, while ion-ion interactions are screened on the

scale of the smaller photon mass; hence ion-ion interactions dominate over atomic interac-

tions when present (i.e., for xD > 0.5). While the atom-ion cross section may be comparable

or larger than the atom-atom cross section, it plays no role if there are few ions present

(xD ≪ 1). For moderate values of xD it possible that atom-ion collisions dominate the

momentum-transfer rate, but in this fairly limited regime the gauge coupling is typically not
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large enough for the interactions to affect the halo dynamics. This assertion is confirmed

using the analysis of Ref. [175], described next.

The authors of Ref. [175] estimate both the atom-atom and atom-ion collision rates by

rescaling the experimentally measured rates for ordinary atoms and ions. They consider the

momentum-transfer cross section and average over a Maxwellian velocity distribution. The

results are

ΓHH ≈ nH
[

15π(4/3)3/8Γ(19/8)
]

(

αDv̄
3/4

∆2

)(

me,SMmH

µD∆

)−1/8 [

1 +
me,SMmH

µD∆

v̄2

225

]−19/8

,

ΓpH ≈ nH
30
√
3π3α2

Dv̄

∆2

(mHmp)
1/2

mH +mp

[

1 +
me,SMmp

(µD +mp)∆

v̄2

150

]−5/2

,

ΓeH ≈ nH
30
√
3π3α2

Dv̄

∆2

(mHme)
1/2

mH +me

[

1 +
me,SMme

(µD +m)∆

v̄2

150

]−5/2

,

ΓHp ≈
npmp

nHmH

ΓpH ,

ΓHe ≈
neme

nHmH

ΓeH , (6.60)

where me,SM = 511 keV is the (normal) electron mass. These are valid in the interval

10−3 . Ecm/∆ . 10, where Ecm = µijv
2/2 is the center-of-mass energy of the colliding

particles. As noted in [175], this is expected to over-estimate the atom-atom collision rate

at low-energies; in fact it diverges as v → 0, in contrast to the approach of [181], which finds

that the s-wave contribution dominates. Our numerical analysis shows that [175]’s approach

gives significantly larger cross sections than [181]’s approach even in its assumed range of

validity (by about an order of magnitude). Part of this difference can be attributed to using

the momentum-transfer cross section instead of the energy-transfer cross section.

6.3.2 Effects of Scattering on Halos

We have established that the scenario considered here generically results in multi-component

dark matter, with several types of inter- and intra-species interactions. Consequently, dark

matter simulations of single-component dark matter are not directly applicable; but we will
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use insights from these simulations to determine reasonable conditions to study the impact of

dark matter interactions on the dynamics of dark matter halos. We have two complementary

goals: first, to determine rough constraints that ensure that scattering in Milky-Way-sized

halos does not destroy their observed ellipticity, and secondly, to identify regions of parameter

space in which scattering could affect the dynamics of dwarf-galaxy-sized halos, potentially

bringing predictions into better agreement with observations.

We define an effective average momentum-transfer rate

Γeff = hpmin (Γp,Γcrit/h) + hemin (Γe,Γcrit/h) + hH min (ΓH ,Γcrit/h) , (6.61)

where hp, he, and hH are the mass fractions carried by dark protons, dark electrons, and

dark atoms respectively,

hp ≡
xDmp

xD(mp +me) + (1− xD)mH

≈ xDmp

mH

,

he ≡
xDme

xD(mp +me) + (1− xD)mH

≈ xDme

mH

,

hH ≡
(1− xD)mH

xD(mp +me) + (1− xD)mH

≈ (1− xD). (6.62)

Γeff depends on the position in the dark matter halo, through its dependence on the densities

and the velocity dispersions of the dark matter species. (The velocity dispersion dependence

arises mostly through the strong velocity dependence of the cross sections given above.)

Γcrit is an estimate (to be specified below) for the magnitude of the effective momentum-

transfer rate above which there is a significant effect on the halo; it is this value that we

compare to Γeff . It also generically depends on the position inside the halo. In Eq. 6.61, we

cap the contribution of each contribution at Γcrit/h, with h < 1. The physical reasoning for

this is that if the momentum-transfer rate of a species is large, but the species contributes

only a fraction of the mass in the halo, then the effect of the momentum loss by this species

on halo dynamics is unimportant. This species’ contribution should not drive Γeff above

the critical value. Only the interactions of species which carry a significant portion of the
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halo mass should determine the dynamics of the halo. This cap is an albeit somewhat crude

way of incorporating this; h is the fraction of dark matter which, if strongly interacting,

can drive Γeff to its critical value. We somewhat arbitrarily choose h = 0.5. (This choice

is partly informed by the dynamics of dark matter and ordinary matter in halos. Ordinary

matter contributes 15 percent of the mass of the universe and is quite self-interacting and

dissipative, but it does not significantly affect the clustering of dark matter at most scales.)

The strongest constraints on dark matter self-interactions arise from the observed ellip-

ticity of halos of the size of the Milky Way or larger; these correspond to distances r ∼
(4− 50) kpc from the center of the halo [200]. Therefore, we evaluate Γeff at ρDM = 1 GeV/

cm3; this is estimated to occur at r ∼ 4.5 kpc for both an NFW and an isothermal profile. We

also set v̄ = 220 km/s. We define ΓMW
crit as follows: For the chosen values of the dark matter

density and velocity dispersion, and in the limit of single-component dark matter of mass m

with a velocity independent scattering cross section, one must require σT/m . 1 cm2/g [28].

For single component dark matter, Γeff = ρDM(σT/m)v̄; thus we set

ΓMW
crit = (1 GeV/cm2)(1 cm2/g)(220 km/s) ≈ 1.2 Gyr−1 ≈ 17H0. (6.63)

We require ΓMW
eff < ΓMW

crit , where ΓMW
eff is the effective momentum-transfer rate evaluated

at the above density and average velocity. This is a reasonable bound for preventing the

thermalization and isotropization of the halo.

Secondly, we want to identify regions of parameter space in which self-interaction can

affect the dynamics of smaller halos; since the dwarf spheroidal galaxies of the Milky Way

are consistent with isothermal isotropic profiles, these considerations set only a lower bound

on Γeff . We evaluate the momentum-transfer rates at ρDM = 0.5 GeV/cm3 and v̄ = 10 km/

s. (For a review of the kinematics of dwarf spheroidal galaxies, see Ref. [201].) For single

component dark matter, the desired cross section is σT/m > 0.5 cm2/g [25,27,28,130]. Thus

we set

ΓDW
crit = (0.5 GeV/cm3)(0.5 cm2/g)(10 km/s) ≈ 0.014 Gyr−1 ≈ 0.2H0. (6.64)
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We desire ΓDW
eff > ΓDW

crit .

Note that the above approach in choosing ΓMW
crit and ΓDW

crit renders our bounds independent

of the dark matter density at which the momentum-transfer rates are evaluated, and thus

can be reasonably compared to estimated constraints from dark matter simulations. Evalu-

ating the momentum-transfer rates requires knowing the spatial distributions of the different

species of dark matter; however these depend on the strength of the various interactions and

the relative abundances of each species. Ultimately, the clustering of multi-component and

self-interacting dark matter must be resolving through simulations; here we will make the

simplifying assumption that all species follow the same density profile

nH(r) ≈ (1− xD)ρDM(r)/mH (6.65)

np(r) = ne(r) ≈ xDρDM(r)/mH . (6.66)

We note that we do expect np(r) = ne(r) due to the attractive pDeD interaction and intra-

species repulsion. However, since the ion-atom and atom-atom interactions are typically

much weaker than the ion-ion interaction, it is possible that atoms and ions have separate

profiles [174]. However, in the limits xD ≈ 1 or xD ≪ 1, we do expect all the dark matter

species to follow the same profile, determined primarily by the gravitational pull of the

dominant species.

6.3.3 Discussion of Results

In this section we present graphs showing the parameter space that satisfies the criteria

outlined above. Our first constraint is a strict bound from requiring that Milky-Way-sized

halos retain their ellipticity; the region where this fails is colored pink in the plots below.

The second, a desiderata, shows the regime in which self-scattering can affect smaller halos;

this region is enclosed by a blue line. We also hatch the region where there is insufficient an-

nihilation in the early universe in this simplistic model, although this bound can be loosened

by a less minimal dark sector. In the grey region, the self-consistency bound 4µD > mH +∆
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Figure 6.4: Halo bounds as a function of αD and mH (fixed ∆ and MD) for ξDR = 0.3,

following the methods of [175].

is violated. The broken lines in plots following [181] result from the numerical interpolation

of b0, b1, and b2.

There are several different quantities one can use to describe the relevant parameter space.

One can describe the dark atoms using the coupling αD and atomic mass mH along with

either the binding energy ∆ or the reduced mass µD. The full parameter space is then

described by one of these sets of three parameters along with MD, the mass of the dark

photon. The two resulting sets of parameters are useful for different tasks; considering the

binding energy is useful in looking for indirect detection signals (as outlined in the previous

chapter), although fixing the reduced mass is more helpful when analyzing the cosmological
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Figure 6.5: Halo bounds as a function of αD andmH (fixed ∆ andMD) for ξDR = 3, following

the methods of [175].

history. Consequently, we present plots both with the binding energy ∆ and the reduced

mass µD considered as an independent parameter.

First, we look at the effects of scattering on halos as a function of the dark coupling αD

and the dark atom mass mH ; we fix the dark mediator mass. In Figs. 6.4, 6.5, and 6.6, we

also fix ∆, while in the following three, Figs. 6.7, 6.8, and 6.9, we fix µD. In each of these

sets, the first two (i.e., 6.4 and 6.5, 6.7 and 6.8) use the approach of [175]; the remaining two

(6.9 and 6.9) follow [181]. Figs. 6.4, 6.5, 6.7, and 6.8 additionally demonstrate the weak ξDR

dependence, as each choice of parameters is evaluated at both ξDR = 0.3 and ξDR = 3.
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Figure 6.6: Halo bounds as a function of αD and mH (fixed ∆ and MD) for ξDR = 0.5,

following the methods of [181].

