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Abstract Ground based observations of comets obtained in support of spacecraft mis-

sions and space telescopes have provided critical supporting context that greatly enhances

the value of the combined dataset. Major areas of ground-based contribution include

providing unique instrumental capabilities and an increased temporal or global perspective

on the system under study. This paper describes a decades long program of supporting

cometary observations focused on high resolving power measurements of ions and atomic/

molecular radicals in the coma. The instrumentation is described, along with the species

under study and the results from a large campaign to study comet C/1995O1 (Hale-Bopp).

Keywords Comets � High resolution spectroscopy � Atomic and molecular spectroscopy

1 Introduction

Observations from above the Earth’s atmosphere have provided an increasingly rich and

new perspective on comets during the previous 30 years. Orbiting observatories now

provide access to both neutral and ion coma constituents with resonances in the X-Ray

(e.g. ROSAT, Chandra), UV (e.g. IUE, FUSE, HST), IR (e.g. Spitzer, ISO, ODIN), and

millimeter (e.g. SWAS) spectral ranges where the Earth’s atmosphere is opaque. Comet

encounter missions have further improved our understanding of nuclei and the inner coma

through a combination of passive sensing (e.g. Vega, Giotto), sample return (e.g. Stardust),

and direct interaction (e.g. Deep Impact, Rosetta). The addition of these capabilities has

greatly expanded our ability to observe molecular parents, the detailed structure of the

nucleus, and the evolution of outgassing at locations near the Sun.

While space observations have opened many new areas of cometary research, they

cannot, in and of themselves, take the place of a robust ground-based program of study.

Ground based support typically provides significant benefit in three clear areas. First, they

are able to give temporal context, especially for targets (like Comets) that change
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significantly during the course of a mission or relative to a single space telescope obser-

vation. This is particularly important for fly-by missions where the time with the target is

short. In this regard, observations made from smaller telescopes can be especially helpful,

because they are generally undersubscribed compared to larger facilities and can thus be

scheduled for either greater or more precise temporal coverage. A second area of contri-

bution is in providing a technical capability or observational perspective that is comple-

mentary to the remote spacecraft. By their nature, space-observing facilities are limited in

their capability to smaller, more generalized instrumentation. Many important techniques

(e.g. high resolving power spectroscopy, single species narrow band imaging) are difficult

to incorporate in a space platform, especially a remote probe. Finally, ground based pro-

grams provide a key historical context, since many diagnostic features of the coma have

databases extending back more than 50–100 years. The value of such complementary data

has driven the organization of many large campaigns (e.g. Meech et al. 2005) that have

been operated in consort with space missions of various types.

A particular area where ground based capabilities are valuable is observations where

high spectral resolving power is required. This capability has not been incorporated on any

in situ comet missions flown to date, primarily due to the large size of echelle spec-

trometers and their very low étendue when used with small collecting area telescopes.

Space telescopes (HST-STIS, IUE, FUSE) have had high resolving power modes with

large collecting areas. However, they typically use small apertures that capture only small

fields of view (FOV), making them a poor match to the large angular scale and low surface

brightness of coma emissions. This is a limitation shared by similar instruments used at

ground-based telescopes, but can be partially offset by larger collecting areas and longer

duty cycles. Better sensitivity over the full coma can be obtained using wide field, high

étendue instruments (e.g. FTS), hyperspectral imagers, or integral field spectrometers, but

these technologies are still rarely implemented in space flight. However such instruments

are readily available to ground based observers.

Beginning with the apparition of comet C/1973 E1 (Kohoutek) observers at the Uni-

versity of Wisconsin, in subsequent collaboration with teams from the Goddard Spaceflight

Center, the University of Washington, and the University of California, Davis, have

conducted synoptic observations of comets using interferometric instrumentation focused

on obtaining high spectral resolving power measurements of ion and neutral emission line

features. Over the next 35 years this program has grown to include several different classes

of high resolving power instruments, used primarily at facilities with telescope apertures of

\4 m that permit the implementation of long campaigns. This paper describes the major

target features observed during several comet apparitions where a short duration space

mission was involved.

