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Prior-Preconditioned Conjugate Gradient Method for Accelerated 
Gibbs Sampling in “Large n, Large p” Bayesian Sparse 
Regression

Akihiko Nishimuraa, Marc A. Suchardb

aDepartment of Biostatistics, Johns Hopkins University, Baltimore, MD

bDepartment of Biomathematics, Biostatistics, and Human Genetics, University of California-Los 
Angeles, Los Angeles, CA

Abstract

In a modern observational study based on healthcare databases, the number of observations 

and of predictors typically range in the order of 105–106 and of 104–105. Despite the large 

sample size, data rarely provide sufficient information to reliably estimate such a large number 

of parameters. Sparse regression techniques provide potential solutions, one notable approach 

being the Bayesian method based on shrinkage priors. In the “large n and large p” setting, 

however, the required posterior computation encounters a bottleneck at repeated sampling from 

a high-dimensional Gaussian distribution, whose precision matrix Φ is expensive to compute and 

factorize. In this article, we present a novel algorithm to speed up this bottleneck based on the 

following observation: We can cheaply generate a random vector b such that the solution to the 

linear system Φβ = b has the desired Gaussian distribution. We can then solve the linear system by 

the conjugate gradient (CG) algorithm through matrix-vector multiplications by Φ; this involves 

no explicit factorization or calculation of Φ itself. Rapid convergence of CG in this context 

is guaranteed by the theory of prior-preconditioning we develop. We apply our algorithm to a 

clinically relevant large-scale observational study with n = 72,489 patients and p = 22,175 clinical 

covariates, designed to assess the relative risk of adverse events from two alternative blood anti-

coagulants. Our algorithm demonstrates an order of magnitude speed-up in posterior inference, in 

our case cutting the computation time from two weeks to less than a day. Supplementary materials 

for this article are available online.
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1. Introduction

Given an outcome of interest yi and a large number of features xi1, ... , xip for i = 1, . . . , 

n, the goal of sparse regression is to find a small subset of these features that captures 

the principal relationship between the outcome and features. Such a sparsity assumption is 

mathematical necessity when p exceeds the sample size n. Even when n > p, however, the 

assumption often remains critical in improving the interpretability and stable estimation of 

regression coefficients β. This is especially true under the following conditions, either of 

which reduces the amount of information the data provides on the regression coefficients: 

(a) the design matrix X is sparse; that is, only a small fraction of the design matrix contains 

nonzero entries due to infrequent binary features, and/or (b) the binary outcome y is rare; 

that is, yi = 0 for most of i’s. Sparse design matrices are extremely common in modern 

observational studies based on healthcare databases; while a large number of potential 

preexisting conditions and available treatments exist, only a small subset of these applies 

to each patient (Schuemie et al. 2018). Rare binary outcomes are also common as many 

diseases of interest have low incidence rates among the population.

A particular application considered in this manuscript is a comparative study of two 

blood anti-coagulants dabigatran and warfarin, using observational data from Truven 

Health MarketScan Medicare Supplemental and Coordination of Benefits Database. The 

anti-coagulants help prevent blood clot formation among patients with atrial fibrilation but 

come with risks of serious side effects. The goal of the study is to quantify which of the 

two drugs has a lower risk of gastrointestinal bleeding. The dataset consists of n = 72,489 

patients and p = 22,175 clinical covariates of potential relevance.

To induce sparsity in the estimate of regression coefficient β, an increasingly common 

approach is the Bayesian method based on shrinkage priors. This class of prior is often 

represented as a scale-mixture of Gaussians:

βj ∣ λj, τ N 0, τ2λj
2 , λj πloc( ⋅ ), τ πglo( ⋅ ),

where τ and λj are unknown global and local scale parameters with priors πloc(·) and πglo(·) 

(Carvalho, Polson, and Scott 2010; Polson, Scott, and Windle 2014; Bhattacharya et al. 

2015; Bhadra et al. 2019). Compared to more traditional “spike-and-slab” discrete-mixture 

priors, continuous shrinkage priors are typically more computationally efficient while 

maintaining highly desirable statistical properties (Datta and Ghosh 2013; Pal and Khare 

2014; Bhattacharya et al. 2015). Despite the relative computational advantage, however, 

posterior inference under these priors still faces a serious scalability issue. In the blood anti-

coagulant safety study, for instance, it takes over 200 hr on a modern high-end commodity 

desktop to run 10,000 iterations of the current state-of-the-art Gibbs sampler, even with 

optimized implementation (Section 4).

We focus on sparse logistic regression in this article, but our Gibbs sampler acceleration 

technique applies whenever the likelihood function can be expressed as a Gaussian mixture. 

The data augmentation scheme of Polson, Scott, and Windle (2013) makes a posterior under 
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the logistic model amenable to Gibbs sampling as follows. Conditioning on a Polya-Gamma 

auxiliary parameter ω, the likelihood of a binary outcome y becomes

yi ∣ X, β, ω N xi
⊤β, ωi

−1 for yi: = ωi
−1 yi − 1/2 .

(1.1)

Correspondingly, the full conditional distribution of β is given by

β ∣ ω, λ, τ, y, X N Φ−1X⊤Ωy, Φ−1 for Φ = X⊤ΩX + τ−2Λ−2,

(1.2)

where Ω = diag(ω), a diagonal matrix with entries Ωii = ωi, and Λ = diag(λ). (See 

supplementary materials S1 for a complete description of the conditional updates within 

the Gibbs sampler.)

The main computational bottleneck of the Gibbs sampler is the need to repeatedly sample 

from high-dimensional Gaussians of the form (1.2). The standard algorithm requires O(np2 

+ p3) operations: O(np2) for computing the term X⊤ΩX and O(p3) for Cholesky factorization 

of Φ. These operations remain significant burden even with sparsity in X because computing 

times of sparse linear algebra operations are dominated not by the number of arithmetic 

operations but by latency in irregular data access (Dongarra, Heroux, and Luszczek 2016; 

Duff, Erisman, and Reid 2017).

The “large n, large p” logistic regression problem considered in this article remains unsolved 

despite the recent computational advances. For n ≪ p cases, Bhattacharya, Chakraborty, and 

Mallick (2016) propose an algorithm to sample from (1.2) with only O(n2p + n3) operations. 

Johndrow, Orenstein, and Bhattacharya (2020) reduce the O(n2p) cost by replacing the 

matrix XΛ2X⊤ with an approximation that can be computed with O(n2k) operations for k 
< p. These techniques offer no reduction in computational cost for n > p cases, however. 

Hahn, He, and Lopes (2018) propose a sampling approach for linear regression based on an 

extensive preprocessing of the matrix X⊤X—a trick limited in scope strictly to the Gaussian 

likelihood model.

Proposed in this article is a novel algorithm to rapidly sample from a high-dimensional 

Gaussian distribution of the form (1.2) through the conjugate gradient (CG) method, using 

only a small number of matrix-vector multiplications v → Φv. Our algorithm requires no 

explicit formation of the matrix Φ because we can compute v via operations v → Xv and 

w → X⊤w, along with element-wise vector multiplications. This is an important feature not 

only for computational efficiency but also for memory efficiency when dealing with a large 

and sparse design matrix X. The matrix X⊤ΩX and hence Φ typically contain a much larger 

proportion of nonzero entries than X, making it far more memory intensive to handle Φ 
directly. For example, when p = 105, it would require 74.5 GB of memory to store a p × p 
dense matrix Φ in double-precision numbers. On the other hand, our algorithm can exploit a 

sparsity structure in X for both computational and memory efficiency.
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Practical utility of CG depends critically on effective preconditioning, whose purpose is 

to speed up the algorithm by relating the given linear system to a modified one. Finding 

an effective preconditioner is a highly problem-specific task and is often viewed as “a 

combination of art and science” (Saad 2003). Exploiting fundamental features of sparse 

regression posteriors, we develop the prior-preconditioning strategy tailored toward the 

linear systems in our specific context. We study its theoretical properties and demonstrate its 

superiority over general-purpose preconditioners in Bayesian sparse regression applications.

