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Experimental Demonstration of Frequency
Regulation by Commercial Buildings — Part II:
Results and Performance Evaluation

Evangelos Vrettos, Student Member, IEEE, Emre C. Kara, Member, IEEE, Jason MacDonald, Student
Member, IEEE, Goran Andersson, Fellow, IEEE, and Duncan S. Callaway, Member, IEEE

Abstract—This paper is the second part of a two-part series
presenting the results from an experimental demonstration of
frequency regulation in a commercial building test facility. In
Part I, we developed relevant building models and designed a
hierarchical controller for reserve scheduling, building climate
control and frequency regulation.

In Part II, we introduce the communication architecture and
experiment settings, and present extensive experimental results
under frequency regulation. More specifically, we compute the
day-ahead reserve capacity of the test facility under different
assumptions and conditions. Furthermore, we demonstrate the
ability of model predictive control to satisfy comfort constraints
under frequency regulation, and show that fan speed control can
track the fast-moving RegD signal of the Pennsylvania, Jersey,
and Maryland Power Market (PJM) very accurately. In addition,
we discuss potential effects of frequency regulation on building
operation (e.g., increase in energy consumption, oscillations in
supply air temperature, and effect on chiller cycling), and provide
suggestions for real-world implementation projects. Our results
show that hierarchical control is appropriate for frequency
regulation from commercial buildings.

Index Terms—ancillary services; frequency control; demand
response; commercial building; HVAC system; MPC.

I. INTRODUCTION

In Part I of this two-part paper [1], we performed a detailed
literature review on theoretical, simulation-based, and experi-
mental work on frequency regulation with the Heating, Ven-
tilation and Air-Conditioning (HVAC) systems of commercial
buildings. Furthermore, we presented the test facility for our
experiment (FLEXLAB), developed relevant building models,
and designed a hierarchical control scheme for provision of
frequency regulation.

The scheme consists of three levels: (i) a reserve scheduler
(Ievel 1) that is formulated as a multi-period robust optimiza-
tion problem; (ii) a building climate controller (level 2) that
is formulated as a Model Predictive Control (MPC) problem;
and (iii) a switched controller that controls fan speed in order
to track a frequency regulation signal.

E. Vrettos and G. Andersson are with the Power Systems Laboratory, ETH
Zurich, Switzerland, e-mails: {vrettos|andersson} @eeh.ee.ethz.ch.

E. C. Kara is with the SLAC National Accelerator Laboratory, California,
US, e-mail: emrecan@slac.stanford.edu. Most of the work was carried out
while E. C. Kara was at the Lawrence Berkeley National Laboratory (LBNL).

J. MacDonald is with the Grid Integration Group, LBNL, e-mail: jsmac-
donald@1bl.gov.

D. S. Callaway is with the Energy and Resources Group, University of
California, Berkeley, USA, e-mail: dcal@berkeley.edu.

In Section II of Part II, we summarize the control and com-
munication architecture, as well as the experiment settings.
In Sections III, IV, and V we report extensive experimental
results in FLEXLAB for each level of control over a period
of one week. We summarize some important findings and
suggestions for future work in Section VI, whereas Section VII
concludes.

II. PREPARATION OF THE EXPERIMENT
A. Communication Architecture

We implement the reserve scheduler of level 1 (solved once
a day) and the MPC of level 2 (solved every 15 minutes) in
Matlab, whereas we calculate the fan speed setpoints of level
3 in Python (every 4 seconds) and communicate them to the
Central Working Station (CWS) of FLEXLAB. We used file-
based communication between Python and Matlab based on
comma-separated-values (csv) files.

The reserve scheduler stores the computed reserve capacity
in a “reserve.csv” file. A Python script periodically queries the
CWS and stores the building measurements in a “measure.csv”
file. Another Python script periodically queries the publicly
available database of forecast.io and stores the weather fore-
casts in a “forecast.csv” file.! The MPC’s feedback from
the building is obtained from “measure.csv”” and the weather
forecasts from “forecast.csv”. The optimal air flow rate set-
point calculated by Matlab is stored in a “setpoint.csv” file.
The fan speed setpoint is determined in Python by accessing
the “setpoint.csv” and “reserve.csv” files, and based on the
frequency regulation signal.

