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Abstract 
 

High-Resolution Mapping and Long-Term Trends for Motor Vehicle Emissions 
 

by 
 

Brian Charles McDonald 
 

Doctor of Philosophy in Engineering – Civil and Environmental Engineering 
 

University of California, Berkeley 
 

Professor Robert A. Harley, Chair 
 
Motor vehicles are a major source of greenhouse gas and other pollutant emissions that 
contribute to global climate change and urban and regional air pollution problems. Past efforts to 
develop motor vehicle emission inventories, needed for air quality planning, have been subject to 
significant uncertainties related to emission factors and spatial and temporal distributions of 
vehicle activity. The goal of this dissertation is to develop new inventories for vehicle emissions 
of greenhouse gases and co-emitted pollutants. A two-step approach was followed. First, motor 
vehicle emissions of carbon dioxide were mapped spatially and temporally using real-world 
traffic count data. The mapping was done separately for light- and heavy-duty vehicles so that 
emission factors specific to each vehicle type could be used to estimate associated air pollutant 
emissions. Second, long-term trends in emissions of nitrogen oxides, carbon monoxide, volatile 
organic compounds, and black carbon were analyzed. Emission trends were compared with long-
term changes in the measured atmospheric concentrations of related pollutants, to assess the 
extent to which observed decreases in pollution can be attributed to motor vehicle emission 
control policies. The resulting motor vehicle emission inventories from this dissertation are more 
reliable than previous vehicle emission estimates, because spatial and temporal patterns of 
vehicle activity are explicitly accounted for using real-world traffic count data rather than 
transportation demand models, and emission factors are derived from real-world on-road studies 
rather than from laboratory testing. 
 
A fuel-based inventory for vehicle emissions is presented for carbon dioxide (CO2), and mapped 
at various spatial resolutions (10 km, 4 km, 1 km, and 500 m) using fuel sales and traffic count 
data. The mapping is done separately for gasoline-powered vehicles and heavy-duty diesel 
trucks. Emissions estimates from this study are compared with the Emissions Database for 
Global Atmospheric Research (EDGAR) and VULCAN. All three inventories agree at the 
national level within 5%. EDGAR uses road density as a surrogate to apportion vehicle 
emissions, which leads to 20-80% overestimates of on-road CO2 emissions in the largest U.S. 
cities. High-resolution emission maps are presented for Los Angeles, New York City, San 
Francisco-San Jose, Houston, and Dallas-Fort Worth. Sharp emission gradients that exist near 
major highways are not apparent when emissions are mapped at 10 km resolution. High CO2 
emission fluxes over highways become apparent at grid resolutions of 1 km and finer. Temporal 
variations in vehicle emissions are characterized using extensive day- and time-specific traffic 
count data, and are described over diurnal, day of week, and seasonal time scales. Clear 
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differences are observed when comparing light- and heavy-duty vehicle traffic patterns and 
comparing urban and rural areas. Decadal emission trends were analyzed from 2000 to 2007 
when traffic volumes were increasing, and a more recent period (2007-2010) when traffic 
volumes declined due to recession. We found large non-uniform changes in on-road CO2 
emissions over a period of ~5 years, highlighting the importance of timely updates to motor 
vehicle emission inventories. 
 
A similar approach is used to estimate nitrogen oxide (NOx = NO + NO2) emissions from 
gasoline- and diesel-powered motor vehicles. Estimates are made at the national level for the 
period 1990 to 2010. Vehicle emissions are also estimated at the state level for California, and 
for the South Coast (Los Angeles) and San Joaquin Valley air basins. Fuel-based emission 
estimates are compared with predictions from widely used emission inventory models. Changes 
in diesel NOx emissions vary over time: increasing between 1990 and 1997, stable between 1997 
and 2007, and decreasing since 2007. In contrast, gasoline engine-related NOx emissions have 
decreased steadily, by ~65% overall between 1990 and 2010, except in the San Joaquin Valley 
where reductions were not as large due to faster population growth. In the San Joaquin Valley, 
diesel engines were the dominant on-road NOx source in all years considered (reaching ~70% in 
2010). In the urbanized South Coast air basin, gasoline engine emissions dominated in the past, 
and have been comparable to on-road diesel sources since 2007 (down from ~75% in 1990). 
Other major anthropogenic sources of NOx are added to compare emission trends with trends in 
surface pollutant observations and satellite-derived data. When all major anthropogenic NOx 
sources are included, the overall emission trend is downward in all cases (–45% to –60%). 
Future reductions in motor vehicle NOx will depend on the effectiveness of new exhaust after-
treatment controls on heavy-duty trucks, as well as further improvements to durability of 
emission control systems on light-duty vehicles. 
 
Long-term trends in carbon monoxide (CO) emissions from motor vehicles were also assessed. 
Non-methane hydrocarbons (NMHC) are estimated based on my CO emission inventory, using 
ambient NMHC/CO ratios that were adjusted to exclude NMHC contributions from non-
vehicular sources. Despite increases in fuel use of ~10-40%, CO running exhaust emissions from 
on-road vehicles decreased by ~80-90% in Los Angeles, Houston, and New York City, between 
1990 and 2010. The ratio of NMHC/CO was found to remain constant at 0.24 ± 0.04 mol C/mol 
CO over time in Los Angeles, indicating that emissions of both NMHC and CO decreased at a 
similar rate and were affected by similar emission control policies, whereas on-road data from 
other cities suggest rates of reduction in NMHC versus CO emissions may differ somewhat. 
Emission ratios of CO/NOx (nitrogen oxides = NO + NO2) and NMHC/NOx decreased by a 
factor of ~4 between 1990 and 2007 due to changes in the relative emission rates of passenger 
cars versus diesel trucks, and slight uptick thereafter, consistent across all urban areas considered 
here. These pollutant ratios are expected to increase in future years due to (1) slowing rates of 
decrease in CO and NMHC emissions from gasoline vehicles, and (2) significant advances in 
control of diesel NOx emissions.  
 
New estimates of particulate matter (PM) and black carbon (BC) emissions from heavy-duty 
diesel trucks in the Los Angeles area were developed as part of this research. Emission trends are 
compared with trends in ambient concentrations of particulate black and organic carbon over a 
35-year period starting in 1975. On-road heavy-duty diesel emission factors of PM and BC have 
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decreased by a factor of ~4 since 1975. After accounting for rapid growth in diesel fuel sales, on-
road diesel BC emissions were found to have decreased by only ~20% between 1975 and 2010. 
In contrast, ambient measurements of BC concentrations in the Los Angeles basin show a clear 
downward trend, and have decreased steadily at an average rate of 4.2% per year since 1975. The 
slopes of best-fit lines in plots of measured OC versus BC concentrations have remained 
remarkably consistent over time. The stability of this ratio over time implies similar long-term 
trends in ambient black and organic carbon concentrations. We estimate that ambient OC levels 
in the Los Angeles basin have decreased by ~3.1% per year since 1975. Ongoing debate about 
the relative importance of gasoline versus diesel vehicle VOC emission contributions to 
secondary organic aerosol formation in urban areas is further informed by this research. Between 
1995 and 2010, gasoline VOC emissions show a steeper downward trend, decreasing by 75 ± 7% 
compared to OC which decreased by only 45 ± 22%. The difference in slopes suggests that other 
sources of particulate organic carbon must also be contributing to the differing trends. When 
including other primary and secondary sources of organic aerosols from motor vehicles, the 
ambient and emission trends strongly agree. We conclude that long-term decreases in ambient 
OC likely resulted from efforts to control on-road gasoline emissions of VOCs. However, as a 
consequence of these efforts, other sources of organic aerosols have grown in relative importance 
including emissions from diesel trucks. 
 
Recommendations for future research include development of urban CO2 monitoring networks, 
modeling effects on air quality of long-term changes in motor vehicle emissions, and projecting 
future motor vehicle emissions and associated impacts on air quality.  
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Chapter 1: Introduction 
 
1.1 Role of Motor Vehicle Emissions in Climate Change and Air Pollution Problems 
 
The accumulation of CO2 in the atmosphere, due mainly to fossil fuel combustion, is the largest 
positive radiative forcing that is leading to global climate change. Under likely future emission 
scenarios [Moss et al., 2010], global average temperatures are expected to increase by more than 
1.5 to 2˚C by 2100 relative to the 19th century, unless effective mitigation measures are 
implemented [IPCC, 2013]. A range of approaches have been suggested to reduce greenhouse 
gas emissions to levels that stabilize atmospheric CO2 concentrations and help to minimize 
adverse impacts of climate change. The transportation sector plays a centrally important role as a 
source of CO2 emissions and as a focus of climate change mitigation efforts. Policy measures 
include: (1) improving fuel efficiency of vehicles, (2) reducing travel demand, (3) increasing use 
of public transit, and (4) electrifying vehicles, coupled with efforts to decarbonize electricity 
generation [Pacala and Socolow, 2004; J H Williams et al., 2012].  
 
Table 1.1.  Contribution from on-road motor vehicles to total U.S. anthropogenic emissions of 
various air pollutants. 
 
Pollutant 1970 1990 2010 
 
Carbon Dioxide 
 
Carbon Monoxide 
 
Volatile Organic Compounds 
 
Nitrogen Oxides 
 
Particulate Matter 
    Coarse (PM10) 
    Fine (PM2.5) 
 

 
-- 
 

83% 
 

50% 
 

47% 
 
 

4% 
-- 

 
23% 

 
77% 

 
41% 

 
38% 

 
 

1% 
4% 

 
26% 

 
46% 

 
18% 

 
39% 

 
 

1% 
3% 

Sources: National Emissions Inventory [EPA, 2013a]; Inventory of U.S. Greenhouse Gas Emissions and 
Sinks [EPA, 2013b]. 
 
In addition to CO2, motor vehicles emit combustion byproducts that lead to air quality problems 
and exert short-lived effects on climate [Fuglestvedt et al., 2008]. Relevant pollutants include 
carbon monoxide (CO), volatile organic compounds (VOCs), nitrogen oxides (NOx), and 
particulate matter (PM). Table 1.1 shows the relative contributions of motor vehicle emissions to 
total U.S. emissions from anthropogenic sources. The contributions appear to be substantial in all 
cases except for particulate matter. The relavtive importance of vehicle emissions is even higher 
than shown in Table 1.1 for urban areas. Vehicle-related particles have an outsized effect on 
human health due to near-roadway exposures in cities especially [Gauderman et al., 2007], and 
because diesel exhaust is a known human carcinogen [Lloyd and Cackette, 2001]. Some 
pollutants emitted from motor vehicles such as nitrogen oxides and volatile organic compounds 
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can react in the atmosphere to form other air pollutants such as ground-level ozone [Sillman, 
1999] and secondary aerosols [Kanakidou et al., 2005], which also pose human health concerns. 
Reducing emissions of volatile organic compounds and black carbon can simultaneously help to 
mitigate climate change and improve human health [Smith et al., 2009]. At the global scale, 
increases in NOx emissions can lead to both cooling (due to shorter atmospheric lifetimes for 
other greenhouse gases) and warming (due to increased background levels of tropospheric 
ozone), and therefore there is a need to consider air quality management and climate change 
mitigation together in an integrated manner. 
 
1.2 Current Challenges to Estimating Motor Vehicle Emissions 

 
Emission inventories are needed for air quality planning, both to make emission control policy 
decisions and to support modeling of the effects of specific policies and regulations. Despite 
their importance, motor vehicle emission inventories still suffer from large uncertainties that 
undermine their usefulness as a sound basis for decision-making.  For example, past EPA 
estimates of carbon monoxide emissions were found to be too high by a factor of two [Parrish, 
2006]. Predicted NO2 concentrations from air quality models were twice satellite observations of 
the same quantities over western US cities [S W Kim et al., 2009]. Given their importance to 
urban air quality, accurate motor vehicle emission inventories are critical for modeling formation 
and control of photochemical air pollution [Parrish, 2006], quantifying exposure to vehicle 
exhaust [Lipfert and Wyzga, 2008], and developing emission control regulations that are not 
excessive in cost [NRC, 2000].  
 
1.2.1  Spatial and Temporal Representation of Vehicle Activity 
 
Travel demand models are used to map traffic patterns based on population and employment 
data, resulting origins and destinations of vehicle trips, and spatial allocation of trips to the 
roadway network with a routing algorithm. Results from such models are commonly used in 
transportation planning and as a basis for describing the spatial distribution of mobile source 
emissions. In emission modeling, it is important to account for differences in spatial and 
temporal patterns of activity between light- and heavy-duty vehicles. In the U.S., light-duty 
vehicles are primarily powered by spark-ignition gasoline engines, whereas heavy-duty vehicles 
typically run on compression-ignition diesel engines. These engines differ greatly in the profile 
of pollutants emitted, and are regulated separately (see Section 1.3). However, transportation 
analysts and planners typically do not model heavy-duty truck traffic separately, due to resource 
constraints and lack of suitable modeling tools [Spear et al., 2006]. Common practice in the past 
has been to assume a constant truck fraction, and to apply that fraction to total traffic volumes at 
all locations and hours to estimate truck traffic [Harley et al., 2005]. This assumption will give 
incorrect results, as truck traffic patterns depend on other factors such as supply-chain logistics 
and locations of major freight handling facilities (e.g., ports and rail yards) [Pendyala et al., 
2000]. For air pollutants such as black carbon for which diesel engines are the dominant on-road 
source of emissions [Bond et al., 2013; Dallmann et al., 2013], large errors may arise in spatial 
and temporal distributions of emissions when modeled using traditional approaches. 
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1.2.2 Emission Factors 
 
Emission factors express the amount of pollution emitted per unit of activity by the source in 
question. In the case of motor vehicles, emission factors can be expressed per unit distance of 
vehicle, per unit of fuel consumed, or per unit of engine operating time. Emission factors  are 
typically estimated using statistical models to extrapolate beyond limited samples of vehicles and 
ranges of operating conditions that have been observed in the laboratory [Pokharel et al., 2002].  
Emission models often give results that are inconsistent with on-road measurements of vehicle 
emissions [Pierson et al., 1990], and with trends and/or ratios of ambient air pollutant 
concentrations [Fujita et al., 1992; Parrish, 2006]. Reasons for disagreement include difficulties 
in recruiting and measuring emissions from high-emitting vehicles in laboratory-based testing, 
incorrect assumptions about the effectiveness and durability of emission control systems, and 
flawed representations of the effects of engine load on emissions [NRC, 2000; Bishop and 
Stedman, 2008]. A recent roadway study found that less than 1% of vehicles on the road were 
responsible for more than one third of total CO and VOC emissions from all vehicles [Bishop et 
al., 2012b]. This presents a significant challenge when attempting to derive fleet-average 
emission factors based on laboratory testing. Large samples are needed for testing in order to 
capture contributions from a few high-emitting vehicles in the correct proportion. Such large 
samples are difficult to recruit, and time-consuming and costly to test in the laboratory. In 
contrast, on-road studies of vehicle emissions in highway tunnels [Dallmann et al., 2013], on 
freeway ramps [Bishop and Stedman, 2008], and other on-road settings can measure emissions 
from many thousands of vehicles in a few days, and have a much better chance of capturing 
emission contributions from high-emitting vehicles.  
 
Another challenge when mapping vehicle emissions is to account for variable emission rates due 
to effects of changes in engine load. Vehicle fuel consumption can increase by a factor of eight 
between idle and high-speed/heavy-acceleration operating conditions [Lee and Frey, 2012]. 
When normalized to fuel use rather than distance traveled, emission factors of co-emitted air 
pollutants have been shown to be less variable [Yanowitz et al., 2000; Bishop and Stedman, 
2008]. Unfortunately traditional emission modeling approaches are based on vehicle distance 
traveled or engine operating time, rather than fuel consumption, and therefore are challenged by 
wide variability in the underlying emission factors as a function of vehicle operating conditions. 
Additionally, emission factors are evolving over time as more stringent emission standards are 
implemented. Emission models incorporate assumptions about the effectiveness of various 
emission control policies. Those assumptions may be too optimistic and/or based on old data, 
and this can lead to emission model predictions that diverge from reality, to an increasingly large 
degree as conditions evolve over time.  
 
1.3 Motor Vehicle Emission Regulations 
 
Emissions from motor vehicles have long been regulated. California first began regulating motor 
vehicle emissions in 1957. The first federal regulations began in 1968 [NRC, 2006]. California is 
the only state allowed to develop its own emission standards separate from the federal 
government. In 1967, the automobile industry lobbied Congress to establish a single nationwide 
approach to setting vehicle emission standards. However, California was exempted because the 
state had the worst air quality in the nation, already had its own emission standards that pre-dated 
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federal standards, and would “act as a kind of laboratory for innovation” [NRC, 2006]. Since 
then, US EPA and California have assumed divergent roles in regulating motor vehicle 
emissions. Typically California leads on emission standards for light-duty vehicles, and US EPA 
leads for heavy-duty trucks. Since 1977, other states have been allowed to adopt California 
standards for light-duty vehicles, which are generally more stringent than the federal standards. 
 

 
 

Figure 1.1. Federal emission standards for (a) light-duty (LD) [NRC, 2006] and (b) heavy-duty 
(HD) vehicles [Yanowitz et al., 2000; Ban-Weiss et al., 2008b] normalized to values that applied 
for new vehicles/engines as of model year 2000. Air pollutants shown above include carbon 
monoxide (CO), volatile organic compounds (VOCs), nitrogen oxides (NOx), and exhaust 
particulate matter (PM). 
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Figure 1.1 shows how federal emission standards have evolved since the mid-1960s for both 
light- and heavy-duty vehicles. Prior to the year 2000, efforts were largely focused on control of 
light-duty vehicle emissions of carbon monoxide, volatile organic compounds, and nitrogen 
oxides. Emission standards for heavy-duty trucks came later and were not reduced as rapidly. 
After 2000, heavy-duty engines have been more aggressively targeted for control of particulate 
matter and nitrogen oxide emissions. Given that emission standards have been lowered 
significantly in recent years, especially on the diesel side, further changes in motor vehicle 
emissions should be expected. Future emission changes will also depend on growth in the 
vehicle population and the amount of driving per vehicle. Furthermore, as motor vehicle 
emissions are an important source of air pollution, changes in emissions should also lead to 
changes in observed air pollutant concentrations. 
 
1.4 National Air Quality Trends 
 
As mandated by the Clean Air Act of 1970, the U.S. Environmental Protection Agency (EPA) is 
responsible for establishing national ambient air quality standards (NAAQS) for pollutants that 
adversely affect human health and public welfare. Currently, there are six pollutants with air 
quality standards: carbon monoxide, nitrogen dioxide (NO2), ozone (O3), particulate matter 
(PM), sulfur dioxide (SO2), and lead (Pb). To be able to track air quality progress and to identify 
regions that violate air quality standards, EPA and the states have established an extensive 
nationwide air monitoring network. Regions that consistently exceed the standards are 
designated as non-attainment, and are required to develop and implement plans that reduce 
pollutant emissions, leading to attainment of air quality standards in the future, on schedules that 
vary depending on the pollutant and severity of air pollution problems. 
 
Figure 1.2 shows how air quality has improved since 1980 for four criteria air pollutants that will 
be evaluated further in this dissertation. The horizontal black lines on each plot show the current 
national air quality standards, some of which have been lowered from their original levels. For 
pollutants such as nitrogen dioxide (Figure 1.2a) and carbon monoxide (Figure 1.2b), large 
decreases in atmospheric concentrations have been observed. Currently, no region violates air 
quality standards for NO2 or CO. For ozone and fine particulate matter (PM2.5), many areas are 
currently in non-attainment, including many major metropolitan areas. This highlights the need 
for continued and well-targeted efforts to improve air quality. 
 
Given the overall improving trends shown in Figure 1.2, some important questions are: 
 

(1) Why are concentrations of air pollutants decreasing?  
(2) Can the decreases be attributed to regulations on motor vehicle emissions? 
(3) Will these trends continue in the future? 

 
It is critical that policymakers have an accurate understanding of baseline conditions, so that 
cost-effective policies that mitigate both air pollution and climate change can be selected to 
reduce future emissions. Changes in climate are expected to make meeting air quality goals more 
difficult in the future [Steiner et al., 2006].  
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Figure 1.2. Trends in measured concentrations of criteria air pollutants for (a) nitrogen dioxide 
(NO2), (b) carbon monoxide (CO), (c) ground-level ozone (O3), and (d) fine particulate matter 
(PM2.5) [EPA, 2011]. Current national air quality standards are shown using horizontal black 
lines. Error bars show the range from 10th to 90th percentile of measurements across all EPA 
monitoring sites. 
 
1.5 Research Objectives 
 
In my dissertation, a central goal is to develop new and more reliable inventories for motor 
vehicle emissions of: 
  

(1) greenhouse gases that contribute to global climate change, and  
(2) co-emitted pollutants that contribute to urban and regional air pollution problems. 
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Additionally, this dissertation assesses long-term changes in U.S. air quality, and the extent to 
which observed changes can be attributed to motor vehicle emission control policies. More 
detailed research objectives are as follows: 
 
(1) Use traffic count and fuel sales data to allocate motor vehicle emissions of carbon dioxide in 

both space and time. Do this separately for light- and heavy-duty vehicles. 
 

(2) Develop suitable fuel-based emission factors (in units of mass of pollutant emitted per mass 
of fuel burned), separately for gasoline and diesel engines, and apply those values to maps of 
vehicle CO2 emissions to map other vehicle-related air pollutant emissions.  

 
(3) Analyze how motor vehicle emissions have changed over time, separately for light- and 

heavy-duty vehicles.  
 
(4) Compare long-term trends in motor vehicle emissions and ambient concentrations of air 

pollutants to assess effectiveness of emission control policies, the contribution of motor 
vehicles to total emissions, and to identify opportunities for making further air quality 
improvements. 

 
1.6 Dissertation Outline 
 
Chapter 2 maps motor vehicle emissions of carbon dioxide at various spatial resolutions (10 km, 
4 km, 1 km, and 500 m) using fuel sales and traffic count data. High-resolution emission maps 
are presented for major urban areas including Los Angeles, New York City, San Francisco-San 
Jose, Houston, and Dallas-Fort Worth. The effect of mapping resolution on spatial gradients in 
CO2 emissions is assessed, which in turn has implications for evaluating health effects of human 
exposure to motor vehicle emissions. Temporal variations in vehicle emissions are characterized 
using extensive day- and time-specific traffic count data, and are described over diurnal, day of 
week, and seasonal time scales. Decadal emission trends were also analyzed from 2000 to 2007 
when traffic volumes were increasing, and a more recent period (2007-2010) when traffic 
volumes declined due to recession.  
 
Chapter 3 describes long-term trends (1990-2010) in motor vehicle emissions of nitrogen oxides. 
Emissions are estimated at the national level, at the state level for California, and for the South 
Coast (Los Angeles) and San Joaquin Valley air basins. Emission trends are compared with 
trends in atmospheric concentrations derived from surface monitors and satellite data. This 
chapter concludes with an assessment of where future NOx emission reduction efforts should be 
targeted to continue progress in reducing emissions and improving air quality. 
 
Chapter 4 investigates trends in motor vehicle emissions of carbon monoxide and hydrocarbons. 
Estimates are made for three large U.S. urban areas: Los Angeles, New York City, and Houston. 
Emissions of non-methane hydrocarbons (NMHC) are estimated using ambient ratios of 
NMHC/CO, after controlling for and removing contributions from non-vehicular sources. Trends 
in the emissions ratio of NMHC/NOx are assessed, including consideration of likely future 
changes. The NMHC/NOx ratio is an important determinant in the formation of ground-level 
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ozone, and reflects differing contributions from gasoline and diesel engines that depend on the 
pollutant. 
 
Chapter 5 assesses trends in diesel engine emissions of particulate matter and black carbon from 
1975 to the present day. Trends in ambient concentrations of particulate black and organic 
carbon are also assessed for the same time period using atmospheric observations from the Los 
Angeles air basin. Black carbon emissions and ambient trends are compared to evaluate the 
significance of regulations on emissions from heavy-duty diesel trucks in contributing to 
observed black carbon concentration trends. I also attempt to reconcile the large reductions in 
emissions of non-methane hydrocarbons documented in the previous chapter with smaller 
changes in ambient concentrations of particulate organic carbon observed in the Los Angeles 
area. This analysis is relevant to current debates about the relative importance of gasoline, diesel, 
and other sources of precursors that form secondary organic aerosol. 
 
Chapter 6 summarizes major research findings and makes recommendations for future research. 
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Chapter 2: High-Resolution Mapping of Motor Vehicle Carbon Dioxide 
Emissions 
 
Reproduced in part from McDonald, B.C.; McBride, Z.C.; Martin E.W.; Harley, R.A. High-
Resolution Mapping of Motor Vehicle Carbon Dioxide Emissions. J. Geophys. Res. 2014, 119, 
DOI: 10.1002/2013JD021219 with permission from John Wiley and Sons. 
 
2.1 Introduction 
 
Cities are estimated to account for ~70% of energy-related emissions of CO2 globally, and will 
be foci of efforts to mitigate and adapt to climate change [Rosenzweig et al., 2010]. To evaluate 
the effectiveness of these efforts, reliable emission inventories and ambient measurements of 
greenhouse gases are needed. Available emission inventories include the Emissions Database for 
Global Atmospheric Research (EDGAR, version 4.2) and the Vulcan Project (VULCAN). 
EDGAR maps emissions of CO2 and other air pollutants globally at a spatial resolution of 0.1° × 
0.1° (European Commission – Joint Research Center, 2011, http://edgar.jrc.ec.europa.eu, 
accessed July, 2013). VULCAN maps emissions of CO2 in the U.S. at 10 km × 10 km resolution 
[Gurney et al., 2009]. Both of these datasets are comprehensive in nature, and map 
anthropogenic emissions from all major sources including industrial, electricity generation, on-
road, non-road, and residential/commercial sectors. Emission estimates for all sectors are needed 
in order to reconcile emissions with atmospheric observations. Inventories with higher spatial 
resolution are needed to guide local efforts to mitigate greenhouse gas emissions [Parshall et al., 
2010], and to assess human exposure to traffic-related air pollution. National and state-level 
emissions of motor vehicle CO2 can be readily estimated in the U.S. using fuel sales data. 
However, additional uncertainties arise in downscaling annual emission totals to finer spatial and 
temporal scales [Bellucci et al., 2012]. High-resolution CO2 emission inventories are few in 
number; current examples include an inventory developed for Indianapolis at the building and 
street scale [Gurney et al., 2012], and an inventory of motor vehicle emissions for all of 
Massachusetts on a 1 km × 1 km grid [Gately et al., 2013]. 
 
Spatially and temporally-resolved emission maps will be useful in efforts to separate 
anthropogenic and biogenic contributions to observed CO2 surface fluxes. The biosphere exerts 
major influences on the global carbon cycle, which vary by season and time of day [Pataki et al., 
2003; Newman et al., 2013]. Constraining emission inventories with observations is important 
for improving reliability of inventory estimates. Measurement approaches to sampling 
atmospheric burdens of CO2 include by satellite [Morino et al., 2011; Kort et al., 2012], aircraft 
[Mays et al., 2009; Brioude et al., 2012; Brioude et al., 2013], and ground stations [Wunch et al., 
2009; McKain et al., 2012]. Inversion methods have been developed that constrain bottom-up 
emission estimates and surface fluxes with top-down measurements using chemical transport 
models [Streets et al., 2013]. Recent applications include aircraft observations to map CO2 
emissions on a 4 km x 4 km grid in Houston [Brioude et al., 2012] and Los Angeles [Brioude et 
al., 2013], and in determining minimum siting requirements for an urban CO2 monitoring 
network [Kort et al., 2013]. 
 
This study addresses the need for detailed, high-resolution maps of emissions from motor 
vehicles. We present a fuel-based inventory for vehicle emissions (FIVE), advancing an 
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approach that has typically been used to support air quality analyses at regional/air basin scales 
[Singer and Harley, 1996; Pokharel et al., 2002; Dallmann and Harley, 2010; McDonald et al., 
2012; McDonald et al., 2013], and report emissions at much higher spatial resolution (1 km and 
finer scales) than most prior studies. High-resolution emission maps (HI-FIVE) are shown for 
various highly-populated regions of the U.S. (California, Texas, and New York City 
metropolitan area in this study). We use publicly available data including fuel sales, road-level 
traffic counts, and time-resolved weigh-in-motion traffic count data, to demonstrate an emission 
mapping methodology that can be applied nationwide. 
 