The most pronounced feature of this plot is the “wedge”, which demonstrates that the

scattering rate varies non-monotonically with αD andmH . This can be understood as follows:

for small αD, dark recombination is inefficient and dark matter today consists mostly of ions

(xD ≈ 1). At very low values of αD, there is negligible self-interaction among the ions, but

increasing αD increases the scattering rate, which can become sizable before recombination

becomes very efficient. At the other extreme, dark atoms are efficiently formed in the

early universe, and the atom-atom scattering cross section increases the dark matter self-

interaction in the halos, leading to Γeff > Γcrit. This wedge feature becomes more pronounced

as ξDR is increased. It is also present whether we follow the analysis of [175] or [181]. As

may be expected from the above explanation, the precise edges of the wedge, but not its
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Figure 6.7: Halo bounds as a function of αD and mH (fixed µD and MD) for ξDR = 0.3,

following the methods of [175].

existence, depend somewhat weakly on the choice of Γcrit.

We emphasize that this behavior exemplifies the importance of carefully considering the

cosmology of models in which dark matter couples to a light mediator. Failing to consider

dark recombination would overestimate ion scattering, which would give inaccurate bounds

on αD and mH .

These plots also clearly demonstrate that the scenario considered provides a region of pa-

rameter space in which dark matter interactions can affect smaller halos without endangering

the ellipticity of large halos; this is the region enclosed by the blue line which is not colored
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Figure 6.8: Halo bounds as a function of αD and mH (fixed µD and MD) for ξDR = 3,

following the methods of [175].

pink. Furthermore, this region exists both at small are large ionization fractions, although

the large ionization case may be in tension with having sufficient annihilation in the early

universe. (However, the fourth plot in Fig. 6.4 demonstrates that this is not necessarily the

case.)

The existence of a region satisfying both ΓDW
eff > ΓDW

crit and ΓMW
eff < ΓMW

crit can be traced to

the velocity dependence of the cross sections. Both the atom-atom and ion-ion cross sections

decrease with increasing velocity; for ion-ion scattering, σij ∝ 1/v4 as MD → 0; larger values

of MD weaken this dependence. The sensitivity of σHH to velocity varies according to the

two approaches considered. According to Ref. [181], the atom-atom contribution is velocity-
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Figure 6.9: Halo bounds as a function of αD and mH (fixed µD and MD) for ξDR = 0.5,

following the methods of [181].

independent at low energies, while at higher energies it can scale as 1/v2 or even as 1/v4.

Thus, the different velocity scales relevant for dwarf halos and Milky-way-sized halos enable

us to satisfy both conditions simultaneously in some regions of parameter space, consistent

with the motivation for considering self-interacting dark matter given at the beginning of

this chapter.

In the µD plots (Figs. 6.7, 6.8, and 6.9), we also explore the region in which ∆ < MD <

µDαD. In this region, bound state solutions exist (and hence mH and ∆ are well-defined),

but bound state formation is hindered due to the impossibility of emitting an on-shell dark

photon. In this region, therefore, we take xD = 1. We see interesting behavior around the

dividing line MD = ∆; in the upper middle plots of Figs. 6.7 and 6.8, the pink shaded region

extends to larger mH values above the diving line, which is the region in which bound states

form. Conversely, in the bottom middle plots of 6.7 and 6.8, the pink shaded region extends

to larger mH values below the dividing line, in the region where bound states do not form.

(Recall that the pink shaded region denotes the regime in which ΓMW
eff > ΓMW

crit .)
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Figure 6.10: Halo bounds as a function of αD and MD (fixed ∆ and mH) for ξDR = 0.3 (top)

and ξDR = 3 (bottom), following the methods of [175].

This can be understood as follows: If ΓMW
eff is determined by atom-atom scattering on the

MD < ∆ side of the MD = ∆ line, then in the MD > ∆ region the absence of atoms may

be sufficient to prevent ΓMW
eff from exceeding the critical value. Hence, ΓMW

eff will exceed its

critical value for a larger range of dark atom masses where dark atoms can form. Conversely,

if we are in a regime in which ion-ion scattering determines ΓMW
eff , then the bound ΓMW

eff > ΓMW
crit

is more stringent in the MD > ∆ region, because in this region xD = 1 and more ions are

present.

Next, we present plots in which mH and either ∆ or µD are held constant, while αD

and MD vary. These are shown following the approach of [175] in Figs. 6.10 and 6.11,
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Figure 6.11: Halo bounds as a function of αD and MD (fixed µD and mH) for ξDR = 0.3

(top) and ξDR = 3 (bottom), following the methods of [175].
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Figure 6.12: Halo bounds as a function of αD and MD (fixed ∆ and mH) for ξDR = 0.5,

following the methods of [181].
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and following the approach of [181] in Fig. 6.12. The wedge seen in the previous plots is

converted to a gap between the pink-shaded region and/or the region enclosed in blue. The

most notable feature is how little the bounds evolve with the mass of the dark mediator. We

do see that the bound from Milky-Way-sized halos weakens as the dark mediator becomes

heavy; this is as we expect due to the increased screening. The importance of the mediator

mass near the MD = ∆ bound, beyond which it is difficult to form bound states although

these solutions exist in the theory, is evident in Fig. 6.11. Generally, the constraint is

stronger on the MD > ∆ side due to the increased number of ions with large scattering

cross sections, although the left-most plots of Fig. 6.11, in which the momentum transfer is

dominated by atom-atom scattering, is a notable exception. Again, the formation of dark

atoms significantly alters the allowed and preferred regions of parameter space.

Figs. 6.13 and 6.14 show the parameter space as a function of mH and MD following

the methods of Ref. [175]; Fig. 6.15 follows Ref. [181]. Consistent with Figs. 6.10, 6.11,

and 6.12, minimal evolution with the dark photon mass is seen until near ∆ = MD. The

regime in which dark matter self-interaction can influence small halos while preserving the

ellipticity of large halos can extend over nearly a whole decade in αD. (In Fig. 6.14, the

region MD > µDαD, is grayed out because there are no bound state solutions.)
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Figure 6.13: Halo bounds as a function of mH and MD (fixed ∆ and αD) for ξDR = 0.3 (top)

and ξDR = 3 (bottom), following the methods of [175].
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Figure 6.14: Halo bounds as a function of mH and MD (fixed µD and αD) for ξDR = 0.3

(top) and ξDR = 3 (bottom), following the methods of [175].
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Figure 6.15: Halo bounds as a function of mH and MD (fixed αD and ∆) for ξDR = 0.5,

following the methods of [181].
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Figure 6.16: Halo bounds as a function of ∆ and MD (fixed mH and αD) for ξDR = 0.3 (top)

and ξDR = 3 (bottom), following the methods of [175].

In the next set of plots (Fig. 6.16, Fig. 6.17, and Fig. 6.18), we fix the dark coupling αD and

the dark atom mass mH , while allowing MD along with either ∆ or µD to vary. Again, we

see very little evolution with the dark photon mass. The wedge feature again results in two

bands. We see that it is generally easier to alter the shape of small halos while retaining the

ellipticity of large halos at small ionization fractions, when most of the charge is contained

in dark atoms.
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Figure 6.17: Halo bounds as a function of µD and MD (fixed mH and αD) for ξDR = 0.3

(top) and ξDR = 3 (bottom), following the methods of [175].
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Figure 6.18: Halo bounds as a function of ∆ and MD (fixed mH and αD) for ξDR = 0.5,

following the methods of [181].
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Figure 6.19: Halo bounds as a function of ∆ and mH (fixed MD and αD) for ξDR = 0.3 (top)

and ξDR = 3 (bottom), following the methods of [175].

Next we hold the dark coupling αD and the dark photon mass MD constant while allowing

mH along with the binding energy ∆ or reduced mass µD to vary. This allows us to investigate

the evolution of the wedge region with binding energy/reduced mass, which we were not able

to do effectively in the first set of plots. These are shown in Fig. 6.19 as a function of ∆

following the approach of [175], in Fig. 6.20 as a function of µD following the approach

of [175], and in Fig. 6.21 as a function of ∆ following the approach of [181]. In particular,

we note that the wedge extends for a much larger range of dark atom masses taking the

approach of [181] as opposed to [175]. We also see that, when considering this set of fixed

parameters, the existence of the wedge occurs only for a narrow range of binding energies or

reduced masses, and it is also rather sensitive to ξDR. Consistent with the above remarks,
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Figure 6.20: Halo bounds as a function of µD and mH (fixed MD and αD) for ξDR = 0.3

(top) and ξDR = 3 (bottom), following the methods of [175].

we see little evolution of the parameter space until the dark photon mass becomes relatively

large.

Additionally, these plots show both small and large ionization regimes in which these

desiderata hold; see particularly the first two plots in Fig. 6.19. As noted previously, the

favored region at high ionization fraction is frequently in tension with having sufficient anni-

hilation, but this region should not necessarily be considered forbidden, as an extended dark

sector with additional annihilation channels may loosen this bound.
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Figure 6.21: Halo bounds as a function of ∆ and mH (fixed MD and αD) for ξDR = 0.5,

following the methods of [181].
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Figure 6.22: Halo bounds as a function of αD and ∆ (fixed mH and MD) for ξDR = 0.3 (top)

and ξDR = 3 (bottom), following the methods of [175].

Finally, we consider the remaining possibility: fixing mH and MD; Fig. 6.22 shows these

as a function of ∆ and Fig. 6.23 shows these as a function of µD. As these are rather

similar to previously shown plots, we show the analysis only for following [175]. These plots

particularly illuminate the evolution of the preferred region at large ionization fractions.
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Figure 6.23: Halo bounds as a function of αD and µD (fixed mH and MD) for ξDR = 0.3

(top) and ξDR = 3 (bottom), following the methods of [175].
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Figure 6.24: Halo bounds as a function of αD and mp = me (fixed MD) for ξDR = 0.5,

following the methods of [181].