Most of the experiment was performed using archived data
of the RegD signal from the Pennsylvania, Jersey, and Mary-
land Power Market (PJM) from December 2012 to January
2013. Although the signal was available with a resolution
of 2 seconds, we down-sampled it to 4 seconds due to the
expected communication delays. In addition, a connection
with PJM was established based on the DNP3 protocol and
using a Siemens Jetstream gateway that provided us with the
RegD signal in real-time. At the FLEXLAB side, the received
data were translated, saved in an SQL database, and pushed
by a “RegD signal server” to a “RegD signal client”. The
complete communication architecture from PJM to FLEXLAB

'Only ambient temperature forecasts are obtained from forecastio. The
solar radiation forecasts are obtained from a clear-sky radiation model, which
turned out to be sufficient for the weather conditions during the experiment.
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Fig. 1. The developed control and communication architecture for building climate control and frequency regulation in the FLEXLAB test facility.
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Fig. 2. The heater schedule and the actual power consumption. The heat gain
is high during working hours and low during non-working hours.

is graphically shown in Fig. 1. However, network issues at
FLEXLAB made the connection unreliable, and therefore we
chose to run the live connection with PJM only for one
continuous hour.

B. Experiment Settings

Since FLEXLAB is not occupied, we emulated the internal
heat gains from occupants and equipment using electric heaters
as plug loads. The total internal heat gain in both cells was
kept lower than the chiller’s cooling capacity. The heaters’
consumption profile was fixed according to the red curve of
Fig. 2 using digital timer sockets. The actual heater power
(blue curve) fluctuates around this profile due to voltage
variations.

Before the start of the experiment, we fixed the manually
controlled inlet dampers in the rooms to fully open positions.
In addition, we fixed the return air damper to a 100% opening
and the outside air damper to a 0% opening, i.e., the return air
was fully recirculated. The speeds of primary and secondary
chilled water pumps were fixed to 75% and 100% of their rated
speeds, respectively. Moreover, we deactivated FLEXLAB’s
floor heating system and the heating coil at the Air Handling
Unit (AHU).

We set the temperature comfort zone to 21 — 25°C during
working hours. An existing Proportional-Integral (PI) con-
troller regulates the Supply Air Temperature (SAT) to 17°C
by controlling the position of a cooling valve. The gains of
this controller had been tuned for a conventional building
operation; therefore, we modified them to achieve a tighter
control and reduce the fluctuations of SAT around its setpoint
during frequency regulation. The resulting SAT profile during
the experiment is shown in Fig. 3. The mean deviation from
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Fig. 3. The SAT setpoint and actual values during one week.

the SAT setpoint is 0.05°C (there is a small bias to larger SAT
values) and the mean absolute deviation is 0.37°C.

Recall that the facility has two building cells with identical
construction: cell 1A is used for the frequency regulation
experiment, whereas cell 1B serves as a benchmark. Applying
the same air flow rate in both cells and recording the temper-
ature, we verified that the two cells are thermally very similar.
However, we observed that the same fan speed setpoint induces
a slightly different air flow rate in the two cells due to small
differences in the AHUs. To compensate for this, we fitted
different fan models for the two cells (the parameters for cell
1A are given in [1, Table IV]).

The electricity cost was assumed equal to ¢, = 0.18 €/kWh,
whereas the reserve capacity payment was fixed to a 10%
higher value, i.e., Ay = 0.198 €/kWh. The goal of this exper-
iment is to demonstrate the technical feasibility of frequency
regulation from commercial buildings. For this reason, we
chose a relatively high capacity payment to incentivize reserve
provision from FLEXLAB.

C. Experiment Plan

The experiment was organized into two parts. The first part
took place from 15 to 18 November 2015 and relied on an
“older” building model identified with data from June-July
2015 (see [1, Table II]). On 19 November the experiment was
paused and a new building model was identified using the
recently collected data (see [1, Table III]), which was used in
the second part of the experiment from 20 to 21 November.
Both models are identified using the “1-day ahead prediction”
approach introduced in [1, Section III.A].

n. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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III. RESERVE SCHEDULING (LEVEL 1)

In this section, we present results relevant to the reserve
scheduler. Two main factors that determine the amount of
reserves are the building’s energy capacity and the symmetry
of reserve capacity. Apart from the physical properties of the
building, the energy capacity depends also on the comfort
zone’s width. In this experiment, we specifically address the
effect of enlarging the comfort zone during unoccupied hours
to 12 — 35°C (the so-called night setback). We performed six
full-day experiments with symmetric (equal up- and down-
reserves) or asymmetric reserves, and with or without night
setback. Note that the same price is assumed for up- and down-
reserves in the asymmetric case.

Symmetric reserves with setback on 20 November 2015
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Fig. 4. The hourly, symmetric reserve capacities as a percentage of nominal
fan power for 20 November 2015.
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Fig. 5. The hourly, asymmetric reserve capacities as a percentage of nominal
fan power for 21 November 2015.

Symmetric reserves with setback on 15 November 2015
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Fig. 6. The hourly, symmetric reserve capacities as a percentage of nominal
fan power for 15 November 2015 (with setback).
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Figure 4 shows results for 20 November when symmetric
reserve capacities were assumed, and Fig. 5 for 21 November
when asymmetric capacities were used (in both days night
setback was applied). The capacities are reported in % of the
fan rated power (2500 W). The reserve capacity is maximized
at night when the comfort zone is enlarged, and during the
hottest part of daytime. For symmetric reserves, the maximum
capacity is slightly less than 40% of the rated fan power. For

Symmetric reserves without setback on 17 November 2015
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Fig. 7. The hourly, symmetric reserve capacities as a percentage of nominal
fan power for 17 November 2015 (without setback).