The rest of the article is organized as follows. Section 2 begins by describing how to recast 

the problem of sampling from the distribution (1.2) as that of solving a linear system Φβ = 

b. The remainder of the section explains how to apply CG to rapidly solve the linear system, 

developing necessary theories along the way. In Section 3, we use simulated data to study 

the effectiveness of our CG sampler in the sparse regression context. Also studied is how 

the behavior of CG depends on different preconditioning strategies. In Section 4, we apply 

our algorithm to the blood anti-coagulant safety study, demonstrating an order of magnitude 

speed-up in the posterior computation. Among the 22,175 predictors, the sparse regression 

posterior identifies age groups as significant source of treatment effect heterogeneity.

Our CG-accelerated Gibbs sampler is implemented as the bayesbridge package available 

from Python Package Index (pypi.org). The source code is available at a GitHub repository 

https://github.com/ohdsi/bayes-bridge.

2. Conjugate Gradient Sampler

2.1. Generating Gaussian Vector as Solution of Linear System

The standard algorithm for sampling a multivariate-Gaussian requires the Cholesky 

factorization Φ = LL⊤ of its precision (or covariance) matrix (Rue and Held 2005). When 

the precision matrix Φ has a specific structure as in (1.2), however, it turns out we can recast 

the problem of sampling from the distribution (1.2) to that of solving a linear system. This in 

particular obviates the need to compute and factorize Φ.

Proposition 2.1.—The following procedure generates a sample β from the distribution 

(1.2):

1. Generate b N X⊤Ωy, Φ  by sampling independent Gaussian vectors η N 0, In

and δ N 0, Ip  and then setting

b = X⊤Ωy + X⊤Ω1/2η + τ−1Λ−1δ .

(2.3)

2. Solve the following linear system for β:

Φβ = b where Φ = X⊤ΩX + τ−2Λ−2 .

(2.4)
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The result follows immediately from basic properties of multivariate Gaussians. 

The Gaussian vector b has var(b) = Φ and is generated with a computational cost 

negligible compared to computing and factorizing Φ. The solution to (2.4) has 

the required covariance structure because var(Φ−1b) = Φ−1var(b)(Φ−1)⊤.

Bhattacharya, Chakraborty, and Mallick (2016) propose a related algorithm which reduces 

the task of sampling a multivariate Gaussian to solving a n × n linear system. On the other 

hand, our algorithm reduces the task to solving a p × p system, which is smaller in size when 

p < n and, more importantly, amenable to a fast solution via CG as we will show.

2.2. Iterative Method for Solving Linear System

Proposition 2.1 is useful because solving the linear system (2.4) can be significantly faster 

than the standard algorithm for sampling a Gaussian vector. We achieve this speed-up by 

applying the CG method (Hestenes and Stiefel 1952; Lanczos 1952). CG belongs to a family 

of iterative methods for solving a linear system. Compared to traditional direct methods, 

iterative methods are more memory efficient and, if the matrix Φ has certain structures 

(Section 2.3), can be significantly faster.

Iterative methods have found applications in Gaussian process models, where optimizing 

the hyper-parameters of covariance functions requires solving linear systems involving large 

covariance matrices (Gibbs and MacKay 1997). Significant research has gone into how best 

to apply iterative methods in this specific context; see Stein, Chen, and Anitescu (2012), Sun 

and Stein (2016), and Stroud, Stein, and Lysen (2017) for example. Outside the Gaussian 

process literature, Zhou and Guan (2019) use an iterative method to address the bottleneck 

of having to solve large linear systems when computing Bayes factors in a model selection 

problem.

A novel feature of our work is the use of CG as a computational tool for Monte Carlo 

simulation. A related work is Zhang, Datta, and Banerjee (2019), brought to our attention 

while we were preparing the first draft of our manuscript. They use the same idea as in 

Proposition 2.1 to generate a posterior sample from a Gaussian process model. However, 

they fail to investigate when and how CG delivers practical computational gains. Our work 

is distinguished by the development—supported by both theoretical analysis and systematic 

empirical evaluations—of a novel preconditioning technique tailored toward Bayesian sparse 

regression problems (Sections 2.4 and 2.5). In the process, we also compile a summary of 

the most practically useful of theoretical results regarding CG (Appendix B), which has 

previously been scattered across the literature, to facilitate potential applications of CG to a 

broader range of statistical problems.

The CG method solves a linear system Φβ = b involving a positive definite matrix Φ 
as follows. Given an initial guess β0, which may be taken as Φβ0 = 0 for example, CG 

generates a sequence {βk}k=1,2,... of increasingly accurate approximations to the solution. 

The convergence of the CG iterates βk’s is intimately tied to the Krylov subspace

K Φ, r0, k = span r0, Φr0, …, Φk − 1r0 ,
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generated from the initial residual r0 = Φβ0 − b. With β0 + K Φ, r0, k  denoting an affine 

space β0 + v:v ∈ K Φ, r0, k , the approximate solution βk satisfies the following optimality 

property in terms of a weighted l2 norm ∥ · ∥Φ, often referred to as the Φ-norm:

βk = argmin β′ − β Φ:β′ ∈ β0 + K Φ, r0, k

where r Φ
2 : = r⊤Φr.

(2.5)

The optimality property (2.5) in particular implies that CG yields the exact solution after p 
iterations. As evident from the pseudo-code in Section S2 of supplementary materials, the 

main computational cost of each update βk → βk+1 is a matrix-vector operation v → Φv. 

Consequently, the required number of arithmetic operations to run p iterations of the CG 

update is comparable to that of a direct linear algebra method. For a typical precision matrix 

Φ in the conditional distribution (1.2), however, we can induce rapid convergence of CG 

through the preconditioning strategy described in the next section. In our numerical results, 

we indeed find that the distribution of βk even for k ≪ p is indistinguishable from (1.2) for 

all practical purposes.

2.3. Convergence of CG and its Relation to Eigenvalue Distribution

The iterative solution {βk}k=0,1,2,... often displays slow convergence when CG is directly 

applied to a given linear system. Section 2.4 covers the topic of how to induce more rapid 

CG convergence for the system (2.4). In preparation, here we describe how the convergence 

behavior of CG is related to the structure of the positive definite matrix Φ.

CG convergence behavior is partially explained by the following well-known error bound in 

terms of the condition number κ(Φ), the ratio of the largest to smallest eigenvalue of Φ.

Theorem 2.2.—Given a positive definite system Φβ = b and a starting vector β0, the kth 

CG iterate βk satisfies the following bound in its Φ-norm distance to the solution β:

βk − β Φ
β0 − β Φ

≤ 2 κ(Φ) − 1
κ(Φ) + 1

k
.