We have seen that arbitrarily small dark photon masses produce viable scenarios, even at

moderately large values of the dark coupling (e.g., Fig. 6.12). This is due to the formation

of dark atoms, which generally suppresses the dark matter self-scattering rate. If the dark

photon has mass, this mass must necessarily be small for existence dark atoms to form;

for MD > ∆, the formation of atoms is kinematically suppressed due to the emitted dark

mediator being off mass-shell, and for MD > µDαD, the spin-zero bound state solution

does not exist. The above plots did explore the MD > ∆ regime by setting the ionization

fraction to one; however, to explore the MD > µDαD regime one should use a different set

of independent variables, as the parameters mH and ∆ are not well-defined in this regime.
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Figure 6.25: Halo bounds as a function of αD and mp = me (fixed larger MD) for ξDR = 0.01

(top) and ξDR = 1 (bottom), following the methods of [181].

Consequently, we next present plots in which we use mp, me, MD, and αD as independent

parameters; these are all made following the approach of [181]. In most of these plots,

we will set mp = me for simplicity; this also most closely approximates single component

self-interacting dark matter models.

In the first set of plots, Fig. 6.24, we investigate the evolution of the wedge seen in the

plots above. We see that it generically becomes larger as MD is increased, consistent with

the plots shown above. The two bottom plots explore the region with no bound states; we

observe that in this regime, the large ion-ion scattering cross section results in spherical

large halos, as we expect from our observation that dark atom formation tends to relax this

148



Insufficient annihilation in early universe

Disfavored by ellipticity

of large halos

Favored by

galactic substructure

xD = 0.01

xD = 0.99

D
<
M
D

Α
D
Μ
D
<

M
D

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1
10-3

10-2

10-1

M D @GeVD

Α
D

m p = 100 GeV, me = 1 GeV, ΞDR = 0.5

Figure 6.26: Halo bounds as a function of αD and MD (fixed larger mp ≫ me) for ξDR = 0.5,

following the methods of [181].

constraint.

Next we consider larger mediator masses, at both ξDR = 0.01 and ξDR = 1; these are shown

in Fig. 6.25. In these plots, we can see that both the ΓMW
eff > ΓMW

crit (pink) region and the

ΓDW
eff > ΓDW

crit (enclosed in blue) region extend into the large mediator mass regime, in which

there are no bound state solutions. However, as the dark photon mass continues to increase

with respect to αD, the screening effect does eventually reduce the effective momentum

transfer beneath the critical value.

In this limit, there is again a viable regime in which the scattering remains sufficient to

affect smaller halos without destroying the ellipticity of larger halos. We emphasize that

in this scenario this is due entirely due to the screening from the dark photon mass, in

contrast with the preferred parameter space due to the formation of dark atoms. However,

for cosmologically stable dark photons, a large mass implies rather strong upper limits on ξ,

as shown in Fig. 6.2. This bound can be weakened by increasing q2φαD; however, this cannot

be taken too large without weakening the ionization fraction. However, if the kinetic mixing
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Figure 6.27: Halo bounds as a function of MD and mp = me for fixed xD and ξDR, following

the methods of [181].

between the dark photon and hypercharge is sufficiently large, then the dark photons will

decay rapidly, relaxes or eliminating the constraints shown in Fig. 6.2. We emphasize that

even in this minimal model, there are a variety of viable regions of parameter space, with

very different characteristics.

While Fig. 6.25 shows this additional possibility, it does also illustrate the dramatic effect

that the formation of dark atoms has on halo ellipticity bounds, which we have explored

above. When the ionization fraction is small, the effective momentum rate does not exceed

its critical value due to the weakness of atom-atom scattering. We also observe that the

effect of changing ξDR is rather minimal, mostly altering the location of the lines of constant
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ionization.

These figures have all investigated the case mp = me; however, the limit mp ≫ me is also

of interest. This is shown in 6.26. This provides an even larger region in which the mass

of the dark photon screens the interactions sufficiently to retain the ellipticity of large halos

while allowing scattering to modify the shape of smaller halos.

The above discussion has emphasized the importance of the ionization fraction. At small

ionization fractions, scattering may be suppressed by atom-atom scattering, which is weaker

than ion-ion scattering (however, this may still be strong enough to cause Γeff to exceed its

critical value). At lower ionization fractions, screening can only be accomplished by a larger

dark photon mass; this may or may not require one to go into the regime in which dark

atoms do not form. Consequently, it is of interest to fix the ionization fraction xD; this is

shown in Fig. 6.27. The preferred region tends to be at relatively large dark proton/dark

electron masses, unless one considers relatively large dark photon masses, consistent with

the above discussion.

6.4 Summary

In this chapter, we have considered a rather minimal model of self-interacting asymmetric

dark matter: a dark sector interacting through a broken UD(1) gauge group. We have

argued that for small dark photon masses, the dark asymmetry is necessarily produced

in two species oppositely charged under UD(1); furthermore, these species generically can

survive to form dark atoms. Therefore, even in this simplistic model, dark matter is generally

multi-component, comprised of negative dark ions, positive dark ions, and dark atoms.

This model necessarily has a more involved cosmology, which involves a dark phase transi-

tion (if the symmetry is broken using a dark Higgs field) and a period of dark recombination.

The different annihilation processes may freeze out at different temperatures; the decay of
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the dark Higgs boson and/or the dark photon can affect the visible sector. These factors

lead to a rich cosmological history, with many possibilities; we have discussed this in Sec.

6.2.

Finally, single-component halo bounds are generally not applicable to this model; in the

final section, we have considered such bounds taking full account of the multi-component

nature of the dark matter. We have seen that scattering in halos may be suppressed due to

dark atom formation or due to large dark photon masses, both of which result in regions of

parameter space in which scattering can modify small halos while large ones remain elliptical.

This chapter complements the previous chapter, which did not consider a UD(1) gauge

group, and thus was able to consider single-component dark matter. However, the indirect

detection signals studied there are also generally applicable to this model, and can probe

regions of parameter space in which the coupling is rather large.
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CHAPTER 7

Solitosynthesis-Induced Phase Transitions

Now we turn our attention to our third, and final, topic. We return again to the question of

baryogenesis. In Ch. 4, we explored the possibility of producing a baryonic asymmetry dur-

ing the electroweak phase transition in a strongly-coupled supersymmetric model. However,

this is not the only possibility; other phase transitions in the early universe can also produce

the necessary asymmetry. In this chapter, we consider a different possibility, a phase transi-

tion induced by Q-balls. Q-balls [202] are non-topological solitons [203–206] that are stable

because they carry a conserved global charge. They arise in a number of models, and, in par-

ticular, in supersymmetric extensions of the Standard Model, where they carry baryon and/or

lepton number [207]. Stable supersymmetric Q-balls can form in the early universe from the

fragmentation of an Affleck-Dine condensate [100, 208–212] or in other processes [213, 214],

and they can play the role of cosmological dark matter [100,101,208–211,215–217].

Furthermore, it has been suggested that Q-balls can facilitate phase transitions even when

the tunneling rate is too small for the phase transition to occur otherwise; the Q-balls

accumulate charge until they reach a critical charge, at which point they expand, causing

a phase transition [218, 219]. Such phase transitions have been considered as a potential

baryogenesis mechanism. While the possibility of such a phase transition has been explored

in the literature [220,221], a complete model of it has not yet been demonstrated. This is due

to difficulties with the quantum nature of small charge Q-balls and also with the properties

of Q-balls in the false vacuum. This chapter will demonstrate, from beginning to end, a

model in which a phase transition is induced by solitosynthesis of Q-balls.
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This chapter is organized as follows: first, we specify the potential that gives rise to our Q-

balls and show that it has the requisite properties; then we consider the properties of the non-

topological solitons in the false vacuum. There are primarily four regimes to consider. For

large charges, the thin wall semi-classical approximation is valid, while for smaller charges,

the thick wall semi-classical approximation is valid. For intermediate charges, we interpolate

between these two regimes. For extremely small charges, quantum effects are important and

the semi-classical approximation is invalid; instead, we apply the Bethe-Salpeter equation.

After we have described the radii and energies of the Q-balls, we proceed to consider the

properties of the phase transition; in particular, the critical charge and the critical radius.

Then we discuss solitosynthesis, the process by which Q-balls grow by accreting charge. We

find the temperature at which such growth begins, and then we calculate the rate of growth

in each regime. We demonstrate that the growth is not hindered by charge depletion and

freeze out, which could end solitosynthesis before critically sized Q-balls form. Finally, we

discuss explicit numerical examples to show that such a phase transition is a theoretical

possibility.

In all this, we use a simplified toy model inspired by the Minimal Supersymmetric Standard

Model (MSSM). In the last section, we discuss the application of this analysis to the MSSM,

and in particular we consider phase transitions of cosmological interest.

7.1 The Potential

For this analysis, we will use an MSSM-inspired potential [217,220]

V (q̃, H) =
m2
q

2
q̃2 +

m2
h

2
h2 − A0hq̃

2 +
λ1

4
q̃2h2 +

λ2

4
q̃4 +

λ3

4
h4, (7.1)

in which q̃ is a squark field and h is the lightest Higgs boson. For simplicity, we use real

fields. In general, renormalization effects, including the effects of Q-balls if they exist, can

be significant [222]; we take the couplings to be the renormalized couplings. We assume
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Figure 7.1: A contour plot of the potential V (q̃, h). There is a local minimum at the origin

and a global minimum at 〈h〉 = 169 GeV and 〈q̃〉 = 631 GeV.

that any other particles which carry baryon number are heavier than the squark, to ensure

the squark’s stability. The origin is always a local minimum of this potential; however, for

particular values of the coupling constants, a different global minimum exists. For example,

if mq = 200 GeV, mh = 10 GeV, A0 = 240 GeV, λ1 = λ2 = 0.1, and λ3 = 19, the origin is

a local minimum and there are global minima at 〈h〉 = 169 GeV and 〈q̃〉 = ±631 GeV. Fig.