2 Discussion

Our program has focused on three instrumental aims, wide-field measurement, narrow

bandpass imaging (with tunable etalon filters) and spectral scanning (data cube measure-

ments), and interferometric (Fabry-Perot Interferometers, Spatial Heterodyne Spectrome-

ters) or integral field (image slicing or fiber fed) grating spectroscopy sensing of line

profiles and line groups. The earliest observations in this program date back to comet 1973f

(Kohoutek) (Huppler et al. 1975; Scherb 1981) and have continued through the most recent

apparition of 73P/Schwassmann-Wachmann 3. Since then, many well known comets

have been observed as part of this members of this team, most notably C/1975 V1 (West),
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1P/Halley (1986), C/1989 C1 (Austin), C/1995O1 (Hale-Bopp), C/1996B2 (Hyakutake),

9P/Tempel 1(2005), and 73P/Schwachmann-Wachman 3 (2005). While each of these

was also observed by space telescopes (HST, IUE, FUSE, SOHO, etc.), three (1P/Halley,

C/1995O1, and 9P/Tempel 1) were also part of short duration spacecraft encounters or

space observations.

The primary diagnostic targets of this research have been Fluorescence (H) and prompt

emissions (O and C) from atomic species and velocity resolved measurements of molecular

ions (H2O?). As end products of coma chemistry, measurements of atomic distributions

provide a mass inventory of production rates for the major parent species (H2O, CO, and

CO2). Their line shapes may also carry significant non-thermal velocity signatures (e.g.

Combi et al. 1999) associated with excess energy from photochemistry. Recent progress

has been made in ground based observations the H2O and CO parents in the IR (Dello-

Russo et al. 2000; Crovisier and Le Bourlot 1983; Crovisier et al. 1999) and Radio (Biver

et al. 2002; Neufeld et al. 2000; Lecacheux et al. 2003), however the use of daughter

products as proxies for production rate continues to be a very important component of

cometary research because of the complementary dynamical and distributional information

they provide. Among the daughter products under study, those left in metastable states

(O1D and C1D) also provide unique insight into the evolution of volatiles in the coma. Both

O1D and C1D states have short lifetimes (115 and 4,077 s), with O1D coming from H2O

and OH and C1D coming from CO (Tozzi et al. 1998). Their short lifetimes, combined

with the Voutflow B 1 km/s for most comets and the 105 km or greater scale lengths of their

primary parents, mean map of the metastable emission is effectively a map of the location

of parent chemistry in the coma (Magee-Sauer et al. 1989; Morgenthaler et al. 2001; Harris

et al. 2002a, b). Moreover, since a metastable atom emits only one time, the integrated flux

measures the steady state mass of the parent species in the coma. This combination of

factors makes it straightforward to invert the wide field brightness to production rate (Q)

provided the branching ratios of the parents are understood (Schultz et al. 1992; Magee-

Sauer et al. 1989; Oliversen et al. 2002; Morgenthaler et al. 2001, 2007). The major

difficulty is that both O1D and C1D require high resolving power to separate the cometary

emissions from nearby molecular bands (NH2 and OH) and from telluric emission and/or

absorption features. A similar problem exists for Ha which must be Doppler-shifted off of

both the geocoronal line and background galactic emission (Huppler et al. 1975; Mor-

genthaler et al. 2002a, b). In situ measurements can eliminate the telluric contamination,

but they are limited by the lack of high resolving power instruments to separate the

molecular contaminants and by the large scale of the coma in these species, especially H

(Combi et al. 1999) in which they are embedded.

High resolving power studies of cometary ion lines are also important for understanding

both the coma and solar wind environments. Provided the production rates are known for

the ion parents (typically H2O? or CO?), the distribution of ions and the evolution of their

velocity distribution as they move back into the tail can be tied directly to the density and

velocity of the local solar wind. Since a single comet apparition will sample a large volume

of the inner solar system, including regions off the plane of the ecliptic, they are thus

‘wind-socks’ sampling space weather in area where we have no capability for doing so

ourselves. The role of resolving power in this analysis is that mass loading of the solar

wind increases cometary ion velocities in the inner coma from the initial combination of

the nucleus Keplerian velocity (*10–100 km/s) and expansion velocity (*1 km/s) of the

coma to a momentum balance with the (*100–1,000 km/s) anti-sunward velocity of the

solar wind. At high resolution this acceleration can be mapped with location in the coma
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and tail using wavelength stepped interferometric imaging (data cubes) or wide field

integral field spectroscopy (Anderson 1999).