TABLE I
EXPERIMENTAL (BOLD) AND SIMULATED (NORMAL FONT) DAILY
AVERAGE RESERVE CAPACITIES IN % OF FAN NOMINAL POWER (2500 W).

Date Symmetric, Asymmetric, Symmetric, | Asymmetric,

Setback Setback No setback | No setback

Ru Rd Ru Rd Ru Rd Ru Rd

15/11|15.61 15.61| 6.45 26.15 | 1.91 1.91 | 1.64 4.42
16/11| 9.09 9.09 | 3.90 14.88| 0.74 0.74 | 0.90 1.85
17/11| 11.44 1144 | 5.39 21.21 | 2.24 2.24 | 1.85 4.59
18/11| 16.70 16.70 | 7.78 31.75| 3.94 3.94 |3.28 9.91
20/11 (28.95 28.95| 11.89 49.66 | 15.07 15.07 | 7.82 28.81
21/11| 22.10 22.10 |10.72 46.55|13.60 13.60 | 6.79 26.30

asymmetric reserves, the maximum up-reserve capacity is ap-
proximately 15%, whereas the down-reserve capacity is more
than 60%. These experimental results are in agreement with
relevant simulation results in [2], [3], and show that down-
reserves (increase of HVAC power) are preferable for com-
mercial buildings equipped with energy-efficient controllers,
because down-reserves can be provided without increasing the
baseline consumption and the energy cost.

Figure 6 shows experimental results for 15 November
when setback was used, whereas Fig. 7 shows results for 17
November when no setback was applied (the reserve capacities
were symmetric in both dates). With setback most reserve
is provided at night, whereas without setback the reserve
provision coincides with the highest cooling load in the middle
of the day. Although the experiment was conducted with
setback and symmetric reserves both on 15 and 20 November,
the capacity profiles during daytime are considerably different
due to different weather conditions and building models.

To have a fair comparison under the same external con-
ditions, we simulated the reserve capacity scheduling for all
combinations of reserve symmetry and night setback using
the building model. The simulation and experimental results
are shown in Table 1. The capacity ranges from low values
below 1% to high values nearly 50%, and it heavily depends
on reserve symmetry, setback, and weather conditions. The
night setback increases the capacity by 177.0% on average for
symmetric reserves, by 107.0% for asymmetric up-reserves,
and by 150.7% for asymmetric down-reserves. If setback
is already used, adopting asymmetric capacities instead of
symmetric capacities reduces the up-reserves by 55.6% but
increases the down-reserves by 83.1%, and so the net effect
is an increase of 13.7% in the total capacity.

1949-3053 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 8. Experimental results for the room climate controller under frequency
regulation on 17 November (symmetric reserves, without night setback).

IV. RooM CLIMATE CONTROL (LEVEL 2)

A. Comfort Satisfaction

Experimental results for 17 November are shown in Fig. 8,
where the top plot shows the temperature trajectories in cells
1A and 1B, the middle plot presents the forecasts and actual
values for ambient temperature and solar irradiance?, whereas
the bottom plot shows the SAT and the air flow rate in cell 1A.3
The comfort zone is indicated with red: the actual upper limit
(red solid line) is 25°C, but a tighter limit of 24°C (red dashed
line) is used within the MPC to account for modeling and
forecast errors. Similar results for 18, 20, and 21 November
are shown in Figs. 9, 10, and 11, but without including the
SAT and air flow rate plots due to space limitations.

In Figures 8 and 9 the cell 1B is under energy efficient
operation and the temperature remains close to the upper limit
of the comfort zone. On the other hand, in Figs. 10 and 11
the cell 1B is in a “regulation-ready” operation mode, namely
the consumption of the HVAC system is scheduled identically
to cell 1A to allow reserve provision, but no regulation signal
is received. For this reason, the temperature trajectories of the
two cells are very close to each other for most of the time on
20 and 21 November.*

2The total global irradiance is shown, which includes the long-wave
radiation losses from the building envelope to the atmosphere, and it can
be negative at night. This effect is known as nighttime radiation cooling [4].

3Despite the relatively low ambient temperature during the experiment,
cooling is needed due to the high internal and solar irradiance heat gains. The
cooling energy is provided by the HVAC system rather than natural ventilation
in order to emulate hotter days with higher reserve potential.

“The discrepancies from 12.00 to 19.00 on 20 November are due to
the calibration differences between the fan models of the two cells (see
Section II-B). The discrepancies from 07.00 to 17.00 on 21 November are
because of interruptions in the hierarchical control in cell 1B due to server
connection timeout error from approximately 07.00 to 11.00. When the server
was unresponsive, the cell was controlled by an existing fallback controller.