7.1 shows a contour plot of this potential.

Phase transitions involving multiple fields are difficult to solve exactly; a reasonable ap-

proximation is that they occur along the line connecting the two minima. This is a valid

approximation when the potential does not have an unusually shaped barrier; we see no sign

of an unusual barrier in the contour plot. The potential along this line may be found by

substituting q̃ = φ sin(θ) and h = φ cos(θ) with θ = 1.309:

V (φ) = 18700 GeV2φ2 − 58.0 GeVφ3 + 0.0447φ4. (7.2)

This effective potential is shown in Fig. 7.2. We see that there is a large barrier between the

minima; this suppresses phase transitions induced by thermal fluctuations.
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Figure 7.2: The effective potential along the line connecting the false vacuum to the true

vacuum. The large barrier suppresses phase transitions driven by thermal fluctuations.

Next, we must demonstrate the existence of Q-balls in the false vacuum (located at the

origin). The conserved charge carried by the Q-balls is baryon number; this is conserved in

the false vacuum because squarks do not have a vacuum expectation value. The condition

for the existence of Q-balls involving multiple fields is that 2V/
∑

kQkφ
2
k is minimized at a

nonzero value of the fields, where Qk is the charge of the field φk [202, 207]. This condition

is derived using the semi-classical approximation, and therefore is applicable to states with

large charge (as will be clarified below). Because the baryon number carried by the squark

field is 1/3, we consider the minimum of 6V/q̃2. Because of the q̃h term, the origin will not

be even a local minimum of V/q̃2; in fact, the global minimum of this function is located at

q̃0 = 624 GeV and h0 = 168 GeV.

Therefore, Q-balls carrying baryon number exist in this vacuum. Furthermore, V (q̃0, h0) =

−6.18·107 GeV4; this is beneath the value in the false vacuum, V (0, 0) = 0. This is necessary

for a Q-ball induced phase transition to occur; such a phase transition converts the fields

everywhere to their vacuum expectation values inside the Q-ball, q̃0 and h0. Since this is not

quite the true minimum of the potential (which is located at q̃ = 631 GeV and h = 169 GeV),
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the system will then slide classically into the true minimum.

Again, we consider the potential along the line connecting the initial vacuum and the final

state (the interior of the Q-ball), which, with q̃ = φ sin(θ), h = φ cos(θ), and θ = 1.308, is

V (φ) = 18700 GeV4φ2 − 58.2 GeV3φ3 + 0.0450φ4. (7.3)

We can also describe the Q-balls in terms of the effective φ field. The field inside such a

Q-ball is the value of φ that minimizes V (φ)/φ2, which is
√

q̃20 + h2
0 = φ0 = 646 GeV. Thus,

at least for large charge, we can consider the Q-balls as coherent oscillations of φ quanta,

but when the classical approximation is not valid, we should remember that the charge is

really carried by bound states of squarks exchanging Higgs bosons.

Because squarks carry charge 1/3, the charge present in a particular field configuration

(including a Q-ball) is

Q =
ω

3

∫

d3x q̃2 =
sin2(1.308)

3
ω

∫

d3xφ2, (7.4)

where ω describes the oscillatory time dependence of the fields. While the first equality is

generally true, the second holds along the line connecting the interior of the Q-ball to the

origin of the potential. For later convenience, we measure the charge in units such that

Q = sin2(1.308)Q′/3; then,

Q′ = ω

∫

d3xφ2. (7.5)

Physically, Q′ is the charge in a single φ quanta. In terms of Q′, a single squark carries

charge 3.107; this will be even closer to 3 the nearer the global minimum is to the q̃ axis.

Speaking loosely, since θ ≈ π/2, the field φ is “almost” the squark field, and the charge Q′

is approximately the number of squarks present.

Generically, then, we consider a potential of the form

V (φ) =
m2

0

2
φ2 − Aφ3 +

λ

4
φ4, (7.6)
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in which the field φ is made of squarks and Higgs bosons, and the general form of the relation

between the charges is

Q′ =
3Q

sin2(θ)
. (7.7)

Let us make a few brief remarks about other sources of correction to the potential. At the

scale of color confinement, we expect the squarks to arrange into color singlets of the form

ǫabcǫαβQ̃
α
a Q̃

β
b q̃c, where Greek indices denote SUL(2) indices and Latin letters denote color

indices [223]. To avoid complications from these corrections, we will ensure that the relevant

temperatures for our final analysis are above the scale of the QCD phase transition. We

note, however, that even when this is not satisfied, the scalar binding interaction mediated

by Higgs bosons is much stronger than the strong interaction, and so modifications to the Q-

balls are expected to be rather minimal. A second source of corrections to the potential are

the finite temperature corrections λ2T 2φ2 and λTφ3. Although the temperatures considered

will be large in comparison to the QCD scale, they will still be significantly smaller than

m0 and A, and so the finite temperature corrections will not in fact be significant in the

numerical examples we will consider.

7.2 Properties of Q-Balls in the False Vacuum

The exact and general equation for the energy of a Q-ball of arbitrary charge has three terms,

E(Q′) =

∫

d3x

(

1

2
|φ̇|2 + 1

2
|∇φ|2 + V (φ)

)

. (7.8)

The field oscillates in time as eiωtφ̄(x) where the frequency is related to the charge by

Q′ =
1

2ı

∫

d3xφ∗←→∂t φ = ω

∫

φ2 d3x. (7.9)

After some manipulation, one can write [224]

E =

∫

d3x

(

1

2
|∇φ̄|2 + V̂ω(φ̄)

)

+ ωQ′,

≡ S3[φ̄(x)] + ωQ′, (7.10)

158



where the first term is the three-dimensional Euclidean action of the “bounce” solution

tunneling between the two minima of the effective potential V̂ω(φ) = V (φ)− ω2φ2/2.

In our analysis below, we will need to describe the Q-balls for a variety of charges; in par-

ticular, we would like to know their mass and radius as a function of charge. For sufficiently

large Q-balls we may use the well-known thin wall approximation; for smaller Q-balls, the

thick wall approximation can be made. For the region between these two limits, we can use

an interpolation to approximate the behavior of the Q-balls. However, there is a regime of

very small charges in which even the thick wall approximation, which remains a semi-classical

approximation, is inapplicable. We will use the Bethe-Salpeter equation to approximate the

Q-ball properties at these small charges.

First, let us review the thin wall regime. In this regime, the energy of a Q-ball may be

calculated in a different manner, due to [225]. Beginning again with Eq. (7.8), we use the

oscillatory time dependence to write

E(Q′) =
Q′ 2

2
∫

φ̄2 d3x
+

∫

1

2

(

∇φ̄
)2

d3x+

∫

V (φ̄) d3x,

=
Q′ 2

2
∫

φ̄2 d3x
+ T + V, (7.11)

where T =
∫

(∇φ̄)2 d3x/2 and V =
∫

V (φ̄) d3x. In the thin wall approximation, φ̄ ≈ φ0 for

r < R−δ/2 and φ̄ ≈ 0 for r > R+δ/2, where δ is the width of the surface of the Q-ball. The

thin wall approximation is valid if δ ≪ R. The “volume” term then has two contributions,

one from the interior of the Q-ball and one from the surface. In the interior of the Q-ball,

the potential is V (φ0), while in the surface of the Q-ball, it is βm2
0φ

2
0, where β is a positive

constant. Therefore, the volume term is

V =

∫

V (φ̄) d3x =
4

3
πV (φ0)R

3 + 4πδR2 · βm2
0φ

2
0. (7.12)

In the surface, the field changes by δφ̄ = φ0 in the distance ∆r = δ, thus dφ̄/dr ≈ φ0/δ.

Introducing a constant α to account for the uncertainty, the surface term is

T = 4πδR2 · αφ
2
0

δ2
. (7.13)
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The energy must be a minimum with respect to both δ and R; minimizing with respect

to δ gives δ =
√

α/βm2
0 and

E =
3Q′2

8πφ2
0R

3
+ 8πm0

√

αβ ·R2φ2
0 +

4

3
V (φ0)R

3. (7.14)

By manipulating Eq. (7.10), one can relate
√
αβ to the one-dimensional Euclidean action

for the true potential

S1 =

∫ φ0

0

√

2V (φ) dφ = 2m0

√

αβφ2
0, (7.15)

which is related to the three-dimensional action through S3 = 4πR2V (φ0)/3 + 4πR2S1 [224,

226]. Minimizing the energy with respect to R results in a constraint between the charge

and the radius:

0 = −9Q′ 2

8πφ2
0

+ 16πm0

√

αβφ2
0R

5 + 4πV (φ0)R
6. (7.16)

V (φ0) > 0, the last term dominates over the second term; neglecting this term allows us to

solve for R in terms of the charge. This gives the familiar R ∝ Q1/3 behavior [202]. However,

for Q-balls to induce a phase transition we must have V (φ0) < 0, and so one cannot neglect

the second term. This sixth order equation has no closed form solution.

For the thick wall approximation, we consider Eq. (7.10). As the charge becomes small,

the frequency ω becomes large; then the asymmetric minimum in Vω(φ) is significantly lower

than the symmetric minimum. This is true independent of the sign of V (φ0); in fact, since

we have V (φ0) < 0, the asymmetric minimum is lower than the symmetric minimum even

at ω = 0. Therefore, the Euclidean action S3 is the same in both cases, and the relations

between the energy, radius, and charge are unchanged. These are [224]

E = Q′m0

(

1− ǫ2

6
− ǫ4

8
− . . .

)

, (7.17)

R−1 = ǫm0

(

1 +
1

2
ǫ2 +

7

8
ǫ4 + . . .

)

, (7.18)

where ǫ = Q′A2/3Sψm
2
0 and Sψ ≈ 4.85 was determined numerically. This is valid when:

Q′ ≪ 3Sψm0√
λA

, Q′ <
3Sψm

2
0

2A2
. (7.19)
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The thick wall approximation, like the thin wall approximation, neglects quantum correc-

tions; thus it breaks down when these are large, which occurs around Q′ . 7 [227].