3 Observational Synergy: Results from C/1995O1 (Hale-Bopp)

The 1997 apparition of c/1995OI (Hale-Bopp) provides an excellent illustrative example of

the how a ground based diagnostic suite may be combined synergistically with space-based

observations to enhance the overall scientific return of both sets. Hale-Bopp was not visited

by an in situ spacecraft, but was observed by a series of sub-orbital sounding rocket

experiments, the SOHO spacecraft, and the Hubble Space Telescope (HST). The very high

activity (peak QH2O [ 1031s-1) permitted a full sampling of all aspects of the coma our

ground-based program can currently access, and it therefore is the best example of what

synergy is possible. Sounding rocket wide-field imaging polarimetry (Harris et al. 1999)

obtained images of the full coma of atomic carbon from resonance scattering of the CI

(k1657) multiplet that were inverted directly back to a total carbon production rate. A

second rocket experiment (McPhate et al. 1998) obtained narrow slit spectroscopy of both

CI (k1657) and fourth positive band of CO in the inner coma. The latter observations are

invertible from radial distributions to production rates of each species provided the outflow

velocity of the coma is known. Similar wide field measurements of scattered solar H Ly-a
in the coma (Combi et al. 2000) with SOHO provide a total hydrogen (effectively water)

production rate outside of the optically thick inner coma. (While this was not done for

Hale-Bopp, line-shape measurements with HST (Combi et al. 1999) further sample the

complex non-thermal line shape of the Ly-a line.) In addition, the trio of CO, CO2, and

H2O were observed in the inner coma by ISO (Crovisier et al. 1999).

In support of these efforts a large, multi-observatory campaign was mounted close in

time to the sounding rocket campaign near perihelion, during which wide field H Ly-a
images were also obtained (Combi et al. 2000). A full series of observational diagnostics

were obtained from small (0.9 m Burrell Schmidt) to intermediate (3.5 m WIYN) tele-

scopes that included interferometric imaging of O1D (Fig. 1) and H2O? (Fig. 2), high

resolving power measurements of O1D, C1D (Fig. 3), Ha (Fig. 4), and H2O? (Fig. 5), and

narrow band imaging of OH (Fig. 6), CN, C3 and C2. The results of these observations

provide important supplemental context for understanding the space-based data.

3.1 Carbon Observations

The C1D wide field observations (Oliversen et al. 2002, Fig. 3) essentially measured the

photo-destruction of CO in the coma, since CO2 has a minimal branching ratio to this

reaction (Huebner et al. 1992). It therefore provided a direct measure of its parent over a

slightly larger FOV than the rocket CO observation (McPhate et al. 1998) and a com-

parison of QCO with QC as observed with the wide-field imaging rocket (Harris et al. 1999)

and with QH2O (via H Ly-a from SOHO and H a from ground based measurement).

3.2 Water Daughter Products and Coma Dynamics

Direct full coma measurements of H Ly-a may, in principle, be inverted to water pro-

duction provided opacity effects are addressed and the velocity components are addressed.

Hydrogen’s velocity distribution is highly non-thermal due to the large amounts of excess

energy pumped into it from the photodissociation of its parents. The accuracy of the
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inversion is dependent on an understanding of the photochemical branching ratios leading

to H from H2O and on the importance of collisions within the photochemical scale length

(Combi et al. 2000). Ground based observations of OH (Harris et al. 2002a, b), O1D

(Morgenthaler et al. 2001, Morgenthaler et al. 2007), and Ha (Morgenthaler et al. 2002a, b)

all reveal a complex environment with implications for estimates of QH2O. Modeling of the

radial distribution of OH showed significant evidence of thermalization of photochemical

Fig. 1 A narrow band image of O1D emission from comet C/1995 O1 (Hale-Bopp) take with the Wisconsin
H-a Mapper (WHAM), a stand-alone Fabry-Perot interferometer operated by the University of Wisconsin on
Kitt Peak (from Morgenthaler et al. 2002a). Source: Harris et al. 2002a (Earth, Moon, and Planets Vol 90)