4

26
. R
g4 A y A R VYV 'MMM\/\NL
E VEYYY
223
g
£ 22\& /ﬂ'\/
g
5 21 M

‘ — Cell 1A — Cell IB ——  Comfort zone MPC bounds‘

20 03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00 00:00:00

22 600
O 20l| — Actual temperature 500
e g
,95_). 18 Forecasted temperature 400 =
1= =
3 16 00
5 1 200 g
5 - =
z (AN . 100 E
5 12, e e et | I
= ~ =t tVTEs 3 ARt AR =
'E 1 (il 1 Actual irrad. A W TS V“v‘f\“‘\‘ww’v 100 =
< . Y‘"\ e --- Forecasted irrad. ! v
00:00:00 03:00:00 06:00:00 09:00:00 12:00:00 15:00:00 18:00:00 21:00:00 200

Time

Fig. 9. Experimental results for the room climate controller under frequency
regulation on 18 November (asymmetric reserves, without night setback).
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Fig. 10. Experimental results for the room climate controller under frequency
regulation on 20 November (symmetric reserves, with night setback).

The temperature trajectory of cell 1B in Figs. 8 and 9
remains mostly in the band [24 — 25]°C, which illustrates
the necessity of tightening the comfort zone constraints in
the MPC to compensate for modeling errors. The temperature
trajectory of cell 1A is more variable and it follows the
scheduled reserve and air flow rate. On 17 November (Fig. 8)
frequency regulation is provided while respecting the comfort
zone.

However, on 18 November (Fig. 9) the comfort zone is
violated from 13.00 to 16.00 in cell 1A, but not in cell 1B. This
happens because: (i) the ambient temperature is higher than the
day-ahead forecast from the beginning of the day until 15.00,
and (ii) asymmetric reserves are used. The asymmetry allows
for a more aggressive scheduling with a larger down-reserve
capacity on 18 November, in comparison with 17 November
when symmetric reserves are used (see Table I).

The control performance is significantly better on 20 and 21
November (Figs. 10 and 11) despite the large discrepancies
between the day-ahead ambient temperature forecasts and
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Fig. 12. Model and Kalman filter performance for 17 November, when the
older building model was used.

the actual values. The improvement is due to the recently
calibrated building model (see Section II-C). No comfort zone
violations occur and moreover the temperature is below the
MPC constraint of 24°C for most of the time. Therefore,
periodic model calibration (for example on a weekly or daily
basis) is important to account for seasonality and eliminate
systematic errors.

These results show that if the model and weather forecasts
are sufficiently accurate, the robust reserve scheduler allows a
commercial building to bid in day-ahead markets for frequency
regulation. On the other hand, if the modeling and forecast
errors exceed the controller’s robustness margin, reserve pro-
vision for frequency regulation might have an adverse effect
on occupant comfort.

The temperature trajectory in Figs. 10 and 11 is typical
for a building with night setback. The controller chooses
to overcool the space at night in order to generate higher
revenue by offering a larger reserve capacity. In contrast,
the reserve capacity is smaller during working hours and the
room temperature is higher. A comparison of the temperature
trajectories in cells 1A and 1B shows that tracking the RegD
signal has little effect on room temperature due to the signal’s
limited energy content.

B. Model and Estimator Performance

Figure 12 shows the out-of-sample performance of the older
model, whereas Fig. 13 shows the same results for the new

Fig. 14. Left: Air flow rate schedule in level 1 and level 2. Right: Fan power
schedule in level 1 and level 2.

model. The blue curve is the measured room temperature,
and the green curve is the estimated temperature with the
Kalman filter. The red curve corresponds to a temperature
prediction made by the model one day ahead, whereas the
orange curve shows a temperature prediction made by the
model one step ahead.’ Clearly, the new model outperforms
the older one, especially for the day-ahead predictions. This is
why the performance of the level 2 controller is much better
on 20 November than on 17 November in terms of comfort
zone violations.

The effect of model accuracy on MPC operation is shown
in Fig. 14. On 17 November the model mismatch is large,
which results in a significant discrepancy in the scheduled air
flow rate and fan power between level 1 and level 2. The
MPC reacts on the modeling error by reducing the cooling
power in level 2 during night hours and increasing it during
daytime. In this way, the MPC provides the same amount of
electric reserve in daytime with less change in air flow rate by
taking advantage of the nonlinear fan curve. On the other hand,
the model mismatch is small on 20 November, and therefore
the air flow and fan power schedules of level 1 and level 2
are similar. In fact, level 2 consistently schedules less cooling
power than level 1 because the air flow constraints are relaxed
[1, Equations 15, 24], and the reserve scheduling in level 1 is
robust and thus conservative.