(2.6)

See Trefethen and Bau (1997) for a proof. Theorem 2.2 guarantees fast convergence of 

the CG iterates when the condition number is small. On the other hand, a large condition 

number does not always prevent rapid convergence. This is because CG converges quickly 

also when the eigenvalues of Φ are “clustered.” The following theorem quantifies this 

phenomenon, albeit in an idealized situation in which Φ has exactly k < p distinct 

eigenvalues.

Theorem 2.3.—If the positive definite matrix Φ has only k + 1 distinct eigenvalues, then 

CG yields an exact solution within k + 1 iterations. In particular, the result holds if Φ is a 

rank-k perturbation of an identity that is, Φ = FF⊤ + I for F ∈ ℝp × k.
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See Golub and Van Loan (2012) for a proof.

Theorems 2.2 and 2.3 are arguably the most famous results on the convergence property of 

CG, perhaps because their conclusions are clear-cut and easy to understand. These results, 

however, fall short of capturing the most important aspects of CG convergence behavior in 

practice. To address this problem, we bring together the most useful of the known results 

scattered around the numerical linear algebra literature and summarize them as the following 

rule of thumb. All the statements below are made mathematically precise in Appendix B.

Rule of Thumb 2.4.—Suppose that the eigenvalues νp(Φ) ≤ · · · ν1(Φ) of Φ are clustered 

in the interval [νp−s, νr] except for a small fraction of them. Then CG effectively “removes” 

the outlying eigenvalues exponentially quickly. Its convergence rate subsequently accelerates 

as if the condition number in Equation (2.6) is replaced by the effective value νr/νp−s. The 

r largest eigenvalues are removed within r iterations, while the same number of smallest 

eigenvalues tends to delay convergence longer.

2.4. Preconditioning Linear System to Accelerate CG Convergence

A preconditioner is a positive definite matrix M chosen so that the preconditioned system

Φβ = b for Φ = M−1/2ΦM−1/2 and b = M−1/2b

(2.7)

leads to faster convergence of the CG iterates. In practice, the algorithm can be implemented 

so that only the operation v → M−1v, and not M−1/2, is required to solve the preconditioned 

system (2.7) via CG (Golub and Van Loan 2012). This preconditioned CG algorithm still 

returns a solution βk = M−1/2βk in terms of the original system.

In light of Rule of Thumb 2.4, an effective preconditioner should modify the eigenvalue 

structure of Φ so that the preconditioned matrix Φ has more tightly clustered eigenvalues 

except for a small number of outlying ones. Larger outlying eigenvalues are preferable 

over smaller ones, as smaller ones cause a more significant delay in CG convergence. 

Additionally, a choice of a preconditioner must take into consideration (a) the one-time cost 

of computing the preconditioner M and (b) the cost of operation v → M−1v during each CG 

iteration.

In the contexts of Bayesian sparse regression, the linear system (2.4) admits a deceptively 

simple yet highly effective preconditioner. As it turns out, the choice

M = τ−2Λ−2

yields a modified system (2.7) with an eigenvalue structure ideally suited to CG. With a 

slight abuse of terminology, we call it the prior preconditioner since it corresponds to the 

precision of β ∣ τ, λ, ω( =d β ∣ τ, λ) before observing y and X. Most existing preconditioners 

require explicit access to the elements of Φ for their constructions (Golub and Van Loan 
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2012) and are thus useless when computing Φ itself is a bottleneck. Arguably the only 

reasonable alternative here is the Jacobi preconditioner M = diag(Φ11, . . . , Φpp), known as 

one of the most effective for Φ with large diagonals. Our numerical results clearly show 

superior performances of the prior preconditioner, however (Sections 3.3 and 4.4).

Noting that the prior-preconditioned matrix is given by

Φ = τ2ΛX⊤ΩXΛ + Ip,

(2.8)

we can heuristically motivate the preconditioner as follows. When employing the shrinkage 

prior, we expect posterior draws of τλ to satisfy τλj ≈ 0 except for a relatively small subset 

{j1, . . . , jk} of j = 1, . . . , p. The (i, j)th entry of the matrix τ2ΛX⊤ΩXΛ is given by

τ2ΛX⊤ΩXΛ
i, j

= τλi τλj X⊤ΩX
ij
,

which is small when either τλi ≈ 0 or τλj ≈ 0. Hence, the entries of τ2ΛX⊤ΩXΛ are small 

away from the k × k block corresponding to the indices {j1, ... , jk}. In general, smaller 

entries of a matrix have less contributions to the eigenvalue structures of the entire matrix 

(Golub and Van Loan 2012). This means that the prior-preconditioned matrix (2.8) can be 

thought of as a perturbation of the identity with a matrix of approximate low-rank structure.1 

As such, Φ can be expected to have eigenvalues clustered around 1, except for a small 

number of larger ones.

Alternatively, we can also motivate the prior-preconditioner as follows. Bayesian sparse 

regression achieves posterior sparsity because the shrinkage prior dominates the likelihood 

for all but a small number of coefficients. In other words, the posterior looks a lot like the 

prior except in a small number of directions. As explained in Section S3 of supplementary 

materials, this phenomenon translates into the eigenvalues of the prior-preconditioned matrix 

Φ clustering around 1. Since this heuristics is based on expected behavior of a posterior 

under a strongly informative prior in general, it suggests that prior-preconditioning may be 

applicable beyond the sparse regression context, for example, to a Gaussian process model 

like that of Zhang, Datta, and Banerjee (2019).

2.5. Theory of Prior-Preconditioning and Role of Posterior Sparsity

We now formally quantify the eigenvalue structure of the matrix (2.8).

Theorem 2.5.—Let λ(k) = λjk denote the kth largest element of {λ1, . . . , λp}. The 

eigenvalues of the prior-preconditioned matrix (2.8) satisfies

1 ≤ vk(Φ) ≤ 1 + τ2λ(k)
2 v1 X⊤ΩX

1It is too naive, however, to deduce that we obtain a good approximation to Φ by zeroing out τλj’s below some threshold. We show in 
Section S9 of supplementary materials, that such approximation is typically of a poor quality.
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for k = 1, . . . , p. In fact, the following more general bounds hold. Let A(−k) denote the (p 
− k) × (p − k) submatrix of a given matrix A corresponding to the row and column indices 

jk+1, . . . , jp. With this notation, we have

1 ≤ vk + ℓ(Φ) ≤ 1 + τ2λ(k)
2 vℓ + 1 X⊤ΩX

( − k)

≤ 1 + τ2λ(k)
2 vℓ + 1 X⊤ΩX

(2.9)

for any k ≥ 1 and ℓ ≥ 0 such that 1 ≤ k + ℓ ≤ p.

Theorem 2.5 guarantees tight clustering of the eigenvalues of the prior-preconditioned 

matrix—and hence rapid convergence of CG—when most of τλj’s are close to zero. We 

can also relate the prior-preconditioned CG approximation error directly to the decay rate in 

τλ(k)’s:

Theorem 2.6.—The prior-preconditioned CG applied to (2.4) yields iterates satisfying the 

following bound for any m, m′ ≥ 0:

βm + m′ − β Φ
β0 − β Φ

≤ 2 κm
1/2 − 1

κm
1/2 + 1

m′
 where

κm = 1 + min
k + l = m

τ2λ(k + 1)
2 νl + 1 X⊤ΩX

( − k)
.

(2.10)

See Appendix A for proofs of Theorems 2.5 and 2.6.