Another important feature of our approach is the separate mapping of on-road gasoline and diesel 
engine activity and emissions. This separation of emissions by engine type is essential to support 
inventory development for other air pollutants, for which the gasoline and diesel emission 
profiles are quite different. Furthermore, gasoline and diesel fuel consumption differ in their 
spatial and temporal patterns, and in their long-term growth rates over time. Future emission 
trajectories will also differ as emissions from the two engine types are regulated differently 
[Dallmann et al., 2011]. High-resolution emission mapping will be useful for assessing human 
exposure to traffic-related air pollution, since current air quality monitoring networks and 
computer modeling efforts do not typically capture proximity-related differences in human 
exposure to traffic-related air pollution [Kaur et al., 2007; Apte et al., 2011].  
 
The objectives of this study are to (1) develop and compare maps of on-road CO2 emissions at 
resolutions of 10 km, 4 km, 1 km, and 500 m; (2) evaluate FIVE against published EDGAR and 
VULCAN inventories, and (3) provide diurnal, day-of-week, and seasonal time resolution, 
commensurate with high-resolution spatial mapping of vehicle emissions. On-road emissions and 
activity are described separately for gasoline and diesel-powered vehicles operating in urban and 
rural areas. We also assess the effects of spatial resolution on the magnitudes and variability in 
emission fluxes. The finest resolution (500 m) used in this study approaches length scales needed 
for characterizing near-roadway exposure to traffic-related air pollution [Karner et al., 2010]. 
Our results are internally consistent, meaning that emissions are the same when aggregating from 
small to larger scales, and emissions are consistent with annually reported taxable fuel sales at 
the state and national levels. Finally, we assess changes in the magnitude and spatial patterns of 
vehicle emissions during the period 2000-2010, and consider the implications of these changes as 
they relate to needs for emission inventory updates. 
 
2.2 Methods 
 
2.2.1 State-Level Fuel Data 
 
The standard approach to estimating motor vehicle emissions is to use estimates of vehicle travel 
subdivided by different vehicle categories, and to multiply with CO2 emission factors normalized 
to distance traveled that are specific to road and vehicle type [Gurney et al., 2009; Gately et al., 
2013]. Other air pollutants are estimated in a similar manner using emission factors derived from 
laboratory emission tests, with adjustment factors to account for variations in vehicle speed, 
engine load, ambient temperature, fuel properties, etc. In this way, a bottom-up emission 
estimate can be calculated, with uncertainties that depend on the reliability of both vehicle travel 
data and emission factors [Mendoza et al., 2013]. In this study, we use an alternative approach 
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that starts with taxable fuel sales reports for each state (Table MF-2) [FHWA, 2011b]. Fuel use 
can be allocated to finer spatial scales using relative rather than absolute estimates of vehicle 
travel. This fuel-based approach has been used previously to estimate vehicle emissions at air 
basin, state, and national scales [Singer and Harley, 1996; Pokharel et al., 2002; McDonald et 
al., 2012; McDonald et al., 2013].  
 
Sales of gasoline and diesel fuel intended for use in on-road engines are subject to highway fuel 
taxes. Dallmann et al. [2010] estimate uncertainties in reported on-road fuel use at ±3-5% at the 
national level. The uncertainties are due to issues that arise in excluding tax-free fuel consumed 
by off-road engines, and due to adjustments needed to reconcile aggregate fuel sales with 
amounts of fuel produced by refineries. In the U.S., gasoline is consumed mostly by on-road 
light-duty vehicles and diesel mostly by medium and heavy-duty trucks. The U.S. light-duty 
vehicle fleet differs from that in Europe, where diesel engines are more widely used in passenger 
vehicles. In this study, on-road use of gasoline is apportioned to fine spatial scales for three 
regions of the U.S. (California, Texas, and New York City and surrounding areas), with an 
emphasis on mapping passenger vehicle emissions in urban centers. Trucks drive to a greater 
extent than passenger vehicles on highways outside of cities. Additional CO2 emissions from on-
road diesel engines are mapped for California and Texas including both urban and rural areas. 
 
A source of uncertainty in using state-level fuel sales data relates to whether the point of sale 
coincides with where fuel is consumed. In large states such as California and Texas, the 
contributions to total traffic from vehicles that cross state lines is expected to account for a 
relatively small fraction. If unaccounted for, long-haul trucking can result in a significant portion 
of diesel fuel that is sold in one state being consumed in other neighboring states [Lutsey, 2009]. 
However, state-level diesel sales reports are adjusted to reflect where fuel was used rather than 
where it was purchased, using reports filed by long-haul truck operators (International Fuel Tax 
Association, Inc., 2013, http://www.iftach.org, accessed January, 2014). The adjustments are 
made based on truck distances traveled in each state. Fuel taxes paid by interstate truckers are 
thereby proportionally redistributed from states where fuel was purchased to states where truck 
travel took place. 
 
Following McDonald et al. [2013], uncertainties in gasoline fuel sales reports are estimated by 
comparing each state’s share of national gasoline sales (Table MF-2) and total vehicle travel 
(Table VM-2) [FHWA, 2011b]. Uncertainty is calculated by subtracting the state share of 
national gasoline sales from shares of total vehicle travel, and then normalizing by the state’s 
share of gasoline sales. Some of the difference results from the variable composition of light-
duty vehicle fleets, i.e. light trucks versus automobiles that exist across states, and the rest from 
interstate traffic. Mendoza et al. [2013] suggest that vehicle fleet composition is not a significant 
source of uncertainty when estimating on-road CO2 emissions in VULCAN. A positive 
difference suggests that the average fuel economy of a state’s vehicle fleet is higher than the 
national average (i.e., more travel for a given amount of fuel burned), and/or there is a net import 
of fuel due to out-of-state fuel purchases being consumed within state borders. A negative 
difference suggests the opposite, and lower than average fuel economy and/or net export of fuel 
purchases. Using this approach, uncertainties in gasoline fuel sales and CO2 emissions are 
estimated as follows: ±5% for California, ±13% for Texas, and ±6% for New York/New 
Jersey/Connecticut. Uncertainties in diesel fuel volumes are computed similarly by comparing 
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state shares of diesel fuel sales with truck travel (Tables VM-2 and VM-4) [FHWA, 2011b]. 
Similar uncertainties of ±10% result for both California and Texas, and may be due to 
incomplete accounting of interstate truck travel.  
 
2.2.2 Road-Specific Traffic Count Data 
 
In the U.S., traffic count data collected from the Highway Performance Monitoring System 
(HPMS) are available at the roadway-level for highways and other principal arterial roads. Each 
state is responsible for collecting its own traffic data and reporting to the Federal Highway 
Administration. For example in California, highways are sampled comprehensively using 
portable detectors that are moved periodically. Partial day and 24-hour counts are typically used 
to characterize traffic on high-volume, urban highways, whereas 7-day counts are done on rural, 
low-volume roadways (California Department of Transportation, http://traffic-counts.dot.ca.gov/, 
accessed November, 2013). Random sampling methods are used to quantify vehicle travel on 
smaller roadways. The precision of these estimates is strongly influenced by site selection and 
sample size. The Federal Highway Administration provides guidelines to transportation agencies 
on how to meet required precision levels in traffic sampling [FHWA, 2013]. The precision 
requirements are more stringent for heavily trafficked roadways (principal arterial roads and 
larger) than for lower-volume roadways. Statewide traffic estimates are required to be within 
±10% for major roads and freeways in large urban areas. The precision requirements are even 
higher for rural interstates at ±5%. In this study, we use traffic count data collected by the 
California Department of Transportation to map emissions in California. Counts are reported for 
an annual averaged day with totals for all vehicles, totals for all trucks, and trucks by axle 
category (2-axle/6-tire, and three or more axles). For other states, HPMS traffic counts for all 
vehicles and for trucks specifically are available from the Freight Analysis Framework (Federal 
Highway Administration, http://www.ops.fhwa.dot.gov/freight/freight_analysis/faf/, accessed 
November, 2012). 
 
2.2.3 Fuel Apportionment 
 
Prior work has shown that emissions from on-road vehicles are correlated with population 
density, road density, and traffic counts [Saide et al., 2009; Shu and Lam, 2011; Brondfield et al., 
2012; Gately et al., 2013]. Traffic counts and road density were used in this study to apportion 
emissions spatially. We estimated the fraction of statewide fuel that is consumed on highways 
and major urban arterial roadways, for which traffic count data are available. This was done 
separately for passenger vehicles and for trucks using data tables that report vehicle travel on 
different road types (Table VM-2) and by vehicle class (Table VM-4) at the state level [FHWA, 
2011b]. Not all vehicle travel can be accounted for considering only those roads for which traffic 
counts are explicitly available (i.e., traffic count x roadway length), and the difference is made 
up by travel on urban and rural arterial roads. Vehicle travel is then used as a proxy for fuel use, 
where total vehicle travel and travel by trucks with three or more axles are used as the proxies for 
on-road gasoline and diesel fuel use, respectively. We estimate that for both California and Texas 
~70% of gasoline and ~80% of diesel fuel usage can be accounted for based on driving on roads 
where traffic has been counted explicitly. 
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We choose counts of trucks with three or more axles to map diesel fuel use rather than counts for 
all trucks, because more than half of the 2-axle/6-tire trucks are gasoline-powered, and these 
trucks tend to drive more within cities. Most diesel fuel is consumed by larger trucks, which have 
a significant fraction of their travel between cities and in rural areas. In California, route-specific 
truck counts are reported by axle category (California Department of Transportation, 
http://traffic-counts.dot.ca.gov/, accessed November, 2012). In other states, the proportion of 
medium and heavy-duty trucks is reported at the state level by road class (Table VM-4) [FHWA, 
2011b]; these fractions are applied to total truck counts on individual roadways. Using counts of 
trucks with three or more axles (rather than totals for all trucks) as the proxy for diesel fuel use 
results in ~10-15% more diesel fuel use being assigned to rural areas with a similar reduction for 
urban areas. 
 
The dominant fractions of on-road fuel consumed on roadways with explicit traffic count data 
(i.e., ~70% of gasoline and ~80% of diesel) are allocated from a state-level to specific grid cells, 
using vehicle travel from traffic count data as a spatial surrogate (i.e., traffic count x roadway 
length). Again, separate counts for total vehicles and for trucks with three or more axles are used 
as proxies for gasoline and diesel fuel use, respectively. The differences between statewide fuel 
sales and fuel quantities accounted for as outlined above (accounting for ~20-30% of fuel use), 
are assigned to remaining portions of the roadway network (i.e., those roads without traffic count 
data), using road length as a proxy. This is done separately for urban and rural grid cells to 
ensure that rural emissions are not overestimated, as travel on rural roads is expected to be lower 
[Brondfield et al., 2012]. For example, in California ~30% of total vehicle travel occurs on roads 
without traffic counts, and of this subset ~90% is urban and ~10% is rural. However the length of 
all roadways in rural areas of California is ~2 times larger than in urban areas. Separate urban 
road length and rural road length are therefore used as spatial surrogates for apportioning 
emissions. The roadway network has been mapped nationally, and urban boundaries used 
throughout this analysis are as defined by the U.S. Census Bureau 
(http://www.census.gov/geo/maps-data/data/tiger-line.html, accessed July, 2013). In this 
analysis, only urbanized areas of 50 000 or more people are classified as urban. All other areas 
are considered rural, including urban clusters with greater than 2 500 people but less than 50 000 
people. 
 
For individual urban areas, vehicle travel is also reported by road class (Table HM-71) [FHWA, 
2011b]. For selected urban areas with populations of 500 000 or more, fuel use by gasoline 
engines was constrained by comparing total reported vehicle travel within that urban area 
relative to the corresponding state total. We are unable to constrain diesel fuel consumption 
within individual urban areas in the same manner, since separate urban tables are not available 
for truck travel. However, diesel emissions are still constrained by statewide taxable fuel sales 
(Table MF-2), and between urban and rural areas using state-level reports of truck travel by road 
class (Table VM-4) [FHWA, 2011b]. The same emissions mapping approach outlined above was 
repeated at grid resolutions of 10 km, 4 km, 1 km, and 500 m. Fine-scale mapping of emissions 
(i.e., at 1 km and 500 m resolution) was only done for urban areas. 
 
The density and carbon weight fractions of gasoline and diesel fuel reported by Kirchstetter et al. 
[1999b] were used to convert fuel sales volumes to equivalent mass rates of CO2 emissions. 
Byproducts of incomplete combustion such as CO and unburned hydrocarbons that are co-
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emitted with CO2 were ignored because they account for minor fractions of total fuel use. 
McDonald et al. [2013] report that fleet-average light-duty vehicle emission factors for CO were 
30-40 g/kg fuel burned in 2002, and had decreased to ~20 g/kg by 2010. The emissions of non-
methane hydrocarbons were in turn an order of magnitude lower than for CO. The fraction of 
total fuel carbon emitted as CO in diesel exhaust is also minor [Dallmann et al., 2012]. 
 
2.2.4 Weigh-in-Motion Data 
 
Traffic count data from weigh-in-motion (WIM) detectors are used to specify variations in CO2 
emissions over time. Binary data was obtained from the California Department of 
Transportation, and converted to a readable format using commercially available software 
(http://www.dot.ca.gov/hq/traffops/trucks/datawim/, accessed January, 2014). WIM stations exist 
to enforce size and weight limits on trucks, and stations count traffic and also weigh vehicles 
while they are in motion.  Traffic counts are collected continuously on a year-round basis, with 
each vehicle classified based on the number of axles. Raw data are archived at high temporal 
resolution. Using WIM data, separate temporal activity profiles were developed for passenger 
vehicles and heavy-duty diesel trucks on multiple time scales: decadal, seasonal, day-of-week, 
and diurnal. We acquired and analyzed the complete WIM dataset for the state of California, 
including about 70 counting locations, for each year from 2000 to 2010. Prior studies have also 
made use of WIM data, typically for one specific year using data from a subset of the available 
sites [Marr and Harley, 2002; Gurney et al., 2009].  
 
Representative temporal profiles were developed to describe variations in vehicle traffic for 
urban and rural areas on finer time scales. Only the most complete WIM traffic count data from 
2010 were used for this analysis. To classify WIM stations as urban or rural, we looked for a 
peak in passenger vehicle activity on weekday mornings. Morning traffic peaks associated with 
commuting are found in and near cities, but not in rural areas. Separate diurnal traffic profiles 
were developed for Monday-Thursday, Friday, Saturday, and Sunday following Marr et al. 
[2002], with separate profiles resulting based on urban and rural WIM station data. Day-of-week 
variations in daily traffic totals are reported for passenger vehicles and for trucks. Seasonal 
variations in traffic are described using factors calculated for each month and averaged across 
sites with at least nine complete months of data.  
 
The WIM dataset is well-suited for analysis of changes in emissions over time, since the 
locations of counting stations have remained fixed for long periods. In earlier years, data are 
intermittent and available ~60 days per year. By 2010, data availability is close to 100% of days 
on a year-round basis at most sites. Traffic counts for each year were normalized to 
corresponding counts for 2007. This year was chosen as a reference point because traffic and fuel 
use in California reached a peak then and subsequently declined. Data were included for each 
site and year if at least 60 days of complete measurements were available. Stations were 
classified based on observed growth rates between 2000 and 2007 as either high (top 10%), 
average (10-90th percentile), or low. This analysis was done separately for passenger vehicles 
and heavy-duty trucks. 
 
  



22 
 

2.3 Results & Discussion 
 
2.3.1 On-Road CO2 Emissions and Comparisons with VULCAN and EDGAR 
 
Vehicle emissions (on-road gasoline + diesel) within major urban centers show up prominently 
on the maps for both California and Texas (see Figure 2.1). Overall, emissions from motor 
vehicles in urban areas are higher than in more sparsely populated areas, by about an order of 
magnitude. Emissions are greatest near urban cores (>1 000 tC km-2 y-1) and decrease as one 
moves to the periphery (300 tC km-2 y-1). In both California and Texas, on-road emissions of 
CO2 are concentrated in a few metropolitan areas. Los Angeles and San Francisco-San Jose 
account for ~50% of on-road CO2 emissions in California, and Dallas-Fort Worth and Houston 
account for ~30% of on-road emissions in Texas. Emissions due to vehicle travel on highways 
outside of the major urban areas are also apparent in Figure 2.1, with larger relative contributions 
to emissions on rural highways coming from diesel trucks. 
 
Gasoline CO2 emissions dominate over diesel especially in urban areas, accounting for 80-90% 
of the total (Table 2.1). In rural areas, diesel is relatively more important (30-40% of total 
emissions). Inventories that assume diesel trucks account for a constant fraction of total vehicular 
traffic at all locations will erroneously over-assign CO2 emissions to urban areas. Larger errors 
will likely result in the spatial assignment of other pollutants such as NOx and black carbon 
(BC), for which the diesel contribution to total emissions is greater than for CO2 [Ban-Weiss et 
al., 2008b; McDonald et al., 2012]. This is particularly true in Texas, where ~60% of diesel truck 
CO2 emissions occur outside of urban areas, in contrast to passenger vehicles for which ~60% of 
emissions are within urban areas (Table 2.1). 
 
Comparisons of on-road emissions estimates from FIVE (this study), VULCAN, and EDGAR 
are shown in Table 2.1 and Figure 2.1. We focus on three spatial scales: national, state, and 
urban. Note that in addition to including on-road motor vehicle emissions, VULCAN and 
EDGAR map many other sources of emissions that are not considered in this study, including 
industrial, electricity generation, non-road, and residential/commercial sectors.  Also, results are 
not shown for the New York City metropolitan area because diesel emissions were not mapped 
in this study. Differences among emission estimates increase as the domain of interest becomes 
smaller. Nationally for the U.S., all three inventories of on-road CO2 emissions agree to within 
5% (Table 2.1). At the state level for California and Texas, VULCAN estimates are ~10% lower 
than this study. On-road CO2 emissions in EDGAR are 30% higher for California, and 20% 
lower in Texas compared to the present study. The differences in emission estimates between 
EDGAR and FIVE increase when one focuses in on specific urban areas. EDGAR indicates on-
road CO2 emissions in California cities that are higher than this study by 40-80%, and also over-
estimates emissions in Texas cities by as much as 20-30%. VULCAN estimates are in closer 
agreement with FIVE for all of the cities that we evaluated; differences are within the uncertainty 
of our estimates.  
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Figure 2.1. On-road emissions of CO2 for California (left) and Texas (right) for FIVE (top row, 
a-b), VULCAN (middle row, c-d), and EDGAR (bottom row, e-f). All maps are on a 10 km grid 
for the year 2002, except for panels e-f which are mapped at 0.1 degree resolution. The same 
color scale applies to all panels. See Table 1 for details on marked urban areas. 
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Table 2.1. Comparison of annual on-road CO2 emission estimates from FIVE (this study), 
VULCAN, and EDGAR for 2002.a 

 
 
Domain 
 

Gasoline 
Engines 
(106 tC) 

Diesel 
Engines 
(106 tC) 

On-Road 
Totalb 

(106 tC) 

On-Road 
VULCANc 

(106 tC) 

On-Road 
EDGARd 
(106 tC) 

 
U.S.e 
 

 
321 ± 11 

 
95 ± 5  

 
416 ± 12 

 
398 

 
406 

 
California 
 
 
    Urbanf,g 
 
 
    Los Angeles (LA) 
 
   
    San Francisco/San    
        Jose (SF-SJ) 
 
    San Diego (SD) 
 

 
36.6 ± 1.8 

 
 

28.7 ± 3.2 
 
 

13.5 ± 1.5  
 
 

5.9 ± 0.7 
 
 

2.83 ± 0.32 

 
8.0 ± 0.8 

 
 

4.5 ± 0.6 
 
 

2.0 ± 0.3 
 
 

0.7 ± 0.1 
 
 

0.29 ± 0.04 
 

 
44.6 ± 2.0 

 
 

33.2 ± 3.3 
 
 

15.4 ± 1.5 
 
 

6.6 ± 0.7 
 
 

3.12 ± 0.32 
 

 
40.1 

 
 

30.4 
 
 

13.8 
 
 

6.4 
 
 

3.1 

 
56.1 

 
 

50.4 
 
 

27.8 
 
 

10.7 
 
 

4.2 

 
Texas 
 
 
    Urbanf,g 
 
 
    Dallas/Fort Worth 
        (DAL-FW) 
 
    Houston (HOU) 
 

 
27.0 ± 3.5 

 
 

17.4 ± 2.8 
 
 

5.2 ± 0.9 
 
 

4.0 ± 0.7 

 
8.6 ± 0.9 

 
 

3.4 ± 0.5 
 
 

1.1 ± 0.2 
 
 

0.7 ± 0.1 

 
35.6 ± 3.6 

 
 

20.7 ± 2.9 
 
 

6.3 ± 0.9 
 
 

4.7 ± 0.7 

 
31.8 

 
 

19.2 
 
 

6.0 
 
 

4.5 

 
28.4 

 
 

20.9 
 
 

7.9 
 
 

5.7 

a. Uncertainty bounds give 95% confidence intervals. 
b. On-road Total = Gasoline + Diesel. Presented values are rounded and so may not sum exactly. 
c. The VULCAN inventory, version 2.2, can be found at: http://vulcan.project.asu.edu. 
d. The EDGAR inventory, version 4.2, can be found at: http://edgar.jrc.ec.europa.eu. 
e. CO2 emissions calculated from national taxable gasoline and diesel fuel sales. 
f. Uncertainty at the urban-level is calculated as the propagation of errors in state-level fuel sales reports 

and spatial apportionment using traffic count data (see text). 
g. A map of urban and rural grid cells for the VULCAN and EDGAR inventories can be found in 

auxiliary material. Grid cells were classified as urban if their centroids were within urban boundaries 
as defined by the U.S. Census Bureau. Individual metropolitan areas listed above are shown as boxes 
in Figure 2.1. 
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As the national inventories are closely aligned, differences in the ways that motor vehicle 
emissions are disaggregated from national totals down to state and urban scales must account for 
most of the discrepancies. EDGAR is a global inventory that disaggregates national data, and 
uses road density as a spatial proxy, which may cause overestimation of emissions in population 
centers. VULCAN is for the U.S. only and first estimates vehicle emissions at a county-level, 
projects the emissions onto a road atlas, and then aggregates to 10 km grid cells. VULCAN 
estimates are expected to agree more closely with the present study since similar traffic datasets 
are used. Similar findings have been reported by Gately et al. [2013], who compared their 
vehicle estimates of CO2 emissions for Massachusetts with those from other inventories, and 
found that VULCAN agreed to within 5%, whereas EDGAR overestimated by 23% on average. 
EDGAR also assigns most of the on-road vehicle emissions to be within cities, and shows only 
minimal amounts in outlying areas (see bottom row of Figure 2.1). VULCAN has an urban to 
rural emission distribution that is similar to FIVE, but differences can be seen in specific cities. 
For example, in Dallas and Fort Worth, VULCAN shows two hotspots, while FIVE has 
emissions that are more evenly distributed over the broader region. For the Los Angeles area, our 
approach predicts higher emissions from traffic in inland communities than VULCAN.  
 
2.3.2 Mapping Emissions at Higher Resolutions 
 
To illustrate how maps of on-road emissions of CO2 are affected by spatial resolution, we 
evaluate emissions at resolutions of 10 km, 4 km, 1 km, and 500 m for the Los Angeles area 
(Figures 2.2 and 2.3). The traffic count data and roadway network, used to spatially apportion 
fuel usage in this study, are available at a roadway segment level. Therefore the spatial resolution 
of the underlying traffic data is still much less than the highest resolution emission maps (500 m) 
shown in this study.  We chose to model vehicle emissions at these spatial resolutions because 
they represent a range of length scales commonly used in regional and local air quality models 
[Kleinman et al., 2004; S W Kim et al., 2009; Brioude et al., 2011; Brioude et al., 2013; Joe et 
al., 2013], satellite retrievals of tropospheric air pollutants [Russell et al., 2010; Brauer et al., 
2012; Kort et al., 2012], and assessment of near-roadway air pollution [Karner et al., 2010]. 
 
Increased spatial resolution is expected to result in sharper gradients, since emissions on heavily 
traveled highways are more accurately mapped and concentrated in smaller areas. For reference, 
the 10 km resolution emission map (Figure 2.2a) uses the same grid system as VULCAN. There 
are clear differences between the coarse and finer-resolution emission maps (see Figure 2.2). The 
highway network is readily apparent based on the much higher on-road CO2 emission fluxes 
compared to surrounding areas, but only in the higher-resolution maps. The highway network is 
clearly distinguishable at 1 km, and emissions are brought into even sharper focus at 500 m 
resolution. With the 10 and 4 km grids, highway emissions are more widely distributed, and as a 
result strong horizontal emission gradients tend to disappear. Traffic on major arterial roadways 
is also visible in the 500 m resolution emission map. Finer details are especially apparent for the 
Los Angeles area because traffic count data are available for many of the major surface streets.  
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Figure 2.2. Effect of spatial resolution on on-road emission fluxes of CO2 in Los Angeles at 
(a) 10 km, (b) 4 km, (c) 1 km, and (d) 500 m. Emissions are shown for the year 2010. 
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Generally, traffic count data on local roads are difficult to obtain, and are not sampled or 
archived in a comprehensive manner as compared to the highway network. Yet non-highway 
vehicle activity constitutes a large fraction (about half) nationwide [FHWA, 2011b]. To improve 
characterization of traffic patterns on local roads especially within cities, the integration of new 
data sources would be useful.  Such sources include mobile phones which can record, store, and 
report data from global positioning systems while operating in vehicles that are in motion 
[Herrera et al., 2010]. Such data are currently used by major internet and vehicle navigation 
service providers to show real-time traffic information.  Traffic sensing on arterial roads is also 
increasing due to the proliferation of well-instrumented city streets and intersections.  These 
sensors include traditional in-road traffic sensors as well as other technologies such as radio 
frequency identification readers used for automated collection of tolls [Landt, 2005].  The trend 
towards increasing vehicle activity information and open data platforms is clear, and new data 
sources are likely to increase empirical support for high-resolution emissions mapping.  

 
The question of spatial resolution is relevant when integrating satellite observations of air 
pollutants with the development of bottom-up emission inventories, especially pollutants for 
which motor vehicles are a dominant source of emissions, such as in certain urban areas for NOx 
[McDonald et al., 2012] and CO2. Satellite columns of NO2 have been retrieved with global 
coverage at spatial resolutions of ~13 km x 24 km using the Ozone Monitoring Instrument 
(OMI) [Levelt et al., 2006]. The spatial resolution shown in Figure 2.2a aligns approximately 
with current capabilities of low Earth orbiting satellites to map NOx emissions from space. 
Spatial averaging techniques have been utilized to resolve NOx even more finely down to 5-10 
km [Russell et al., 2010]. In general, current satellite observations cannot resolve sharp pollutant 
emission gradients near roadways (Figures 2.2c and 2.2d), but may be appropriate for 
constraining emissions at urban and larger scales. For satellite retrievals of CO2, the Greenhouse 
Gases Observing Satellite (GOSAT) is capable of resolutions of ~10 km at nadir [Kort et al., 
2012]. The Orbiting Carbon Observatory (OCO-2), a geostationary satellite to be launched in 
2014, will have a footprint of ~3 km2 at nadir [Boesch et al., 2011], and also capable of 
achieving high temporal resolution (i.e., hourly data) at individual locations [Streets et al., 2013]. 
 