No general solutions are known for the regime between when the thin wall approximation is

valid and when the thick wall approximation applies. Therefore, we use a linear interpolation

between the two regimes. We will need only the radius in terms of the charge Q′, for which

we use

R =
Q′ − 7

Q′
Rthin +

Q′

7
Rthick. (7.20)

We have already written Rthick in terms of Q′; however, as found above there is no closed-

form equation for Rthin in terms of Q′. Therefore, we use a numerical approximation for the

thin wall radius at small charge of the form R ≈ a+ bQ′2/5. While this can only be justified

by its numerical accuracy, it can be motivated by neglecting the third term in the constraint

Eq. 7.16. Then in the intermediate regime the linear interpolation becomes

R =
Q′ − 7

Q′

(

a+ bQ′ 2/5
)

+
3Sψ
7A

. (7.21)

The stability of states with very low charge is vital to building critically sized Q-balls,

but for these states, one cannot use the approximations already discussed because quantum

effects are important. At small charge, it is furthermore incorrect to think of the Q-balls

as made of φ quanta; instead we should remember that they are bound states made of

squarks and Higgs bosons. Unlike the full supersymmetric model discussed in Ch. 3, in our

simplified model we have not given put the squarks or Higgs bosons in SUL(2) doublets; nor

have we assigned them hypercharge quantum numbers. Consequently, in this simple model,

the squarks exchange Higgs bosons directly; the basic kernel is the single particle exchange

that appears in the Wick-Cutkosky model, which has been discussed in some detail in Ch.

2. We may use this model in the limit that the Higgs mass is much lighter than the squark

mass. As this approximation is not perfect, we use an effective coupling Ã in our analysis,

which we tune to ensure that the energy at large charge matches the result from the thick

wall approximation.
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In this section, we will use the label n = 3Q, the number of squarks present in the state,

to designate the bound states. At the end, we will relate this to the charge Q′ that we have

been using as a label in the other regimes using Q′ = 3Q/ sin2(θ), Eq. (7.7). The lowest

state is a single squark, and then the first step is the relatively simple case of two individual

squarks forming one n = 2-ball; in this equal mass and equal coupling case the bound state

masses given by the Bethe-Salpeter equation (in the Wick-Cutkosky model) are

Mn = 2m

(

1− α2

8n2

)

= 2m0

(

1− Ã4

2048π2m4
0n

2

)

, (7.22)

if α = Ã2/16πm2
0 < 1. We may find the binding energy for the ground state by taking n = 1.

For the remaining states, the masses and couplings at the top and bottom of the ladder

are unequal; after a Wick rotation, the Bethe-Salpeter equation in the ladder approximation

is

[

(m+∆)2 + (p− iη1P )2
] [

(m−∆)2 + (p+ iη2P )2
]

Φ(p) =
λ

π2

∫

dq
Φ(q)

(p− q)2
, (7.23)

where the masses of the particles, mtop and mbottom, are m ± ∆. We have discussed this

case in Ch. 2; however, we will repeat the main results here. The coupling constant in the

above equation is λ = gtopgbottom/16π
2 = (n − 1)Ã2/16π2, where gtop = (n − 1)Ã is the

coupling at the top of the ladder and gbottom = Ã is the coupling at the bottom of the ladder.

The total charge Q of the resulting Q-ball is n/3. The energy-momentum four-vector of the

bound state, P , is given by (M, 0) where M is the bound state mass. η1 and η2 come from

transforming to a “center of momentum” reference frame; these are

η1 =
mtop

mtop +mbottom

, η2 =
mbottom

mtop +mbottom

. (7.24)

The binding energies are [30]

M2 = 4∆2 + 4m2

(

1− ∆2

m2

)(

1− A′2π2

4m4

1

(1−∆2/m2)2

)

. (7.25)

We use this equation iteratively to find the masses and binding energies of the small charge

Q-balls; the results are shown in Table 7.1.
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n (No. squarks) Mass of Q-ball Binding Energy

1 m0 0

2 2m0 − 0.0000989Ã4/m3
0 0.0000989Ã4/m3

0

3 3m0 − 0.0002659Ã4/m3
0 0.0001670Ã4/m3

0

4 4m0 − 0.0005298Ã4/m3
0 0.0002639Ã4/m3

0

5 5m0 − 0.0009163Ã4/m3
0 0.0002865Ã4/m3

0

6 6m0 − 0.0014506Ã4/m3
0 0.0005343Ã4/m3

0

7 7m0 − 0.0021577Ã4/m3
0 0.0007071Ã4/m3

0

Table 7.1: Energies of small Q-balls from Bethe-Salpeter equation.

We have calculated this until n = 7, or Q = 7/3. Using θ = 1.308, this corresponds to

Q′ = 7.51 Since this is greater than 7, the thick wall approximation is applicable. In the

thick wall regime, a Q-ball with this charge has energy

M = 7.51m0 + 0.333A4/m3
0. (7.26)

The difference in the first terms (about 7.2 percent) comes from the fact that states described

by the Bethe-Salpeter equation do not have exactly the same proportion of squarks and Higgs

bosons as the Q-balls described in the thick wall regime. This can be further improved by

moving the global minimum closer to the q̃ axis. This is because

Q′m0 = n

√

m2
q̃ sin

2(θ) +m2
h cos

2(θ)/ sin2(θ), (7.27)

as seen by comparing potentials (7.1) and (7.2), and using the relation between n and Q′.

Comparing the second terms in the mass equations gives Ã = 4.51A. Using the value of A

in the potential in (7.2) gives an effective coupling of Ã = 263 GeV for the coupling between

the squarks and the Higgs boson, while the value that we put into our original potential in

(7.1) is 240 GeV. These differ by 9.6 percent; we attribute this difference to a combination

these two factors: first, the difference in squark-Higgs proportions already mentioned above,
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and the inherent inaccuracy of the ladder approximation in the Bethe-Salpeter equation. We

note that the difference does not improve if we iterate the Bethe-Salpeter equation to larger

charges. Eq. (7.25) for the bound state masses is valid provided that λ ≪ m2. Now that

we have set Ã, and thus λ, we can verify that we satisfy this bound. For the largest A′, at

n = 7, this ratio is approximately λ/m2 ≈ 6Ã/(16π2 · 3.52m2
q̃) = 0.0053.

7.3 Critical Values for the Phase Transition

Now that we have described the Q-balls in each of the four regimes, we next discuss the

solitosynthesis-induced phase transition. In the thin wall regime, the interior of the Q-ball is

nearly in the true vacuum; it is at least in a state which has negative energy density. If charge

continues to increase, the Q-ball expands, converting more space into the negative energy

state. At a particular value of the charge and radius, it expands uncontrollably, thereby

converting all space into the negative energy state; following this, the system will roll down

to its true vacuum [218]. This Q-ball-induced phase transition can occur even when such a

phase transition cannot be induced by thermal fluctuations.

As will be demonstrated in our numerical example, the critical charge is of order 105,

which is within the thin wall regime. At the critical point, not only is dE/dR = 0, but also

d2E/dR2 = 0, which gives the additional constraint

0 =
9Q′2

c

2πφ2
0

+ 16πm0

√

αβφ2
0R

5
c − 8πV0R

6
c , (7.28)

where V (φ0) = −V0 with V0 > 0 in the phase transition case. We solve the two constraint

equations, (7.16) and (7.28), for the critical charge and radius:

Rc =
10m0

√
αβφ2

0

3V0

, (7.29)

Q′
c = 2πφ0

√

8V0

45

(

10m0

√
αβφ2

0

3V0

)3

. (7.30)

We aim to show that Q-balls of this size will grow from individual squarks.
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7.4 Solitosynthesis

7.4.1 Solitosynthesis Temperature, Rate of Diffusion, and Freeze-Out

Now let us discuss the growth of Q-balls. In thermal equilibrium, the number density of

Q-balls of a particular charge is given by a Saha equation:

nQ′ =
gQ′

gφgQ′−1

nφnQ′−1

(

2π

m0T

)3/2

eBQ′/T , (7.31)

where BQ′ is the binding energy of a soliton (Q-ball) of charge Q′ and gQ′ is the internal

partition function of the soliton. gφ is the number of degrees of freedom associate with the

φ field. While we have chosen to work with real fields which are not arranged in SUL(2)

doublets as a simplification, we will set gφ = 3, to account for the possible color states, to

make the model somewhat more realistic. (Taking gφ = 1 makes only minor changes to the

analysis.) The charge density nφ is the number of free squarks; since θ ≈ π/2, conceptually

we can think of this as the number of φ-quanta (1-balls) present. This is given by

nφ = ηnγ −
∑

Q′≥2

Q′nQ′ , (7.32)

where the baryon asymmetry is η and in the radiation-dominated era the photon density is

2ζ(3)T 3/π2.

The typical approach would be to solve these coupled equations numerically. However,

the critical charge is generically of order 103 to 105, which leads to at least 103 coupled

equations. It is infeasible to solve these simultaneously. Therefore, we take a different

approach following [228] and consider the evolution of a single Q-ball. We will see that the

Q-balls grows sufficiently fast that we can ignore charge depletion; then

nφ ≈ ηnγ = η
2.404T 3

π2
. (7.33)

A single Q-balls grows or shrinks according to

dQ′

dt
= rabs(Q

′)− revap(Q
′), (7.34)
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where rabs is the absorption rate and revap is the evaporation rate; by detailed balance,

nQ′rabs(Q
′) = nQ′+1revap(Q

′ + 1). (7.35)

The rate of absorption is rabs(Q
′)nφvφσabs(Q

′), where σabs(Q
′) is the cross section for a

Q′-charged Q-ball to absorb a φ quanta. For large charges, σabs(Q
′) ≈ πR2. As we will

verify numerically below, the radius does not change rapidly as a function of charge, at

least in the large charge regime. Consequently, σabs(Q
′) ≈ σabs(Q

′ − 1), and together, these

approximations yield

dQ′

dt
= rabs(Q

′)− nQ′−1

nQ′

rabs(Q
′ − 1),

≈ nφvφσabs(Q
′)

(

1− nQ′−1

nQ′

)

. (7.36)

Thus the determining factor is nQ′−1/nQ′ : if this is less than 1, absorption dominates,

but if it is greater than 1, evaporation dominates. From the Saha equations (7.31), this

important ratio is

nQ′−1

nQ′

= gφ
π2

2.404η

(

2πT

m0

)−3/2

e−BQ′/T , (7.37)

where we have used gQ′ ≈ gQ′−1 since our Q-balls are large objects made of scalar par-

ticles (and hence have no internal spin degrees of freedom). At large temperatures, the

exponential is negligible and this scales as T 3/2. However, this ratio is less than 1 only if

T > η−2/3m0, which is typically quite large due to the smallness of η; it may even be above

the reheat temperature. Therefore, relatively quickly in the evolution of the universe, we

expect evaporation to dominate.