To illustrate the implication of Theorem 2.6 in concrete terms, suppose that a posterior 

draw τ, λ, ω satisfies τ2λ(m + 1)
2 v1 X⊤ΩX ≤ 100 for some m. In this case, we have 

κm
1/2 − 1 / κm

1/2 + 1 ≤ − 0.086. So the bound of Theorem 2.6 implies

βm + m′ − β Φ
β0 − β Φ

≤ 2 ⋅ 10−0.086m′ .

After m+100 iterations, therefore, the CG approximation error in the Φ-norm is guaranteed 

to be reduced by a factor of 2 · 10−8.6 ≈ 10−8.3 relative to the initial error.

We have so far stated our theoretical results in purely linear algebraic languages. We now 

summarize our discussions in a more statistical language, providing a practical guideline on 

the CG sampler performance in the sparse regression context.

Rule of Thumb 2.7.—The prior-preconditioned CG applied to the linear system (2.4) 

converges rapidly when the posterior of β concentrates on sparse vectors. As the sparsity of 

β increases, the convergence rate of the CG sampler also increases.
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The statements above are born out by illustrative examples of Section 3 using synthetic 

sparse regression posteriors. As we have seen, the statements can be made more precise in 

terms of the decay rate in the ordered statistics τλ(k) of a posterior sample τλ (Rule of 

Thumb 2.4, Theorems 2.5, and 2.6). We also note that, while our theoretical results hold 

for any values of ω, τ, λ, and b, these quantities are random within a sparse regression 

Gibbs sampler. Even with substantial variation in these random quantities, however, we 

consistently observe fast decay in all τλ(k) and rapid CG convergence at every iteration. In 

fact, we rarely observe a deviation of more than 5%–10% from the average number of CG 

iterations at stationarity—see Section S8 of supplementary materials.

2.6. Computational Complexity of Prior-preconditioned CG

Based on the discussion of Section 2.5, we may crudely quantify the number of prior-

preconditioned CG iterations required for updating β within a sparse regression Gibbs 

sampler as O(s), where s is the number of τλj’s—and hence of βj’s—significantly away 

from 0. As the cost of each CG iteration is dominated by the operations v → Xv and w → 
X⊤w, both of which require O(np) floating point operations, the O(s) CG iterations translate 

to the overall computational complexity of O(nps). The cost of prior-preconditioned CG thus 

can be far smaller than the O(np2 + p3) cost of the standard method as s ≪ p in many 

applications.2

2.7. Practical Details on Deploying CG for Sparse Regression

While prior-preconditioning is undoubtedly the most essential ingredient, there remain a 

few more important details in applying the CG sampler to sparse regression posterior 

computation. These are (a) a choice of the initial CG vector β0, (b) a termination criterion 

for CG, and (c) handling of regression coefficients with uninformative priors. We discuss 

them briefly here and defer more thorough discussions to Section S4 of supplementary 

materials.

A choice of the initial vector has little effect on the eventual exponential convergence rate of 

CG and, while not to be neglected, is nowhere as consequential as that of the preconditioner 

(Meurant 2006). In fact, we find that any reasonable choice such as β0 = 0 works fine 

in our numerical results, with more elaborate choices resulting in ≲10% improvement in 

performance (Section S4.1 of supplementary materials).

In its typical applications, CG is terminated when the ℓ2-norm of the residual rk = βk−b 
falls below some prespecified threshold. Utility of ∥rk∥ as an error metric is dubious for 

the purpose of the CG sampler, however. We instead propose the prior-preconditioned 

residual rk = Φβk − b as a more tailored alternative, its squared norm being an approximate 

upper bound to ∑j ξj
−2 βk − β j

2 with ξj
2 = E βj

2 ∣ ω, λ, τ, y, X  (Section S4.2 of supplementary 

materials). Specifically, we use and validate the termination criterion p−1/2 rk 2 ≤ 10−6 in 

our numerical studies.

2While this is a useful qualitative comparison, we also note that the number of floating point operations is an imperfect proxy for the 
actual computing time on modern hardware. See Section S7.3 of supplementary materials.
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When preconditioning CG, regression coefficients with uninformative priors, such as the 

intercept, must be handled differently from those under shrinkage. We can accommodate 

such coefficients by augmenting the prior-preconditioner with another diagonal matrix. We 

analyze the eigenvalues of the resulting preconditioned matrix and show that, by virtue 

of CG’s ability to quickly remove the outlying eigenvalues (Rule of Thumb 2.4), the 

convergence rate remains fast and is robust to the precise choice of the diagonal matrix 

(Section S4.3 of supplementary materials).

3. Simulation Study of CG Sampler Performance

We study the CG sampler performance when applied to actual posterior conditional 

distributions of the form (1.2). We specifically focus on the prior-preconditioned CG’s 

performance in solving the linear system (2.4) since this directly translates into the 

performance of the CG-accelerated Gibbs sampler.3 We simulate data with varying numbers 

of nonzero coefficients and confirm how sparsity in regression coefficients translates into 

faster CG convergence as predicted by Theorem 2.5 and Rule of Thumb 2.7. We also 

illustrate how the convergence rates are affected by different preconditioning strategies and 

by corresponding eigenvalue distributions of the preconditioned matrices.

3.1. Choice of Shrinkage Prior: Bayesian Bridge

Among existing global-local shrinkage priors, we adopt the Bayesian bridge prior of Polson, 

Scott, and Windle (2014) as the corresponding Gibbs sampler allows for collapsed updates 

of τ to improve mixing. The Bayesian bridge Gibbs sampler is in fact uniformly ergodic 

when the prior tails are properly modified (Nishimura and Suchard 2022).

Under the Bayesian bridge, the local scale λj’s are given a prior π λj ∝ λj
−2πst λj

−2/2  where 

πst(·) is an alpha-stable distribution with index of stability α/2. The corresponding prior on 

βj | τ, when λj is marginalized out, is

π βj ∣ τ ∝ τ−1exp − βj/τ α .

The distribution of βj | τ becomes “spikier” as α → 0, placing greater mass around 0 while 

inducing heavier tails. In typical applications, the data favors the values α < 1 but only 

weakly identifies α (Polson, Scott, and Windle 2014), so in this article we simply fix α = 1/2 

except when a smaller value seems warranted; see Section 4.3.

3.2. Experimental Set-up

We generate synthetic data of sample size n = 25,000 with the number of predictors p = 

10,000. In constructing a design matrix X, we emulate a model from factor analysis (Jolliffe 

2002). We first sample a set of m = 99 orthonormal vectors u1, …, um ∈ ℝp uniformly from a 

Stiefel manifold. We then set the predictor xi for the ith observation as

3We confirm in Section S6 of supplementary materials that samples generated by the CG sampler is statistically indistinguishable 
from those generated by the direct linear algebra method. Also in Section S6 of supplementary materials, we show how the CG 
sampler’s performance demonstrated here translates into actual gains in terms of computing time.
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xi = ∑
ℓ = 1

99
fi, ℓuℓ + ϵi for fi, ℓ N 0, (100 − ℓ + 1)2 − 1

and ϵi N 0, Ip .

(3.11)

This is equivalent to sampling xi N 0, UDU⊤  for a diagonal matrix D with 

Dℓℓ = max 100 − ℓ + 1, 1  and orthonormal matrix U sampled uniformly from the space 

of orthonormal matrices. We then center and standardize the predictors as is commonly done 

before applying sparse regression (Hastie, Tibshirani, and Friedman 2009).