To address further the question of what can be gained from increasing spatial resolution of 
emission maps within urban areas, the distribution of CO2 emission fluxes (tC km-2) in the Los 
Angeles area are ordered from lowest to highest for various spatial resolutions (Figure 2.3). 
There is a dividing line at emission levels of ~7 000 tC km-2 y-1 that separates freeways from 
other smaller roadway types. Figure 2.3 shows that on-road CO2 emission fluxes over the most 
heavily traveled grid cells that include major highway segments, increase by a factor of 3 when 
spatial resolution increases from 10 km to 1 km. When the resolution is further increased from 1 
km to 500 m, an additional increase of ~60% is seen. Interestingly, little increase is seen in 
emission fluxes when increasing the resolution from 10 km to 4 km. Highly-resolved emission 
maps are important for understanding transportation microenvironments. Karner et al. [2010] 
reviewed near-roadway air quality studies and found that pollutant concentrations typically fall 
to background levels at downwind distances of 115-570 m. A recent air quality modeling study 
in and around the Port of Oakland found twofold increases in predicted concentrations of 
elemental carbon in locations closest to diesel truck emissions, when spatial resolution in the 
model was changed from 1 km to 250 m [Joe et al., 2013]. 
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Figure 2.3. Distribution of emissions from lowest to highest for urbanized portions of Los 
Angeles (see Figure 2.2). For example, emission fluxes exceed ~7 000 tC km-2 y-1 for ~10% of 
the urbanized land area in Los Angeles. Above this dividing line, grid cells contain major 
highway segments. The dashed lines at 1 km and 500 m resolutions show results of an emission 
factor sensitivity analysis (see text). Emissions are shown for the year 2010. 
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A substantial fraction (about half) of vehicle activity occurs nationwide on roads characterized 
by high driving speeds (interstates/freeways + rural principal roads). It is well-known that most 
conventional internal combustion engines have lower rates of fuel consumption when driving on 
highways compared to stop-and-go city driving. To understand potential effects of fuel economy 
differences on CO2 emission maps, we performed a sensitivity analysis allowing CO2 emission 
factors to vary by road type. The shape of the curve relating CO2 emissions (grams emitted per 
unit distance traveled) and vehicle speed is parabolic, with a minimum emission rate at vehicle 
speeds of 70-80 km h–1 [Barth and Boriboonsomsin, 2008]. Emission factors for CO2 increase by 
a factor of two when average vehicle speeds drop from 50 to 25 km h-1, but vary relatively little 
at higher speeds. Therefore the largest changes in CO2 emission factors are anticipated on 
congested urban arterial roadways where average vehicle speeds are commonly below 50 km h-1 
especially at peak traffic times. Fuel economy penalties associated with stop-and-go driving and 
traffic congestion may result in redistribution of CO2 emissions away from highways relative to 
estimates in the present study. This can be seen in Figure 2.3, which shows the results of the 
sensitivity analysis when emission factors include speed adjustments for different road types. 
Emissions are first re-estimated at a state-level by road type, taking into account a higher CO2 
emission factor (g CO2 km-1) for urban arterial roads. State-level emissions are then gridded 
using the same spatial surrogates outlined in Section 2.2.3. These two approaches to CO2 
emission apportionment give similar results. Note that hybrid vehicles are expected to flatten the 
vehicle speed-CO2 emissions relationship at lower speeds (i.e., similar fuel economy under stop-
and-go driving conditions) [Fontaras et al., 2008], making the results potentially even more 
similar if there is a high penetration of hybrid vehicles in the urban fleet. 
 
Figure 2.4 presents examples of high-resolution CO2 emission maps (HI-FIVE) for other urban 
areas, and demonstrates the extensibility of the general approach used here. The New York City 
example (Figure 4a) illustrates an application of the emissions mapping approach across a 
densely populated multi-state region. New York City also provides a point of contrast to Los 
Angeles in terms of population density. The highway network in New York is not as extensive, 
and on-highway emissions only become clearly visible in suburban areas on Long Island, and in 
neighboring states of New Jersey and Connecticut. The San Francisco Bay area (Figure 4b) 
features contrasts between a dense urban center (San Francisco) and other nearby lower-density 
cities (e.g., San Jose). In San Jose, a network of highways akin to Los Angeles exists. Emission 
maps for Houston and Dallas-Fort Worth are also shown in Figure 4, to provide examples of 
even lower-density sprawling cities, with resulting emission fluxes that tend to be lower on 
average than other cities considered here. Consistent mapping of vehicle emissions at high 
spatial resolution could facilitate more detailed study of relationships between urban form and 
transportation emissions, by allowing for sub-regional and cross-city comparisons [Marshall, 
2008; Gately et al., 2013]. 
 



30 
 

 
 

Figure 2.4. High resolution maps of CO2 emissions (HI-FIVE) from gasoline-powered vehicles 
for (a) New York City, (b) San Francisco-San Jose, (c) Houston, and (d) Dallas-Fort Worth. 
Only emissions in urbanized areas are shown; maps are for the year 2010. Horizontal resolution 
is 500 m in all cases. Note also that the 0-40 km distance scale is the same for all four areas. 
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2.3.3 Variability in Emissions on Short Time Scales 
 
Both spatial and temporal resolution is needed when emissions estimates are used as input to 
atmospheric models, and in turn for comparison with atmospheric observations. In this study, 
weigh-in-motion traffic count data were analyzed to characterize variations in vehicular CO2 
emissions on various time scales: diurnal, day-of-week, and seasonal. Different temporal profiles 
are developed for light- and heavy-duty vehicle traffic, as shown in Figure 2.5. The diurnal 
activity patterns on weekdays clearly differ between the two vehicle types. Weekday passenger 
vehicle traffic exhibits two distinct (morning and evening) commuter-related peaks. In contrast, 
truck traffic shows a single midday peak. These findings are consistent with prior work [Marr 
and Harley, 2002]. Because passenger vehicles dominate on-road CO2 emissions in urban areas 
(Table 2.1), the diurnal pattern of urban on-road emissions is similar to that for light-duty 
vehicles (Figure 2.6). For other pollutants where heavy-duty diesel emission factors are 
significantly higher than for gasoline vehicles, like for BC [Dallmann et al., 2013], the diurnal 
profile of emissions is expected to follow more closely the activity pattern for heavy-duty trucks. 
This highlights the need to apply separate temporal profiles to characterize traffic and associated 
CO2 emissions for light- and heavy-duty vehicles.  
 
While large decreases in weekend truck traffic and their emissions are well documented [Marr 
and Harley, 2002; Harley et al., 2005], day-of-week variations for passenger vehicle traffic are 
also of interest (Figure 2.5). Urban emissions of CO2 are found to increase by ~10% through the 
workweek between Monday and Friday, due to changes in passenger vehicle activity, and then 
decrease by ~20% and ~30% relative to Friday peak levels on Saturdays and Sundays, 
respectively (Figure 2.6). Day-of-week variations in traffic can lead to noticeable changes in on-
road CO2 emissions, given that vehicle emissions are the largest anthropogenic source of CO2 in 
many California and Texas cities (see Appendix A, Figure A1). Given a design goal of urban 
CO2 monitoring networks to detect changes in emission fluxes that differ by 10% or more from 
the average [Kort et al., 2013], then comparing CO2 emissions on Fridays to other (especially 
weekend) days could serve as a repeatable real-world test case for detection capabilities of 
emerging CO2 monitoring networks, at least in urban areas where motor vehicle emissions tend 
to dominate. 
 
There are also clear contrasts between urban and rural vehicle activity patterns. The differences 
are most apparent for passenger vehicles (Figure 2.5); heavy-duty truck traffic shows similar 
activity patterns throughout the urban and rural areas considered here. Passenger vehicle traffic 
in rural areas follows a similar diurnal profile to heavy-duty trucks, and does not have commuter 
peaks as seen in urban areas on weekdays. As a result, when emissions are aggregated to the 
statewide level, emissions are highest on weekdays in the late afternoon/early evening hours 
rather than in the mornings (Figure 2.6), which is consistent with VULCAN for the contiguous 
U.S. [Nassar et al., 2013]. 
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Figure 2.5. Diurnal (a-b), day of week (c-d), and seasonal variations (e-f) in counts of passenger 
vehicles (left column) and heavy-duty diesel trucks (right column). Diurnal profiles are for 
weekdays (Monday-Thursday); for profiles on other days, see auxiliary material. Each marker 
represents observations at an individual weigh-in-motion traffic count location. Colored bands 
represent 95% confidence intervals for the means across all urban (red) and rural (green) sites. 
 



33 
 

 
 

Figure 2.6. Diurnal (shaded) and day of week (dashed lines with labels) patterns of on-road CO2 
emissions for (a) California, and (b) Texas in 2010. Red and green shading denote emissions in 
urban and rural areas, respectively. Total (urban + rural) emissions are shown in gray. Ratios of 
day-specific emissions to the weekly average are labeled for each day. Uncertainty estimates 
indicate 95% confidence levels for diurnal (dark bands) and day of week (error bars) emissions. 
Confidence intervals are calculated using uncertainties in weigh-in-motion traffic count data 
shown in Figure 2.5. 
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Diurnal and day-of-week traffic profiles from this study are similar to results reported by Marr et 
al. [2002] using weigh-in-motion traffic count data from the mid-1990s for California. This 
suggests that diurnal and weekly patterns in vehicle activity have not changed much over longer 
time scales. We find smaller weekend decreases in heavy-duty truck traffic compared to Marr et 
al. [2002], who reported that weekend truck traffic decreases by ~80% and ~60% compared to 
weekday averages in urban and rural areas, respectively. Analysis of a larger and more complete 
WIM dataset in this study show decreases in weekend truck traffic of ~70% in urban and ~50% 
in rural areas. The seasonal activity patterns shown in Figures 2.5e and 2.5f are new, and all of 
the temporal profiles reported here are based on analysis of a more extensive database of traffic 
counts. Seasonal emission cycles are important to resolve, as they can be used to assign 
contributions to atmospheric observations from different emission sources [van der A et al., 
2008]. CO2 fluxes due to biosphere-atmosphere exchange and natural gas combustion also 
exhibit seasonality [Pataki et al., 2003]. Noteworthy increases of 35-40% are observed in heavy-
duty truck traffic between January and August. The peak in August, especially in rural areas, 
may be linked in part to harvesting of crops. Passenger vehicle traffic in rural areas also exhibits 
strong seasonality, with year-round variation of ~40%. The peak occurs during summertime, 
presumably due to increased recreational and vacation-related driving. In contrast, seasonal 
variations in passenger vehicle traffic are limited to ~10% of mean levels in urban areas. 
 
2.3.4 Decadal Emission Trends 
 
Due to the high data and time demands required to update bottom-up emission inventories, a 
common practice in air quality planning is to scale baseline emission inventories to represent 
conditions in other years. The scaling of emissions attempts to reflect effects of both increasing 
population and vehicle activity, as well as the effects of advances in vehicle and emission control 
technologies. An underlying implicit assumption often made when scaling baseline inventories is 
that the spatial distribution of emissions remains the same over time, and that any increases in 
traffic, for example, occur uniformly at all locations throughout the domain of interest. The 
EDGAR on-road inventory provides an example of this approach (Figure 2.7). The spatial 
distribution of on-road emissions remains constant over a 5-year period (from 2002 to 2007). We 
use weigh-in-motion traffic count data to consider whether non-uniform changes in vehicle 
activity have occurred since 2000. If population growth leads to new housing being built in 
suburban areas rather than as urban in-fill, evolution in spatial maps of emissions should be 
expected. Two time periods considered in this analysis are 2000 to 2007, and a later period from 
2007 to 2010 that was affected by a major economic downturn. We choose to evaluate these two 
time periods because the recession provides a useful test case for detecting changes using weigh-
in-motion traffic count data. 
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Figure 2.7. Change in on-road CO2 emissions in EDGAR (version 4.2) between 2002 and 2007 
for individual 0.1 x 0.1 degree grid cells over California. Changes in grid cells with weigh-in-
motion detectors are calculated using the year 2002 inventory from this study, rather than from 
EDGAR. Grid cells with greater than 104 tC emitted account for ~90% of the emissions in 
California. 
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Figure 2.8. Annual growth rates in on-road CO2 emissions in California for (a) 2000-07, and  
(b) 2007-10. Boundaries are shown for the five largest air basins in California: South Coast (SC), 
San Francisco Bay Area (SF), San Diego (SD), San Joaquin Valley (SJV), and Sacramento 
Valley (SV). Gray pixels are 10 km x 10 km grid cells with emission fluxes of >100 tC km-2 y-1. 
 

 

Figure 2.9. Comparison of changes in the on-road CO2 emissions inventory (between 2002 and 
2010) from this study with trends derived from weigh-in-motion traffic count data for Southern 
California. Each marker represents an individual weigh-in-motion detector. 
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In maps showing the rate of change in on-road CO2 emission by location (Figure 2.8), 
differences among sites are evident during the period from 2000 to 2007 as described above. See 
Appendix B (Figure B1) for trends in weigh-in-motion traffic count data used in Figure 2.8. 
Since 2007, effects of the recession on traffic emissions were unevenly distributed. Prior to the 
recession (Figure 2.8a), high growth areas (>4% y-1) are observed in inland areas of San 
Bernardino and Riverside counties, located east of Los Angeles. California’s Central Valley also 
saw higher than average growth in on-road emissions (>2% y-1). Little change in traffic was 
observed near the coast in Los Angeles, the San Francisco Bay area, or San Diego. A 2% y-1 
detection limit applies to this analysis, because when compounded over the period from 2000 to 
2007, this matches the uncertainty in traffic counts from weigh-in-motion detectors. Using 
results from Li et al. [2010], we estimate ~15% uncertainty when traffic counts from WIM are 
compared with those obtained from video counting. After 2007 (Figure 2.8b), many locations 
saw decreases in emissions in excess of 2.0% y-1. In general, locations with a high diesel truck 
traffic fraction exhibited the largest decreases in on-road CO2 emissions after 2007, and these 
locations tended to be outside of major metropolitan areas. 
 
As mentioned above, the EDGAR inventory shows little change in the spatial pattern of on-road 
emissions over a 5-year time period from 2002 to 2007. However, changes in on-road emissions 
of CO2 at the ~70 weigh-in-motion stations show increases by as high as 50%, with many 
locations increasing by more than 25% (Figure 2.7). In Figure 2.9, we show that our approach to 
mapping emissions using year-specific taxable fuel sales and traffic count data, identify areas 
with higher than average growth in on-road emissions. Annual changes in emissions are not 
spatially homogenous, and this highlights the importance of periodically updating emission 
inventories as new information becomes available.  
 
2.4 Conclusions 
 
In this study, fuel sales reports and traffic count data were used to create a fuel-based inventory 
for vehicle emissions (FIVE) of CO2 at various spatial resolutions, for major urban centers in the 
U.S. Passenger vehicles account for 80-90% of on-road CO2 emissions in cities, whereas heavy-
duty diesel trucks are relatively more important in rural areas and account for 30-40% of the on-
road total. Results from FIVE were compared with other emission inventories, VULCAN and 
EDGAR. All three inventories agree within 5% at the U.S. national level. EDGAR appears to 
overestimate on-road CO2 emissions in the largest cities in California and Texas by as much as 
20-80%, while VULCAN estimates are in agreement with FIVE. We also show that spatial 
resolution has important effects on the mapping of motor vehicle emissions. At grid resolutions 
of 10 and 4 km, strong emission gradients that are known to exist near highways are not 
apparent. The highway network becomes clearly distinguishable at grid resolutions of 1 km. 
Increasing the resolution from 1 km to 500 m leads to further increases in CO2 emission fluxes 
by ~60% for grid cells that contain segments of heavily trafficked highways. 
 
Over shorter time scales (diurnal, day-of-week, and seasonal cycles), there are large contrasts in 
on-road vehicle emission patterns in urban and rural areas, and between light- and heavy-duty 
vehicles. In urban settings, daily on-road emissions of CO2 are found to increase by 10% through 
the workweek, with a maximum on Fridays, followed by decreases from the Friday peak of 20-
30% on weekends. This weekly cycle in traffic-related CO2 emissions could serve as a useful test 
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case for evaluating the ability of urban CO2 monitoring networks to detect future emission 
changes. We also find significant seasonal variability in both passenger vehicle and heavy-duty 
truck traffic in rural areas. Year-to-year changes in vehicle activity were found to be non-
uniform across California between 2000 and 2007. High-growth areas where on-road emissions 
increased by >4% y-1 were concentrated in fast growing suburbs to the east of Los Angeles. 
Between 2007 and 2010, decreases in vehicle emissions were seen over many parts of California. 
Changes of up to 50% in on-road emissions were found over a period of ~5 years, highlighting 
the need for timely updates to motor vehicle emission inventories. 
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Chapter 3: Long-Term Trends in Nitrogen Oxide Emissions from Motor 
Vehicles at National, State, and Air Basin Scales 
 
Reproduced in part from McDonald, B.C.; Dallmann, T.R.; Martin E.W.; Harley, R.A. Long-
Term Trends in Nitrogen Oxide Emissions from Motor Vehicles at National, State, and Air Basin 
Scales. J. Geophys. Res. 2012, 117, DV00V18, DOI: 10.1029/2012jd018304 with permission 
from John Wiley and Sons. 
 
3.1 Introduction 
 
Nitrogen oxides (NOx = NO + NO2) are trace gases that strongly influence atmospheric 
chemistry and air pollution. NOx is a critical precursor in the formation of tropospheric ozone. 
NOx is oxidized in the atmosphere to form nitric acid and aerosol nitrates, contributing to fine 
particulate matter concentrations, acid deposition, and visibility degradation. NOx emissions are 
predominantly anthropogenic, with natural sources such as soil and lightning estimated to 
account for ~20% of the global budget [IPCC, 2007]. Two of the most important anthropogenic 
emission sources are on-road motor vehicles and power plants. The relative importance of heavy-
duty diesel engines as a source of NOx emissions has grown in the US in recent years, as light-
duty vehicle and power plant sources have been controlled [Frost et al., 2006; S W Kim et al., 
2006; Bishop and Stedman, 2008; Dallmann and Harley, 2010]. 
 
Continuous monitoring of NOx emissions from large power plant sources has been required in 
the US since the 1990s. In contrast, there is a much larger number of motor vehicles in operation, 
and emissions measurements for mobile sources are sparse. The distribution of motor vehicle 
emissions has become increasingly skewed over time, with a small number of vehicles being 
responsible for an increasingly large fraction of total emissions [Bishop and Stedman, 2008]. 
This skewed emission distribution makes it difficult and costly to acquire and test a 
representative sample of vehicles via laboratory measurements. Difficulties in measuring 
emissions and activity have led to large associated uncertainties in motor vehicle emission 
inventories, both in predicting emission trends over time, and in estimating absolute emissions of 
NOx [Parrish, 2006; S W Kim et al., 2009; Dallmann and Harley, 2010]. Top-down techniques 
have been developed to constrain NOx inventories using satellite retrievals of tropospheric NO2 
columns [Martin et al., 2003]. However, development of bottom-up inventories remains an 
important research priority [NRC, 2000], and is needed to understand the contributions of 
different sources to total emissions. 
 
Mobile sources of air pollution are especially important in California, where fossil fuel-burning 
power plants mostly run on natural gas rather than coal, and a generally high degree of NOx 
emission control has been achieved. This study includes analysis of state-level NOx emission 
trends in California, as well as evaluations of emissions in the South Coast and San Joaquin 
Valley air basins. The South Coast air basin (~17 000 km2) encompasses the Los Angeles area 
and is mostly urban with a population of 17 million people. The San Joaquin Valley (~61 000 
km2) is located in central California and is more rural with a population of ~4 million people (see 
auxiliary material for map and information on vehicle fleet demographics). Both air basins 
experience some of the highest concentrations of ozone (O3) and fine particulate matter (PM2.5) 
observed in the US. During the summer of 2010, a large-scale field measurement campaign 
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called CalNex (Research at the Nexus of Air Quality and Climate Change) took place in 
California, jointly sponsored by the California Air Resources Board, National Oceanic and 
Atmospheric Administration, and California Energy Commission. The present study addresses a 
key CalNex research question: whether there are important differences in precursor emissions or 
ozone formation chemistry in the San Joaquin Valley and South Coast air basins. 
 
The primary objective of this study is to quantify trends in NOx emissions from on-road gasoline 
and diesel-powered vehicles. Compared to previous work [Dallmann and Harley, 2010], this 
study covers a longer time period (1990-2010), and includes air basin and state-level emission 
estimates as well as further evaluation of national trends. We use a fuel-based approach to 
estimate emissions, where fuel sales are used to measure pollution-causing activity by motor 
vehicles, and emission factors are normalized to fuel consumption. Fuel-based inventory 
estimates are then compared with predictions from the most current versions of the emission 
models EMFAC and MOVES, respectively developed by the California Air Resources Board 
and the US Environmental Protection Agency. Further comparisons at the national level are 
made with road transport emission estimates from the EDGAR database. NOx emission trends 
are also evaluated through comparisons with pollutant data derived from satellite and surface 
observations. 
 
3.2 Methods and Data 
 
3.2.1  Fuel Sales Data 
 
In the U.S., light-duty passenger vehicles are almost all gasoline-powered, whereas most of the 
on-road diesel fuel use is by medium and heavy-duty trucks. We use taxable fuel sales reports 
published annually to measure motor vehicle activity at the national level [FHWA, 2011b]. In 
California a state agency reports taxable fuel sales intended for on-road use in gasoline and 
diesel-powered vehicles [California State Board of Equalization, 2011b, a]. The diesel estimates 
for California have been adjusted to account for inter-state trucking, which often involves 
mismatches between where diesel fuel is purchased and where it is used. Estimates of diesel fuel 
consumed by transit and school buses were added separately; these relatively small on-road 
diesel fuel use categories are tax-exempt in California. 
 
Fuel sales reported at the state level for California were apportioned to air basins using geocoded 
traffic count data available from the California Department of Transportation (http://traffic-
counts.dot.ca.gov, accessed March, 2012); this was done separately for light and heavy-duty 
vehicles. Traffic counts for trucks with 3 or more axles were used as a proxy for the spatial 
distribution of diesel fuel, since these trucks are responsible for 92% of taxable on-road diesel 
fuel consumption in California [California Department of Transportation, 2009]. Most heavy-
duty truck travel and fuel consumption occurs on the highway system [Lindhjem et al., 2012]. 
We compared the spatial distribution of geocoded truck travel with the spatial distribution of 
diesel fuel in California’s mobile source emissions model (California Air Resources Board, 
EMFAC 2011, http://www.arb.ca.gov/msei/modeling.htm, accessed April, 2012) (here-in 
referred to as EMFAC online data, 2012), and took the average of the two in allocating statewide 
diesel fuel sales to individual air basins.  
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In contrast to heavy-duty trucks, light-duty vehicles travel extensively on arterials and other 
surface streets. To apportion gasoline use from the state to air basin level, we used traffic data 
available from the Highway Performance Monitoring System 
(http://www.bts.gov/publications/national_transportation_atlas_database/2011/, accessed March, 
2012) that include travel not just on highways but also on principal arterials.  This left unmapped 
about a quarter of the total light-duty traffic, which was driving on collectors and smaller streets. 
The unmapped traffic and associated use of gasoline were apportioned to air basins based on the 
number of light-duty vehicles registered in each county. Gasoline use was apportioned separately 
for cars and light-duty trucks (i.e. sport-utility vehicles, pick-up trucks, small vans, etc.) 
following methods described by Pokharel et al. [2002]. Vehicle registration data were used to 
determine the fraction of total travel by each vehicle subgroup within each air basin. The light-
duty truck fraction tended to be higher in rural areas. In apportioning statewide gasoline sales to 
individual air basins, we again used an average of the spatial distributions derived from 
geocoded traffic data and the EMFAC model. The resulting distribution agrees with reports 
[California Department of Transportation, 2009] on vehicle travel at the county level.  
 
3.2.2 NOx Emission Factors for On-Road Vehicles 
 
Fleet-average NOx emission factors for heavy-duty diesel trucks were estimated using results 
from on-road measurements, including remote sensing and tunnel studies. Most of the relevant 
studies have been reviewed by Dallmann and Harley [2010] and are used again here. We added 
results from more recent measurements of truck emissions at the Peralta (Anaheim, CA) weigh 
station for 2009 and 2010 [Bishop et al., 2012a] and at the Caldecott tunnel (Oakland, CA) for 
2010 [Dallmann et al., 2012]. A high NOx data point for 1997 from Ban-Weiss et al. [2008b] 
was excluded.  Ordinary least squares regression was used to describe the trend in heavy-duty 
diesel NOx emission factors over the period from 1997 to 2010. Prior to 1997, we assumed that 
the heavy-duty diesel NOx emission factor remained constant, and matched the regression-
derived value for 1997. This assumption is consistent with emission test results summarized by 
Yanowitz et al. [2000]. It has been reported that up until the mid-1990s, heavy-duty engines were 
certified in the laboratory to meet applicable NOx standards, but then operated differently on the 
road to minimize fuel consumption rather than NOx emissions [Yanowitz et al., 2000]. Remote 
sensing measurements of truck emissions at the Peralta weigh station also show a plateau in NOx 
emission factors for 1997 and earlier model years [Schuchmann et al., 2010]. Results from the 
1992 Tuscarora, PA, tunnel study indicate a NOx emission factor for heavy-duty trucks that is 
consistent with our pre-1997 value [Pierson et al., 1996]. NOx results from the Fort McHenry 
(Baltimore, MD) tunnel for heavy-duty trucks reported in the same study were somewhat lower, 
possibly due to a higher proportion of gasoline-powered trucks in a more urban setting.  
 
Similarly, on-road measurements provide the basis for estimating NOx emission factors from 
light-duty vehicles in this study. The main on-road studies used here are a decade-long series of 
remote sensing measurements made in four US cities [Bishop and Stedman, 2008], and 
measurements of NOx emissions at the Caldecott tunnel in lanes where heavy-duty trucks are not 
allowed, for calendar years 1994-97, 1999, 2001, 2006, and 2010 [Ban-Weiss et al., 2008b; 
Harley et al., 2010]. We also included tunnel-derived emission factors for light-duty vehicles 
from Baltimore, MD in 1992 [Pierson et al., 1996], and remote sensing measurements from San 
Jose, CA in 1999 and 2008 [Bishop et al., 2010]. Wherever engine data were available from 
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vehicle registration records, we used only results for gasoline-powered vehicles in calculating 
fleet-average emissions.  
 
A multiple regression analysis of the fleet-average emission factor over the period from 1990-
2010 was performed, using calendar year and average vehicle age (travel-weighted, to account 
for the fact that newer vehicles tend to be driven more) as predictive variables. The mean vehicle 
fleet age across all of the available on-road studies is 5.7 years, which is newer than the national 
average of 6.5 years (again weighted by amount of driving as a function of vehicle age), and also 
newer than the California average of 7.1 years in 2000 (Federal Highway Administration, 
National Household Travel Survey, 2001, http://nhts.ornl.gov/download.shtml, accessed April, 
2012, and EMFAC online data, 2012). While there was little change in average age of the 
passenger fleet between 1990 and 2000, both national and California data sources show increases 
in average vehicle age between 2000 and 2010 of 0.7-0.8 years. Aging of the vehicle fleet 
progressed more rapidly starting around 2005.  From 1990 to 2000, the light-duty vehicle fleet 
operating in the South Coast air basin is modeled to be slightly newer, and in the San Joaquin 
Valley slightly older, than the state average (EMFAC online data, 2012). By 2009, the difference 
in average vehicle age between the two air basins had widened to ~1 year. Emission factors are 
adjusted to account for changes in average age of the vehicle fleet over time, and for differences 
in vehicle age among the various spatial domains considered in this study. 
 
Cold start emissions from gasoline-powered vehicles were estimated using ratios of start-related 
to total exhaust (start + running) emissions derived from MOVES at the national level. A similar 
approach was used for California, based on emission estimates from the EMFAC model. The 
fraction of NOx emissions from light-duty vehicles associated with engine starting is estimated to 
range from 5-24% in MOVES, and from 7-20% in EMFAC.  
 
Differences in emission control programs (e.g., reformulated gasoline, standards for new light-
duty vehicles) between California and other states may affect emission factors. Effects of 
reformulated gasoline could be a factor to consider for carbon monoxide and hydrocarbons, but 
fuel effects on NOx are small and may be negligible [Kirchstetter et al., 1999a]. Stricter emission 
standards would be expected over time to result in lower average emissions, although 
California's new-vehicle emission standards have been adopted in some other states, which 
reduces the effect of vehicle fleet differences. Most of the emission data for light-duty vehicles 
used in this study were derived from five sites: West Los Angeles, Caldecott Tunnel (San 
Francisco Bay area), Denver, Phoenix, and Chicago. Effects of differences in new-vehicle 
emission standards among these five sites may be small or confounded by other factors, and it is 
therefore difficult to quantify absolute differences in on-road NOx emission factors between 
national and California vehicle fleets. A much clearer feature in all of the on-road measurements 
is the long-term downward trend over time in NOx emission factors for light-duty vehicles. 
 