SBoth the step-ahead and day-ahead predictions are generated using a model
identified with the “I-day ahead prediction” approach [1, Section IIL.A].
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Fig. 15. The dependence of SAT and cooling valve opening on fan speed.

C. Fan Heat Gain at High Speeds

We present results on the dependence of SAT and cooling
valve opening on fan speed in Fig. 15, where the blue points
are measurements and the red trend is a polynomial fit on
them. As expected, the trend in cooling valve opening is
increasing because the higher the fan speed the more cooling
is required from the chilled water loop. The trend in SAT is a
flat line for fan speeds up to 50%. However, for speeds above
50% (and especially above 70%) there is a clear increasing
SAT trend despite the increased cooling valve opening.

These results lead to an interesting observation: the heat
gain due to fan rotation is significant at high speeds and it
cannot be effectively rejected by exchanging heat with the
chilled water loop. According to Fig. 15, if the fan operates
at a 70% speed or higher, the SAT will likely have a steady-
state deviation from the setpoint 17°C that can be as high as
1°C. Steady-state SAT deviations might result in comfort zone
violations, because the controller assumes the SAT fixed to
17°C. This did not create problems in our experiment because
the scheduled fan speed by the MPC was at most 70%.

D. Effect on Energy Consumption

A major concern when providing Ancillary Services (AS)
with commercial buildings is the effect on energy consump-
tion. Reference [5] reported a round-trip efficiency of 46%
when a building responded to demand response events in an
experiment. There are two types of efficiency losses relevant
to frequency regulation: “reserve availability efficiency loss”
and “reserve utilization efficiency loss” [6].

The “reserve availability efficiency loss” is the efficiency
loss due to scheduling the consumption in an energy subopti-
mal way to be able to provide frequency reserves, if requested.
The reserve scheduler identifies the optimal tradeoff between
minimizing energy consumption and leaving enough slack for
reserve provision. Note that depending on energy and reserve
prices, the building may or may not be willing to provide
frequency regulation. The “reserve utilization efficiency loss”
is an additional efficiency loss while tracking the frequency
regulation signal.

We report efficiency results in Table II for: (i) 15-18 Novem-
ber when the cell 1B was under energy efficient operation
(to quantify the “reserve availability efficiency loss”); and (ii)
20 November when cell 1B was in regulation-ready operation
mode (to quantify the “reserve utilization efficiency loss™).

150
1251

= Symmetric reserves |4
Asymmetric reserves |

M N ]
20 40 60 80 100

15-min time step of the day

MPC computation
time (s)
N N 5
o O o O
i

o
o

Fig. 16. The average MPC computation time depending on the time of the
day and on reserve symmetry.

The efficiency loss is calculated comparing the energy
consumption of cell 1A with that of the benchmark cell 1B. We
use two different definitions of energy consumption: (i) electric
energy consumption of the fan, and (ii) thermal cooling power
consumption of each cell. The latter is calculated based on the
chilled water flow rate (1), as well as the supply (¢ ) and
return (Zth,) chilled water temperatures using

- Tch,s) . (1)

Based on the results of Table II, the “reserve availability
efficiency loss” is significant and equal to approximately
68% in terms of fan energy and 11% in terms of cooling
power from the chiller. However, the additional consumption
in cell 1A is not entirely wasted because it results in a lower
average temperature. When cell 1B is in the regulation-ready
mode, the cell 1A consumes less energy than cell 1B despite
frequency regulation. The non-negligible difference in the
average temperature of the two cells is due to imperfections in
fan model calibration and limited temperature sensor accuracy.
However, even from 00.00 to 12.00 when both average cell
temperatures are 21.05°C, the consumption of cell 1A is still
lower than that of cell 1B. This result indicates that the
“reserve utilization efficiency loss” is negligible while tracking
a fast-moving regulation signal like RegD.

Pcool = mcw . (Tch,r

E. MPC Computation Time

The MPC computation time is sufficiently low for our
demonstration. As shown in Fig. 16, the longest computation
time is 150 seconds for symmetric reserves and 65 seconds for
asymmetric reserves. The computation time for asymmetric
reserves is lower because the problem is simpler and smaller
[1, Section IV.D].

The computation time decreases at the end of the day
because a reducing MPC horizon is used. After the 70"
time step, when the MPC prediction horizon is smaller than
26 time steps (6.5 hours), the computation time is less
than 2 seconds. Therefore, Fig. 16 can be used to select
the prediction horizon’s length depending on the maximum
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allowable computation time. Since the computation time grows
exponentially with the number of variables of the nonlinear
optimization problem, a shorter prediction horizon might be
necessary for larger buildings.