The above process yields a design matrix X with moderate correlations among the p 
predictors—the distribution of pairwise correlations is approximately Gaussian centered 

around 0 with the standard deviation of 0.13. Based on this design matrix X, we 

simulate three different binary outcome vectors by varying the number of nonzero 

regression coefficients. More specifically, we consider a sparse regression coefficient 

βtrue with βtrue , j = 1 j ≤ s  with varying numbers of signals s = 10, 20, and 50. In 

all three scenarios, the binary outcome y is generated from the logistic model as 

yi ∣ βtrue, xi Bernoulli pi for logit pi = xi
⊤βtrue.

For each synthetic dataset, we obtain a posterior sample of ω, τ, λ | y, X by running the 

Polya-Gamma augmented Gibbs sampler with the brute-force direct linear algebra to sample 

β from its conditional distribution (1.2). We confirm the convergence of the Markov chain 

by examining the traceplot of the posterior log-density of β, τ | y, X. Having obtained a 

posterior sample (ω, τ, λ), we sample the vector b as in (2.3) and apply CG to the linear 

system (2.4). We compare the CG iterates {βk}k≥0 to the exact solution βdirect obtained by 

solving the same system with the Cholesky-based direct method. We repeat this process for 

eight random replications of the right-hand vector b.

3.3. Results

3.3.1. Convergence Rates and Eigenvalue Distributions—Figure 1 shows the CG 

approximation error as a function of the number of CG iterations, whose cost is dominated 

by matrix-vector multiplications v → Φv. We characterize the approximation error as the 

relative error |(βk − βdirect)j/(βdirect)j| averaged across all the coefficients. Each line on the 

plot shows the geometric average of this error metric over the eight random replications 

of b. The CG convergence behavior observed here remains qualitatively similar regardless 

of the error metric choice and varies little across the different right-hand vectors; see 

Section S5.1 of supplementary materials. We also observe there that, while the error |(βk 

− βdirect)j/(βdirect)j| varies substantially across the index j, the coefficient-specific errors all 

decay at roughly uniform rates as a function of the number of CG iterations.

We first focus on the approximation errors under the prior preconditioner, indicated by the 

lines with circles. After k ≪ p = 10,000 matrix-vector operations, the distance between 

βk and βdirect is already orders of magnitudes smaller than typical Monte Carlo errors. 
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With additional CG iterations, the distance reaches the machine precision level; notice the 

eventual “plateaus” achieved under the prior preconditioner in the s = 10 and s = 20 cases.

Figure 1 also shows the approximation errors under the Jacobi preconditioner M 
= diag(Φ11, . . . , Φpp) which, as discussed in Section 2.4, is the only reasonable 

alternative when using the CG sampler for the applications considered in this article. 

The prior preconditioner is clearly superior, with the difference in convergence speed 

more pronounced when true regression coefficients are sparser. Studying the eigenvalue 

distributions of the respective preconditioned matrices provides further insight into the 

observed convergence behaviors. Figure 2(a) and (b) show the eigenvalue distributions of 

the preconditioned matrices based on a posterior sample from the synthetic data with s = 10 

and s = 50. The trimmed version of the histograms highlight the tails of the distributions. 

The prior preconditioner induces the distribution with a tight cluster around 1 (or 0 in the 

log10 scale) with a relatively small number of large ones, confirming the theory developed 

in Section 2.5. On the other hand, the Jacobi preconditioner induces a more spread-out 

distribution, problematically introducing quite a few small eigenvalues that delay the CG 

convergence (Rule of Thumb 2.4).

3.3.2. Relationship between Convergence Rate and Posterior Sparsity—
Finally, we turn our attention to the relationship, as seen in Figure 1, between CG 

convergence rate and sparsity in the underlying true regression coefficients. The convergence 

is clearly quicker when the true regression coefficients are sparser. To understand this 

relationship, it is informative to look at the values of τλj = var(βj |τ, λ)1/2 drawn from 

the respective posterior distributions. Figure 3 plots the values of τλj for j = 1, . . . , 250 

corresponding to the first 250 coefficients. We use two different y-scales for s = 10 and s = 

50, shown on the left and right, respectively, to facilitate qualitative comparison between the 

two cases. As expected, the posterior sample from the synthetic data with a larger number of 

signals has a larger number of τλj’s away from zero. These relatively large τλj’s contribute 

to the delayed convergence of CG (Theorem 2.5 and Rule of Thumb 2.4).

A more significant cause of the delay, however, is the fact that the shrinkage prior yields 

weaker shrinkage on the zero coefficients when there are a larger number of signals. With 

a close look at Figure 3, one can see that τλ1, . . . , τλs corresponding to the true signals 

are not as well separated from the rest of τλj’s when s = 50. In fact, the histograms on 

the left of Figure 4 shows that the distribution of τλj’s for s = 50 are shifted toward larger 

values compared to that for s = 10. This is mostly due to the posterior distribution of τ 
concentrating around a larger value—the value of the posterior sample is τ ≈ 2.0×10−3 for 

the s = 10 case while τ ≈ 6.7 × 10−3 for the s = 50 case.

It is also worth taking a closer look at the tail of the distribution of τλj’s. The histograms on 

the right of Figure 4 show the distribution of the 250 largest τλj’s. The figure makes it clear 

that τλj’s corresponding to the true signals are much more well separated from the rest when 

s = 10. Overall, the slower decay in the largest values of τλj’s results in the eigenvalues 

of the preconditioned matrices having a less tight cluster around 1; compare the eigenvalue 

distributions of Figure 2(a) and (b).
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3.3.3. Comments on Generalizability of Conclusions from Simulation Study
—We conclude by noting that the convergence rate of the CG sampler is also a function 

of signal strengths and correlation among the predictors, both of which affect the 

posterior sparsity in regression coefficients. For example in the propensity score model 

application of Section 4, despite 82 regression coefficients having posterior means of 

substantial magnitudes, the prior-preconditioned CG converges after 107–120 iterations 

in 95% of the cases. We also confirm that, when using a synthetic design matrix with 

independent columns, the CG sampler demonstrates much faster rates of convergence 

for the same numbers of signals (Section S5.2 of supplementary materials). On the 

other hand, a synthetic design matrix with correlation structure more extreme than (3.11) 

leads to slower convergence rates for the same numbers of signals (Section S5.3 of 

supplementary materials). Finally, the posterior sparsity structure, and hence the CG 

sampler’s performance, is also affected by a choice of shrinkage prior. How this choice 

affects the posterior sparsity is difficult to quantify. The additional simulation studies using 

different priors (Sections S6.3 and S8.3 of supplementary materials) indicate, however, that 

the main takeaway holds regardless: the sparser the posterior, the faster the CG sampler’s 

convergence.

4. Application: Comparison of Alternative Treatments

In this section, we demonstrate the magnitude of speed-up delivered by CG-acceleration in 

modern large-scale applications. We apply Bayesian sparse logistic regression to conduct a 

comparative study of two blood anti-coagulants dabigatran and warfarin. The goal of the 

study is to quantify which of the two drugs have a lower risk of a potential side effect, 

gastrointestinal bleeding. This question has previously been investigated by Graham et al. 

(2015) and our analysis yields clinical findings consistent with theirs (Section 4.5).

We are particularly interested in Bayesian sparse regression as a tool for the Observational 

Health Data Sciences and Informatics (OHDSI) collaborative (Hripcsak et al. 2015). 