Fig. 2 A series of narrow band images from a data-cube of H2O? emission from comet C/1995 O1 (Hale-
Bopp) shows acceleration into the tail. Each image is \10 km/s step in velocity
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Fig. 3 A spectrum of C1D emission from comet C/1995 O1 (Hale-Bopp) shows the carbon emission along
side contaminating OH and H2O telluric features (from Oliversen et al. 2002. Reproduced by permission of
the AAS)

Fig. 4 A spectrum of Ha emission from comet C/1995 O1 (Hale-Bopp) obtained with the WHAM
instrument. The spectrum shows both the comet and geocoronal lines and demonstrates the significance of
using high resolving power and the Doppler shift of the comet to obtain a clean signal (from Morgenthaler
et al. 2002b). Source: Morgenthaler et al. 2000 (Earth, Moon, and Planets Vol 90)
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excess energy leading to an increase in the radial expansion rate of the coma (Harris et al.

2002a, b). This result was confirmed using radial maps of O1D that showed evidence of

deviation from published photochemical branching ratios (Morgenthaler et al. 2001, 2007).

Ha line shape analysis showed broadening consistent with the expected H outflow char-

acteristics in the outer coma, but also for substantial optical depth effects in the inner

regions (Morgenthaler et al. 2002b). This combination of multiple daughters observed both

spatially and in Doppler space produced a far richer understanding of the coma and water.

3.3 Ion Studies

With its high orbital inclination Hale-Bopp sampled a range of high solar latitude regions

that are difficult to observe with existing spacecraft such as SOHO or Ulysses. Both

imaging and data cube observations of H2O? (Figs. 2 and 5) reveal clear evidence of

acceleration in the anti-sunward direction. However, the rate of acceleration is substan-

tially less than was measured from 1P/Halley in 1986 (Scherb et al. 1990; Anderson 1999).

While the combination of a different solar wind environment and the increased mass of gas

production from Hale-Bopp relative to 1P/Halley may have led to a significant decrease in

the inner coma acceleration of the cometary ions, images of OH and O1D emission paint a

different story. In both cases there is clear evidence of an emission enhancement in a

direction between the anti-sunward and anti-orbital axes of the comet orbit. As part of their

broader treatment of these data (Harris et al. 2002a, b; Morgenthaler et al. 2001) this

Fig. 5 An echelle spectrum extracted from a single fiber (of 100) positioned 40’’ from the nucleus of comet
C/1995 O1 (Hale-Bopp) using the Hydra integral field spectrometer at the WIYN telescope shows comet
features from H2O?, NH2, and O1D with a centroid velocity resolution of 2–3 km/s (image courtesy C. M.
Anderson). The Hydra fibers were positioned in a series of concentric rings extending out to 20 arcminutes
from the nucleus. Source: Anderson 1999 (Earth, Moon, and Planets Vol. 78)
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deflection was attributed to possible ion-neutral collisions (Figs. 1 and 6) in the thick

regions of the coma that extended to more than 105 km from the nucleus (Harris et al.

2002b). This result fit well with the conclusion, based on the coma scale length of OH, that

Hydrogen photochemical excess energy was being re-thermalized into the bulk coma

outflow in Hale-Bopp. It also implies that comets with very high water production rates

may be less diagnostic of the local solar wind characteristics, or at least require a colli-

sional component in the analysis.

4 Conclusions

Space based observational studies of comets are well supported by supplemental ground

based campaigns focusing on providing complementary instrumental capabilities, timing,

and perspective. High spectral resolution instruments at small to medium aperture tele-

scopes are more than adequate for providing this capability for active comet apparitions,

with the additional benefit that precise scheduling and/or long duration campaigns are

possible. Results from the 1997 Hale-Bopp perihelion campaign showed the value obtained

with ground and space observatories are used collaboratively and that smaller telescope

facilities can contribute significantly to the overall science return. Future comet encounter

missions should benefit from future programs.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Fig. 6 A narrow band image of OH obtained with the Burrell Schmidt telescope on Kitt Peak shows a
slightly asymmetric coma with the extension aligned toward the antisunward direction (from Harris et al.
2002b. Reproduced by permission of the AAS). Source: Harris et al. 2002 (Ap. J. Vol 576)
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