As the temperature decreases, the exponential term is no longer negligible. Because

BQ′ < 0, this term decreases nQ′−1/nQ′ . Therefore, at some solitosynthesis temperature

TS absorption will dominate and the Q-ball will grow; this temperature is determined by

TS =
BQ′

ln(gφ)− ln(η) + (3/2) ln(m0/TS)− 1.34
. (7.38)
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It is possible for the binding energy to be sufficiently large that solving this equation for

temperature results in an imaginary value; returning to Eq. (7.37), this happens when BQ′

is so large that the right-hand side is always less than 1, which entails nQ′ > nQ′−1 always.

Physically, whenever a (Q′ − 1)-ball forms, it will always grow into a larger ball; we may

say that the solitosynthesis temperature for these charges is infinite. Smaller charges have

smaller binding energies, and so we will find finite solitosynthesis temperatures for small

Q-balls. Therefore, we will need to wait for these smaller Q-balls to form, and then wait for

these to grow into the larger ones which can always grow. As this suggests, TSs is greater for

larger charges, which we will verify numerically. Therefore, Q-ball growth is a winner-take-all

situation, and the solitosynthesis temperature cannot cut off a growing Q-ball.

The above calculation tells us when it is more favorable for a Q-ball to grow rather than

evaporate charge. However, since a Q-ball grows by absorbing the nearby charge, if the

nearby charge is not be replenished sufficiently quickly through diffusion, there may be a

local depletion of charge near the Q-ball which limits its growth. If this occurs, the rate of

growth will be given by rdiff , the rate that free squarks diffuse into the surface of the Q-ball,

instead of rabs. Ref. [229] is concerned with the related process of the diffusion of evaporating

squarks away from a Q-ball. The particle flux through the Q-ball surface is given by

rdiff =
dQ′

dt
= −4πkRDneq

φ , (7.39)

where D ≈ aT−1, a ≈ 4 for relativistic squarks, and k ≈ 1 was determined numerically. We

need to adjust this equation because we are concerned with particles diffusing towards the

Q-ball; the rate has the opposite sign and we multiply this by the velocity of the nonrela-

tivistically squarks. Thus,

rdiff = vφ16πRT−1neq
φ . (7.40)

This gives the ratio rdiff/rabs = 4T−1/R. Perhaps surprisingly, this is small for high

temperatures and large for low temperatures. This occurs because the rate of diffusion is
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proportional to T 5/2 while the rate of absorption is proportional to T 7/2. Even though dif-

fusion decreases as the temperature decreases, the rate of absorption drops faster; therefore,

diffusion will limit the growth of Q-balls for temperatures above 4/R. For radii of order 0.01

GeV−1 to 0.1 GeV−1, this temperature is of order 40 to 400 GeV, which is significantly above

the solitosynthesis temperatures. Therefore, diffusion will replenish the charge sufficiently

quickly at the relevant temperatures for Q-ball growth. This, combined with the winner-

take-all behavior, demonstrates that global depletion of charge is not an issue, provided that

most of the charge is in free squarks during solitosynthesis. We will verify this last point

numerically.

The growth of a Q-ball can also be ended (prior to it reaching the critical size) by the

freeze-out of the accretion interactions. The reactions responsible for Q-ball growth freeze-

out when their time scale is greater than the Hubble time scale, τH = H−1. While the

universe is radiation dominated, the Hubble parameter is T 2/MP l, and so the Hubble time

scale is τH = 2.43 · 1018 GeV/T 2. The time scale of Q-ball growth is τabs = 1/rabs = 1/

nφσvφ. We consider the later reactions in the sequence; then the heavy Q-balls are effectively

at rest and the Q′ = 1-balls are moving nonrelativistically in thermal equilibrium, with

vφ ≈ 2
√

2T/πm0. Use the geometric cross section σ = πR2 yields

τabs =
π2

4.808ηT 3R2

√

2T

m0

. (7.41)

Setting these time scales equal and solving for T gives

T =

( √
2π2

2.43 · 1018 GeV · 4.808η ·
1

R2
√
m0

)2

(7.42)

When we do our numerical analysis below, we will find that these are orders of magnitude

smaller than the temperatures relevant to the phase transition.

Thus, we have determined the temperature at which a Q-ball of particular charge begins

growing, for sufficiently large charges. (Small charge Q-balls will be discussed separately
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below.) We have also determined the rate of growth as a function of radius; since this is

different in each of the four regimes considered, we will now focus on each regime separately.

7.4.2 Rates of Growth

Our goal is to show that we can grow a critically-sized Q-ball in the early universe. There-

fore, we must find the rate of growth for a single Q-ball in each of the four regimes. For the

thin wall, thick wall, and intermediate regimes, we have sufficiently large charge that we can

use the absorption rate discussed above. For the Bethe-Salpeter regime, a different analysis

will be used.

Let us begin with the thin wall regime. For temperatures below the solitosynthesis tem-

perature, the rate of evaporation is small, and we may approximate dQ′/dt = nφvφσabs(Q
′)

from Eq. (7.36); we note that we have large charges in the thin wall regime, and so we can use

the geometrical area for the cross section. Additionally, since charge depletion is negligible,

we may assume n = ηnγ. The Q′ = 1-balls being absorbed are in thermal equilibrium at

T ≪ m0 with average velocity vφ = 2
√

2T/πm0. (As we have noted, an individual φ quanta

is almost interchangeable with individual squarks for θ ≈ π/2.) In the radiation-dominated

era, the temperature and the time are not independent; they are related by

t =
1

T 2

√

3

16πGN + const, (7.43)

where N is the effective number of degrees of freedom of the particles in thermal equilibrium,

with fermionic degrees of freedom weighted by 7/8. In our toy model with only the Higgs

boson, squarks, and photons, we have N = 6. Then we have

dt = −1.34 · 1018 GeV dT/T 3. (7.44)

Thus, the differential equation for the growth of one Q-ball as a function of temperature is

− 1

1.34 · 1018 GeV

dQ′

dT
= πR2η

4.808

π2

√

2T

πm0

, (7.45)

using nγ = 2.404T 3/π2.
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The right-hand side involves the radius which is not independent of the charge; however,

in the thin wall approximation the radius cannot be written in terms of the charge because

of the form of the 6th order equation relating them, given by Eq. (7.16). Fortunately, one

can write the charge in terms of the radius, and then we consider the rate of the growth of

the radius of the Q-ball until it reaches the critical radius:

Q′ =

√

128π2m0

√
αβφ4

0

9
R5 +

32π2U0φ
2
0

9
R6,

≡
√

a6R6 + a5R5. (7.46)

This gives

dQ′ =
6a6R

5 + 5a5R
4

2
√
a6R6 + a5R5

dR = R3/2 a6R + a5

2
√
a6R + a5

, (7.47)

and the resulting differential equation is

R−1/2 6a6R + 5a5

2
√
a6R + 5a5

dR = −1.64 · 1018 GeVη√
m0

T 1/2 dT. (7.48)

Both sides of this equation can be integrated explicitly,

3
√

a6R2 + a5R +
a5√
a6

ln

(

a5 + 2a6R + 2
√

a6R (a6R + a5)

2
√
a6

)

− 3
√

a6R2
i + a5Ri

− a5√
a6

ln

(

a5 + 2a6Ri + 2
√

a6Ri (a6Ri + a5)

2
√
a6

)

=
2

3
· 1.64 · 10

18η GeV√
m0

(

T
3/2
start − T 3/2

)

,

(7.49)

where Ri is the radius of the smallest Q-ball at which the thin wall approximation is valid

and Tstart is the temperature at which this Q-ball starts to grow. This can be less than Ts

(for the Q′ corresponding to Ri) if these Q-balls do not form until a lower temperature. If

we set R = Rc, this equation can be solved for the temperature at which the Q-ball becomes

critically sized.

Now we turn our attention to the thick wall regime. We begin with the differential equation

(7.45) which is valid in the thick wall regime also. We use R = 3Sψm0/Q
′A2 to write the
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differential equation as

dQ′

dT
= −1.47 · 1019 GeV

S2
ψm

3/2
0 η

Q′ 2A4

√
T , (7.50)

whose solution is

Q′ 3
f −Q′ 3

i = 2.95 · 1019 GeV
S2
ψm

3/2
0 η

A4

(

T
3/2
start − T

3/2
f

)

, (7.51)

where Tstart is the starting temperature for thick wall growth. This is either the Q′ = 7

solitosynthesis temperature, or the temperature at which Q′ = 7-balls form, whichever is

smaller.

Now that we have addressed both the thin and thick wall regimes, let us consider the

intermediate regime. Again, we begin with the differential equation (7.45), but this time we

use the linear interpolation for the radius, Eq. (7.21), which yields

∫ Q′

f

7

Q′ 2 dQ′

((Q′ − 7)(a+ bQ′2/5) + 21Sψ/Q′ 2A2)2
=

1.09 · 1018 GeVη√
m0

(

T
3/2
start − T

3/2
f

)

. (7.52)

The left-hand side of this equation must be integrated numerically.