We therefore follow the OHDSI protocol in preprocessing of the data as well as in 

estimating the treatment effect. In particular, sparse regression plays a critical role in 

eliminating handpicking of confounding factors and of subgroups for testing treatment 

effect heterogeneity; this enables the application of a reproducible and consistent statistical 

estimation procedure to tens of thousands of observational studies (Tian, Schuemie, and 

Suchard 2018; Schuemie et al. 2020).

4.1. Dataset

We extract patient-level data from Truven Health MarketScan Medicare Supplemental and 

Coordination of Benefits Database. In the database, we find n = 72,489 patients who became 

first-time users of either dabigatran or warfarin after diagnosis of atrial fibrillation. Among 

them, 19,768 are treated with dabigatran and the rest with warfarin. There are p = 98,118 

predictors, consisting of clinical measurements, preexisting conditions, as well as prior 

treatments and administered drugs—all measured before exposure to dabigatran or warfarin. 

Following the OHDSI protocol, we screen out the predictors observed in less than 0.1% 

of the cohort. This reduces the number of predictors to p = 22,175. The precise definition 
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of the cohort can be found in supplementary materials as well as at https://github.com/aki-

nishimura/anticoagulant-study-cohorts.

Each patient is affected by only a small fraction of the potential preexisting conditions 

and available treatments. The design matrix X therefore is sparse, with only 4% of the 

entries being nonzero. Another noteworthy feature of the data is the low incidence rates of 

gastrointestinal bleeding; the outcome indicator y has nonzero entries yi = 1 for only 713 out 

of 72,489 patients.

4.2. Statistical Approach: Propensity Score Stratified Regression

To control for covariate imbalances between the dabigatran and warfarin users, we rely 

on propensity score method in estimating the treatment effect. The procedure involves two 

logistic models with large numbers of predictors, to deal with which we employ Bayesian 

sparse regression. We describe the procedure and essential ideas below but refer the readers 

to Stuart (2010), and the references therein for further details.

Estimation of the treatment effect proceeds in two stages. First, the propensity score 
ℙ T i = 1 ∣ xi  of the treatment assignment to dabigatran is estimated by the logistic model

logit ℙ T i = 1 ∣ xi = β0 + xi
⊤β .

(3.12)

While not of direct interest within the propensity score method framework, identifying 

significant predictors of the score is highly relevant in the OHDSI applications. Many of 

the databases are too small to fit the models with such large numbers of predictors, but 

the significant heterogeneity among them makes the joint estimation insensible (Hripcsak 

et al. 2016). Sparse regression provides a tool to screen out the predictors using the 

larger databases and use only the selected subset to estimate the scores within the smaller 

databases.

After fitting the model (4.12), the quantiles of the estimated propensity scores are then 

used to stratify the population into subpopulations of equal sizes. Following a typical 

recommendation, we choose the number of strata as M = 5. Under suitable assumptions, 

conditioning on the strata indicator removes most of imbalances in the distributions of 

the predictors between the treatment (Ti = 1) and control (Ti = −1) groups. After the 

stratification, we can proceed to estimate the treatment effect via the logistic model without 

the main effect from the clinical covariate xi (Tian et al. 2014):

logit ℙ yi = 1 ∣ α, γ, si, xi = ∑
m = 1

M
αm1 si = m + α0 + xi

⊤γ T i
2 ,

(3.13)

where a categorical variable si denotes the strata membership of the ith individual. The 

quantity α0 + x⊤γ represents the treatment effect for a patient with covariate x, with the 
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feature xij contributing to the treatment effect heterogeneity when γj ≠ 0. The goal of sparse 

regression here is to identify such nonzero γj’s.

4.3. Prior Choice and Posterior Computation

We fit the models (4.12) and (4.13) using the Bayesian bridge shrinkage prior (Section 3.1). 

For the main treatment and propensity score strata effects, we place weakly informative 

N(0, 1) priors. For the global scale parameter, we use an objective prior π(τ) ∝ 1/τ in 

the model (4.12) (Berger et al. 2009). For the treatment effect model (4.13), due to the 

low incidence rate in the outcome, we find the above prior choice to provide insufficient 

separation of significant predictors from the rest. We therefore use the bridge prior with α = 

1/4 and weakly informative conjugate prior ϕ = τ−α ~ Gamma(shape = 339.8, rate = 26.58) 

so that log10(τ) has the prior mean of −1.5 and standard deviation of 0.5.

For posterior computation, we compare two Gibbs samplers that differ only in their methods 

for drawing β from the conditional distribution (1.2). One sampler uses the proposed CG 

sampler while the other uses a traditional direct method via Cholesky factorization. Sparse 

Cholesky methods offer no computational benefit here as the precision matrix, despite the 

sparsity in the design matrix X, is almost completely dense (Section S7 of supplementary 

materials). We refer to the respective samplers as the CG-accelerated and direct Gibbs 

sampler. The other conditional updates follow the approaches described in Polson, Scott, and 

Windle (2014); see Section S1 of supplementary materials for the details.

We implement the Gibbs samplers in Python and run on a 2015 iMac with an Intel 

Core i7 “Skylake” processor having four cores at 4 GHZ and 32 GB of memory. Linear 

algebra being the computational bottleneck, both samplers benefit from parallelization 

and we engage all the four cores. For the linear algebra operations, we interface our 

Python code with the Intel Math Kernel Library (MKL) implementations of Basic Linear 

Algebra Subprograms (BLAS) and sparse BLAS, which proved computationally superior to 

alternatives in our preliminary benchmarking. We use the sparse BLAS for matrix-vector 

multiplications v → Xv and w → X⊤w within the CG-accelerated Gibbs and for matrix-

matrix multiplication X⊤ΩX within the direct Gibbs. Exploiting the sparsity in X cuts down 

both computing time and memory usage by an order of magnitude. Details on how we 

optimized both Gibbs sampler are described in Section S7 of supplementary materials.

We run the Gibbs samplers for 5500 and 11,000 iterations for the propensity score and 

treatment effect model, discarding the first 500 and 1000 as burn-ins. We confirm their 

convergences by examining the traceplots of the posterior log-density. We estimate the 

effective sample sizes (ESS) for all the regression coefficients using the R package coda 

(Plummer et al. 2006). The smallest ESSs are found among the coefficients with bimodal 

posteriors, but their traceplots nonetheless indicate reasonable mixing. We find the minimum 

and median ESS to be 106.2 and 2484 for the propensity score model, and 86.04 and 2496 

for the treatment effect model.
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4.4. CG Acceleration Magnitudes and Posterior Characteristics

The direct Gibbs sampler requires 106 and 212 hr for the propensity score and treatment 

effect model. On the other hand, the CG-accelerated sampler finishes in 11.4 and 11.3 hr, 

yielding 9.3-fold and 18.8-fold speed-ups. For both Gibbs samplers, the total computation 

times are dominated by the conditional updates of β. The magnitudes of CG-acceleration 

thus are determined by the CG convergence rate at each Gibbs iteration.

In agreement with the theory and empirical results of Sections 2.5 and 3.3, the variability in 

the magnitudes of CG-acceleration can be explained by the posterior sparsity structures of 

the regression coefficients. For the propensity score model, 82 out of the 22,175 regression 

coefficients have their posterior mean magnitudes above 0.1, while 18,187 (82.0%) of the 

coefficients below 0.01. For the treatment effect model, only two of the coefficients have 

the posterior mean magnitudes above 0.1, while 22,096 (99.6%) below 0.01. We note that 

the individual posterior samples are much less sparse than the posterior mean. Under the 

treatment effect model, for example, the number of coefficients with magnitudes above 0.1 

typically ranges from 265 to 529 while those below 0.01 from 16,172 to 17,632.