3.2.3  Other Anthropogenic Sources of NOx Emissions 
 
Emission estimates for other major anthropogenic sources of NOx are included in later stages of 
this work in order to place on-road vehicle emissions in context with emissions from other 
sources, and to enable evaluation of emission inventory trends by comparison with observed 
trends in surface-based pollutant measurements and satellite-derived data. Off-road diesel 
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emissions were estimated using a fuel-based approach as described by Dallmann and Harley 
[2010], but extended to cover a longer time period (1990-2010 instead of 1996-2006). NOx 
emission factors from off-road equipment were assumed to track those for on-road diesel 
engines, and locomotives and marine vessels were assumed to have constant emission factors. 
Surveys of distillate fuel sales intended for use in off-road engines are conducted and reported 
annually at the national and state levels [EIA, 2012]. The spatial distributions of off-road 
construction and farm equipment, locomotive, and marine vessel emissions as reported by the 
California Air Resources Board (CARB) were used to apportion fuel-based emission estimates 
from state to air basin level. 
 
Stationary (point and area) sources of emissions were also added, using the latest estimates from 
the US. Environmental Protection Agency (EPA) (http://www.epa.gov/ttn/chief/trends/, accessed 
May, 2012) (here-in referred to as EPA Trends Table, 2011), including fuel combustion and 
industrial processes. For California, stationary source emission estimates at the state and air 
basin levels from CARB were used [Cox et al., 2010]. When taken together with fuel-based 
estimates of on-road and off-road mobile source emissions of NOx, the overwhelming majority 
of near-surface anthropogenic emissions are accounted for in all cases. NOx sources missing 
from this analysis include off-road gasoline engines and aircraft. 
 
 
Table 3.1. Summary of Relative Uncertainties in Fuel Consumption and NOx Emission Factor 
Estimates. 
 

 Fuel Consumption  NOx Emission Factorb,c 
Source 
Category USa CA SCd SJVd   1990 2000 2010 

         On-road 
Gasoline ±3% ±5% ±6% ±13%  ±13% ±9% ±43% 

      (1.8) (0.8) (1.5) 

         
On-road Diesel ±5% ±10% ±13% ±11%  ±16% ±13% ±20% 

      (6.8) (5) (5.7) 

                 
a. [Dallmann and Harley, 2010]. 
b. Uncertainty denoted as 2σ. 
c. Absolute uncertainty estimates shown in parentheses are expressed in units of g NOx/kg fuel. 
d. SC = South Coast, SJV = San Joaquin Valley. 
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3.2.4 Uncertainty 
 
Uncertainties in fuel consumption and NOx emission factors have been estimated for on-road 
sources (see Table 3.1). The relative uncertainty in vehicle activity grows as the spatial domain 
becomes smaller, due to difficulties in apportioning fuel use to finer scales. For example, a 
portion of diesel fuel consumed by long-haul interstate trucks is known to be purchased from 
out-of-state vendors, and may be misallocated despite efforts to track and report interstate truck 
travel and fuel use separately for each state [Lutsey, 2009]. To estimate fuel use uncertainties at 
the state level, we compared California’s share of national gasoline sales with the share of light-
duty vehicle miles traveled, and similarly compare diesel fuel sales with truck miles traveled 
[FHWA, 2011b]. At the air basin level, uncertainties associated with statewide fuel sales reports 
and spatial apportionment methods were propagated in emission inventory calculations. 
Uncertainties in NOx emission factors were derived from error analysis of the least squares 
regression results. As the light-duty fleet becomes cleaner, the relative uncertainty grows, even 
though the absolute uncertainty changes little. For cold start emissions, the uncertainty is 
estimated to be ±65%, based on comparing start-related emission estimates from MOVES with 
its predecessor model MOBILE6. 
 
Estimates of uncertainty for other major anthropogenic sources are also available. Uncertainties 
associated with off-road diesel engine emissions are described by Dallmann and Harley [2010]. 
Frost et al. [2006] report that electric power plants with continuous emission monitoring systems  
have a 2σ uncertainty of ±24%, which we assume applies to all large electric generator and 
industrial sources. 
 
3.3. Results and Discussion 
 
3.3.1 Fuel Sales 
 
Trends in fuel consumption by on-road vehicles from 1990 to 2010 are shown in Figure 1. At air 
basin, state, and national scales, consumption of diesel fuel grew more rapidly than gasoline up 
to 2007, which was the peak year for diesel fuel sales in all cases. Between 1990 and 2007, 
national sales of gasoline and diesel fuel for use by on-road vehicles increased by about 20% and 
90%, respectively. Increases at the state level in California were not quite as large (see Figure 
3.1). At the air basin level within California, increases in fuel use were more rapid in the San 
Joaquin Valley. Note that Figure 3.1 shows only relative changes in fuel use over time, and does 
not reflect differences in absolute amounts of fuel consumed across the various spatial domains. 
Another noteworthy feature of the data shown in Figure 3.1 is a marked reduction in diesel fuel 
sales due to the recent recession. Between 2007 and 2009, diesel fuel sales fell by 13-17% for the 
domains shown in Figure 3.1. In contrast, gasoline sales decreased by only 2-6% over the same 
time period. Sales of both fuels ceased to decline after 2009. 
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Figure 3.1. Normalized trends in on-road vehicle fuel consumption, 1990-2010. The top panel 
shows national (US) and California (CA) trends. The lower panel shows trends for the South 
Coast (SC) and San Joaquin Valley (SJV) air basins within California. Fuel consumption values 
for each year have been normalized by ratio to corresponding reference values for 1990. 
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3.3.2  Emission Factor Trends 
 
A summary of the available on-road measurements of vehicle NOx emission factors along with 
best-fit lines resulting from regression analyses are plotted in Figure 3.2. Further results for 
emission factors, reflecting light-duty vehicle fleet age distributions as appropriate for each 
region, are included as auxiliary material. As of 1990, the diesel NOx emission factor was ~3 
times the emission factor for light-duty gasoline engines. Twenty years later, as of 2010, the 
corresponding ratio was ~8. This growing disparity in emission factors has been driven by nearly 
universal deployment of catalytic converters on gasoline engines, and multiple advances over 
time in the effectiveness and durability of related technology. Similar advanced technologies to 
reduce diesel NOx are just beginning to be deployed. Note the results shown in Figure 3.2 allow 
for a fairer comparison between light-duty gasoline and heavy-duty diesel engines by 
normalizing emissions to fuel consumption rather than distance traveled (this controls for the 
expected higher per-mile emissions from larger vehicles).  
 
The trends in emission factors from this study for light and heavy-duty vehicles are similar to 
Dallmann and Harley [2010], though there are small differences in an absolute sense. Our heavy-
duty emission factors are 6-9% lower because we treated a high-NOx data point from 1997 at the 
Caldecott tunnel as an outlier and excluded it (see Figure 3.2). Our light-duty emission factors 
are 4-16% higher than Dallmann and Harley because we adjusted for age differences between the 
national vehicle fleet and vehicles observed in remote sensing/tunnel studies. The most important 
change for gasoline engines is new estimates of cold start emissions (derived from MOVES 
rather than MOBILE in the present study). 
 
Although emission factors for NOx are known to vary less when expressed per unit of fuel 
burned rather than per unit distance traveled, effects of unmodeled variations in emission factors 
should still be considered. Both Bishop and Stedman [2008] and Lee and Frey [2012] report 
nearly constant values for NOx emission factors over ranges of positive engine load ranging from 
5 to 30 kW/t in the former case, and 1 to 23 kW/t in the latter study. The normalized measure of 
load used here is engine power output (in kW) divided by vehicle mass (in metric tons), also 
known as vehicle specific power.  
 
For light-duty vehicles, NOx emission rates (g/kg basis) decrease by factors of about 2 for 
downhill driving [Kean et al., 2003] and at idle [Lee and Frey, 2012], relative to other driving 
modes with positive values of vehicle specific power. NOx emissions from idling engines are not 
included in the tunnel and remote sensing measurements shown in Figure 2. Similar concerns 
may apply to NOx emissions from heavy-duty diesel engines. However, idling engines are 
responsible for a minor (<10%) fraction of overall fuel consumption. Reductions in NOx due to 
idling engines are likely to be offset by increases in emission factors at high load. The effect of 
high engine load on NOx is small compared to CO [Kean et al., 2003; Bishop and Stedman, 
2008; Lee and Frey, 2012]. We did not adjust our emission estimates to account for high-load 
driving. 
 
For heavy-duty diesel trucks, previous work [Yanowitz et al., 2000; Gajendran and Clark, 2003] 
similarly indicates that driving cycle and truck weight effects on NOx are minimal when 
emissions are expressed per unit of fuel burned rather than per distance traveled.  
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Figure 3.2. Trends in measured gasoline and diesel vehicle NOx emission factors from on-road 
studies. Also shown are linear fits to the observed data (solid lines) along with associated 95% 
confidence intervals (shaded areas). Two open blue diamond markers denote on-road data that 
were not used in the regression analysis (see text). The dashed blue line represents results from 
chassis dynamometer testing of heavy-duty diesel vehicles [Yanowitz et al., 2000]. 
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3.3.3 Motor Vehicle Emission Inventory Trends 
 
Trends in on-road vehicle NOx emissions are shown in Figures 3.3 and 3.4 (which present, 
respectively, national and California state/air basin emission trends, with separate results for 
gasoline and diesel-powered vehicles). Across all spatial domains considered in this study, 
gasoline vehicle emissions decreased by ~65% between 1990 and 2010, except in the San 
Joaquin Valley where reductions were not as large (~50%), due to faster growth in population 
and vehicle activity. Trends in diesel NOx emissions over the same time period are not the same 
as for gasoline-powered vehicles. Changes in diesel emissions vary in both sign and magnitude, 
and can be characterized as follows for three different time periods: (1) increasing between 1990 
and 1997, (2) stable between 1997 and 2007, and (3) decreasing since 2007. Increasing 
emissions during the early years were driven by increases in diesel fuel sales, with little if any 
change in NOx emission factors. NOx emission factors decreased between 1997 and 2007, but the 
emission factor decreases were offset by increased diesel fuel sales, resulting in stable NOx 
emissions for this time period. Diesel NOx emissions have decreased since 2007, mainly due to 
reduced freight shipments and lower diesel fuel sales, reinforced by emission factor reductions 
that have occurred since 2007. National trends in total (gasoline + diesel) on-road vehicle NOx 
emissions increased during most of the 1990s, reached a plateau during the late 1990s, then 
began decreasing in 2000, with more rapid decreases since 2007 due to the recession.  
 
As of 1990, gasoline-powered vehicles were the dominant on-road source of NOx emissions for 
all cases shown in Figures 3.3 and 3.4, except for the San Joaquin Valley. Since that time, 
however, diesel trucks have become of comparable or greater importance as on-road sources of 
NOx. At the national scale, the cross-over point where the diesel contribution to on-road NOx 
emissions matched the gasoline contribution occurred in the mid to late 1990s. This transition 
occurred later in California, around 2005, though since then the recession has caused diesel 
emissions to decrease such that NOx contributions from both vehicle categories are similar. For 
air basins within California, diesel contributions to on-road NOx emissions vary dramatically. 
The diesel source is clearly dominant in the San Joaquin Valley over the entire twenty-year 
period considered in this study (reaching ~70% in 2010). As a consequence, the total on-road 
NOx emissions curve closely tracks the trend in diesel emissions. In the heavily urbanized South 
Coast air basin, on-road gasoline remains dominant (or at least of comparable importance in the 
last ~3 years) throughout the period 1990-2010 (down from ~75% in 1990). As expected, the 
trend in total on-road vehicle NOx emissions in southern California closely resembles the trend in 
light-duty vehicle emissions, with the exception of the more rapid decrease since 2007 driven by 
reductions in diesel emissions. 
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Figure 3.3. National trends in NOx emissions from on-road vehicles, 1990-2010. Units are 
metric tons per day, and NOx mass is reported in NO2 equivalents. Shaded areas represent effects 
of emission factor and fuel sales uncertainties on fuel-based inventory estimates. Cold start 
emissions are included with on-road gasoline. 
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Figure 3.4. Trends in NOx emissions from on-road vehicles in California, 1990-2010. Spatial 
domains shown include statewide level (CA), South Coast air basin (SC) that includes the Los 
Angeles area, and San Joaquin Valley air basin (SJV). Shaded areas represent effects of emission 
factor, fuel sales, and spatial apportionment uncertainties on fuel-based inventory estimates. Cold 
start emissions (and associated uncertainties) are included with on-road gasoline. 
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The fuel-based emission inventory developed in this study shows varying levels of agreement 
with other established and widely used inventories. At the national level, there is close agreement 
between fuel-based emission estimates and the Emissions Database for Global Atmospheric 
Research (EDGAR version 4.2), for total NOx emissions from the road transport sector 
(European Commission – Joint Research Center, 2011, http://edgar.jrc.ec.europa.eu, accessed 
April, 2012). Comparisons with the National Emissions Inventory (NEI) estimates developed by 
EPA shown in Figure 3.3 indicate that in 3 out of the 4 most recent inventory years (1999, 2002, 
and 2008 version 2), estimates of total NOx emissions from on-road vehicles agree in an absolute 
sense (EPA, 2012, http://www.epa.gov/ttnchie1/net/2008inventory.html, accessed June, 2012). 
In the 2005 NEI, the on-road diesel NOx source appears to be underestimated by ~40% as noted 
previously [Dallmann and Harley, 2010]. Emission estimation methods and data used by EPA to 
develop the NEI are not necessarily consistent from one year to another, which makes it difficult 
to quantify emission trends over time using NEI data. EPA also publishes national emission 
trends tables (EPA Trends Table, 2011), using a consistent methodology to estimate vehicle 
emissions over multiple years. The long-term trend in on-road vehicle NOx emissions is shown 
using a dashed line in Figure 3.3 (labeled as MOBILE6). The trends table estimates match the 
three earlier NEI estimates, but differ in 2008. A change in methodology explains the difference: 
the 2008 NEI was the first to use MOVES in place of the older MOBILE model to estimate on-
road vehicle emissions. Lindhjem et al. [2012] reported that NOx emissions increased by >50% 
for both light-duty gasoline and heavy-duty diesel vehicles when using emission factors from 
MOVES relative to MOBILE6.   
 
Figure 3.3 also includes more detailed comparisons between the MOVES model and fuel-based 
emission estimates for the time period 1999-2010. The MOVES model is a modal emissions 
model that can estimate emissions for a wide range of different driving conditions. In Figure 3.3, 
default cycles were used in MOVES in making comparisons (J. Koupal, personal 
communication, May 16, 2012). In an absolute sense, total NOx emissions agree for the most 
recent years, however, the estimates of total emissions diverge when moving back in time. On-
road diesel NOx emissions in MOVES decrease steadily and track the gasoline NOx estimate 
closely, whereas the fuel-based estimates show relatively stable diesel emissions up to 2007, 
followed by a sharp decrease. Figure 3.3 shows that trends in on-road gasoline engine emissions 
have the same slope, though MOVES estimates are 40-60% higher than the fuel-based estimates. 
MOVES is sensitive to differences in assumptions about driving conditions [Lindhjem et al., 
2012], especially for gasoline engines, which may affect comparisons in an absolute sense. We 
note that in a relative sense, the default cycle in MOVES places equal importance between on-
road diesel and gasoline, in contrast to this study which found diesel to be the dominant source 
nationally after the mid to late 1990s. Emission trends over time are less affected by 
modeling/estimation uncertainties, and thus should be the focus in making comparisons among 
emission inventories.  Underlying vehicle activity data are similar between MOVES and the fuel-
based approach, with fuel consumption estimates within 5% of one another. This implies that 
differences in NOx emission estimates are driven by differences in emission factors.  
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Figure 3.4 shows comparisons of motor vehicle emission trends in California, including 
predictions from the latest version of the California motor vehicle emission model, EMFAC 
2011 (EMFAC online data, 2012). In general, EMFAC-derived estimates of NOx emissions are 
within associated uncertainties of the fuel-based approach. Differences in the shape of the light-
duty vehicle emission trends deserve a brief discussion. EMFAC shows a ~10% step decrease in 
gasoline-powered vehicle NOx emissions between 1995 and 1996. This is attributed to the use of 
phase 2 reformulated gasoline, which involved numerous changes to gasoline properties that 
were made to reduce vehicle emissions. Measurements of California light-duty vehicle emissions 
at the Caldecott Tunnel [Kirchstetter et al., 1999a] showed significant (18 ± 4%) decreases in 
NOx emission factors between 1994 and 1997, but the authors could not discern a fuel effect on 
emissions separate from fleet turnover effects. The EMFAC model shows a slowing in NOx 
emission reductions from light-duty vehicles in more recent years (especially since 2005). In 
contrast, the fuel-based estimates show continued declines in emissions during this time period. 
The pace of reductions in California light-duty NOx emissions will likely slow down at some 
point in the near future if this has not already occurred, since emissions cannot decrease to 
negative values. 
 
Parrish inferred trends in national-level NOx emissions from on-road vehicles based on analysis 
of ambient carbon monoxide (CO) concentrations and ambient CO to NOx ratios [Parrish, 2006]. 
Our results support his conclusion that vehicular NOx emissions increased during the 1990s, and 
we explain this finding to be a result of growth in NOx emissions from heavy-duty diesel trucks. 
A comparison of our emission estimates with those of Parrish is included in Figure 3.5.  
 
3.3.4 Overall NOx Emission Trends 
 
Other anthropogenic sources of NOx emissions include stationary (point + area) and off-road 
mobile sources (diesel equipment + rail + ship). Estimates of these emissions, along with on-road 
motor vehicle emission estimates described above, are shown in Figure 3.5. These source 
categories are summed to estimate all anthropogenic emissions. Note the on-road vehicle source 
has been comparable to stationary source emissions since about 2000, due in part to reductions in 
power plant emissions that took place starting in the late 1990s.  
 
We compare national emission trends against emission estimates derived using GOME/ 
SCIAMACHY satellite data by Stavrakou et al. [2008]. We choose to compare to Stavrakou et 
al. because they focus on anthropogenic sources of NOx, report results for the continental U.S., 
provide a long-term time series of results from 1997 to 2006, and adjust for chemical feedbacks 
between NOx and hydroxyl radical due to changes in emissions. A downward trend in 
anthropogenic NOx emissions with a decrease of ~45% between 1997 and 2010 (see Figure 3.5) 
is consistent up to 2006 with the satellite-derived inventory (we show a plateau in emissions 
prior to 1997). The downward trend in emissions is driven by reductions from stationary and on-
road gasoline vehicle sources. Despite decreases in emissions from gasoline-powered vehicles, 
the overall importance of on-road vehicle emissions have grown due to the slower rate of 
progress in controlling diesel NOx emissions. 
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Figure 3.5. National NOx emission trends from 1990-2010, with comparisons to inventories 
inferred from ground-level and satellite measurements of pollutants. Emissions from off-road 
(e.g., farm and construction equipment, locomotives, ships), on-road (gasoline + diesel), and 
stationary (point + area) sources summed to give all anthropogenic. Shaded areas denote 2σ 
uncertainties. 
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Figure 3.6. Anthropogenic NOx emissions trends from 1990-2010 with comparisons to annual 
average ambient NOy concentrations for the South Coast air basin (SC) and the San Joaquin 
Valley (SJV). Shaded areas denote 2σ uncertainties. 
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NOx emission trends for California air basins are compared in Figure 3.6 against trends in 
measured ambient NOy concentrations from surface air monitoring sites. Figure 3.6 shows 
annual average NOy for all monitors and days in a given air basin, for each year from 1990 to 
2010. The number of monitoring sites reporting reasonably complete NOy data ranged from 7-18 
in the San Joaquin Valley (the range reflects year-to-year variations), and from 16-22 in the Los 
Angeles area (see auxiliary material for map). The record of NOy observations is sparse in the 
San Joaquin Valley prior to 1995. The placement of the ambient monitors is biased towards 
urban areas, and may therefore under-sample NOx emissions from rural/remote areas. Ambient 
concentrations are plotted using a secondary y-axis that is aligned with emissions data for the 
year 2000 to facilitate comparison of trends in Figure 3.6. The absolute level of NOx emissions in 
the San Joaquin Valley is roughly half that of the South Coast air basin, with similar differences 
observed in ambient NOy concentrations. Not shown in Figure 3.6 are results of several recent 
studies that included analysis of satellite data for California [van der A et al., 2008; S W Kim et 
al., 2009; Russell et al., 2010]. While there are differences in the magnitudes of estimated 
emission changes, the sign of the change appears to be negative in all cases. Our results agree 
with the assessment of Russell et al. that NOx emissions are decreasing in California, and at a 
slower pace in the San Joaquin Valley than in southern California. 
 
The relative importance of major source categories differs between air basins. On-road vehicles 
account for ~80% of NOx emissions in the Los Angeles area. In contrast, in the San Joaquin 
Valley stationary and off-road mobile sources, taken together, are of similar importance to on-
road vehicle sources. Nevertheless, there is a general downward trend in emissions for both air 
basins. Between 1990 and 1993, reductions in NOx were ~6% per year in both areas. The large 
declines in off-road diesel emissions shown in Figure 6 between 1990 and 1993 is a result of 
decreases in reported fuel sales for California. The effect is most evident in the San Joaquin 
Valley where off-road sources are more important. Between 2007 and 2009, both air basins saw 
a ~10% decrease per year in NOx. This was largely driven by recession-related effects, especially 
in the freight sector. Some off-road mobile source activities (e.g., construction) also decreased 
since 2007. Subtle differences in emission trends between air basins are observed between 1993 
and 2007, which we attribute to the relative importance of heavy-duty diesel NOx in the San 
Joaquin Valley. Overall, we find that the anthropogenic emission trend was downward in 
California (-45% to -60%), with decreases in the San Joaquin Valley at the lower end, South 
Coast at the upper end, and the state-average in the middle. 
 
3.3.5 Future On-Road Vehicle Emissions and Control Strategies 
 
Figure 3.7 shows the distribution of on-road vehicle emissions by source category: diesel-
running, gasoline-running, gasoline-start, and gasoline-high emitters. The first three categories 
sum to give total on-road vehicle emissions. The last category, gasoline-high emitters, represents 
a contribution to gasoline-running emissions from the highest-emitting 10% of vehicles. These 
vehicles contribute disproportionately to total emissions. Lipfert and Wyzga [2008] show that 
skewness of light-duty vehicle NOx emission distributions has increased over time. For the 
present study, we estimate from an analysis of remote sensing datasets [Bishop and Stedman, 
2008] that high-emitters accounted for 26 ± 10%, 50 ± 8%, and 75 ± 9% of total NOx emissions 
from gasoline vehicles in 1990, 2000, and 2010, respectively. The main implication of Figure 7 
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is that strategies to reduce future NOx emissions from on-road vehicles should focus on control 
of gasoline-high emitters and diesel vehicles. 
 
Policies have already been implemented to control the diesel NOx source, in particular national 
emission standards for 2010 and newer heavy-duty engines. Meeting these standards for the 
largest on-road engines commonly involves the use of selective catalytic reduction (SCR) to treat 
the exhaust [NRC, 2010]. Recent emission tests in Europe of heavy-duty trucks equipped with 
SCR showed that in-use NOx emissions were higher than anticipated [Velders et al., 2011]. This 
is a reminder that robustness and durability of exhaust after-treatment systems will affect the 
future trajectory of diesel NOx emissions. Instead of deploying SCR, trucks may be switched to 
spark-ignition engines using either gasoline or natural gas as fuel, and equipped with catalytic 
converters to reduce NOx.  
 
To address the long service life and slow turnover rate for heavy-duty vehicles, the California 
Air Resources Board has implemented a policy [California Code of Regulations, 2008] requiring 
retrofits (for diesel particulate filters) and truck replacement (to control NOx). By 2023, all 
heavy-duty engines used in on-road vehicles must meet current NOx emission standards that 
apply to 2010 and newer engines. A consequence of California’s approach is that some older 
trucks (and their emissions) will be exported to other regions [Bishop et al., 2012a]. Further 
analysis is needed to understand the tradeoffs involved, and to consider whether other regions 
should also pursue accelerated truck retrofit and replacement programs.  
 
Additional steps to promote the durability of emission control systems and reduce life-cycle 
emissions from light-duty vehicles should be considered. Such measures could be more 
productive than requiring further reductions in cold start-related emissions. To continue progress 
in control of high-emitting vehicles, policies and assumptions should be re-examined. Given 
improvements in the durability of vehicle emission control systems that have occurred in recent 
years [Bishop and Stedman, 2008], the high-emitting sub-population of vehicles is 
disproportionately older models (see Figure 3.8). A key challenge for vehicle inspection and 
maintenance (I&M) programs is to focus more on repairing or retiring high-emitting vehicles 
[NRC, 2001]. Adjustments to I&M programs in California and elsewhere should be considered, 
such as increasing exemptions for new and middle-aged vehicles, and reducing or eliminating 
exemptions for the oldest vehicles.  
 
The reduction of greenhouse gas emissions from motor vehicles is likely to have effects on air 
quality as well. Williams et al. [2012] have suggested that for California to meet its long-term 
greenhouse gas emission reduction target (i.e., 80% below 1990 levels by 2050), much of the on-
road vehicle fleet will need to be electrified, and the carbon intensity of electricity generation 
must be reduced dramatically. To this end, California has adopted regulations that aim to 
increase the sales of fully electric and plug-in hybrid electric models by 2025 [California Code 
of Regulations, 2012].  Effects of such policies should be investigated further to understand the 
implications for air quality. The success of heavy-duty diesel engine NOx control programs may 
prove to be even more critical for improving future air quality. 
 



57 
 

 
 

Figure 3.7. Contributions to on-road vehicle NOx emissions in 1990 (light bars), 2000 (medium-
color bars), and 2010 (dark bars) for U.S., South Coast air basin (SC), and San Joaquin Valley 
(SJV). Error bars denote 2σ uncertainties. Contributions from high-emitting vehicles shown 
separately at right are also included in running exhaust estimates for gasoline engines. 
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Figure 3.8. Age distribution of the highest emitting 10% of passenger vehicles for (top-left) Los 
Angeles in 2008, (top-right) Denver in 2007, (bottom-left) Phoenix in 2006, and (bottom-right) 
Chicago in 2006. Diesel-powered vehicles are excluded where possible (for Denver and 
Phoenix).  
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3.4 Conclusions 
 
A fuel-based approach was used to estimate NOx emissions from gasoline and diesel-powered 
on-road vehicles, for the time period from 1990 to 2010. This analysis was performed at national, 
state (California), and air basin levels, and results were compared with other emission 
inventories including MOVES, EMFAC, and EDGAR. On-road emission estimates were 
combined with estimates for other major anthropogenic sources, and were compared with 
satellite and ground-based observations. 
 
Growth in on-road diesel fuel consumption outpaced gasoline from 1990 to 2007, across all 
spatial domains considered here. Between 2007 and 2009, diesel fuel sales fell by 13-17% while 
gasoline activity decreased by only 2-6%. The ratio of NOx emission factors for heavy-duty 
diesel versus light-duty gasoline engines grew from ~3 in 1990 to ~8 in 2010. This growing 
disparity is attributed to the near-universal deployment and improved effectiveness of catalytic 
converters on gasoline engines. In contrast, NOx emission factors for heavy-duty diesel trucks 
showed little change during the 1990s, and have decreased only gradually since then. Combining 
trends in activity and emission factors, we found that gasoline engine emissions of NOx 
decreased steadily, by ~65% between 1990 and 2010, except in the San Joaquin Valley where 
reductions were not as large (~50%). In contrast, on-road diesel engine emissions increased 
between 1990 and 1997, remained stable between 1997 and 2007, and decreased after 2007. As a 
result, the relative importance of diesel NOx emissions has increased. In the San Joaquin Valley, 
diesel sources were already the dominant on-road NOx source in 1990, and have since grown to 
account for ~70% of on-road emissions. In the South Coast air basin, on-road gasoline remains 
dominant and of comparable importance to diesel in the last few years (but down from ~75% in 
1990).  
 