Now we turn to the primary issue addressed in this chapter, the growth of very small Q-

balls. In this regime, cross sections cannot be approximated by the geometrical area and so

Eq. (7.45) is not valid. However, because these are the first steps of solitosynthesis, nearly all

of the charge will be in these lowest seven states (which we again label with n, the number of

squarks present in the state). Therefore, one can return to the initial method of considering

the evolution of the number densities as a function of temperature; we have 8 equations to

solve numerically, instead of 105.

The number densities of the Q-balls are given by the Saha equations like (31), which we

write in terms of fractional densities Xn = nnn/N , where N is the total number of squarks,
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η · 2.404T 3/π2. We find

nn

N
=

n1

gφ

nn−1

N

(

2π

m0T

)3/2

eBn/T ,

Xn

n

=
N

gφ
X1

Xn−1

n− 1

(

2π

m0T

)3/2

eBn/T ,

Xn =
n

n− 1

2.404η

3π2

(

2πT

m0

)3/2

Xn−1X1e
Bn/T , (7.53)

where we have used X1 = n1/N and gφ = 3. We also have the additional constraint

X1 +X2 +X3 +X4 +X5 +X6 +X7 = 1.

Note that it is not necessary for every Q-ball to reach the critical size to induce the

phase transition; only one per Hubble volume, 1/H3 where H = T 2/2.43 · 1018 GeV, is

needed. Therefore, as a conservative approach, we numerically find temperature at which

there are of order 10 n = 7-balls per Hubble volume and begin the thick wall analysis at this

temperature. We also verify that at this temperature most of the charge remains in n = 1-

balls (free squarks); otherwise, the analysis above is invalid because we assumed negligible

charge depletion.

Due to the exponential, X7 is large at low temperatures; it is also large at high tem-

peratures due to the T 3/2 factor. In between these two extremes it reaches a minimum.

(This description of the behavior is identical to the balancing of evaporation and absorption

we discussed above for larger charge values.) Typically, the solitosynthesis temperature for

Q′ = 7-balls is after the number of n = 7-balls per Hubble volume has dropped beneath 1;

that is, most of the n = 7-balls have evaporated away. Then we need to wait until n = 7-balls

form again at lower temperatures before any Q-balls may grow to the critical size. However,

there exist scenarios in which the number of n = 7-balls per Hubble volume is still greater

than 1 when the universe cools to the solitosynthesis temperature of Q′ = 7-balls; in this

case, they may begin to grow immediately.
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In such cases, our analysis underestimates the temperature at which the phase transition

occurs. Since larger Q-balls begin accreting charge earlier, it is likely that there are even

larger Q-balls that have not evaporated away when the temperature reaches their (higher)

solitosynthesis temperature. If one of these n = 7-balls has time to induce a phase transition,

then we can be certain that any larger ones that had the opportunity to grow earlier would

also induce a phase transition; thus, in these cases our analysis establishes only that the

phase transition occurs. It should be noted that in these scenarios it is especially important

to verify that most of the charge is in n = 1-balls. (We will discuss this more below.)

7.5 Numerical Analysis

Finally, we demonstrate that the potential above is one in which all of these processes can

work together to result in a phase transition.1 As an reminder, the numbers selected above

give m0 = 193 GeV, A = 58.2 GeV, and λ = 0.0450, which gives a potential where the thin

wall approximation is valid for large charge. Above, we also found that the value of φ inside

the Q-ball is φ0 = 646 GeV; at this value, the potential is −V0 with V0 = 6.18 · 107 GeV4.

The other constant that must be set is η, the baryon asymmetry. In the actual universe,

this is about 5 · 10−10; to induce baryogenesis via this phase transition, one must of course

take η = 0.2 In this chapter, our emphasis is on demonstrating that such a phase transition,

induced through Q-balls accreting charge, is a theoretical possibility even when small charge

states are included in the analysis. We are not trying to establish that such a phase transition

definitely happened during the evolution of our universe; we leave the problem of building

a phenomenologically acceptable model for a later work, although we will discuss some

issues regarding MSSM phenomenology below. Therefore, in this first numerical example,

we will take η = 8 · 10−7. This value illustrates the phase transition well, although the final

1Note that I have chosen a slightly different set of parameters than in Phys. Rev. D 85 125022.
2In these models, the Q-balls are typically formed via the fragmentation of an Affleck-Dine condensate

and not through charge accretion, e.g., [100,208–212]
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Charge Q′ Radius (GeV−1) BQ′(GeV) Ts (GeV)

Qc = 5.36 · 105 0.341 9.31 · 107 ∞
5000 0.0375 6.20 · 105 1.72 · 105

1000 0.0195 9.60 · 104 1.28 · 104

500 ∼0.0148 4.46 · 103 3950

200 ∼0.0102 1.03 · 103 932

7 0.118 0.482 0.0155

Table 7.2: Solitosynthesis temperatures for several charge values. Observe that because

the temperature rises with increasing charge, it cannot cut off a growing Q-ball. The top

three were calculated in the thin wall regime, while the last one was calculated in the thick

wall approximation. The other two are in the intermediate regime; to approximate their

solitosynthesis temperatures, we used the thin wall result. By infinity, we mean that such a

Q-ball always grows.

temperature will be below the QCD confinement temperature; therefore, we will also give a

second, although more complicated, numerical example which avoids this.

With these parameters, the critical charge is 5.36·105 and the critical radius is 0.341 GeV−1.

We present a table of the radii and solitosynthesis temperatures for various charges in Table

7.2. With these radii and our chosen value of η, the freeze-out temperature is of the order

10−24 GeV, which is significantly smaller than any of the temperatures we will consider.

We begin with solitosynthesis in the Bethe-Salpeter regime. At the Q′ = 7 solitosynthesis

temperature, there are of order 10−3 n = 7-balls per Hubble volume. Therefore, we need to

wait until these small Q-balls form again at low temperatures before thick wall growth can

begin. Numerically, we find that there are order 10 n = 7-balls at T = 0.0121 GeV.
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Figure 7.3: Fractional densities of small Q-balls, which shows the growth of very small

Q-balls. Notice that as temperature decreases, the number of n = 7-balls increases, while

the number of n = 1-balls decreases.

Next we address charge depletion. At the starting temperature of 0.0121 GeV, less that

4 · 10−10 of the charge is in any of the bound states; free squarks are dominant. However,

we also need to know what is the lowest temperature for which this assumption is valid; if

our final temperature is beneath this, then our analysis is untrustworthy. To approximate

this, we consider at what temperature the majority of the charge is no longer in n = 1-balls

(individual squarks) if we ignore all of the states above n = 7. These charge densities are

shown in Fig. 7.3. We see that the majority of the charge is no longer in individual squarks

around T = 0.0031 GeV. As long as our final temperature is above this, we are justified

in neglecting charge depletion. (As has been noted noted, charge diffuses fast enough that

local charge depletion is not problematic.)

The thick wall approximation is valid until Q′ ≈ 80; the two constraints (7.19) give Q′ < 80

and Q′ < 228. The growth in this regime is relatively rapid. The growth in this regime is

virtually instantaneous; the temperature drops by less than 1 part in 109. Thus, the starting
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Figure 7.4: Numerical fit for the radius as a function of charge Q′ in the thin wall approxi-

mation, for small charges. This fit is used in the interpolation in the intermediate regime.

temperature is still 0.0154 GeV for growth in the intermediate regime. The thin wall regime

becomes applicable for Q′ ≫ 228; therefore, we will use the intermediate regime for charges

between 80 and 1000. First we determine the constants a and b for Eq. (7.21); we numerically

fit the function a + bQ′2/5 to the radius for small values of Q′. The result is plotted in Fig.

7.4; this yields a = 9.21 ·10−5 and b = 1.24 ·10−3. Substituting this into differential equation

(7.52) and solving numerically gives Tf = 0.0116 GeV for the temperature when the Q-ball

reaches Q′ = 1000. This is less than the solitosynthesis temperature for such a Q-ball (which

is larger for larger charge), so thin wall growth begins immediately.

Before proceeding to the thin wall analysis, we first verify that RQ′+1 ≈ RQ′ , as was

assumed in the derivation of Eq. (7.49) (and also the solitosynthesis temperature). The

mass (energy) and radius for the thin wall approximation are shown in Fig. 7.5; we see that

this approximation is reasonable. Using T = 0.0116 GeV as the starting temperature in Eq.

(7.49), we find that the Q-ball grows to critical size at T = 0.00550 GeV. This temperature

is greater than 0.0031 GeV, and furthermore, it is greater than the freeze-out temperature
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Figure 7.5: Radii as a function of charge in the thin wall regime.

scale; therefore, we conclude that such phase transitions are indeed theoretically possible.

As mentioned, the previous numerical example is not strictly speaking acceptable, because

the final temperature is less than the QCD scale, Λ = 0.217 GeV, at which confinement

introduces additional complications. Therefore, we consider a second example, which avoids

this problem. We use the same potential as above; thus m0, A, and λ are unchanged. The

critical charge and radius are also unchanged, as are the ranges where the thick and thin wall

approximations are applicable. Similarly, the numerical fit for the radius at small charges

used in the intermediate regime is unchanged.

We will, however, choose an exceptionally large η = 3 · 103. Then the solitosynthesis

temperature for Q′ = 0.258 GeV, above the QCD scale. Furthermore, at this temperature,

there are still of order 1055 n = 7-balls per Hubble volume; thick wall growth may begin

immediately. This is one of the exceptional cases mentioned at the end of Sec. 7.4.2; even

though these Q-balls are evaporating away, there are sufficiently many of them for growth to

begin immediately. For clarity, we plot the number density of n = 7-balls per Hubble volume

in Fig. 7.6 to show it has the expected behavior. Furthermore, at this temperature, around
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Figure 7.6: Number of n = 7-balls per Hubble volume as a function of temperature.

65 percent of the charge is in individual squarks, and so we may ignore the charge depletion

if the phase transition occurs sufficiently rapidly. (The large percentage of charge in squarks

should not be surprising, since the larger Q-balls are in the process of evaporating.)