For more in-depth analysis of the CG-acceleration mechanism, in Section S8 of 

supplementary materials, we examine the CG sampler behavior at each Gibbs iteration. 

In particular, we verify that the error metric discussed in Section 2.7 works well in deciding 

when to terminate the CG iteration. We also confirm that the prior preconditioner continues 

to outperform the Jacobi in this real data example.

4.5. Clinical Conclusions from Dabigatran versus Warfarin Study

The propensity score model finds substantial differences between the patients treated by 

dabigatran and warfarin. In particular, patients’ covariate characteristics are predictive of 

the treatment assignments as seen in Figure 5. The two most significant predictors are the 

treatment year and age group. Both predictors have been encoded as binary indicators in the 

design matrix for simplicity, but the coefficients of categorical and ordinal predictors could 

have been estimated with shrinkage priors analogous to Bayesian grouped or fused lasso 

(Kyung et al. 2010; Xu and Ghosh 2015). The posterior mean and 95% credible intervals of 

the regression coefficients are shown in Figure 6. The figure plots the effect sizes relative to 

the year 2010 and the age group 65–69; when actually fitting the model, however, we use the 

most common category as the baseline for categorical variables.

For the treatment effect model, Figure 7(a) shows the posterior distribution of the average 

treatment effect of dabigatran over warfarin. The posterior indicates an evidence for the 

lower incidence rate of gastrointestinal bleeding under dabigatran treatment, which is 

consistent with findings of Graham et al. (2015). Remarkably, our sparse regression model 

identifies substantial interaction between the treatment and age group 65–69, with effect size 

potentially large enough to offset the average treatment effect. No other age groups exhibit 

significant interaction with the treatment. The 65–69 age group being the youngest in our 

Medicare cohort, our finding suggests a possibility that the relative risk of gastrointestinal 

bleeding only increases in the older patients. In fact, Graham et al. (2015) reports the risks 

from dabigatran and warfarin to be comparable for women under 75 and men under 85 years 
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old. A potential concern with their results is the lack of explanation on their choices of age 

thresholds. On the other hand, our subgroup detection approach based on sparse regression 

requires no arbitrary selection of subgroups and thus provides a more datadriven alternative 

to study treatment effect heterogeneity.

5. Discussion

In this article, we have developed theory and computational techniques to scale Bayesian 

sparse regression to a typical size of data in modern applications. To our knowledge, 

our computational approach constitutes the first principled use of CG for the purpose of 

full Bayesian inference via MCMC. The heuristic described in Section 2.4 suggests that 

prior-preconditioning may work well in other high-dimensional applications that call for 

structured, strongly informative priors. For example, the application of CG to a Gaussian 

process model as explored by Zhang, Datta, and Banerjee (2019) may benefit from prior-

preconditioning.

As early as 1997, Gibbs and MacKay emphasized the importance of avoiding expensive 

linear algebra operations, such as multiplying two matrices or factorizing a matrix, for 

Bayesian inference to be scalable. Prior to our work, this desiderata had yet to be met for full 

Bayesian inference of sparse regression models. Moreover, large-yet-sparse design matrices 

are increasingly common in modern applications; it is thus critical to design computational 

methods to exploit such sparse structure in the data (Friedman, Hastie, and Tibshirani 2010). 

Our CG-accelerated Gibbs sampler is an important example to fill these notable gaps in the 

literature.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A: Proofs

Before we proceed to proving Theorem 2.5, we first derive Theorem 2.6 as its consequence.

Theorem 2.6.

By Theorem B.4, the (m + m′)th CG iterate βm+m′ satisfies the bound

βm + m′ − β Φ
β0 − β Φ

≤ 2 vm + 1/vp − 1
vm + 1/vp + 1

m′
,
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(A.14)

where νj denotes the jth largest eigenvalue of Φ. By Theorem 2.5, we know that

1 ≤ vp ≤ vm + 1 ≤ 1 + min
k + ℓ = m

τ2λ(k + 1)
2 vℓ + 1 X⊤ΩX

( − k)
= κm

and hence that vm + 1/νp ≤ κm. Since the function κ ( κ − 1) /( κ + 1) is increasing in κ, we 

can upper bound the right-hand side of (A.14) in terms of κm, yielding the desired inequality 

(2.10). □

Theorem 2.5.

We prove the more general inequality (2.9). The lower bound 1 ≤ vk + ℓ(Φ) is an immediate 

consequence of Proposition A.1. For the upper bound, first note that vk + ℓ(Φ) ≤ vℓ Φ( − k)  by 

the Poincaré separation theorem (Theorem A.2). From the expression (2.8) for Φ, we have

vℓ Φ( − k) = vℓ Ik + τ2Λ( − k) X⊤ΩX
( − k)

Λ( − k)

= 1 + τ2vℓ Λ( − k) X⊤ΩX
( − k)

Λ( − k) ,

where the second equality follows from Proposition A.1. Applying Lemma A.3 with A = 

(X⊤X)(−k) and B = λ(k + 1)
−2 Λ( − k)

2 , we obtain

vℓ Φ( − k) ≤ 1 + τ2λ(k + 1)
2 vℓ X⊤ΩX

( − k)
.

Thus, we have shown

vk + ℓ(Φ) ≤ 1 + τ2λ(k + 1)
2 vℓ X⊤ΩX ( − k) ≤ 1 + τ2λ(k + 1)

2 vℓ X⊤ΩX ,

where the inequality νℓ((X⊤ΩX)(−k)) ≤ νℓ((X⊤ΩX) follows again from the Poincaré 

separation theorem. □

Proposition A.1.

Given a p × p symmetric matrix A, the eigenvalues of the matrix Ip + A are given by 1 + 

νk(A) for k = 1, . . . , p.

Proof.

The result follows immediately from the spectral theorem for normal matrices (Horn and 

Johnson 2012). □
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Theorem A.2 (Poincaré separation theorem).

For a given p × p symmetric matrix A, let A(−k) denote the submatrix with the first k rows 

and columns removed from A. Then the eigenvalues of A and A(−k) satisfies

vk + ℓ(A) ≤ vℓ A( − k) ≤ vℓ(A) for ℓ = 1, …, p − k .

Since permuting the rows and columns of A does not change its eigenvalues, the above 

inequality in fact holds for any submatrix of A obtained by removing k rows and columns of 

A corresponding to a common set of indices j1, . . . , jk.

Proof.

See chapter 4.3 of Horn and Johnson (2012). □

Lemma A.3.

Let A and B be p × p symmetric positive definite matrices and suppose that the largest 

eigenvalue of B satisfies ν1(B) ≤ 1. Then we have

vk B1/2AB1/2 ≤ vk(A) for k = 1, …, p

where νk(·) denotes the kth largest eigenvalue of a given matrix.

Proof.