V. REGULATION SIGNAL TRACKING (LEVEL 3)
A. Control Performance Metrics

In this section, we present results from level 3 and eval-
vate the tracking performance of the regulation signal. The
following metrics are used

ek =eck/Pak, €crx=Par— Pk 2)
ec,k/Ru_,k, if w, <0
erk = ) 3
eck/Rak, if wp >0
Nog—1
eme = (1/Nep) - Y "0 e )
Neyp—1
€mae — (1/Nexp) : Zk:o |€c,k| (5)

Nexp—1
€rmse = \/(1/N3XP) ’ Zk:; eg’k (6)

Nexp—1

€tmape = (I/Nexp) : Zk::) |€t,k:| (7)
Noyy—1

€rmape = (1/Nexp> : Zk:; |er,k‘ ) (3)

where P denotes the instantaneous fan power, wy de-
notes the normalized regulation signal, and Ny, denotes the
experiment duration. The metrics e, and e, are relative
instantaneous errors but the normalization is performed using
the desired fan power Py j, in e x, and the up- (R, ) or down-
reserve capacity (R2q1) in e ;. The mean error ep. is used to
measure any biases in the control response, whereas ep,e 1S
the Mean Absolute Error (MAE) during the experiment. The
Root Mean Squared Error (RMSE) e, penalizes more large
control errors, for example due to overshoots and undershoots.
The metric e mape is the tracking Mean Absolute Percentage
Error (MAPE), and e, nape is the reserve MAPE. We use the
metric ermape because it describes the relative size of control
error with respect to reserve capacity.

In addition, we use the score proposed by PJM for evaluat-
ing the performance of frequency regulation. The total score
Siot consists of three parts, namely the correlation score S,
the delay score Sy and the precision score Sp,. The scores are
computed separately for each hour according to [7]

Sc = Rcor 9
cemax (Reor) ®
R — 1 zn: (Pd,k — Pd,h) . <Pf,k - pf,h) (10)
n—1 Sd St

k=1

7% — 5 min
Sq = = Rcor 11
d ‘ 5min |’ g Tir[og,r;l?n)i(n]( ) o

n €c.k

—1—(1/n)- <, ‘ 12
Sy (1/n) Zk:l P (12)
Stot = (1/3) 'Sc+(1/3) 'Sd+(1/3) 'Sp ) (13)

where n is the number of time steps within an hour, Ry
is the Pearson product-moment correlation coefficient, Pyp
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(resp. Pf,h) is the hourly average value of the reference power
(resp. of the actual fan power), and sq (resp. s) is the standard
deviation of Fy; (resp. of P ).

The correlation score is the maximum correlation coefficient
between Py and Frj, and 7 is the time shift at which the
correlation is maximized (7 takes a value from O to 5 minutes
with a step of 10 seconds). We calculate the delay score
based on the time shift with maximum correlation. In the
precision score calculation, we normalize the absolute control
error by Pd,h, whereas the total score is a weighted sum of the
individual scores.

B. Experimental Time Series Results

In Fig. 17 we present results from the operation of level
3 controller from 18.30 to 19:30 on 20 November 2015. The
duct pressure is quadratic to fan speed, as expected from the
fan laws. Since the duct system is designed to sustain the
pressure corresponding to maximum fan speed, and because
the fan speed does not exceed its maximum value (90%)
during frequency regulation, pressure constraints were not
necessary in the reserve scheduling and MPC formulations
in our experiment.

The switched controller of level 3 consists of a PI controller
and a model-based feedforward controller. The RegD signal
changes direction very often and has a limited energy content.
During periods of time when the RegD signal is relatively flat,
or the reserve capacity is low, the PI controller is active. On
the other hand, whenever the changes in fan power are rapid,
the control switches to the feedforward control.®

The tracking of the RegD signal is generally very good.
However, when large rapid changes in fan power are requested,
overshoots or undershoots might appear. In addition, if the
reserve capacities change significantly at the beginning of each
full hour, temporarily large errors might occur. In general, the
instantaneous percentage errors e ;, and e, are higher at low
operating fan power and low reserve capacity.

C. Evaluation of Tracking Performance

The performance metrics (2)-(8) for the 6 days of Table I
are presented in Table III. The error metric ey map. is larger than
€,mape Decause small reserve capacities are offered for a large
part of the experiment. The mean error ey, has a negative bias,
which means that the fan power is more often higher than the
desired setpoint because the control overshoots are larger than
the undershoots.

We investigate the dependence of control performance on
the minimum reserve capacity, which we call “reserve thresh-
old” and denote by Ry,. The metrics €mae; €rmses Ctmape and
€rmape are recalculated considering only the time steps when
Ry > R if wy, <0, and Ry, > Ry if wy, > 0. We repeat

®In principle, fast changes in fan speed increase the stress on the fan and,
possibly, the device wear. However, the fan’s Variable Frequency Drive (VFD)
is programmed to limit the speed changes such that the fan ramps from zero
to full speed no faster than 30 seconds. For this reason, we believe that the
additional wear of the fan will be rather limited, and will not hinder the long-
term applicability of the approach. A detailed investigation of fan’s wear was
not possible in this paper due to lack of relevant measurements, but it is an
interesting topic of follow-up work.
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Fig. 18. Dependence of tracking and reserve errors on reserve threshold.

this procedure for different Ry, values and present the results
in Fig. 18.