We will show that these Q-balls can grow into a critically charged Q-ball and induce

the desired phase transition. However, as emphasized in Sec. 7.4.2, this underestimates

the temperature at which the phase transition occurs. This is because larger Q-balls may

likewise have evaporated sufficiently slowly that there are still sufficiently many of them to

induce the phase transition when they begin accreting charge at their larger solitosynthesis

temperatures. Since there are so many 7-balls at their solitosynthesis temperature, this is

extremely probable. If larger Q-balls began accreting charge earlier, they would induce the

phase transition before the 7-balls we analyze here. However, if these 7-balls can induce a

phase transition, then we can be certain that any larger ones that began growing earlier

would also induce the phase transition, and so the phase transition certainly occurs.
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As above, the thick wall growth is virtually instantaneous; there is no appreciable drop in

the temperature. Similarly, the growth in the intermediate regime is also extremely fast; the

temperature changes less than 1 part in 109 . Finally, growth in the thin wall approximation

is also extremely fast; again the temperature changes by less than 1 part in 109. Thus, such

a Q-ball becomes critically charged within a temperature change of 10−9 GeV, and so the

final temperature is still above the QCD scale. Again, though, we can only conclude that

the phase transition occurs, and not that it occurs at this temperature (chosen to be near

the QCD scale). This is why we additionally presented the first numerical example, which is

a more typical case in which our analysis also determines the phase transition temperature.

7.6 Potential Applications to the MSSM

While the theoretical possibility of such a phase transition is in itself interesting, one would

also like to know whether such a phase transition could occur in extensions of the Standard

Model such as the MSSM, which naturally provides squarks carrying baryon number. This

analysis suggests that, provided that the requisite vacuum structure can be found, such phase

transitions are indeed possible. Indeed, one can ask whether such a phase transition is possi-

ble within the evolution of our own universe. If squarks do exist, they must be significantly

heavier than quarks. Therefore, they will decay rapidly, and thus we cannot build critically

charged Q-balls out of them in our current vacuum. However, such a phase transition could

have occurred in the past, if the vacuum structure has these requisite properties:

1. A global minimum in which no squarks or sleptons develop vacuum expectation values,

so that baryon number and lepton number are conserved. (This minimum corresponds

to our current vacuum.)

2. A local minimum in which no squarks develop vacuum expectation values, so that

baryon number is conserved.

3. In the local minimum, quarks must be heavier than squarks, so that they are stable

179



against decay into quarks.

4. In the local minimum, one of the bosons that mediates an interaction between squarks

must be lighter than the squarks; this is required for bound states to develop.

5. The potential expanded in the local minimum must allow the creation of Q-balls

through the squark fields.

6. The barrier between the local minimum and the global minimum must be sufficiently

large to suppress tunneling between the minima by thermal fluctuations.

There will be additional complications in the Bethe-Salpeter stage of the analysis from

the crossed-graph kernel, discussed in Ch. 3; however, the techniques of that chapter can

be extended to cover this scenario. Therefore, our primary concern is about the vacuum

structure of the theory.

Such a vacuum structure can indeed be found; as an example, consider an MSSM potential

of the form

V = −m2
hH

∗H +m2
Q̃
Q̃∗Q̃+m2

q̃ q̃
∗q̃ +m2

L̃
L̃∗L̃+m2

l̃
ℓ̃∗ℓ̃+

λ

4
(H∗H)2 − AS

(

HQ̃∗q̃ +H∗Q̃q̃∗
)

− AL

(

HL̃∗l̃ +H∗L̃l̃∗
)

+ y2
(

H∗HQ̃∗Q̃+H∗Hq̃∗q̃ + Q̃∗Q̃q̃∗q̃
)

+ y2
(

H∗HL̃∗L̃+H∗Hl̃∗l̃ + L̃∗L̃l̃∗l̃
)

+
g21
8

(

H∗H − Q̃∗Q̃
)2

+
g21
8

(

H∗H − L̃∗L̃
)2

+
g22
8

(

H∗H + Q̃∗Q̃− 2q̃∗q̃
)2

+
g22
8

(

H∗H + L̃∗L̃− 2l̃∗l̃
)2

, (7.54)

where Q̃ and q̃ are squarks, L̃ and ℓ̃ are sleptons, and H is a Higgs boson. One local minimum

of this potential is at
〈

Q̃
〉

= 〈q̃〉 =
〈

L̃
〉

=
〈

ℓ̃
〉

= 0 and 〈H〉 = mh/
√
λ. For these values of

the coupling constants:

mL̃ = ml̃ = 10
√
2 GeV, mH = 0.5

√
2 GeV,

mQ̃ = mq̃ = 15
√
2 GeV, AL = 23 GeV,

AS = 31 GeV, λ = 0.006,

g1 = g2 = 0.6, y = 1, (7.55)
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the global minimum is at the minimum mentioned above, while a local minimum occurs at
〈

Q̃
〉

= 〈q̃〉 = 0,
〈

L̃
〉

= 5.025 GeV,
〈

l̃
〉

= 5.136 GeV, and 〈H〉 = 8.292 GeV. Since the

squarks do not acquire a VEV in this vacuum, baryon number is conserved and can be used

to construct Q-balls.

In the false vacuum, the lightest squark q̃′ has a mass mq̃′ of 7.80 GeV. Because lepton

number is not conserved, the sleptons mix with the Higgs boson; the lightest of these eigen-

states is h′ with a mass of 6.83 GeV. We assume that the quark acquires a mass from the

term yq̄Hq in the Lagrangian; then it has mass y 〈H〉 = 8.29 GeV, and so the lightest squark

is stable against decay into a quark.

The potential along the line connecting the minima is

V (φ) = .324φ4 − 7.38 GeV φ3 + 41.2 GeV2 φ2, (7.56)

which is shown in Fig. 7.7. We notice that the barrier separating the local minimum from

the global minimum is quite large, which dramatically suppresses tunneling through thermal

fluctuations. By expanding the potential in terms of the appropriate eigenstates in the false

vacuum, one can show that Q-balls constructed of q̃′ and h′ fields do exist. Thus we have all

of the necessary ingredients for a solitosynthesis-induced phase transition.

While most of our analysis could be straightforwardly applied to this model, the main

contribution of the chapter, the analysis of the Bethe-Salpeter regime, cannot. We have noted

in Sec. 7.2 that the field content of the states described by the Bethe-Salpeter equation does

not necessarily match the field content of Q-balls described by the thick wall approximation.

In our numerical example, we made the difference small by choosing the global minimum such

that sin(θ) ≈ 1. However, in this scenario we must have sin(θ)≪ 1 because we must tunnel

to a state near the global minimum, which like the false vacuum has 〈q̃′〉 = 0. Therefore, the

analysis should be modified to account for the fact that the Q-balls consist almost entirely

of the h′ field, with very little of the q̃′ field.
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Figure 7.7: The potential along the line connecting the false vacuum to the true vacuum, in

our MSSM potential.

However, even if such a phase transition could not have occurred in the evolution of our

universe, it is still important to study the regions of parameter space in the MSSM in which

such a phase transition could occur. Such a phase transition could destabilize a vacuum

previously thought to be stable on cosmological timescales, leading to further constraints

beyond those of [58].

In this chapter, we have used the Bethe-Salpeter equation to analyze small Q-balls. At

least for certain models, this allows a smooth transition to the semi-classical regime described

by the thick wall approximation. As an application of this technique, we have considered

the growth of Q-balls through solitosynthesis, starting from individual squarks. We have

considered their growth in a radiation-dominated universe like ours, although we have chosen

unreasonably large values of η. We have established that such Q-balls can indeed reach

critical size and induce a phase transition.
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CHAPTER 8

Conclusions

The primary aim of this thesis was to demonstrate that bound state formation in extensions

of the Standard Model results in novel features which can potentially resolve well-known

problems in the Standard Model. We have illustrated this with three examples: strongly-

interacting supersymmetry, dark matter bound states, and Q-balls.

In Ch. 3 we introduced the strongly-coupled version of the Minimal Supersymmetric Stan-

dard Model. We motivated the large trilinear couplings by the recently measured Higgs

boson mass; an inevitable consequence of large couplings is the formation of squark bound

states. These bound states can influence electroweak symmetry breaking through the seesaw-

symmetry-breaking mechanism, connecting supersymmetry breaking and electroweak sym-

metry breaking in a unique manner. In the subsequent chapter, we investigated the phe-

nomenology of this strongly-interacting model. We saw that it avoids common problems

such as large flavor-changing neutral currents or breaking SUC(3). Beyond this, it can easily

accommodate electroweak-scale baryogenesis, in contrast to the Standard Model and the

MSSM.

In Ch. 5 and Ch. 6, we considered dark matter bound states in self-interacting asymmetric

dark matter models. In Ch. 5, we showed that ongoing formation of bound states in the dense

Milky Way halo can produce a detectable indirect detection signal. This was illustrated in a

minimal scalar model; in Ch. 6, we introduced a broken UD(1) gauge symmetry into the dark

sector. We established that in much of the possible parameter space, the dark asymmetry is

necessarily generated in two oppositely charged ions, which may form dark atoms. This has
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significant implications for the cosmological history of such models. Additionally, since dark

matter is generally multi-component with different inter- and intra-species interactions, the

effects of scattering in dark matter halos cannot be estimated by a single-species model. We

have investigated the parameter space which is disfavored due to large elliptical halos and

the parameter space in which dark matter self-interaction can modify small halos.

Finally, we considered Q-balls in a simplified model inspired by the MSSM. We showed

that in certain regions of parameter space, we are able to describe small charge Q-balls

using the Bethe-Salpeter equation. This allowed us to study the growth of Q-balls from

single squarks to large charges; in particular, we were able to establish that, in at least

some models, Q-balls can reach their critical size and induce a phase transition. Such phase

transitions are one potential baryogenesis mechanism.

These three examples concretely demonstrate the unique opportunities present in exten-

sions of the Standard Model which include bound states.
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