After adding in other major sources of anthropogenic emissions, our results agree well with 
trends in satellite-derived NO2 columns and ground-based observations of NOy. The overall 
emission trend is downward in all cases (–45% to –60%). At the air basin level, our results 
support the finding that NOx emissions are decreasing at a slower pace in the San Joaquin Valley 
than in the South Coast air basin. On-road vehicles are clearly the dominant source in the Los 
Angeles area, accounting for ~80% of anthropogenic NOx. Stationary and off-road mobile source 
emissions are of similar importance when compared to on-road sources in the San Joaquin 
Valley. 
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Chapter 4: Long-Term Trends in Motor Vehicle Emissions in U.S. Urban 
Areas 
 
Reproduced in part with permission from McDonald, B.C.; Gentner, D.R.; Goldstein A.H..; 
Harley, R.A. Long-term trends in motor vehicle emissions in U.S. urban areas. Environ. Sci. 
Technol. 2013, 47, 10022-10031, DOI: 10.1021/es401034z. Copyright 2013 American Chemical 
Society. 
 
4.1 Introduction 
 
Non-methane hydrocarbons (NMHC), nitrogen oxides (NOx = NO + NO2), and carbon monoxide 
(CO) are co-emitted with carbon dioxide (CO2) during combustion. These pollutants are 
important to tropospheric ozone (O3) and secondary organic aerosol (SOA) formation [Seinfeld 
and Pandis, 1998; Volkamer et al., 2006], which have impacts on health [Bell et al., 2004; Curtis 
et al., 2006; Mauderly and Chow, 2008] and climate [IPCC, 2007]. In urban settings, motor 
vehicles are among the most important sources of emissions for NMHC, NOx, and CO. In the 
U.S., motor vehicles can be divided between light-duty passenger vehicles which are mostly 
gasoline powered, and heavy-duty trucks and buses which are mostly diesel powered. Emission 
reduction measures in the U.S. have been implemented over a period stretching back to the 
1960s. Control efforts on gasoline engines include adjustments to air/fuel ratios, changes in the 
way fuel is metered into engines, changes to fuel properties, and use of catalytic converters that 
oxidize CO and NMHC and reduce NOx [Sawyer et al., 2000]. For diesel engines, installation of 
exhaust gas recirculation (EGR) and more recently the use of selective catalytic reduction (SCR) 
systems have lowered NOx. Tailpipe CO and hydrocarbon emissions can be reduced with diesel 
oxidation catalysts and particle filters along with particulate matter [Sandhu and Frey, 2012]. 
Initial control efforts emphasized achieving reductions in NMHC and CO emissions, before 
shifting to NOx [Parrish et al., 2011]. Additionally, emissions from light-duty vehicles were 
controlled earlier than heavy-duty diesel trucks. This has had important consequences for NOx, 
as heavy-duty truck emissions have become an increasing share of emissions in the U.S. 
[Dallmann and Harley, 2010; McDonald et al., 2012]. 
 
Emission inventories are central to air quality planning and atmospheric modeling studies, but 
inventories are subject to large uncertainties [Fujita et al., 1992; Parrish, 2006]. In estimating 
motor vehicle emissions, challenges arise in accurately representing traffic volumes and driving 
conditions as a function of location and time, and in specifying appropriate emission factors 
[Borge et al., 2012]. As fleet-average emissions decrease over time, it is becoming increasingly 
important to account for skewness in emission factor distributions, and in particular to include 
the contributions to overall emissions from high-emitting vehicles [Bishop et al., 2012b]. As 
emission factor distributions become more tail-heavy, larger and larger vehicle sample sizes are 
required in emission studies to maintain the same level of accuracy in estimates of population 
mean values. Fleet-average emission factors that reflect emissions from thousands of in-use 
vehicles are available from roadside remote sensing [Bishop and Stedman, 2008], roadway 
tunnel studies [Kirchstetter et al., 1996; Fraser and Cass, 1998], and inspection and maintenance 
program data [EPA, 2013c]. Similarly large and unbiased vehicle samples are very difficult to 
obtain and costly to test in laboratory settings. 
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A related challenge is controlling for effects of driving mode (e.g., vehicle speed, acceleration, 
and roadway grade) on emission factors, which can vary by pollutant [Kean et al., 2003; Bishop 
and Stedman, 2008; Lee and Frey, 2012]. Measurements taken at any single location are unlikely 
to represent the full range of emission factors and driving conditions observed on the road. Also 
excess emissions associated with cold engine starting are not usually captured in on-road 
emission studies. In laboratory testing, the cold start phase that includes the first few minutes of 
vehicle operation can be the dominant source of pollutant emissions for many vehicles, this is 
especially true for exhaust emissions of NMHC [Weilenmann et al., 2009].  Evaporative NMHC 
emissions from vehicles are also difficult to describe, in part because these emissions vary with 
changes in ambient temperature, and because some of the emissions occur while vehicles are 
parked. 
 
The main goal of this study is to evaluate long-term trends (1990-2010) in motor vehicle 
emissions for major urban areas in the U.S. New estimates for CO and NMHC emissions are 
developed in this study, and these values are compared with available estimates for NOx 
[McDonald et al., 2012]. An important feature of this work is the use of both source-oriented 
(bottom-up) and ambient air (top-down) measurements to constrain NMHC emission factors. 
Previous evaluations of emission inventories indicate that bottom-up and top-down studies of 
vehicle emissions have not converged [Fujita et al., 1992; Parrish, 2006]. Only a few of the top-
down evaluations have considered changes in emissions over a long time period. Ambient air 
measurement studies reporting selected individual hydrocarbon species in urban air have 
highlighted the importance of motor vehicle contributions [Warneke et al., 2007; Baker et al., 
2008; Warneke et al., 2012], but total mass emissions are not estimated, and many hydrocarbons 
known to be present in liquid fuels are missing (i.e., unmeasured or not reported) from ambient 
air studies. This paper focuses on three major U.S. metropolitan areas: Los Angeles, New York 
City, and Houston.  These metropolitan areas have large populations (6-22 million), violate 
ambient air quality standards, and have been focal points for field studies and air pollution 
control efforts.  
 
4.2 Methods 
 
4.2.1 Activity Data 
 
A fuel-based approach is used in this study to estimate motor vehicle emissions, where on-road 
vehicle activity is measured by fuel consumed rather than distance traveled, and emission factors 
are expressed per unit of fuel burned. In the U.S., gasoline is consumed primarily by light-duty 
passenger vehicles, whereas diesel is consumed mostly by heavy trucks and buses. Fuel sales are 
reported at national and state levels, and are allocated in this study to finer spatial scales using 
traffic count data. 
 
The spatial domain for Los Angeles was the South Coast air basin. New York City and Houston 
were represented as urban areas as defined by the U.S. Census Bureau. For the South Coast air 
basin, McDonald et al. [2012] have estimated gasoline and diesel fuel use, and these estimates 
are used here. For New York City and Houston, only gasoline fuel use is estimated. Annual 
reports of fuel sales and traffic data are available from the Federal Highway Administration 
[FHWA, 2011b]. Vehicle travel is reported for individual urban areas as well as by state, and is 
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used as a spatial surrogate for gasoline use. The amount of vehicle travel in each urban area as a 
fraction of state totals is calculated for each year and multiplied by statewide gasoline sales to 
arrive at estimates of fuel consumption in each metropolitan area of interest. 
 
Because ambient measurements were selected only for weekdays (see below), inventory 
estimates were adjusted to reflect weekday emissions for comparison. Heavy-duty truck fuel use 
is known to decrease by 70-80% on weekends, and day-of-week specific truck count data 
reported by Marr et al. [2002] were used to derive weekday-specific estimates of diesel 
emissions. 
 
4.2.2 Bottom-up CO Emission Factors 
 
We use CO running exhaust emission factors measured in tunnel and remote sensing studies, 
expressed in grams of CO emitted per kilogram of fuel burned. Remote sensing measurements of 
light-duty vehicle emissions in the Los Angeles area span a period of 20 years, and have been 
made at multiple locations [Lawson et al., 1990; Beaton et al., 1995; Singer and Harley, 1996, 
2000; Pokharel et al., 2003; Bishop and Stedman, 2008; Bishop et al., 2010; Bishop et al., 
2012b]. Vehicle emissions have also been measured at a tunnel in Van Nuys, CA, spanning a 
similar time period [Fraser and Cass, 1998; Bishop et al., 2012b; Fujita et al., 2012]. Multi-year 
studies of vehicle emissions in other U.S. and California cities are available for comparison, 
including remote sensing studies in Chicago [Y Zhang et al., 1996; Bishop and Stedman, 2008], 
Denver [Y Zhang et al., 1996; Stedman et al., 1997; Stedman et al., 1998; Bishop et al., 2000; 
Bishop and Stedman, 2008], Phoenix [Bishop and Stedman, 2008], and San Jose [Bishop et al., 
2010], and tunnel measurements in Oakland [Kirchstetter et al., 1996; Kean et al., 2002; Ban-
Weiss et al., 2008a; Dallmann et al., 2013] (Table 4.1). We focus on studies with sample sizes 
larger than 10 000 vehicles, to capture contributions from high-emitting vehicles (in the earliest 
years of field sampling in Denver, vehicle sample sizes were smaller, on the order of several 
thousand vehicles). Since both emission factors and fuel economy vary with vehicle age, 
emission factors for each vehicle model year were weighted by corresponding estimates of fuel 
economy [EPA, 2012], following an approach described by Singer et al. [Singer and Harley, 
1996]. Further fuel economy differences between cars and light-duty trucks were also taken into 
account.  This places greater weight on emissions from vehicles with lower fuel economies in 
calculating fleet-average emissions. Fuel economy-related adjustments are less influential after 
2000, as new vehicle fuel economy standards did not change significantly between the mid-
1980s and 2010. Typical uncertainties of the remote sensor for CO are ±5% [Bishop and 
Stedman, 2008]. The uncertainty of the regression analysis in this study reflects differences in 
fleet characteristics between remote sensing locations, such as vehicle fleet age and driving 
mode. 
 
Emission values can be affected by seasonal differences in fuel formulation, especially in earlier 
years when CO emission rates were higher and oxygenates were added to gasoline during winter 
months only [Bishop and Stedman, 1990; Kirchstetter et al., 1996]. In most cases, field sampling 
of vehicle emissions took place during the summer or fall and therefore exclude wintertime 
oxygenate effects on emissions. For Denver, both summer and wintertime measurements were 
taken. To ensure consistency in comparison of trends across cities, only summer emissions 
results were included in the analysis in earlier years. 
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Table 4.1. Summary of On-road Studies for Gasoline CO Run Exhaust Emission Factors. 
 
 
Location 

 
Type 

 
Date 

CO EF 
[g/kg fuel] 

Mean 
Age [y]a 

 
Reference 

 
Chicago, IL 
(Central Ave) 
 
 
 
 
Chicago, IL 
(Arlington 
Heights) 
 
 
 
 
 
 
 
 
 
 
 
Phoenix, AZ 
 
 
 
 
 
 
 
 
 
Denver, CO 
(Speer Blvd) 
 

 
Remote 
Sensing 
 
 
 
 
Remote 
Sensing 
 
 
 
 
 
 
 
 
 
 
 
 
Remote 
Sensing 
 
 
 
 
 
 
 
 
Remote 
Sensing 

 
Aug/89 
 
Oct/90 
 
Jun/92 
 
Sep/97 
 
Sep/98 
 
Sep/99 
 
Sep/00 
 
Sep/02 
 
Sep/04 
 
Sep/06 
 
Nov/99 
 
Nov/00 
 
Nov/02 
 
Nov/04 
 
Nov/06 
 
May/89 
 
Oct/91 
 
Apr/92 
 
Jul-Aug/96 
 
Dec/02b 

 

 
154.5 

 
133.3 

 
127.8 

 
55.8 

 
48.3 

 
44.2 

 
32.5 

 
28.1 

 
21.3 

 
15.8 

 
41.9 

 
35.5 

 
28.8 

 
24.1 

 
14.4 

 
170.3 

 
116.1 

 
116.5 

 
84.4 

 
34.4 

 
6.1 

 
5.5 

 
6.4 

 
5.0 

 
5.1 

 
5.1 

 
5.2 

 
5.3 

 
5.5 

 
5.7 

 
5.9 

 
5.7 

 
5.5 

 
5.5 

 
5.6 

 
6.6 

 
6.3 

 
6.4 

 
7.0 

 
6.5 

 
[Y Zhang et al., 1996] 
 
 
 
 
 
[Bishop and Stedman, 
2008] 
 
 
 
 
 
 
 
 
 
 
 
 
[Bishop and Stedman, 
2008] 
 
 
 
 
 
 
 
 
[Bishop and Stedman, 
1990] 
[Bishop et al., 2000] 
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Location 

 
Type 

 
Date 

CO EF 
[g/kg fuel] 

Mean 
Age [y]a 

 
Reference 

 
Denver, CO 
(6th Ave) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Oakland, CA 
(Caldecott) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
San Jose, CA 
 
 
 
Los Angeles, 
CA 
 
 
 
 

 
Remote 
Sensing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Tunnel 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remote 
Sensing 
 
 
Remote 
Sensing 
 
 
 

 
Dec/95-Jan/96 
 
Dec/96-Jan/97 
 
Jan/99 
 
Jan/00 
 
Jan/01 
 
Jan/03 
 
Jan/05 
 
Jan-Feb/07 
 
Aug/94 
 
Jul-Aug/95 
 
Jul-Aug/96 
 
Jul-Aug/97 
 
Jul-Aug/99 
 
Jul-Aug/01 
 
Jul-Aug/06 
 
Jul/10 
 
Oct/99 
 
Mar/08 
 
Dec/89 
 
May-Jun/91 
 
May-Oct/97 
 

 
73.8 

 
67.9 

 
59.7 

 
57.7 

 
46.6 

 
46.5 

 
30.4 

 
25.5 

 
105.7 

 
94.6 

 
74.3 

 
75.7 

 
52.0 

 
43.0 

 
24.0 

 
14.3 

 
49.6 

 
16.9 

 
202.1 

 
146.4 

 
108.1 

 

 
6.8 

 
6.7 

 
6.6 

 
6.6 

 
6.4 

 
6.6 

 
6.9 

 
7.2 

 
6.4c 

 
6.3 

 
6.5 

 
6.7 

 
6.4c 

 
6.2 

 
6.3 

 
6.4c 

 
6.9 

 
7.6 

 
7.7 

 
6.5 

 
6.6 

 
[Stedman et al., 1997] 
 
[Stedman et al., 1998] 
 
[Bishop and Stedman, 
2008] 
 
 
 
 
 
 
 
 
 
 
[Kirchstetter et al., 
1996] 
[Kean et al., 2002] 
 
 
 
 
 
[Ban-Weiss et al., 
2008a] 
 
 
 
 
[Dallmann et al., 2013] 
 
[Bishop et al., 2010] 
 
 
 
[Lawson et al., 1990] 
 
[Singer and Harley, 
1996] 
[Singer and Harley, 
2000] 
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Location 

 
Type 

 
Date 

CO EF 
[g/kg fuel] 

Mean 
Age [y]a 

 
Reference 

 
W Los 
Angeles, CA 
 
 
 
 
 
 
 
 
Van Nuys, CA 
 
 
 
 
 
 
 
 
Riverside, CA 
 
 
 
 
 

 
Remote 
Sensing 
 
 
 
 
 
 
 
 
Remote 
Sensing 
 
Tunnel 
 
 
 
 
 
Remote 
Sensing 
 
 
 
 

 
Nov/99 
 
Oct/01 
 
Oct/03 
 
Oct/05 
 
Mar/08 
 
Aug/10 
 
 
Sep/93 
 
1995 
 
Aug/10 
 
Jun-Jul/99 
 
May-Jun/00 
 
Jun/01 
 

 
69.6 

 
56.9 

 
44.3 

 
28.1 

 
21.1 

 
20.9 

 
 

175.7 
 

120.0 
 

21.3 
 

70.3 
 

65.6 
 

50.9 

 
7.2 

 
7.3 

 
7.2 

 
6.9 

 
7.0 

 
9.1 

 
 

7.3 
 

11.2 
 

9.1 
 

7.1 
 

7.3 
 

7.0 

 
[Bishop and Stedman, 
2008] 
 
 
 
 
 
 
[Bishop et al., 2010] 
 
[Bishop et al., 2012b] 
 
 
[Fraser and Cass, 
1998] 
[Gertler et al., 1997] 
 
[Fujita et al., 2012] 
 
[Pokharel et al., 2003] 
 
 
 
 
 

a. Age [y] = CY – mean vehicle fleet MY, where CY = Calendar Year and MY = Model Year. 
b. This dataset can be found at: http://www.feat.biochem.du.edu/light_duty_vehicles.html. 
c. The mean model year was not reported for these studies. Age was calculated as the average of study 

years where fleet age information was available.  
  



66 
 

A multivariate regression of CO running exhaust emission factors with time is performed on the 
aforementioned studies using a second order polynomial fit (Table 4.2). Differences in vehicle 
fleet age across on-road studies are controlled for, and included as an additional independent 
variable to account for (1) California having an older vehicle fleet than the national average, and 
(2) aging of the vehicle fleet in recent years due to recession-related effects on new vehicle sales. 
The mean vehicle age is estimated from the National Household Travel Survey (NHTS) [FHWA, 
1991, 2004, 2011a]. These values are then inputted into the regression model for each urban 
domain. Age distributions at remote sensing locations are similar to the U.S. and California 
vehicle fleets. Because California vehicles were certified to meet less stringent CO emission 
standards during the 1980s and early 1990s [Calvert et al., 1993], we include a dummy variable 
to account for differences between California vehicles and those from other states. This effect 
diminishes over time: since 1993, CO emission standards for new California vehicles have been 
the same as or more restrictive than national standards. Cold engine starting emissions are 
estimated for California only. The ratio of start to running emissions is taken from the EMFAC 
model (California Air Resources Board, EMFAC 2011, 
http://www.arb.ca.gov/msei/modeling.htm) and multiplied with running exhaust emissions from 
this study.  
 
For heavy-duty diesel trucks, we use linear regression to describe CO emission factor trends 
(Table 4.3). Data points include remote sensing measurements of truck exhaust plumes in 
Anaheim, CA [Bishop et al., 2012b], and San Marcos, TX [Bishop et al., 2001]. We exclude port 
locations where truck fleets may not be representative, and also exclude high-elevation sites that 
show increases in CO emissions, but that are not relevant for the cities that are the focus of this 
study.  Tunnel measurements of CO emissions from Tuscarora, PA in 1992 [Pierson et al., 1996] 
and Oakland, CA in 2010 [Dallmann et al., 2012] are included in the regression. To augment CO 
emissions data for the 1990s to support the regression analysis, we calculated fleet-average 
emission factors for calendar years 1992-98, based on heavy-duty vehicle chassis dynamometer 
emission tests summarized by Yanowitz et al. [2000]. 
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Table 4.2. Summary of On-road Gasoline CO Run Exhaust Emission Factor Regression.a,b 
 

 Coef. s.e. t valuec 
 

β0 
 

β1 
 

β2 
 

β3 
 

β4 
 

β5 
 

 
118.7 

 
0.395 

 
-14.26 

 
5.10 

 
-2.28 

 
33.7 

 

 
11.5 

 
0.046 

 
0.85 

 
1.65 

 
0.58 

 
6.6 

 
10.3 

 
8.5 

 
-16.7 

 
3.1 

 
-3.9 

 
5.1 

a. Model: YCO,EF (g/kg fuel) = β0 + β1*(CY – 1990)2 + β2*(CY-1990) + β3*Age + β4*CA + β5*CA*(CY-
1990), where Age [y] = CY – mean vehicle fleet MY, CA = (0: US, 1: CA). 

b. R2 = 0.95. 
c. All coefficients are statistically significant to the 99% confidence level. 
 
 
Table 4.3. Summary of On-road Diesel CO and NMHC Run Exhaust Emission Factor 
Regressions. 
 

 Coef. s.e. t value 
 

CO EFa: 
 

β0 
 

β1 
 

NMHC EFb: 
 

β0 
 

β1 
 

 
 
 

19.25 
 

-0.470 
 
 
 

2.083 
 

0.000423 

 
 
 

1.58 
 

0.123 
 
 
 

0.488 
 

0.035 

 
 
 

12.2c 
 

-3.8c 
 
 
 

4.3c 
 

0.01d 

a. CO Model: YCO,EF (g/kg fuel) = β0 + β1*(CY – 1990); R2 = 0.62. 
b. HC Model: YHC,EF (g/kg fuel) = β0 + β1*(CY – 1990); R2 < 0.01. 
c. Coefficients are statistically significant to the 99% confidence level. 
d. Coefficient is not statistically significant. 
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4.2.3 Top-Down Gasoline NMHC/CO 
 
Light-duty NMHC emission factors are estimated using a top-down approach by determining 
ratios of gasoline-related NMHC to CO in ambient air using a combination of literature values 
and monitoring data (Table 4.4). Gasoline-related NMHC are emitted as evaporated fuel and 
tailpipe exhaust from vehicles in use or at rest, or from storage tanks [Gentner et al., 2009]. To 
isolate gasoline-related emissions, we either use an over-constrained chemical mass balance 
(CMB) method, or scale the sum of unburned fuel species predominantly emitted by motor 
vehicles by their mass fraction in liquid fuel samples. Ambient NMHC/CO reported here include 
evaporative and fugitive emissions in addition to tailpipe exhaust, because tracer species are 
emitted via each of these pathways [Gentner et al., 2009]. 
 
CMB was applied to hourly ambient air measurements (N=57; morning rush hour samples only) 
from the 1987 Southern California Air Quality Study [Harley et al., 1997], and PAMS 
monitoring network data from downtown Los Angeles between 1994 and 2001 (N=357). A 
detailed description of CMB analysis can be found in Gentner et al. [2012]. PAMS samples were 
collected every third day from July to August at 5 AM, and also at noon from 1994 to 1999. 
Tracer compounds whose emissions are mainly due to motor vehicles were selected and scaled 
up to reflect other unmeasured fuel-derived species, based on the content of the measured 
ambient species in liquid gasoline samples collected over the same time period [Harley et al., 
1992; Gentner et al., 2012]. Compounds used included isopentane, 3-methylpentane, 3-
methylhexane, methylcyclohexane, and isooctane (as well as n-butane in 1987). Based on results 
of Kirchstetter et al. [1996], we estimate that 24 ± 2% of exhaust NMHC emissions by mass are 
products of incomplete combustion (e.g. ethane, ethene, acetylene, propene), which are not 
captured by the CMB analysis. This value is used to adjust upward results for the gasoline source 
contribution in ambient air. The motor vehicular contribution to ambient NMHC is then 
regressed with concentrations of CO to derive the ambient ratio of NMHC/CO. 
 
For field measurements where ambient results are reported as study averages [Warneke et al., 
2007; Baker et al., 2008; Warneke et al., 2012], we scaled up each tracer species individually 
based on corresponding mass fractions in unburned fuel, and used averages of the ensemble of 
the results. This resulting value was adjusted to include products of incomplete combustion as 
described above. NMHC emission factors were obtained by multiplying bottom-up CO running 
exhaust emission factors for each calendar year by the average ambient NMHC/CO ratio 
resulting from the analyses described above. 
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Table 4.4. Summary of Gasoline NMHC/CO Ratios from Summertime Ambient Studies. 
 
Year Data NMHC/CO Ratio [g/g]a,b Comments 
 
1987 
 
 

 
SCAQS network N. 
Main site 

 
0.126 ± 0.024 (95% CI) 
(N=57, r=0.82) 

 
Over-constrained CMBc,d 

1994-2001 
(summer data) 
 

PAMS network N. 
Main Site 

0.093 ± 0.007 (95% CI) 
(N=357, r=0.83) 

Over-constrained CMBc,d, 
No trend observed 

2002 
 
 

[Warneke et al., 
2007] 

0.125 ± 0.054 Ensemble average of 
scaled up compound 
ratiosd-f 
 

2005 
 
 

[Baker et al., 2008] 0.144 ± 0.044 Ensemble average of 
scaled up compound 
ratiosd-f 
 

2005 
 
 
 

[Gentner et al., 
2009] 

0.104 ± 0.008 (95% CI) Basic CMBd 

2010 
 
 

[Warneke et al., 
2012] 

0.119 ± 0.059 Ensemble average of 
scaled up compound 
ratiosd-f 

 
a. The NMHC/CO ratios presented here include unburnt fuel, products of incomplete combustion in 

tailpipe exhaust, and fugitive (e.g. evaporative) emissions from vehicles and storage tanks. 
b. Ratios are shown with standard deviations unless indicated otherwise. 
c. Over-constrained CMB methods are described in detail in Gentner et al. [Gentner et al., 2012] and 

used fuel data from the periods of interest. Tracer compounds used in this analysis were isopentane, 
3-methylpentane, 3-methylhexane, methylcyclohexane, and isooctane (& n-butane in 1987). 

d. Ambient ratios are scaled up assuming 24% of NMHC emissions are products of incomplete 
combustion [Kirchstetter et al., 1996]. 

e. Ambient ratios are scaled up assuming 24% of total gasoline-related emissions are non-tailpipe, 
which was derived from Gentner et al. [2009] for 2005 and from CMB analysis in this study for 1987 
and PAMS 1994-2001. 
Each gasoline tracer is scaled to total NMHC by their presence in liquid fuel samples taken over this 
time period [Harley et al., 1992; Gentner et al., 2012]. These analyses are more uncertain and likely 
an upper limit due to the contribution of other sources of hydrocarbon emissions. 
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4.2.4 Bottom-up Diesel NMHC 
 
For heavy-duty diesel trucks, a regression analysis of remote sensing [Bishop et al., 2001; Bishop 
et al., 2012b], tunnel [Gentner et al., 2012], and chassis dynamometer [Yanowitz et al., 2000] 
measurements was used to estimate bottom-up fleet-averaged NMHC emission factors (Table 
4.3). Infrared (IR) remote sensors calibrated using propane are known to underestimate NMHC 
emissions from gasoline engines by a factor of ~2 when compared to flame ionization detectors 
(FID) [Singer et al., 1998]. Because the mix of hydrocarbons present in exhaust emissions differs 
between gasoline and diesel engines, a separate NMHC scaling factor was derived based on 
comprehensive diesel fuel speciation profiles published by Gentner et al. [2012], and generalized 
IR/FID response factors reported by Singer et al. [1998]. The IR/FID response for alkanes and 
cycloalkanes is approximately equal to 1. For single-ring aromatics we estimate the response to 
be (n – 6)/n, where n is the number of carbon atoms in the molecule (i.e., the aromatic ring and 
associated C-H bonds are invisible at the IR wavelengths used for remote sensing). For 
polycyclic aromatics we assumed zero response. We included diesel emissions of ethene 
reported by Dallmann et al. [2012], which Singer et al. report to have IR/FID response of ~0. 
Overall, a scaling factor of ~1.2 applies for diesel exhaust, in contrast to the higher value of ~2 
for gasoline engine NMHC emissions. The differences in IR/FID response between fuels are 
driven by the higher alkane/cycloalkane and lower aromatic fractions in diesel fuel compared to 
gasoline, and the presence of longer alkyl constituents on aromatics present in diesel fuel. 
Oxygenated products of incomplete combustion are not included in these calculations, such as 
formaldehyde which is an important species in diesel exhaust [Dallmann et al., 2012]. If 
included, the scaling factor would increase to reflect non-methane organic carbon (NMOC) 
rather than NMHC mass.  
 
4.2.5 Ambient Air Monitoring Data 
 
We compare bottom-up CO emission trends derived in this study with top-down trends in surface 
observations of CO and CO/NOx ratios derived from ambient air monitoring networks. To isolate 
motor vehicle emissions, comparisons are made during the morning commuter peak period, on 
weekdays from 0500 to 0800 hours local standard time over the entire year [Fujita et al., 1992; 
Parrish, 2006]. Cold start effects are included in ambient data. To reduce effects of year-to-year 
meteorological variations in extreme values of the distribution, we calculated the annual mean of 
the daily 3-hour morning average of weekday CO levels, rather than using absolute maxima for 
each year. For Southern California, we used long-term records (1990-2011) of measured CO 
concentrations at 9 urban sites located in Los Angeles and Orange Counties where CO mixing 
ratios are highest. In New York City, data from 7-14 monitoring sites were available in each 
year, and for Houston 3-4. For CO/NOx, we limit the analysis to Los Angeles and include four 
additional monitoring sites located further inland. Ambient CO/NOx molar ratios were computed 
by regression analysis of daily 0500-0800 average concentrations for each year. 
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4.3 Results and Discussion 
 
4.3.1 CO Emission and Ambient Trends 
 
Significant progress has been made in controlling motor vehicle CO running exhaust emissions 
over the last twenty years (Figure 4.1a). For gasoline-powered vehicles since 1990, there were 
10-fold and 7-fold reductions in CO emission factors of running exhaust measured in California 
and the US, respectively. During the early 1990s, California vehicles consistently emitted CO at 
higher amounts, due to emission control tradeoffs that were made to enable more effective 
control of NOx [Calvert et al., 1993]. In terms of CO emission factors, California vehicles appear 
to have converged with the US fleet by around 2005. The large decreases in CO running exhaust 
emission factors observed both in California and at the national scale can be attributed to 
improved performance and durability of catalytic converters [Bishop and Stedman, 2008], and 
associated improvements in control of air-fuel ratios in gasoline engines. 
  