In contrast t0 e;mape, the error metric e;mape decreases
rapidly as Ry, increases in the range [0, 200] W. This happens
because (for the same absolute control error) e ) decreases
if Ry or Ryj increase. On the other hand, emae and epmse
generally increase as Ry, increases because the higher the
reserve capacity the larger the fan power change, and thus the
higher the errors due to overshoots and undershoots. Fig. 18
can provide us with bounds on reserve capacity from a tracking
performance point of view.

that of cell 1B (regulation-ready mode), especially after sudden
changes in the regulation signal that induce sudden changes in
air flow rate. In addition, large excursions in SAT occur in both
cells when the MPC changes the air flow setpoint significantly,
for example at hour 08.00. Moreover, the magnitude of SAT
oscillations is high at low air flow rates, for example from
05.00 to 08.00.

E. Effect of Fan Control on Chiller Power

The fan and the chiller are thermally coupled through the
chilled water loop, hence, it is worth investigating if the
chiller’s operation is affected while providing frequency regu-
lation with the fan. In Fig. 20 we present relevant experimental
results for a duration of 10 hours. The top plot shows the
instantaneous and hourly-average electric power of the fan in
cell 1A and the chiller. The bottom plot shows the cooling
power in the chilled water loop for cells 1A and 1B calculated
with (1).

The chiller has two stages and the electric power consump-
tion is relatively constant at each stage. The chiller’s cycling
depends on cooling load, which in turn depends on fan power
and ambient conditions. In general, as the fan power increases
the chiller cycles more often and remains longer at the on
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Fig. 19. Air flow rate and SAT in cells 1A and 1B on 20 November.
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Fig. 20. Effect of frequency regulation on chiller’s cycling and cooling power.

state. This can be seen in Fig. 20, where the average chiller
power (green line) generally follows the average fan power
(black line).

The effect of regulation is visible on cooling power, which
fluctuates more in cell 1A compared with cell 1B (regulation-
ready mode). Whenever the fan power increases, the cooling
load also increases and the SAT tends to decrease. This is
sensed by the SAT controller that opens the cooling valve to
compensate for the SAT decrease, which in turn increases the
cooling power in the chilled water loop. The delay in cooling
power response depends on the time constant of the cooling
valve’s controller.

Despite the oscillations in cooling power, there is no
observable effect on chiller’s cycling and electric power.
This happens because: (i) the chilled water is stored in a
tank that provides some inertia; and (ii) the RegD signal
is approximately zero-mean. Note that the gradual reduction
in the hourly-average chiller electric power from 19.00 to
00.00 in Fig. 20 is mainly the result of a lower cooling need
due to ambient temperature drop, rather than a side-effect of
frequency regulation.

These results indicate that frequency regulation can be
provided with fan control without side-effects on chiller
consumption. However, this does not necessarily hold for
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Fig. 21. Histogram of communication delays during the experiment.

regulation signals with a larger energy content such as RegA.
In addition, chillers with continuous control (instead of duty-
cycle control) will likely display a more observable impact
on power consumption while providing frequency regulation,
especially if there is no chilled water storage tank. In these
cases, the level 3 controller should be revised, which is an
interesting direction for future work.

F. Analysis of Communication Delays

A challenge in this experiment was communication delays
in measurements and actuation, which result in the overshoots
and undershoots in fan power in Fig. 17. In Fig. 21 we
present a histogram of the experienced delays during the
whole experiment. The probability distribution of delays is
positively skewed with a mean value of 2.89 seconds and
a 95%-percentile of 2.99 seconds. In fact, there exist a few
very large delays in excess of 5 seconds due to temporary
unresponsiveness of the CWS, which are not included in
Fig. 21. Despite the fact that the average delay is large
compared with the time step of level 3 controller (4 seconds),
the tracking performance of RegD signal is very good.

VI. LESSONS LEARNED AND OUTLOOK
A. Lessons Learned

Hierarchical control is an efficient way to provide frequency
regulation with commercial buildings because time-separated
tasks are considered individually. Three control layers are
essential: (i) a reserve capacity scheduler, (ii) a building
climate controller to satisfy comfort while leaving enough
slack for reserves, and (iii) a controller to track the regulation
signal.

Frequency regulation accuracy: High-quality frequency reg-
ulation can be provided by fan speed control. The RegD signal
tracking is excellent even with large communication delays
in the building automation system. A switched controller
comprised of a feedforward controller and a PI feedback con-
troller with gain scheduling provides a fast response without
compromising stability. This results in a total PJM score as
high as 0.98, which is well above PIM’s limit of 0.75.

Means to increase reserve capacity: In our experiment, the
fan provided 0.74 — 49.66% of its rated power as reserve
capacity, depending on ambient conditions and reserve as-
sumptions. Allowing asymmetric reserve capacities and using
a night setback are effective ways to increase the reserve
potential from commercial buildings. In fact, down-reserves
are preferable for buildings because the capacity can be offered
without increasing baseline energy consumption.
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Occupant comfort: If the building bids in day-ahead AS
markets, respecting occupant comfort might be challenging if
the building model and weather forecasts are not very accurate.
Furthermore, asymmetric reserves result in a more aggressive
scheduling that might increase comfort zone violations.

Building model: An accurate building thermal model is
essential for comfort satisfaction, especially in day-ahead AS
markets, and periodic calibration of the model helps to account
for seasonality and eliminate offsets in modeling error. In
general, obtaining accurate day-ahead model predictions is
challenging for large commercial buildings, mainly due to
uncertainties in occupancy and internal gains [9]. Nevertheless,
with an online update of the internal gains, the model’s
prediction can become fairly accurate for at least one hour
ahead. Therefore, offering reserves in an hour-ahead (instead
of day-ahead) AS market might be essential for large commer-
cial buildings. Furthermore, large buildings will likely require
higher-order thermal models. In order to simplify reserve
scheduling and reduce computation time, the building zones
can be grouped into a smaller number of groups depending on
building geometry [9].

Advantages of MPC: Perhaps the most important advantage
of MPC is that it identifies the optimal balance between reserve
provision and energy efficiency. MPC additionally provides
us with a baseline consumption ahead of real-time operation,
which is beneficial from a practical point of view. Moreover,
due to its predictive closed-loop nature it reacts to modeling
and weather forecast errors in a way that minimizes occupant
discomfort.

Robustness measures: It is important to consider the regula-
tion signal uncertainty when scheduling the reserve capacity.
A conservative modeling of this uncertainty builds robustness
to weather forecast and building modeling errors. Additional
robustness can be obtained by tightening the comfort zone
constraints in the MPC, and allowing a larger fan speed control
band in the MPC compared with the reserve scheduler.

Effects of frequency regulation on building control: Fre-
quency regulation might introduce oscillations in SAT, which
can be reduced by appropriately tuning the cooling valve
controller. In addition, if the MPC schedules the fan speed at
very high values, the cooling loop might not be able to reject
the additional heat gain due to fan rotation. On the positive
side, there is little effect on the average energy consumption
of the chiller while tracking an energy-constrained frequency
regulation signal by controlling the fan power. However,
the impact of fan control on chiller cycling may prevent
the building from accurately following the regulation signal
when measured against a baseline that includes the combined
consumption of the fan and the chiller. This is an interesting
area of further study.

Energy consumption: Provision of frequency reserves en-
tails some energy efficiency loss. The efficiency loss due to
scheduling the HVAC consumption in a suboptimal way com-
pared with an energy efficient building control can be as high
as 67%. On the other hand, the efficiency loss while tracking
frequency regulation signals with limited energy content is
negligible.

B. Outlook

There are several avenues for follow-up work. Two direct
extensions are to repeat the experiment with the RegA signal of
PJM, which is slower but has more energy content, and/or with
the heating loop of the AHU enabled. In addition, performing
the frequency regulation experiment using all four buildings
of FLEXLAB will leverage the full potential of hierarchical
control and verify the scalability of the approach.

In some HVAC systems a duct pressure controller regulates
the pressure to a fixed setpoint. The combined operation of
this controller and the dampers of each zone might reject
the frequency regulation action [10]. This is an important
challenge that could not be addressed in this experiment at
FLEXLAB as it requires testing on a large building.

The reserve scheduling optimization problem might be
computationally heavy for buildings with many zones. An al-
ternative is to approximate the nonlinear fan power curve with
a piecewise affine function by introducing binary variables.
The bilinear building dynamics can be approximated with
sequential convex optimization [11], but the convergence is not
guaranteed. Finally, the conservativeness of reserve schedul-
ing can be reduced by generating scenarios from historical
frequency regulation signals at the cost of reducing robustness.

VII. CONCLUSION

In Part II of this two-part paper, we reported experimental
results for frequency regulation from a commercial building
test facility (FLEXLAB). The results are very encouraging:
the test building can track fast-moving signals such as RegD
reliably, with very high accuracy, and with minimal effect on
occupant comfort and the operation of the HVAC system. The
results also indicate that a hierarchical control approach is
appropriate for frequency regulation with day-ahead bidding
of the reserve capacity, and it can be used in field tests and
real-world implementations in larger buildings.
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