As a result of the notable success in CO emission control, the distribution of running exhaust 
emission factors is becoming increasingly skewed, such that a smaller and smaller proportion of 
vehicles on the road are accounting for the majority of overall emissions (Figure 4.1b). The 
distribution is based on the assumption that remote sensing captures a representative sample of 
vehicles for the region on a distance traveled basis. In 1989, the highest-emitting 10% of vehicles 
in Los Angeles accounted for ~50% of running CO emissions [Lawson et al., 1990], whereas by 
2010, the top 10% of vehicles were responsible for ~85% of the emissions [Bishop et al., 2012b].  
Similarly, ~80% of vehicles contributed negligible amounts of CO in 2010. This suggests that 
further reductions in light-duty CO emissions should target high-emitters rather than the vehicle 
fleet as a whole, which are ~5-7 years older than the rest of the fleet (Figure 4.2). Emission factor 
distributions are also skewed for other pollutants (Figure 4.3). The skewness for light-duty 
NMHC, CO, and NOx emissions is -4.9, -3.9, and -2.9, respectively. The distribution of NOx 
emission factors for heavy-duty trucks is currently much less skewed (skewness = -0.6 to -0.7) 
[Bishop et al., 2012b; Dallmann et al., 2012] than for gasoline-powered vehicles (skewness = -
2.9), and results because most trucks at present are not equipped with advanced systems for NOx 
control (Figure 4.3). 
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Figure 4.1. (a) Carbon monoxide stabilized (running) emission factor trends for light-duty 
gasoline-powered vehicles. All trends shown here are derived from remote sensing data, except 
for California tunnel measurements made in Oakland, and are reflective of long-term changes in 
summertime emissions (see text). Gray bands show 95% confidence intervals of the regression 
for California (upper band) and US (lower band).  Individual emission factors for a given 
calendar year reflect local vehicle mixes across model years. (b) Cumulative distributions of 
stabilized CO emissions from gasoline-powered vehicles in Los Angeles, based on remote 
sensing measurements of many individual vehicle exhaust plumes. The fraction of total CO 
emissions coming from the highest-emitting 10% of vehicles on the road increased from ~50 to 
~90% between 1989 and 2010. The skew of emissions shown in panel b were not incorporated in 
the emission factor regression shown in panel a. Also, the distribution curves reflect fuel 
economy weighting by vehicle model years. 
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Figure 4.2. Vehicle age distributions of high and low emitting vehicles for running exhaust 
emissions of CO from remote sensing in Los Angeles for (a) 1989 and (b) 2010. High emitting 
vehicles are defined as the top 10% and low emitting as the bottom 90%. 
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Figure 4.3. Distribution of running exhaust emissions for NMHC, CO, and NOx in 2010.  Light-
duty measurements are for the same location in Los Angeles. Similar results for heavy-duty 
diesel NOx are shown based on remote sensing at Peralta weigh station in Anaheim (lower blue 
line) and tunnel measurements in Oakland (upper blue line). 
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Bottom-up running exhaust emissions and ambient concentrations of CO are compared in Figure 
4.4 for the three metropolitan areas. The long-term trends in emissions are reflective of changes 
during summertime. Because gasoline vehicles heavily dominate the on-road inventory of CO 
emissions in Los Angeles, only gasoline is shown. The large reductions in CO running exhaust 
emission factors are more than enough to offset 10-40% increases in gasoline sales from 1990 to 
2010. Los Angeles and New York City saw growth in gasoline use near the lower end of this 
range, while Houston saw a larger increase in gasoline use. Running CO emissions from on-road 
vehicles decreased by 80-90%, despite increases in the number of vehicles on the road and the 
amount of fuel burned. The results of this study are consistent with trends in ambient CO 
concentrations measured in all three cities. Comparisons of fuel-based emission estimates for the 
Los Angeles area with estimates from the most recent version of the EMFAC model are also in 
reasonable agreement, though our rate of CO reduction may be slightly steeper than EMFAC.  
 
The fuel-based trend of decreasing CO running emissions appears to be slowing and may have 
stopped completely in recent years. This emissions-related finding is consistent with ambient 
observations that show little change in CO concentrations in the most recent years, which is true 
in all three cities (Figure 2). Federal tailpipe emission standards for CO have not been lowered 
since Tier 0 standards were first implemented on 1981 model year vehicles (Figure 4.5) [Parrish, 
2006]. The slowdown in the ambient trend is also due to aging of the vehicle fleet, and the 
growing importance of cold start emissions. In California, start emissions have accounted for an 
increasing fraction of CO emissions: from 15% in 1990 to 27% in 2010. The influence of 
deterioration on ambient trends may depend on the extent to which model year vehicles 1991-
2000 remain in the fleet. A decade analysis of remote sensing data found deterioration rates were 
near zero for model year vehicles 1990 and earlier, and 2001 and later [Bishop and Stedman, 
2008].  
 
Running emission factors for CO are known to vary depending on engine load [Kean et al., 
2003; Bishop and Stedman, 2008; Lee and Frey, 2012]. When expressed per unit of fuel burned, 
the CO emission factor increases both at idle, and especially when accelerating while driving at 
high speed. Engine load can be described using a normalized measure known as vehicle specific 
power (VSP = engine power output divided by vehicle mass, in W kg–1 or kW t–1) which is a 
function of vehicle speed, acceleration, and roadway grade [Jimenez et al., 1999]. For the West 
Los Angeles remote sensing site [Bishop and Stedman, 2008], we calculated VSP for each 
vehicle and compared the resulting distribution of engine load with the corresponding fuel use 
distribution derived from the Unified LA92 drive cycle [Austin et al., 1992], which is used to 
represent the full range of in-use driving conditions observed on-road in California. Driving 
conditions at the West Los Angeles site encompass most of the range of the Unified cycle, but 
idle and high engine load operating conditions are under-represented (Figure 4.6). For VSP 
values between 0 and 25 kW t–1, which accounts for ~95% of the fuel use in the Unified cycle, 
the CO emission factor is relatively stable.  For comparison, driving conditions are similar at the 
Denver site, while engine loads are lower in Chicago but predominantly between 0 and 25 kW t-1 
[Bishop and Stedman, 2008]. This suggests that effects of engine load on CO emission rates do 
not introduce substantial bias in the fleet-average results reported here, though some high load 
driving may be missing in this analysis.  
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Figure 4.4. Ambient concentration and on-road gasoline vehicle trends for stabilized (running) 
CO emissions in (a) Los Angeles, (b) New York City, and (c) Houston metropolitan areas. 
Emission estimates shown as bands give 95% confidence intervals, and the long-term emission 
changes are reflective of summertime.  EMFAC model predictions (dashed line) are shown for 
Los Angeles. Ambient CO data reflect morning rush hour conditions on weekdays when CO 
levels are high and vehicle emissions dominate, and are shown as the annual average (see text). 
Start emissions are not shown, but have accounted for an increasing share of on-road gasoline 
emissions in California from 15% to 27% between 1990 and 2010.  
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Figure 4.5. Vehicle age distribution of U.S., Los Angeles, New York City, and Houston vehicle 
fleets over time [FHWA, 1991, 2004, 2011a]. Successive federal CO emission standards are 
shown for light-duty vehicles at bottom [Parrish, 2006]. Large changes in emission standards 
occurred prior to Tier 0 standards, which started with model year 1981. 
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Figure 4.6. (a) Variability of CO emission factors with engine load at remote sensing from West 
Los Angeles. High-emitters are defined as the top 10% of vehicles. Vehicle specific power is 
calculated as VSP = 4.39*sin(slope)*v + 0.22*v*a + 0.0954*v + 0.0000272*v3, where slope is in 
degrees, v = velocity in mph, and a = acceleration mph/s [Jimenez et al., 1999]. The remaining 
vehicles are labeled as low emitters. Emission factors for each subgroup are shown for the years 
1999 (solid lines) and 2008 (dashed lines). (b) Distribution of engine loads for remote sensing in 
West Los Angeles, Denver, and Chicago as compared to the California Unified LA92 drive 
cycle.
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Figure 4.7. (a) Trends of ambient NMHC/CO in Los Angeles derived from special field studies 
and Photochemical Assessment Monitoring Stations (PAMS) data during summertime. NMHC 
data have been adjusted to exclude non-vehicular emissions (see text). Comparisons to ratios 
from EMFAC are also shown.  (b) Measured NMHC/CO emission ratios derived from remote 
sensing (open symbols) and tunnels (solid symbols). Uncertainty bands reflect 95% confidence 
intervals in both panels. Note that “This Study (LA)” is the same in both panels. 
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4.3.2 NMHC Emission and Ambient Trends 
 
Figure 4.7 shows a stable top-down ambient NMHC/CO ratio of 0.24 ± 0.04 mol C/mol CO in 
Los Angeles. Units are shown as molar ratios to be consistent with prior studies reporting 
ambient species relative to CO [Baker et al., 2008; Warneke et al., 2012]. Given reductions in 
CO described above, this result suggests that vehicular emissions of NMHC and CO have been 
decreasing at a similar rate, and that gasoline powered vehicles dominate the emissions of 
NMHCs used in this study. This is consistent with pollutant concentration trends observed in the 
Los Angeles area over a 50-year period [Warneke et al., 2012]. Note that the ambient-derived 
trend includes evaporated fuel in addition to tailpipe emissions. The EMFAC model also shows 
similar reductions in CO and NMHC emissions over time, and a roughly constant emission ratio 
that is similar to our estimate.  
 
When compared to on-road diesel engines, hydrocarbon emission factors for gasoline engines 
have historically been much higher when expressed per unit of fuel burned.  Diesel engines 
operate with excess oxygen, and these fuel-lean conditions are conducive to oxidation of CO and 
NMHC. While near-stoichiometric combustion conditions typical in gasoline engines lead to 
higher engine-out CO and NMHC emissions, widespread use of the three-way catalytic converter 
has proved very effective at reducing these emissions from gasoline engines. Diesel CO and 
NMHC emissions have also declined over time, but the reductions have not been as great, such 
that for NMHC especially the gap between gasoline and diesel emission factors has narrowed 
considerably. Gasoline engines still dominate in terms of overall NMHC mass emissions, 
because of larger volumes of gasoline sold and used compared to diesel fuel. Looking ahead, 
trucks will increasingly be equipped with diesel particulate filters and associated upstream 
oxidation catalysts used for regeneration of the filter, and this is expected to reduce diesel 
NMHC emissions significantly [Herner et al., 2009]. 
 
Bottom-up NMHC/CO emission ratios from remote sensing studies and tunnel measurements in 
Oakland (Caldecott) and Los Angeles (Van Nuys) are shown for comparison in Figure 4.7b. A 
key result is that the on-road studies in California also show NMHC/CO emission ratios that are 
stable over time, consistent with trends in top-down pollutant ratios derived from ambient air 
studies discussed above. However, the absolute ratios in on-road studies differ by a factor of 2, 
with the Caldecott tunnel measurements on the lower end, remote sensing on the upper end, and 
Van Nuys tunnel study results in the middle. A potential explanation is systematic differences in 
driving conditions and engine load among study sites. Vehicles inside the Caldecott tunnel are 
driving uphill on a 4% grade at speeds of 60-100 km h–1 [Kean et al., 2003]. Vehicles traveling 
through the Van Nuys tunnel move at a uniform speed of ~65 km h-1 with a small net downhill 
grade of ~0.1% in the eastbound direction [Fraser and Cass, 1998; Fujita et al., 2012]. It has 
been suggested that higher NMHC/CO ratios measured by remote sensing, when compared to 
tunnel measurements at Van Nuys, could be due to differences in driving conditions between two 
nearby sampling locations [Bishop et al., 2012b]. Differences in NMHC/CO ratios appear to 
arise primarily due to engine load effects on NMHC as opposed to CO emissions. A 
methodological difference between approaches shown in Figure 4.7b is that remote sensing 
captures tailpipe emissions only, tunnel studies include evaporative running loss emissions 
[Kirchstetter et al., 1996; Bishop et al., 2012b], and ambient ratios include the full range of 
evaporative and exhaust emissions. The lowest NMHC/CO ratio should be from remote sensing, 
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but the magnitude is comparable to the ambient-derived ratio, highlighting the need for checking 
bottom-up estimates of NMHC with top-down measurements. 
 
We did not estimate NMHC in New York City and Houston in this analysis, and we recommend 
caution in applying the ambient NMHC/CO ratios discussed above outside of California. Local 
conditions including temperature, humidity, altitude, and characteristics of vehicle fleets can all 
influence emissions. NMHC/CO ratios derived from remote sensing are increasing over time in 
Chicago, and decreasing in Denver, although in an absolute sense the emission ratios from other 
cities are in rough agreement with Los Angeles (Figure 4.7b).  
 
4.3.3 CO/NOx and NMHC/NOx Trends 
 
Bottom-up CO and top-down derived NMHC emission results reported here are compared with 
NOx emission results reported by McDonald et al. [2012] for the South Coast air basin (Figure 
4.8). In this section of the analysis, cold start emissions are included with running exhaust. 
Results are reported with NOx in the denominator to be consistent with prior work [Fujita et al., 
1992; Parrish et al., 2002]. Between 1990 and 2007, the bottom-up CO/NOx emissions ratio 
from on-road vehicles decreased by ~4, with slight increases after 2007. The same result is true 
for emissions of NMHC to NOx, since the ambient NMHC/CO remained unchanged. The large 
decreases in on-road emissions of CO/NOx and NMHC/NOx ratios are a result of two factors: (1) 
larger decreases in gasoline CO and NMHC emissions relative to gasoline NOx, and (2) increases 
in diesel NOx emissions during the 1990s. The flattening of the CO/NOx emissions ratio after 
2002, and the uptick after 2007 appear to be a result of diminishing returns on efforts to control 
CO and NMHC emissions from light-duty vehicles, as well as decreases in diesel NOx emissions 
since 2007 due to recession-related reductions in goods movement. We expect that CO/NOx and 
NMHC/NOx emission ratios for on-road motor vehicles will continue to increase. Advanced 
systems for NOx emission control are now required on new heavy-duty diesel trucks nationwide, 
and a California rule will further require replacement of all pre-2010 heavy-duty truck engines 
over the next ten years. Significant further reductions in NOx emissions are therefore expected. 
In contrast, decreases in gasoline CO and NMHC emissions are not expected to be as large over 
the coming decade, so ratios to NOx should increase. 
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Figure 4.8. (a) Trends in CO/NOx emission ratios. Ratios for Los Angeles shown as bands 
reflect emissions from light-duty vehicles only (including running + start; upper band in green), 
and total emissions from all on-road vehicles (including diesel; lower band in gray). The mean, 
maximum, and minimum values from the ambient monitoring data are shown as a 3-year moving 
average for the morning commute period (0500 to 0800 PST). City abbreviations are shown for 
ambient literature values. (b) Trends in NMHC/NOx emission ratios. Results from this study are 
compared with EMFAC (including running + start). Uncertainty bands reflect 95% confidence 
intervals in both panels, see supporting information for details. NOx emissions taken from 
McDonald et al. [2012]. 
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Mean ambient CO/NOx are also shown from the monitoring network in the South Coast air basin 
in Figure 4.8a. The monitoring ratio is ~25% higher than bottom-up emissions of CO to NOx, 
which represent the California on-road vehicle fleet (gasoline + diesel), though the trend appears 
consistent. This suggests underestimation of CO and/or overestimation of NOx emissions using a 
fuel-based approach. The comparison could also be complicated by the influence of start 
emissions as ambient monitoring ratios are for the morning commute. Additionally, spatial 
heterogeneity of the vehicle mix (gasoline vs. diesel) could affect the comparison. In supporting 
information, we show that the ambient ratio of CO/NOx varies by a factor of 2 across 13 urban 
sites in southern California, due to spatial differences in the local mix of gasoline versus diesel 
vehicles. Areas with lower CO/NOx ratios are more diesel-dominated on average, since even a 
small amount of diesel traffic can add significantly to NOx emissions. Comparisons between 
basin-wide emission inventory ratios and ambient CO/NOx or NMHC/NOx ratios derived from 
sites within the air basin are increasingly subject to uncertainties due to spatial and temporal 
variations in diesel NOx sources. This emphasizes the need for motor vehicle emission 
inventories that provide high spatial and temporal resolution. 
 
Figure 4.8a compares our bottom-up emission results with ambient CO/NOx ratios reported in 
the literature based on measurements made by either ground-based ambient monitors or by 
aircraft in Los Angeles [Harley et al., 1997; Pollack et al., 2012; Brioude et al., 2013], New 
York City [Kleinman et al., 2000], Houston [Ryerson et al., 2003; Brioude et al., 2011], Atlanta 
[Parrish, 2006], Philadelphia [Kleinman et al., 2004], Phoenix [Nunnermacker et al., 2004], 
Boulder [Parrish et al., 2002], Nashville [Parrish et al., 2002], and Boise [Wallace et al., 2012]. 
Most of the literature values for ambient CO/NOx are for weekdays during the morning commute 
period. Also shown in Figure 4.8a is an ambient CO/NOx trend derived by Parrish [Parrish, 
2006], representing a US urban average from 300 monitoring sites. A key finding is that both in 
absolute terms and in trend over time, measurements in other US cities appear to show consistent 
CO/NOx ambient ratios and trends that are consistent with results for Los Angeles. This suggests 
general similarity in motor vehicle emission trends across US urban areas. 
 
The EMFAC model (running + start) provides a different explanation for trends in CO/NOx and 
NMHC/NOx for Los Angeles (Figure 4.8b). The trend in overall emissions (gasoline + diesel 
vehicles) agrees with fuel-based emission estimates of the present study, but there is a difference 
for light-duty vehicles. EMFAC indicates that the CO/NOx and NMHC/NOx emission ratios for 
light-duty vehicles have remained constant over the period 1990-2010, while this study suggests 
that the corresponding emission ratios decreased through the 1990s especially, and have leveled 
off since then. Because there was good agreement between this study and EMFAC in bottom-up 
CO emissions and top-down NMHC/CO ratios, the discrepancy is mainly due to NOx emissions 
[McDonald et al., 2012]. The ambient data also suggests a decreasing trend in CO/NOx emission 
ratios from passenger vehicles, as represented by the maximum value of ambient CO/NOx from 
the monitoring network shown in Figure 4a. The maximum value represents a location with a 
predominantly gasoline vehicle mix. As an offsetting effect in the estimation of total emissions 
from on-road vehicles, the EMFAC model predicts larger increases in diesel NOx emissions as 
compared to a fuel-based estimate [McDonald et al., 2012], and hence why NMHC/NOx from 
total on-road is in better agreement with this study. 
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4.3.4 Policy Implications 
 
In the greater Los Angeles area, peak ozone concentrations decreased by a factor of 2 between 
1980 and 2000, but ozone reductions appear to have slowed greatly since 2000 [Parrish et al., 
2011]. Slow decreases in peak ozone have also been observed in Houston and New York City 
since 2000. The hydrocarbon to NOx emissions ratio is one of several important factors that 
determine NOx and hydrocarbon-sensitivity regimes that govern urban and regional ozone 
formation [Sillman, 1999]. Given that motor vehicles are a major source of ozone precursors in 
urban environments, changes in the effects of emission control strategies during the 1990s (Δ% 
NMHC > Δ% NOx) versus since 2000 (Δ% NMHC ≈ Δ% NOx) are likely to have affected 
atmospheric chemistry and ozone formation regimes, although other sources (e.g. industry, 
solvents, biogenics) of O3 precursors may also be important. In the period 2010-2020, another 
shift is predicted in decadal emission changes: Δ% NMHC < Δ% NOx, due mainly to installation 
of SCR systems on heavy-duty trucks.  
 
In this study, running CO and evaporative and tailpipe NMHC emissions from gasoline-powered 
vehicles are shown to have decreased by almost an order of magnitude over the last twenty years 
using a fuel-based approach. However, decreases in emissions of these pollutants appear to be 
slowing down and may have leveled off. As shown, the success in control of emission from 
gasoline vehicles has led to greater skew in emission factor distributions, such that the highest-
emitting 10% of vehicles are now responsible for the overwhelming majority of running CO 
(skewness = -3.9), NMHC (skewness = -4.9), and NOx (skewness = -2.9) (Figure 4.3). If 
progress in reducing emissions is to continue, vigorous efforts will be needed to identify and 
repair or replace high-emitting vehicles. Fuel economy improvements are an alternative approach 
being pursued over the coming decade that could help to reduce overall emissions of CO and 
NMHC, even if fleet-averaged emission factors (in g/kg fuel) do not change. High-emitting 
engines can also be expected to increasingly dominate emissions from the heavy-duty truck fleet 
in the future, especially as the use of diesel particle filters and selective catalytic reduction (SCR) 
systems becomes more widespread [Sandhu and Frey, 2012] (Figure 4.3). 
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Chapter 5: Long-Term Trends in Motor Vehicle Emissions and Ambient 
Concentrations of Particulate Black and Organic Carbon 
 
5.1 Introduction 
 
Two major constituents of airborne fine particulate matter are black carbon (BC) and organic 
carbon (OC). Bond et al. [2013] estimate that black carbon is the second largest contributor to 
anthropogenic climate forcing behind only carbon dioxide. In North America, the two largest 
sources of black carbon are on-road and off-road diesel engines, which together account for 
about half of total BC emissions [Bond et al., 2013]. Because black carbon is abundant in diesel 
particulate matter emissions [Watson et al., 1994], black carbon is sometimes used as a tracer for 
diesel sources [Lloyd and Cackette, 2001]. Black carbon present in exhaust emissions provides 
solid particle surface area upon which other compounds, including volatile, semi-volatile, and 
low-volatility organics that are present in diesel exhaust [Ristovski et al., 2012], may condense or 
adsorb. Diesel exhaust has been classified as a known human carcinogen by the International 
Agency for Research on Cancer. Short-term exposure to diesel exhaust has been associated with 
impaired vascular function [Mills et al., 2007; Smith et al., 2009; Barath et al., 2010]. 
 
Organic aerosols (OA) have been found to comprise a major fraction of submicron airborne 
particle mass at urban and rural/remote measurement sites around the world [Q Zhang et al., 
2007; Jimenez et al., 2009]. Organic aerosols are light scattering and have a negative forcing on 
global climate [IPCC, 2013]. Unlike black carbon, all of which is emitted directly from sources 
into the atmosphere, organic aerosols arise due to both primary emission and secondary in situ 
atmospheric formation pathways. Primary organic aerosol (POA) refers to organics that are 
directly emitted to the atmosphere in the particle phase. Secondary organic aerosol (SOA) refers 
to organic aerosol that is generated in situ from volatile or semi-volatile organic gas precursors. 
Many of these organics can be oxidized in the atmosphere to form condensable low-volatility 
products [Goldstein and Galbally, 2007; Jimenez et al., 2009]. A complicating factor is that 
partitioning of POA emissions between gas and particle phases varies depending on OA mass 
loadings and the extent to which exhaust emissions have been diluted in ambient air [Robinson et 
al., 2007].  
 
There have been several debates surrounding organic aerosols. An early debate was on the 
relative importance of POA versus SOA. During air pollution episodes, studies in the Los 
Angeles basin reported high formation of SOA relative to POA as early as 1987 [Turpin and 
Huntzicker, 1991, 1995; Schauer et al., 2002]. Other studies found POA to dominate SOA 
during non-air pollution episodes [Turpin and Huntzicker, 1995; Schauer et al., 1996]. Recent 
work in Los Angeles [Docherty et al., 2008; B J Williams et al., 2010; Hayes et al., 2013] and 
from around the world [Q Zhang et al., 2007; Jimenez et al., 2009] have concluded that SOA is 
the dominant source of OA, contributing ~2/3 of the urban submicron mass globally. Downwind 
of major urban areas, the contribution of SOA relative to POA is even higher. It is generally 
believed that SOA is now more important to the total OA budget than POA. 
 
Another debate relates to the relative importance of gasoline versus diesel vehicles in the 
emissions of POA. Schauer et al. [1996] found diesel exhaust accounted for a majority to 
dominant fraction of POA from gasoline and diesel engines in Los Angeles. Watson et al. [1998] 
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concluded the opposite in Denver, and found gasoline emissions dominated POA. A more recent 
analysis found that in parts of Los Angeles diesel emissions dominated total carbonaceous 
aerosol (TC = BC + OC), but were comparable to on-road gasoline contributions in other areas 
[Fujita et al., 2007]. A current debate relates to the importance of on-road gasoline [Bahreini et 
al., 2012] versus diesel [Gentner et al., 2012] emissions in the formation of anthropogenic SOA. 
There is a lack of long-term data on the full range of organic compounds emitted in motor 
vehicle exhaust, especially from diesel engines, which form SOA in the atmosphere. Precursor 
emissions of volatile organic compounds (VOCs) are much higher from gasoline than from 
diesel vehicles [McDonald et al., 2013]. However, the composition of VOCs emitted from each 
type of vehicle is also important. Gentner et al. [2012] estimate that the fraction of VOC 
emissions that is converted to SOA from diesel engines is 6.7 ± 2.9 times greater than from 
gasoline engines, due to a higher abundance of intermediate volatility products, which more 
easily form SOA than lighter and more volatile compounds found in gasoline exhaust. Questions 
remain as to whether SOA yields of compounds emitted in motor vehicle exhaust are 
underestimated from smog chamber studies as compared to real world observations of the 
atmosphere [Ensberg et al., 2014]. 
 
The objectives of this study are to describe long-term trends in (1) on-road diesel engine 
emissions of black carbon, and (2) ambient particulate black and organic carbon concentrations 
in urban settings. The emissions and ambient trends are then compared to reconcile observed 
concentration changes with efforts to control motor vehicle emissions. Previous studies have 
assessed long-term trends in emission factors and emissions from gasoline and diesel vehicles for 
particulate matter, carbon monoxide, volatile organic compounds, and nitrogen oxides [Yanowitz 
et al., 2000; Gertler et al., 2002; Parrish, 2006; Ban-Weiss et al., 2008b; Bishop and Stedman, 
2008; Kirchstetter et al., 2008; Dallmann and Harley, 2010; McDonald et al., 2012; McDonald 
et al., 2013; Xing et al., 2013]. However, previous motor vehicle emission studies have not 
estimated long-term trends in the emissions of carbonaceous aerosols (black and organic carbon) 
that combine changes in both vehicle activity and emission factors. In this study, we also 
examine how the relative contribution of POA versus SOA precursor emissions from motor 
vehicles has evolved with time, which has not been well documented previously. 
 
Other studies have estimated long-term trends in concentrations of carbonaceous aerosols [Cass 
et al., 1984; Christoforou et al., 2000; Kirchstetter et al., 2008; Bahadur et al., 2011b; Ahmed et 
al., 2014]. However, a longer historical archive was needed from the mid-1970s to the present 
day, in order to test hypotheses on the importance of motor vehicle emissions to particulate black 
and organic carbon in urban aerosols. The present study synthesizes a historical data record of 
both field studies and routine monitoring that span many decades in the South Coast air basin, 
and which encompasses the greater Los Angeles area. The U.S. national ambient air quality 
standard for PM2.5 was not established until 1997, and the available data record is still relatively 
short (~15 years). Other measurement networks existed prior to this date, but are not easily 
merged with measurements at urban sites that have been made since 1997. The IMPROVE 
network has measured PM2.5, BC, and OC at many sites across the U.S. since 1990, but 
monitoring sites are typically in parklands located in rural areas. From 1980 to 2002, fine (PM2.5) 
and coarse (PM10 – PM2.5) particulate matter concentrations were measured in California using 
dichotomous samplers [Blanchard et al., 2011]. However, only Teflon filter samples were 
collected, and these were not intended for analysis of BC or OC concentrations. Coefficient of 
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haze (COH) data has been used to estimate long-term trends and concentrations of black carbon 
for the San Francisco Bay Area [Kirchstetter et al., 2008]. However, sadly a similar historical 
archive for the Los Angeles region spanning many decades does not exist. 
 
5.2 Methods 
 
5.2.1 Diesel Activity Data 
 
We use taxable sales volumes of diesel fuel as a measure of on-road diesel truck activity. These 
data are available at the state and national levels on an annual basis. At the state level, diesel fuel 
sales have been adjusted to account for long-haul interstate truckers, for whom fuel purchases 
versus amounts of driving in each state may differ. In the U.S., on-road consumption of diesel 
fuel occurs primarily in the engines of medium and heavy-duty trucks rather than in passenger 
vehicles. For the period from 1990 to 2010, we use estimates of on-road diesel fuel use for 
California and the South Coast air basin reported by McDonald et al. [2012]. Uncertainties in 
fuel use are ±10% at the state level, and ±13% for the Los Angeles basin. To extend diesel 
engine activity and emission trends further back in time, (Figure 5.1), ratios of fuel sales in 
earlier years relative to 1990 were estimated from federal fuel sales reports (Table MF-2)  
[FHWA, 2011b]. These ratios were then applied to the 1990 state- and air basin-level diesel fuel 
sales estimated by McDonald et al. [2012].  
 
We also estimated activity by off-road diesel engines (Figure 5.1). These engines include 
locomotives, marine vessels, construction and farm equipment, and other mobile commercial and 
industrial engines. Diesel fuel intended for off-road use is exempt from excise taxes that help pay 
for highway construction and maintenance. To account for the additional diesel engine activity 
not reflected by taxable fuel sales data, we rely on annual surveys of wholesalers of distillate fuel 
conducted by the U.S. Energy Information Administration (EIA). These surveys resolve distillate 
fuel by end use sector [EIA, 2012]. Based on previous work by Kean et al. [2000] we exclude 
sector-specific fractions of reported distillate fuel sales, to account for use in residential and 
commercial furnaces, boilers, and for electric power generation. Figure 5.1 shows a three-year 
moving average of off-road diesel fuel use. This was done to reduce year-to-year fluctuations in 
off-road fuel sales survey data; this has no effect on our assessment of long-term trends. 
 
 
 



88 
 

 
 

Figure 5.1. Trends in California on-road and off-road diesel fuel sales volumes, 1970 to 2011. 
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5.2.2 Heavy-Duty Diesel Truck PM and BC Emission Factors 
 
Emission factors for exhaust particulate matter (PM) and black carbon (BC), expressed in units 
of grams of pollutant emitted per kilogram of diesel fuel burned, are derived from an analysis of 
emission measurements made in various highway tunnels. Table 5.1 summarizes the data used 
for this analysis, which includes multi-year measurements at the Tuscarora and Allegheny 
Mountain Tunnels in Pennsylvania [Pierson and Brachaczek, 1983; Gertler et al., 2002], and the 
Caldecott Tunnel in the San Francisco Bay area [Hering et al., 1984; Miguel et al., 1998; 
Kirchstetter et al., 1999b; Allen et al., 2001; Geller et al., 2005; Ban-Weiss et al., 2008b; 
Dallmann et al., 2012]. Additional emission measurements have been made at the Fort McHenry 
Tunnel in Baltimore [Gertler et al., 2002], the Washburn Tunnel in Houston [Fraser et al., 
2003], and the Squirrel Hill Tunnel in Pittsburgh [Grieshop et al., 2006]. In about half of these 
studies, emission factors for both PM and BC are reported. In the remaining studies, emission 
factors are reported for only one of PM or BC but not both. In Figure 5.2, we show that BC and 
PM emission factors are well correlated for the studies where both species are reported. We use a 
mass ratio of BC/PM = 0.52 ± 0.09 to estimate missing diesel BC or PM emission factors in 
cases where direct measurements are not available for both. A regression analysis of emission 
factors for the studies listed in Table 5.1 was used to characterize changes in fleet-average 
emission factors for on-road diesel trucks, over a 35-year time period between 1975 and 2010 
(Figure 5.3).  
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Table 5.1. On-road measurements of exhaust PM and BC emission factors for heavy-duty diesel 
trucks.   
 
 
Tunnel 

 
Year 

PM 
(g/kg fuel)a 

BC 
(g/kg fuel)a 

 
Reference 

 
Allegheny (PA) 
 
 
 
 
Tuscarora (PA) 
 
 
 
Caldecott (CA) 
 
 
 
 
 
 
Ft. McHenry (MD) 
 
Washburn (TX) 
 
Squirrel Hill (PA) 

 
1975 
1976 
1977 
1979 

 
1976 
1977 
1999 

 
1996 
1997 
1997 
2004 
2006 
2010 

 
1993 

 
2000 

 
2002 

 
5.2 ± 1.5 
4.3 ± 0.8 
3.7 ± 0.5 

3.8 ± 0.3 
 

3.0 ± 0.8 
3.1 ± 1.1 
0.5 ± 0.1 

 
2.8 ± 0.6b 
2.7 ± 0.3 
1.1 ± 0.2 
1.0 ± 0.2 
1.4 ± 0.3 
1.1 ± 0.3b 

 
1.6 ± 0.6 

 
1.6 ± 0.6 

 
1.1 ± 0.2  

 
2.7 ± 0.9b 
2.2 ± 0.6b 
1.9 ± 0.4b 
2.0 ± 0.4b 

 
1.6 ± 0.5 
1.7 ± 0.6 
0.3 ± 0.1 

 
1.4 ± 0.2 
1.4 ± 0.6 
0.7 ± 0.3 
0.7 ± 0.1 
0.9 ± 0.1 
0.6 ± 0.1 

 
0.8 ± 0.4b 

 
0.8 ± 0.4 

 
0.4 ± 0.2 

 

 
[Pierson and Brachaczek, 1983]c,h 
 
 
 
 
[Pierson and Brachaczek, 1983]c,i 
 
[Gertler et al., 2002]d,i 
 
[Miguel et al., 1998]e 
[Kirchstetter et al., 1999b]d 
[Allen et al., 2001]f,j 
[Geller et al., 2005]d 
[Ban-Weiss et al., 2008b]d 
[Dallmann et al., 2012]d 
 
[Gertler et al., 2002]g,k 

  
[Fraser et al., 2003]d,j 
 
[Grieshop et al., 2006]d 

a. Emission factors expressed per unit mass of diesel fuel burned. Uncertainty reported as 2σ. 
b. Estimated using ratio of BC to PM from Figure 5.2 (see text). 
c. Measured as total suspended particulate matter (TSP). 
d. Measured as PM2.5. 
e. Measured as PM1.3. 
f. Measured as PM1.9. 
g. Measured as PM10. 
h. Emission factors reported as g/km and converted to g/kg fuel assuming truck fuel economy of 4 km/L 

[Pierson and Brachaczek, 1983] and diesel fuel density of 0.84 kg/L [Kirchstetter et al., 1999b]. 
i. Emission factors reported as g/km and converted to g/kg fuel assuming fuel economy of 3.0 km/L 

[Pierson and Brachaczek, 1983; Gertler et al., 2002], and diesel fuel density of 0.84 kg/L 
[Kirchstetter et al., 1999b]. 

j. Emission factor reported as g/kg C and converted to g/kg fuel using diesel carbon fraction of 0.87 kg 
C/kg fuel [Kirchstetter et al., 1999b]. 

k. Emission factors reported as g/km and converted to g/kg fuel assuming fuel economy of 3.2 km/L 
[Pierson et al., 1996] and diesel fuel density of 0.84 kg/L [Kirchstetter et al., 1999b]. 
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Figure 5.2. Correlation of heavy-duty diesel truck emission factors of black carbon (BC) and 
particulate matter (PM) from tunnel studies in Table 1. Tunnel abbreviations are as follow: T = 
Tuscarora, C = Caldecott, W = Washburn, and S = Squirrel Hill. 
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5.2.3 Ambient BC Data 
 
Table 5.2 summarizes studies that were used in this analysis to derive long-term trends in 
ambient concentrations of fine particulate matter (cutpoints vary; DPC = 2.1 or 2.5 µm depending 
on the study), black carbon, and organic carbon in the South Coast air basin. Data sources 
include a series of yearlong studies led by Glen Cass [Gray et al., 1984, 1986; Christoforou et 
al., 2000], special studies led by the South Coast Air Quality Management District [B M Kim et 
al., 2000; SCAQMD, 2008], and PM2.5 monitoring data from the Speciation Trends Network 
(STN). All but one of the above studies includes a year of measurements of PM, BC, and OC 
using filters. Sampling frequencies vary from once every sixth day to daily sampling. Filter 
samples are collected in the field over 24 hours, and then analyzed in the lab. Thermal optical 
analysis techniques were used to differentiate and quantify black and organic carbon 
contributions to total carbon mass on each filter. There can be significant differences in the 
amount of carbon that is attributed to BC relative to OC depending on the carbon analysis 
technique. For each of the studies listed in Table 5.2, a similar thermal optical reflectance (TOR) 
protocol was used [Johnson et al., 1981; Huntzicker et al., 1982; Chow et al., 1993; Chow et al., 
2007]. We include only measurements made after 2007 from the Speciation Trends Network 
routine monitoring sites. This timeframe coincides with a switch in the analytical protocol for 
STN sites to match the protocol used in the IMPROVE network. The reason for excluding the 
older STN data was to increase consistency and comparability across data sources shown in 
Table 5.2. Prior to 2007, particulate carbon was analyzed using a total optical transmittance 
(TOT) NIOSH 5040 carbon method. When compared to the TOR method used in IMPROVE, 
black carbon measured by the NIOSH method was found to be roughly half that of the 
IMPROVE method [Chow et al., 2001]. 
 
The black and organic carbon concentrations shown in Table 5.2 are basin-wide averages with 
the number of sites varying from 4 to 10 depending on the study. Measurements from the routine 
monitoring network (2008-11) are the average of data from two locations: central Los Angeles 
and another site further inland at Rubidoux. The average black carbon concentration shown for 
1978 is derived from coefficient of haze (COH) measurements at 23 locations across the South 
Coast air basin. It has been shown that COH is well-correlated with BC [Kirchstetter et al., 
2008]. 
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Table 5.2. Ambient measurements of particulate organic (OC) and black carbon (BC) in Los 
Angeles basin. 
 
Study 
Year 

Data Source OC 
(μg/m3) 

BC 
(μg/m3) 

Sampling 
Frequency 

Flow Rate 
(L/min) 

Back-up 
Filter 

 
1975 
1978 

 
1982 
1986 
1993 

 
1995 
1999 
2005 

 
2008 
2009 
2010 
2011 

 

 
NASNa 
COHb 

 
Cass Groupc 
Cass Groupc 
Cass Groupc 

 
SCAQMDd 
SCAQMDd 
SCAQMDd 

 
STNe 
STNe 
STNe 
STNe 

 
9.7 ± 1.9 

n/a 
 

6.3 ± 1.1 
4.6 ± 1.8f 
3.6 ± 1.5f 

 
5.2 ± 0.8 
4.6 ± 0.9 
3.7 ± 1.1f 

 
3.6 
3.0 
2.6 
2.7 

 
5.1 ± 1.2 
4.4 ± 1.0 

 
3.9 ± 0.7 
2.7 ± 0.9 
1.8 ± 0.6 

 
3.2 ± 0.6  
2.2 ± 0.7 
1.9 ± 0.4 

 
1.4 
1.2 
1.1 
1.1 

 
every 12th day 

daily 
 

every 6th day 
every 6th day 
every 6th day 

 
1-6 days 
1-6 days 

every 3rd day 
 

every 3rd day 
every 3rd day 
every 3rd day 
every 3rd day 

 
unknown 

n/a 
 

10 
4.9 
10 
 

20 
20 
6.7 

 
22.8 
22.8 
22.8 
22.8 

 
unknown 

n/a 
 

QBQg 
none 
none 

 
QBTg 
QBTg 
none 

 
none 
none 
none 
none 

a. National Air Surveillance Network. 
b. Coefficient of haze. 
c. Gray et al. [1986] and Christoforou et al. [2000]. Measured as PM2.1. 
d. Special field studies led by South Coast Air Quality Management District for PTEP (1995) [B M Kim 

et al., 2000], TEP (1999), and MATES III (2005) [SCAQMD, 2008]. Measured as PM2.5. 
e. Routine monitoring from urban Speciation Trends Network (STN) sites; only years when quartz filter 

samples were analyzed using IMPROVE protocol are listed here, for consistency with other studies. 
f. Derived from BC using ratio of ambient OC to BC shown in Figure 5.2 (see text). 
g. QBQ = quartz-behind-quartz; QBT = quartz-behind-Teflon.
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5.3 Results and Discussion 
 
5.3.1 BC Trends 
 
Over a 35-year period between 1975 and 2010, heavy-duty diesel truck emission factors of PM 
(Figure 5.3a) and BC (Figure 5.3b) both decreased by factors of ~4. Our trend agrees well with 
three fleet-average estimates of emission factors reported for the mid-1990s based on chassis 
dynamometer emission testing (Figure 5.3a). Also shown is an emission factor trendline from 
Yanowitz et al. [2000] based on engine model year (in contrast, other data plotted in Figure 5.3 
are plotted relative to specific calendar years and include a mix of engines of various ages). In 
the 1970s, early model year trucks have emission factors similar to our fleet-averaged emission 
factor (Figure 5.3a). The first organized emission inspections for heavy-duty trucks started in 
1970 and were targeted at reducing visible smoke under steady state operation [Lloyd and 
Cackette, 2001]. The first diesel engine exhaust PM emission standards were implemented much 
later -- in 1988 [Yanowitz et al., 2000; Ban-Weiss et al., 2008b]. A possible explanation for the 
similarity between emission factors of the average on-road truck fleet and emission factors for 
new (at the time) 1975 engines is that early emission standards were not stringent, and were set 
to match fleet-average values that prevailed at the time. Decreases in PM emission factors for 
new trucks based on engine model year are expected to be more rapid than what is observed on-
road in terms of fleet-average values. This is because of long in-service lifetimes for heavy-duty 
diesel engines, and a resulting significant time lag (two decades or more) in replacing older 
engines with new equipment (Figure 5.3a). Some flattening of the fleet-average PM emission 
factor trend might be expected, since for 12 years between 1994 and 2006, diesel exhaust PM 
emission standards remained unchanged. Initial efforts to lower diesel PM emissions involved 
changes to engine design to reduce lubricating oil emissions and to improve air-fuel mixing 
(thereby lowering BC emissions), rather than installing after-treatment control technologies 
[Lloyd and Cackette, 2001]. Starting with the 2007 engine model year, heavy-duty diesel exhaust 
PM emission standards were reduced by an order of magnitude. Diesel particle filters are now 
included as standard equipment on new heavy-duty diesel engines, and large decreases in BC 
emission factors have been observed in on-road settings as a result [Dallmann et al., 2011]. The 
effect of large numbers of 2007 and newer engines entering service is not accounted for in this 
analysis, so the emission factor trends shown in Figure 5.3 should not be extrapolated forward in 
time beyond ~2010. A more rapid rate of decrease in diesel exhaust PM and BC emission factors 
should be expected going forward. 
 
Because of site-to-site variability in engine loads and truck ages, we compare our emission factor 
trend with a trend derived at a single location, the Caldecott tunnel, where emissions have been 
sampled repeatedly over many years [Hering et al., 1984; Venkataraman et al., 1994; Miguel et 
al., 1998; Kirchstetter et al., 1999b; Allen et al., 2001; Geller et al., 2005; Ban-Weiss et al., 
2008b; Dallmann et al., 2012]. The evolution of measured pollutant concentrations within the 
Caldecott Tunnel (Table 5.3) are plotted on the secondary axis of Figure 5.3, and this trend is a 
proxy for changes in diesel truck emission factors shown on the same plot.  Tunnel 
concentrations are shown because a key early study by Hering et al. [1984] measured tunnel PM 
mass and composition, but not carbon dioxide which is needed in order to calculate emission 
factors. Venkataraman et al. [1994] measured tunnel BC concentrations, but did not estimate 
emission factors.  
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Figure 5.3. Heavy-duty diesel truck emission factors for (a) PM and (b) BC derived from a 
regression analysis of tunnel studies shown in Table 5.1. Results for PM are compared with 
results of chassis dynamometer emission testing reviewed by Yanowitz et al. [2000], who report 
fleet-average emission factors for selected calendar years (open squares) and by truck engine 
model year (dashed line). Error bars show 2σ uncertainty for individual studies. Error bands 
show the 95% confidence intervals for the regression. Emission factor trends are also compared 
with measured PM and BC concentrations inside the Caldecott Tunnel (blue triangles; see text). 
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Table 5.3. Caldecott Tunnel concentrations of fine particulate matter (PM) and black carbon 
(BC) on weekdays. 
 

 
Year 

PM 
(μg/m3) 

BC 
(μg/m3) 

 
Hour 

HD Truck 
Flow (veh/h) 

 
Reference 

 
1983 

 
1989 

 
1996 

 
1997 

 
1997 

 
2004 

 
2006 

 
2010 

 

 
270 

 
 
 
 
 

133 
 

90 
 

39 
 

88 
 

50  

 
95 
 

64 
 

66 
 

58 
 

50 
 

28 
 

41 
 

25 

 
 
 
 
 

13:00-15:00 
 

12:30-15:30 
 

12:00-15:00 
 

12:00-20:00 
 

12:00-14:00 
 

12:00-14:00 
16:00-18:00 

 

 
 
 
 
 

100 
 

98 
 

130 
 

110 
 

104 
 
 

 
[Hering et al., 1984]a 

 
[Venkataraman et al., 1994]b 
 
[Miguel et al., 1998]a 
 
[Kirchstetter et al., 1999b]c 
 
[Allen et al., 2001]d 
 
[Geller et al., 2005]c 
 
[Ban-Weiss et al., 2008b]c 
 
[Dallmann et al., 2012]c 
 

a. Measured as PM1.3. 
b. Measured as PM4.0. 
c. Measured as PM2.5. 
d. Measured as PM1.9. 
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Factoring in changes in fuel sales as well as emission factors over time, the resulting trend in BC 
emission inventory for on-road diesel engines is shown in Figure 5.4. Given the ratio of BC to 
PM in diesel exhaust has remained relatively stable over time (Figure 5.2), emission trends for 
BC and PM from diesel engines are similar. A key result is that between 1975 and 2010, after 
accounting for growth in diesel fuel sales, on-road diesel BC emissions decreased by only ~20% 
(Figure 5.4), a value which lies within the uncertainty range of our estimates. BC emissions 
increased by ~30% between 1975 and 1990, before emission standards came into force for new 
engines, and then decreased by ~40% over the ensuing two decades.  Despite large decreases in 
exhaust PM and BC emission factors from diesel engines since 1990, the offsetting effect of 
growth in diesel fuel sales (Figure 1) has been substantial. As a further point of comparison, 
diesel engines are also a significant on-road source of nitrogen oxide (NOx) emissions. Between 
1990 and 2010, McDonald et al. [2012] found that diesel truck emissions of NOx decreased by 
only ~15% in the Los Angeles basin, compared to a ~40% decrease for PM and BC in this study. 
This is because efforts to reduce diesel NOx emission factors prior to 2010 were less successful 
than for PM. 
 
Ambient measurements of fine particle BC concentrations in the Los Angeles basin show a  clear 
downward trend that spans seven intensive monitoring study years and four recent years of 
routine monitoring data (Figure 5.4). The basin-averaged BC concentration decreased from 4.6 ± 
0.6 μg m-3 in 1975 to 1.0 ± 0.5 μg m-3 as of 2011. The corresponding rate of decrease is 0.1 ± 
0.02 μg m-3 or 4.2% per year. This rate of decrease is similar to decreases seen over rural 
California [Bahadur et al., 2011b]. Bahadur et al. [2011b] found annual BC concentrations 
decreased from 0.46 μg m-3 in 1989 to 0.25 μg m-3 in 2008, a decrease of ~50%. In this study, 
decreases of ~60% are found over the urban Los Angeles basin from 1989 to 2008. This is within 
the -40% to -60% range Bahadur et al. [2011a] found across all IMPROVE monitoring sites. 
 
Figure 5.4 compares our estimates of on-road diesel emissions with ambient BC concentration 
trends between 1975 and 2011. We align the two independent vertical axes in this figure using 
routine monitoring network (STN) data collected between 2008 and 2011. The on-road diesel 
emissions estimates show a clear decrease in emissions associated mainly with reductions in 
diesel truck activity during the severe recession that started around 2008. The ambient data show 
a similar trend in ambient BC concentrations over the same time period. When anchoring the 
comparison of the two trends in the most recent years, it is clear that the long-term downward 
trend in ambient BC is significantly steeper than for on-road diesel emissions (Figure 5.4). From 
1975 to 1990, the two trends diverge to an extent that goes well beyond the uncertainty of the 
fuel-based emission inventory for BC; the ambient trend is decreasing while the BC emissions 
trend is increasing. We conclude that decreases in ambient BC concentrations in the Los Angeles 
basin during the 1970-1990 timeframe did not result from emission control policies that applied 
to on-road diesel engines, but rather were driven by control efforts that focused on other air 
pollution sources. Winter season home heating using solid fuels (e.g., wood burning; coal was 
also used for this purpose in many eastern U.S. and European cities in the past) is another 
contributing source of BC, though use of coal for home heating has not been common in 
California. Increased use of natural gas in place of other fuels in the residential, commercial, and 
industrial sectors is likely to have contributed to reductions in ambient BC concentrations shown 
in Figure 5.4, especially in the pre-1990 timeframe. 
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Figure 5.4. Trends in annual average ambient black carbon concentrations (left-hand axis) for 
the Los Angeles basin compared with trends in a fuel-based inventory of diesel BC emissions 
constructed using results from Figures 5.1 and 5.3. The ambient trend is derived from a linear 
regression of studies listed in Table 5.2. Error bars on the ambient data show the 95% confidence 
interval of the basin-average concentration, and represent spatial variability. Error bands for the 
fuel-based inventory represent a 95% confidence interval. 
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Figure 5.1 shows how off-road diesel fuel use for non-farm equipment has changed in California. 
From the mid-1990s to the present, off-road engine activity has remained fairly stable. However, 
in the late 1980s and early 1990s there was a steep decrease in off-road diesel fuel sales by a 
factor of about two. The decreases came largely from the commercial, industrial, and military 
sectors. Emission standards for off-road diesel engines were implemented later than for heavy-
duty trucks, beginning in 1996 [Lloyd and Cackette, 2001], so changes in activity rather than 
emission factors are likely to the dominant effect for off-road diesel engines circa 1990. Relative 
to on-road diesel trucks, the emissions of BC from off-road engines was important in the past. In 
the mid-1980s, the amount of diesel fuel consumed by off-road engines was similar to the 
amount of diesel fuel purchased for use in on-road trucks. Additionally, Dallmann et al. [2010] 
summarize data showing emission factors for PM2.5 were 2-3 times higher for off-road diesel 
engines compared to on-road trucks. This explanation of the importance of off-road diesel 
engines could be consistent with a study performed on filter samples collected in 1982 attributing 
88-96% of fine particle BC in the Los Angeles basin to diesel exhaust [Schauer et al., 1996]. 
 
5.3.2 Ambient OC Concentration Trends 
 
An uncertainty in the analysis of ambient organic aerosol trends is the possibility of systematic 
long-term changes in the OA/OC mass ratio; the numerator (OA) includes mass of oxygen, 
hydrogen and other elements associated with organic molecules whereas the denominator (OC) 
includes only carbon. Note, however, that studies reporting high SOA contributions to ambient 
organic aerosol in the Los Angeles basin date back more than 25 years ago [Turpin and 
Huntzicker, 1991]. It appears to us unlikely that ambient organic aerosol in the Los Angeles 
basin has been transformed from heavily POA- to heavily SOA-dominated over the timeframe of 
interest for this study. Our analysis is based on OC measured using thermal-optical methods, and 
so we acknowledge unquantified and possibly variable contributions to OA mass due to other 
elements associated with OC. 
 
Another challenge in quantifying long-term trends arises due to effects on OC readings due to 
differences in thermal-optical analysis protocols. Here we included only studies that used similar 
analytical methods – namely thermal/optical reflectance (TOR) based on methods of Huntzicker 
et al. [1982].  Yet another challenge in quantifying ambient concentrations of particulate OC is a 
potentially large sampling artifact due to adsorption of gas-phase organics onto quartz filters, 
which can lead to systematic biases of up to +50% [Turpin et al., 2000; B M Kim et al., 2001; 
Chow et al., 2010]. A negative sampling artifact from the volatilization of particle-phase 
organics collected on the filter sample is also possible, and can occur when there is a large 
pressure drop over the filter [Turpin et al., 2000]. Turpin et al. [1994] concluded that the 
dominant sampling artifact in the Los Angeles basin was due to adsorption of gas-phase 
organics. Similarly, Watson et al. [2009] found the positive artifact to be larger than the negative 
artifact when analyzing rural filter samples across the U.S. Adsorbed carbon is often estimated 
by difference between a front and back-up filter, either using a quartz-behind-quartz (QBQ) or a 
quartz-behind-Teflon (QBT) filter sampling configurations. However, measurements of OC are 
not always corrected to account for known sampling artifacts (see Table 5.2). For measurements 
that are not corrected, the filter face velocity (air flow rate divided by cross-sectional area of the 
filter) is known to influence the amount of OC collected. For higher face velocity, the extent of 
the OC adsorption artifact tends to be smaller [Turpin et al., 1994]. 
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Figure 5.5. Correlation of ambient OC and BC concentrations for individual study years (see 
Table 5.2). Each data point represents measured annual average concentrations of OC plotted 
against corresponding concentrations of BC for individual measurement sites: 1975 (closed 
diamonds), 1982 (closed circles), 1986 (open squares), 1993 (open triangles), 1995 (closed 
squares), 1999 (closed circles), 2005 (open circles), and 2008-11 (closed circles). Study years 
shown with asterisks are expected to have large positive OC sampling artifacts (see text). The 
gray bar indicates average OC to BC ratio across all sites and study years with a 95% confidence 
interval, and excluding starred study years 1986, 1993, and 2005 for which OC/BC ratios were 
higher. 
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Given difficulties in measuring organic carbon directly, with results that can vary greatly 
depending on sampling and analytical protocols, we instead estimate OC concentrations by ratio 
to BC. In Figure 5.5, we show correlations of OC and BC at locations across the South Coast air 
basin. The slope of OC to BC is remarkably consistent over a multi-decadal time period. For 
three study years where organic carbon is not back-up filter corrected, and where sampling was 
done using low volumetric air flow rates (see Table 5.2), the OC to BC ratio is elevated 
compared to other studies shown in Figure 5.5. This is expected given the likelihood of large 
positive sampling artifacts in these studies. To infer OC concentrations for 1986, 1993, and 2005 
quantified on a basis that is more consistent with other studies, we derive an ambient OC/BC 
ratio using data from the other studies shown in Figure 5.5. The equation is then applied to 
measured ambient BC concentrations to estimate OC. The stability of the OC to BC ratio over 
time (see Figure 5.5) implies similar long-term trends in ambient black and organic carbon 
concentrations (Figure 5.6). We estimate that ambient OC in the Los Angeles basin decreased 
from 7.9 ± 1.2 μg m-3 in 1975 to 2.5 ± 1.0 μg m-3 in 2011. The corresponding rate of decrease is 
0.15 ± 0.06 μg m-3 or 3.1% per year, slightly less than for BC. 
 
McDonald et al. [2013] reported 80-90% decrease in emissions of carbon monoxide (CO) and 
volatile organic compound (VOC) emissions from on-road gasoline vehicles for the period 
between 1990 to 2010. The reductions in VOC emissions from gasoline engines are much larger 
than those shown in Figure 5.4 for BC emissions from on-road diesel engines. This is because 
growth in gasoline sales has been slower than for diesel fuel, and more importantly because of 
near-universal use of catalytic converters to treat gasoline engine exhaust. Catalytic converters 
on gasoline engines are a mature and well-developed emission control technology that has been 
through multiple rounds of system efficiency and durability improvement.  
 
Here we consider the following hypothesis: if emissions of VOC from gasoline vehicles are the 
dominant contributor to particulate organic carbon via pathways that involve secondary organic 
aerosol formation, then decreases in the ambient concentrations of particulate organic carbon 
should be observed over time, commensurate with reductions in emissions of VOC from gasoline 
engines that are known to have occurred over the last several decades [Bishop and Stedman, 
2008; Warneke et al., 2012; McDonald et al., 2013]. To test this hypothesis we compare our 
ambient trend in particulate organic carbon with concentrations of CO. It has been shown that the 
ratio of gasoline-related VOC to CO has remained constant over a multi-decadal time period 
[Warneke et al., 2012; McDonald et al., 2013]. Therefore, we use CO trends as a proxy for 
trends in gasoline engine VOC emissions, as CO is more routinely and consistently measured 
compared to VOC. Concentrations of CO shown in Figure 5.6a are from a nine-site average of 
monitors in Los Angeles and Orange counties, which were repeatedly measured beginning in 
1981, and are the same sites used in an analysis by McDonald et al. [2013]. Measurements are 
restricted to the morning commute period (0500 to 0800 PST) on weekdays, because ambient 
concentrations of CO are highest then, and are dominated by emissions from motor vehicles. 
Background levels of ~120 ppb are subtracted [Pollack et al., 2012]. Between 1990 and 2010, 
the decrease in ambient CO shown in Figure 5.6a is ~80%, similar to emission decreases of CO 
and VOC from on-road gasoline vehicles in McDonald et al. [2013]. 
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Figure 5.6. (a) Ambient particulate OC and gas-phase CO concentration trends, and (b) ambient 
OC and primary (hatched) and secondary emissions (filled) of OA from light- (LD) and heavy-
duty (HD) vehicles in the Los Angeles area. Adjusted OC values are shown using open circles 
(see text). Error bars show the 95% confidence interval of the basin-average OC concentrations, 
and represent spatial variability. CO concentrations were measured at nine locations during the 
morning commute period (0500 to 0800 PST) on weekdays, and are background subtracted. CO 
trends are shown as a proxy for closely related changes in gasoline-related VOC emissions (see 
text). Error bands on CO trend reflect the 95% confidence interval for annual average 
concentrations. See text for methods used to estimate motor vehicle emissions of POA and SOA. 
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Between 1981 and 1995, the trend in CO matches that for OC (Figure 5.6a). Between 1995 and 
2007, CO shows a steeper downward trend, decreasing by 75 ± 7% compared to OC which 
decreased by only 45 ± 22%. The difference in slopes suggests that other sources of particulate 
organic carbon must also be contributing to the differing trends in the Los Angeles basin, either 
via primary or secondary emissions. On-road gasoline vehicles are likely contributing to the 
overall downward trend in OC (Figure 5.6a), but as VOC emissions from these vehicles 
decrease, other sources of OA are expected to become relatively more important. If these other 
OA sources have not been controlled as quickly, then they could slow decreases in ambient OC 
in relation to changes expected from controlling gasoline VOC emissions. The hypothesis that 
VOC emissions from gasoline vehicles are the dominant contributor to particulate organic carbon 
via secondary organic aerosol formation holds for the period prior to 1995. However, after 1995 
we reject this hypothesis, and next examine whether other on-road sources of primary and 
secondary organic aerosol can explain the observed trend in ambient OC over the entire period 
from 1981 to 2011. 
 
We now consider a second hypothesis: if emissions from motor vehicles are the dominant 
contributor to particulate organic carbon via primary and secondary pathways, then decreases in 
ambient concentrations of particulate organic carbon should be observed over time, 
commensurate with reductions in the total emissions of POA and SOA precursors from motor 
vehicles. To test the hypothesis, we make a best estimate on SOA precursor emissions from both 
on-road gasoline and diesel vehicles, and POA emissions from on-road diesel only. Though POA 
emissions from gasoline vehicles are not estimated in this study, we note that source 
apportionment studies using chemical mass balance methods in the Los Angeles basin have 
found diesel exhaust to be the majority to dominant portion of POA relative to gasoline vehicles, 
this was true as early as 1982 as well as in 2001 [Schauer et al., 1996; Fujita et al., 2007]. 
 
To estimate SOA from gasoline vehicles, we first use CO emissions from McDonald et al. 
[2013] for the year 2010 estimated at the air basin level. To extend CO emissions further back in 
time, the trend in ambient CO (Figure 5.6a) was applied relative to 2010. Next, gasoline 
emissions of VOCs are estimated by ratio to CO [McDonald et al., 2013] with non-tailpipe 
emissions excluded. Non-tailpipe emissions are excluded because they have negligible SOA 
formation potential due to their high volatility [Gentner et al., 2012]. SOA is estimated using 
bulk yields reported by Gentner et al. [2012] applied to VOC emissions from gasoline exhaust.  
 
To estimate SOA from diesel vehicles, first VOC emissions are estimated. Fuel-based VOC 
emission factors (g/kg fuel) from McDonald et al. [2013] are multiplied with air basin-level fuel 
data described in Section 5.2.1. The authors found that VOC emission factors from heavy-duty 
trucks did not change significantly between 1990 and 2010. This is not surprising given that 
VOC emission standards on heavy-duty trucks have not been lowered significantly since 1978 
[Yanowitz et al., 2000]. Again SOA is estimated using bulk yields reported by Gentner et al. 
[2012] applied to VOC emissions from diesel exhaust. To estimate POA emissions from heavy-
duty trucks, BC emissions shown in Figure 5.4 are multiplied with an OC/BC mass ratio of 0.36 
± 0.15 (Figure 5.7), and an OA/OC conversion factor of 1.4 [Gray et al., 1986]. The resulting 
SOA and POA emission trends from this analysis are shown in Figure 5.6b. 
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Figure 5.7. Correlation of heavy-duty diesel truck emission factors of organic carbon (OC) and 
black carbon (BC) from tunnel studies in Table 1. Tunnel abbreviations are as follow: T = 
Tuscarora, C = Caldecott, and S = Squirrel Hill. 
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The trend in on-road emissions of SOA and heavy-duty emissions of POA now agrees strongly 
with the ambient OC trend from 1981 to 2011 (Figure 5.6b). Of the three on-road sources shown, 
gasoline emissions that lead to the formation of SOA has historically been the most dominant, 
though its share of the on-road total has decreased dramatically from ~80% in 1981 to ~1/3 in 
2011. Conversely, the share of OA (OA = POA + SOA) from heavy-duty vehicles has grown, 
while emissions have not changed significantly. Interestingly, the relative contribution between 
POA and SOA from diesel vehicles is now about the same. The similarity of the emissions and 
ambient trend (Figure 5.6b), suggests that motor vehicle emissions have been important to 
observed decreases in ambient OC. Furthermore, long-term decreases in on-road OA emissions 
were driven by controlling VOC emissions from gasoline engines. The slower decreases in 
ambient OC since 1995 relative to decreases in gasoline VOCs can partly be explained by the 
growing importance of diesel vehicles. 
 
It is also possible that other non-vehicular sources could be important to the observed trends in 
ambient OC. If non-vehicle emissions are important, then their emissions must be unchanging. 
Other important identified sources of POA include from food cooking and wood smoke 
[Hildemann et al., 1991; Schauer et al., 1996]. Emission decreases from food cooking and wood 
smoke are expected to be flatter than VOC emission trends from gasoline engines, as they have 
not been as aggressively targeted by air pollution control efforts. Biogenic contributions of SOA 
are small in the Los Angeles basin [B J Williams et al., 2010], so the influence on SOA is 
expected to be mostly from anthropogenic sources. A recent study by Ensberg et al. [2014] 
suggests that vehicle emissions may not dominate anthropogenic SOA in the Los Angeles basin, 
as one possible explanation for why expected concentrations of SOA from vehicle emissions do 
not equal observed concentrations. A second possibility raised by the authors is that mass yields 
derived from laboratory experiments substantially underestimate the amount of SOA generated 
in the atmosphere from vehicle emissions. The results of Figure 5.6b imply that regardless of the 
relative importance of motor vehicles to other anthropogenic sources of SOA, the trends in other 
non-vehicular sources of primary or secondary OA must be flat. We conclude that long-term 
trends seen in ambient OC for the Los Angeles basin are likely to have resulted from multi-
decade efforts to control emissions of VOCs from gasoline engines. As a consequence of these 
efforts, other sources of OA have become more important to the urban OA budget at least by 
2010, including emissions from diesel trucks. 
 
5.3.3 Policy Implications 
 
In this study, we show that from 1975 to 2010, the heavy-duty diesel truck emission factor for 
PM and BC decreased by factors of ~4 (Figure 5.3). However, decreasing PM and BC emission 
factors were offset by large growth in on-road diesel activity. As a consequence, on-road diesel 
PM and BC emissions decreased by only ~20% over a 35 year time period (Figure 5.4). This 
suggests that exposure to diesel PM in near-roadway environments did not change substantially 
from efforts to control particle emissions from heavy-duty trucks. The installation of diesel 
particle filters (DPFs) as standard operating equipment on new heavy-duty diesel engines is 
expected to significantly reduce roadway concentrations of fine particles in the future. As an 
example, Dallmann et al. [2011] found that the average BC emission factor for drayage trucks 
traveling to and from the Port of Oakland, decreased by 54 ± 11% when trucks were retrofitted 
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with DPFs or replaced with new trucks. California has extended this accelerated retrofit and fleet 
turnover program statewide, beyond initial mandates at port facilities and rail yards only. 
 
We show that efforts to control gasoline VOC emissions from improved catalytic converters 
have led to decreasing concentrations of OC over the Los Angeles basin. From 1975 to 2011, 
ambient OC decreased by ~70%. However, as catalytic converters have become more durable 
and effective at controlling gasoline emissions of VOCs, other anthropogenic sources that emit 
POA and SOA precursors have grown in relative importance, including from diesel exhaust. The 
strong similarity in the trend for ambient OC and motor vehicle emissions of POA and SOA-
forming compounds (Figure 5.6b), suggests that gasoline and diesel vehicles remain important to 
the emissions and formation of anthropogenic organic aerosol in urban environments. An 
important vehicular source of OA that warrants more attention in urban air quality management 
is the control of SOA precursor emissions from high-emitting gasoline vehicles. As an example 
of how highly skewed the distribution of VOC emissions is towards a few high-emitting 
vehicles, a recent study found that out of 13 000 vehicles whose tailpipes were sampled ahead of 
a roadway tunnel in Los Angeles, ~4% of total VOC emissions at the study location could be 
accounted for by a single vehicle [Bishop et al., 2012b]. Controlling SOA precursor emissions 
from high-emitting gasoline vehicles can complement current efforts underway to control diesel 
emissions of POA through widespread deployment of DPFs, and aid in reducing future 
concentrations of urban OA. Additionally, oxidation catalysts used to regenerate DPFs are 
expected to reduce VOC emissions from trucks significantly [Herner et al., 2009], and reduce 
diesel emissions of SOA precursors.  
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Chapter 6: Conclusions 
 
6.1 Summary of Major Findings 
 
The goal of this dissertation was to develop new inventories for motor vehicle emissions of 
greenhouse gases and co-emitted pollutants that contribute to urban and regional air pollution 
problems. The resulting motor vehicle emission inventories from this dissertation are more 
reliable than previous vehicle emission estimates, because spatial and temporal patterns of light- 
and heavy-duty vehicle activity are explicitly accounted for using real-world traffic count data 
rather than transportation demand models, and emission factors are derived from real-world on-
road studies rather than from laboratory testing. Given that motor vehicle emissions are a 
significant source of urban air pollution, long-term changes in U.S. air quality were also assessed 
to see if observed changes could be attributed to changes in motor vehicle emissions. 
 
In Chapter 2, a fuel-based inventory for vehicle emissions was developed for carbon dioxide 
(CO2), and mapped at various spatial resolutions (10 km, 4km, 1 km, and 500 m) using fuel sales 
and traffic count data. Temporal variations in vehicle emissions were also characterized using 
extensive day- and time-specific traffic count data. 
 
 When compared to two other commonly used emission inventories, the Emissions 

Database for Global Atmospheric Research (EDGAR) and VULCAN, differences 
between this study and EDGAR were apparent. EDGAR overestimates on-road CO2 
emissions in the largest U.S. cities by 20-80%, and the bias arises from using road density 
rather than traffic count data as a spatial surrogate for allocating vehicle emissions. 
 

 High-resolution emission maps were generated for several major U.S. metropolitan areas. 
The high-resolution emission maps (1 km and finer) revealed sharp emission gradients 
that exist near major highways, and that were not apparent when emissions are mapped at 
coarser resolution (10 km). Highly-resolved emission maps are important for 
understanding near-roadway exposure to vehicle-related air pollution. 
 

 Urban vehicular emissions of CO2 were found to increase by ~10% through the 
workweek between Monday and Friday, and then decrease by ~20% and ~30% relative to 
Friday peak levels on Saturdays and Sundays, respectively. Comparing CO2 emissions on 
Fridays to other (especially weekend) days could serve as a repeatable real-world test 
case for detection capabilities of emerging CO2 monitoring networks, at least in urban 
areas where motor vehicle emissions tend to dominate. 

 
 Clear differences were observed when comparing light- and heavy-duty vehicle traffic 

patterns and comparing urban and rural areas over diurnal, day-of-week, and seasonal 
time scales. Seasonal cycles in traffic, newly presented in this work, showed noteworthy 
increases of 35-40% in heavy-duty truck traffic between January and August. Passenger 
vehicle traffic in rural areas varied by ±20% of annual average values, with a peak during 
summertime. In contrast, seasonal variations in passenger vehicle traffic are limited to 
~10% of mean levels in urban areas. 
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 Decadal trends in emissions were analyzed from 2000 to 2007 when traffic volumes were 
increasing, and for a more recent period (2007-2010) when traffic volumes declined due 
to recession. Large non-uniform changes in on-road CO2 emissions were found over a 
period of ~5 years, highlighting the importance of timely updates to motor vehicle 
emission inventories. 

 
In Chapter 3, a fuel-based approach was used to estimate long-term trends in nitrogen oxides 
(NOx = NO + NO2) emissions from motor vehicles. Estimates are made at the national and state 
levels, and for the South Coast (Los Angeles) and San Joaquin Valley air basins.  
 
 Long-term changes in NOx emissions have distinctly different patterns between light- and 

heavy-duty vehicles. Changes in diesel NOx emissions have varied over time: emissions 
were increasing between 1990 and 1997, stable between 1997 and 2007, and decreasing 
since 2007. In contrast, gasoline engine-related NOx emissions have decreased steadily, 
by ~65% overall between 1990 and 2010. 
 

 The relative importance of on-road diesel versus gasoline emissions differs between 
urban and rural areas. In the rural San Joaquin Valley, diesel engines were the dominant 
on-road NOx source in all years considered (reaching a ~70% contribution in 2010). In 
the urbanized South Coast air basin, gasoline engine emissions dominated in the past, and 
have been comparable to on-road diesel sources since 2007 (gasoline engine contribution 
is down from ~75% in 1990).  

 
 Contributions from other anthropogenic sources of NOx were added to permit comparison 

of emission trends with observed trends in ambient pollutant concentrations. When all 
major anthropogenic NOx sources are included, the overall emission trend is downward 
in all cases (45 to 60% decrease in emissions between 1990 and 2010). 

 
 In the urban South Coast air basin, motor vehicles dominate total anthropogenic NOx, 

accounting for ~80% of total emissions. Long-term decreases in NOx emissions have 
been driven by changes in motor vehicle emissions. Given that similar decreases in 
ambient concentrations were observed over the same time period, this suggests that air 
quality improvements were due to controlling emissions from motor vehicles. 
 

 The two largest contributors to on-road NOx emissions are diesel exhaust and high-
emitting gasoline vehicles. Emission control strategies should therefore focus on ensuring 
the effectiveness of new emission control systems on heavy-duty trucks, as well as 
making further improvements to durability of control systems installed on light-duty 
vehicles. 

 
In Chapter 4, a fuel-based approach is used to estimate long-term trends in carbon monoxide 
(CO) emissions from motor vehicles. Non-methane hydrocarbons (NMHC) are estimated using 
ambient NMHC/CO ratios after controlling for non-vehicular sources. 
 
 For gasoline-powered vehicles, there have been ten- and seven-fold reductions in CO 

emission factors measured in California and the US, respectively, since 1990. During the 
early 1990s, California vehicles were allowed to emit CO at higher levels due to permit 
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design tradeoffs that enabled more effective control of NOx. Convergence of average CO 
emission rates between California and U.S. vehicle fleets occurred after CO emission 
standards for new vehicles were harmonized and enough old vehicles had been retired,  
which had happened by 2005. Decreases in CO can be attributed to improved catalytic 
converters on gasoline engines and better control of combustion air-fuel ratios. On-road 
diesel trucks are not a significant source of CO emissions. 

 
 Despite increases in gasoline sales volumes of 10-40% between 1990 and 2010, running 

CO exhaust emissions from gasoline vehicles decreased by 80-90% in major urban 
centers including Los Angeles, Houston, and New York City over the same time period. 
Similar decreases were observed in ambient CO concentrations for these cities, as 
expected given the dominance of gasoline engines as a source of CO emissions in urban 
areas 
 

 The ratio of NMHC/CO in ambient air was found to be 0.24 ± 0.04 mol C/mol CO in Los 
Angeles, and this ratio has remained stable over time. Give substantial decreases in CO 
reported above, this indicates that NMHC emissions have decreased at a similar rate. 
Ratios of NMHC/CO were also found to be stable over time in on-road emission studies, 
suggesting that emission control efforts had similar effects on both pollutants. 

 
 Emission ratios of CO/NOx (nitrogen oxides = NO + NO2) and NMHC/NOx decreased by 

a factor of ~4 between 1990 and 2007 due to changes in the relative importance of 
passenger cars versus diesel trucks as sources of NOx. There was a slight uptick in CO 
and NMHC ratios to NOx thereafter, consistent across the urban areas considered here. 
These pollutant ratios are expected to increase in future years due to (1) slowing rates of 
decrease in CO and NMHC emissions from gasoline vehicles, and (2) significant 
advances in control of diesel NOx emissions. The NMHC/NOx emission ratio in urban 
areas, which has been falling in the past, is expected based on this research to increase 
again in the future. This emission ratio is an important factor that affects the efficiency of 
ground-level ozone formation.  

 
In Chapter 5, a fuel-based approach is used to estimate changes since 1975 in particulate matter 
(PM) and black carbon (BC) emissions from heavy-duty diesel trucks for the Los Angeles area. 
Emission trends are compared with trends in ambient concentrations of particulate black and 
organic carbon over the same time period. 
 
 On-road heavy-duty diesel emission factors of PM and BC decreased by a factor of ~4 

since 1975. After accounting for rapid growth in diesel fuel sales, on-road diesel BC 
emissions were found to have decreased by only ~20% between 1975 and 2010. BC 
emissions increased by ~30% between 1975 and 1990, before more stringent emission 
standards started affecting the emission performance of new engines around 1990. 
Emissions of BC then decreased by ~40% over the ensuing two decades. 

 
 Ambient measurements of BC concentrations in the Los Angeles basin show a clear 

downward trend. The basin-average BC concentration decreased from 4.6 ± 0.6 μg m-3 in 
1975 to 1.0 ± 0.5 μg m-3 as of 2011. The corresponding rate of decrease is 4.2% per year. 
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In comparison, decreases in on-road diesel emissions of BC estimated in this research 
were minor. My conclusion is that, contrary to inferences made by other researchers, 
decreases in BC concentrations observed in the Los Angeles area between 1970 and 1990 
did not result from emission control policies that applied to on-road diesel engines, but 
rather were driven by control efforts that focused on other air pollution sources. For 
example, commercial and industrial combustion processes appear to have switched to 
using natural gas in place of distillate fuels, and a number of California military bases 
were closed. 

 
 The slopes of best-fit lines in plots of measured OC versus BC concentrations have 

remained remarkably consistent over time. The stability of this ratio over time implies 
similar long-term trends in ambient black and organic carbon concentrations, which is 
useful to know because compared to BC, OC observations are sparser and harder to 
interpret due to various sampling issues. We estimate that ambient OC in the Los Angeles 
basin decreased by 0.15 ± 0.06 μg m-3 or 3.2% per year between 1975 and 2011. 

 
 Between 1981 and 1995, the trend in CO matches that for OC (Figure 5.6a). Between 

1995 and 2007, CO shows a steeper downward trend, decreasing by 75 ± 7% compared 
to OC which decreased by only 45 ± 22%. The difference in slopes suggests that sources 
of particulate organic carbon other than light duty gasoline vehicles must increasingly be 
contributing to the differing trends, with the other sources becoming more important at 
least by 2010. 

 
 The trend in on-road emissions of SOA and heavy-duty emissions of POA agrees 

strongly with the ambient particulate organic carbon trend from 1981 to 2011. Given the 
similarity of the two trends, we conclude that emission trends in other anthropogenic 
sources of OA must be unchanging. It is also concluded that long-term decreases in 
ambient OC are likely to have resulted from efforts to control VOC emissions from 
gasoline engines. As a consequence of these efforts, other sources of OA are now more 
important, including emissions from diesel trucks. 

 
6.2 Recommendations for Future Research 
 
6.2.1 Developing Urban CO2 Monitoring Networks 
 
Unlike traditional air pollutants that are routinely monitored (Figure 1.2), robust measurement 
networks for CO2 in urban areas are lacking even though cities are estimated to account for 
~70% of energy-related emissions of CO2 globally [Rosenzweig et al., 2010]. This is a critical 
gap that must be remedied. Efforts to track and verify progress in reducing CO2 emissions are 
needed in conjunction with pursuit of a wide array of greenhouse gas mitigation options. This 
will provide needed accountability for existing and future climate change legislation. In the U.S., 
California has been a leader in regulating the emissions of greenhouse gases. In 2006, Assembly 
Bill 32, the California Global Warming Solutions Act, was enacted. Through a combination of 
regulatory and market-based mechanisms, AB32 will reduce statewide greenhouse gas emissions 
to 1990 levels by 2020. In 2008, California passed Senate Bill 375, the Sustainable Communities 
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and Climate Protection Act, which will reduce transportation emissions of greenhouse gases 
through better coordination of transportation and land use planning efforts.  
 
In Chapter 2, a high-resolution motor vehicle emissions inventory for carbon dioxide was 
presented. Figure A1 shows that in the major metropolitan areas of California and Texas, motor 
vehicles are the dominant source of CO2 emissions. The CO2 maps presented in this dissertation, 
when combined with other major point and area sources of emissions, can aid in designing urban 
CO2 monitoring networks. Additionally, the emission maps can serve as key points of 
comparison for satellite-derived data, especially in urban settings. New high-resolution space-
based measurements of CO2 should soon be available from the Orbiting Carbon Observatory 
(OCO-2). Comparing emissions models with satellite-based measurements is important in 
quantifying emissions and trends, especially in rapidly growing cities in the developing world 
where on-the-ground data are often lacking or of doubtful quality. Data on fuel use and air 
pollutant emissions in such locations are also lacking, so well-tested observation-based 
approaches will be needed to understand what is going on in rapidly-growing cities in the 
developing world. 
 
6.2.2 Modeling Effects of Long-Term Changes in Motor Vehicle Emission 
 
In Chapters 3 to 5, long-term trends in motor vehicle emission were characterized for nitrogen 
oxides, carbon monoxide, volatile organic compounds, particulate matter, and black carbon. 
Emissions of these pollutants can be linked to the spatial and temporal maps of vehicular carbon 
dioxide emissions developed in Chapter 2. The resulting motor vehicle emission inventories, 
combined with emission estimates for other major point and area sources of pollution, can then 
be input into air quality models to evaluate how emission control policies (past, present, and 
future) affect air quality (Figure 1.2). Some possible areas of further inquiry are: 
 
 To what extent do air quality problems persist? Why have improvements for ground-level 

ozone been slower than for other pollutants? 
 What have been the public health benefits to date, both regionally and in near-roadway 

environments? What further benefits may accrue from future emission controls? 
 Was the most cost-effective path pursued in efforts to control air pollution? 

 
A multitude of observational datasets exist (e.g. satellite, aircraft and surface field studies, and 
routine monitoring), which can be used to constrain uncertainties in air quality and emission 
models needed for quantifying the effects of air pollution. The air quality impacts from motor 
vehicle emissions occur at both regional scales throughout urbanized air basins, and at highly 
localized scales near major roadways. The emission maps developed in Chapter 2 are useful for 
modeling air quality impacts of vehicle emissions at both scales. In addition to addressing public 
health concerns, an emerging topic of interest is control of short-lived climate forcings due to air 
pollution. As described in the introduction, reducing emissions of some pollutants can 
simultaneously mitigate climate change and improve human health [Smith et al., 2009]. The 
comprehensive emission inventories developed here, for pollutants that also exert short-lived 
climate forcings (NOx, CO, VOCs, and BC), can be used for calculating direct radiative forcings 
due to motor vehicle emissions. 
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6.2.3 Projecting Future Motor Vehicle Emissions and Air Quality Impacts 
 
It is also important to project emissions into the future, and to model expected air quality 
impacts. In the U.S., several new regulations are expected to further reduce motor vehicle 
emissions in the coming years: 
 
 More stringent standards have taken effect recently for heavy-duty truck emissions of 

exhaust particulate matter and nitrogen oxides. Diesel particle filters to reduce PM and 
selective catalytic reduction systems to reduce NOx have become standard pieces of 
equipment on new heavy-duty diesel engines. 

 New tailpipe and evaporative emission standards have been established for light-duty 
vehicles, including Low Emission Vehicle (LEV) III standards by California, and Tier 3 
standards set by U.S. EPA. 

 Fuel economy standards for passenger cars and light trucks will rise from 12.6 to 21.1 
kilometers per liter on a fleet-average basis between 2012 and 2025. Improved fuel 
efficiency reduces co-emitted air pollutants and CO2 emissions simultaneously. 

 The first fuel economy standards for heavy-duty trucks are under development currently 
by US EPA. 

 
Emission projections also need to take into account:  
 
 Growth in population and economic activity. 
 Changing travel behavior due to integrated land use and transportation planning [NRC, 

2009]. 
 The prevalence of high-emitting vehicles, which could reduce expected benefits from 

more stringent vehicle emission standards. 
 Upstream emissions associated with energy extraction and generation from switching to 

alternative fuels, e.g. vehicle electrification or increased reliance on natural gas as fuel. 
 
Once vehicle emissions have been projected for future years, these estimates can be input into 
atmospheric models to assess future air quality and to design implementation plans for meeting 
ambient air quality standards. Air quality standards for ground-level ozone are still exceeded in 
many major U.S. metropolitan areas. However, given the non-linear relationship between ozone 
formation and the emissions of nitrogen oxides and volatile organic compounds [Sillman, 1999], 
it is not clear how reducing NOx and VOC emissions from motor vehicles will affect ozone 
concentrations a priori. Additionally, climate change is expected to exacerbate ground-level 
ozone problems [Steiner et al., 2006]. Modeling of the effects on air quality of future changes in 
emissions is needed to assess whether additional air pollution control policies will be effective 
and are of sufficient magnitude to protect human health and public welfare. 
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Appendix A: Map of Dominant Urban Fossil Fuel CO2 Emissions Source 
 

 
 
Figure A1. Map of dominant fossil fuel CO2 emissions source in (a) Los Angeles, and (b) San 
Francisco/San Jose, (c) Houston, and (d) Dallas-Fort Worth. On-road emissions account for 50% 
or greater of the annual average where shading is purple. Industrial emissions account for 50% or 
greater in areas with black hashing. The relative proportion of anthropogenic emissions by 
source is calculated using on-road emissions from this study and VULCAN for all other emission 
categories in 2002. 
  



133 
 

Appendix B: Analysis of Long-Term Weigh-in-Motion Data 
 

 
 

Figure B1. Decadal trends in (a) light and (b) heavy-duty vehicle traffic in California. Each 
marker represents a weigh-in-motion station. For each marker, weigh-in-motion stations are 
ranked by growth from highest to lowest and subdivided into top 10% (red), bottom 10% (blue), 
and middle 80% (gray). The number of stations is shown for each cohort (i.e., N=XX). The 
dashed lines show the mean in each year for each cohort. Trends in statewide fuel sales 
multiplied by changes in fuel economy are shown (black line) for comparison with the traffic 
count-derived data. 
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