The result follows immediately from Ostrowski’s theorem (Theorem 4.5.9 in Horn and 

Johnson 2012). □

Appendix B: Theories of CG convergence behavior

In this section, we provide mathematical foundations behind the claims made in Rule of 

Thumb 2.4. In essence, Rule of Thumb 2.4 is our attempt at describing a phenomenon 

known as the super-linear convergence of CG in a quantitative yet accessible manner. While 

this is a well-known phenomenon among the researchers in scientific computing, it is rarely 

explained in canonical textbooks and reference books in numerical linear algebra.4 Here 

we bring together some of the most practically useful results found in the literature and 

present them in a concise and self-contained manner. Our presentation in Sections B.1 and 

B.2 is roughly based on section 5.3 of Van der Vorst (2003) with details modified, added, 

and condensed as needed. More comprehensive treatment of the known results related to 

CG is found in Meurant (2006). Kuijlaars (2006) sheds additional light on CG convergence 

behaviors by studying them from the potential theory perspective.

4For example, discussions beyond Theorems 2.2 and 2.3 cannot be found in, to name a few, Trefethen and Bau (1997), Demmel 
(1997), Saad (2003), and Golub and Van Loan (2012).
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Section B.1 explains the critical first step in understanding the convergence of CG applied 

to a positive definite system Φβ = b — relating the CG approximation error to polynomial 

interpolation error over the set {ν1, . . . , νp} comprising the eigenvalues of . From this 

perspective, one can understand Theorem 2.2 as a generic and crude bound, ignoring 

the distributions of νj’s in-between the largest and smallest eigenvalues (Theorem B.3). 

Theorem 2.3 similarly follows from the polynomial approximation perspective.

The effects of the largest eigenvalues on CG convergence, as stated in Rule of Thumb 2.4, 

is made mathematically precise in Theorem B.4. Analyzing how the smallest eigenvalues 

delay CG convergence is more involved and requires a discussion of how the eigenvalues 

are approximated in the Krylov subspace. The amount of initial delay in CG convergence 

is closely related to how quickly these eigenvalue approximations converge. A precise 

statement is given in Theorem B.5.

The proofs of all the results stated in this section are provided in Section 10 of 

supplementary materials.

B.1. CG approximation error as polynomial interpolation error

The space of polynomials Pk as defined below plays a prominent role in the behavior of a 

worst-case CG approximation error:

Pk = Qk(v):Qk is a polynomial of degree k with Qk(0) = 1 .

Proposition B.1 below establishes the connection between CG and the space Pk.

Proposition B.1.

The difference between the kth CG iterate βk and the exact solution β can be expressed as

βk − β = Rk(Φ) β0 − β for Rk = argmin
Qk ∈ Pk

Qk(Φ) β0 − β Φ .

(B.15)

In particular, the following inequality holds for any Qk ∈ Pk:

βk − β Φ ≤ Qk(Φ) β0 − β Φ .

(B.16)

Theorem B.2 below uses Proposition B.1 to establish the relation between the CG 

approximation error and a polynomial interpolation error. We can interpret the result as 

saying the following: a worst-case CG approximation error can be quantified via how well 

the set of points {(νj, 0)}j=1,...,p can be interpolated by the graph ν → (ν, Qk(ν)) of a kth 

degree polynomial Qk with the constraint Qk(0) = 1.
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Theorem B.2.

βk − β Φ
β0 − β Φ

≤ max
Qk ∈ Pk

max
j = 1, …, p

Qk vj ,

(B.17)

where νj denotes the jth largest eigenvalue of Φ. The bound is sharp in a sense that, for each 

k, there exists an initial vector β0 for which the equality holds.

B.2. Bounding CG error via its polynomial characterization

We now derive bounds on the CG approximation error through its characterization as a 

polynomial interpolation error (Theorem B.2). Minimizing the interpolation error over the 

entire interval between the largest and smallest eigenvalues yields the following bound.

Theorem B.3.

min
Qk ∈ Pk

max
v ∈ vmin, vmax

Qk(v) ≤ 2 vmax/vmin − 1
vmax/vmin + 1

k
.

(B.18)

Theorems B.2 and B.3 together yield the well-known CG approximation error bound of 

Theorem 2.2. As the bound of Theorem B.2 depends only on the maximum over a discrete 

set of the eigenvalues {νp, . . . , ν1}, rather than the entire interval [νp, ν1], the actual CG 

convergence rate can be faster.

Theorem B.4 below is a basis of the following claim made in Rule of Thumb 2.4: “the r 
largest eigenvalues are effectively removed within r iterations.”

Theorem B.4.

The following bound holds for all r, k ≥ 0 with r < p:

βr + k − β Φ
β0 − β Φ

= min
Qr + k ∈ Pr + k

max
j = 1, …, p

Qr + k vj ≤ 2 vr + 1/vp − 1
vr + 1/vp + 1

k
,

(B.19)

where the first equality is given by Theorem B.2.

The smallest eigenvalues affect the CG convergence rate differently from the largest ones 

due to the constraint Qk(0) = 1 in Pk. Intuitively, this constraint makes the smallest 

eigenvalues more significant contributers to the polynomial interpolation error because it 

competes with the objective of minimizing |Qk(ν)| for small ν. This is why we state in Rule 

of Thumb 2.4 that “the same number of smallest eigenvalues tends to delay the convergence 

longer.” Nonetheless, the effects of the smallest eigenvalues on the CG approximation error 
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becomes attenuated as the CG iterations proceed. To quantify this phenomenon, we need to 

introduce the notion of Ritz values and describe their roles in the CG convergence behavior.

The Ritz values at the kth CG iteration refer to the roots ν 1
(k), …, νk

(k)  of the optimal CG 

polynomial Rk as defined in (B.15). Unless the eigenvalues νp, . . . , ν1 are distributed in 

a highly unusual manner, the largest and smallest Ritz values have a property that they 

converges quickly to the largest and smallest eigenvalues of Φ (Trefethen and Bau 1997; 

Driscoll, Toh, and Trefethen 1998; Kuijlaars 2006). More precisely, we have ν i
(k) vi for i = 

1, . . . , r and vk − i
(k) vp − i for i 0, . . . , s as k → p. While the convergence rates of the Ritz 

values can be shown to be exponential, in practice quite a large number of CG iterations may 

be required to obtain good approximations unless max{r, s} ≪ p (Saad 2011).

Theorem B.5 below quantifies how the convergence of the Ritz values are related to the 

subsequent acceleration of the CG convergence rates.

Theorem B.5.

The CG approximation error of the (k + ℓ)th iterate relative to the kth iterate satisfies the 

following bound:

βk + ℓ − β Φ
βk − β Φ

≤ Ck, r, s2
vr + 1/vp − s − 1
vr + 1/vp − s + 1

ℓ
,

(B.20)

where Ck, r, s = Ck, r, s v1
(k), …, vk

(k) 1 as k → p for any fixed r, s ≥ 0 with r + s < p. More 

precisely, Ck,r,s tends to 1 as the r largest and s smallest Ritz values converge to the largest 

and smallest eigenvalues of Φ.
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Figure 1. 
Plot of the CG approximation error versus the number of CG iterations. The CG sampler 

is applied to the posterior conditionals based on synthetic data. The different line styles 

correspond to the different numbers of true signals in underlying data. The circle and cross 

markers denote the uses of the prior and Jacobi preconditioners.
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Figure 2. 
Histograms of the eigenvalues of the preconditioned matrices. The eigenvalues under the 

prior preconditioner are shown on the left and those under the Jacobi on the right. Shown 

on the lower rows are the trimmed versions of the histograms, in which we remove the 

eigenvalues in the range [0, 1] in the log10 scale for the prior preconditioner and those in 

the range [−1, 0] for the Jacobi. The y-axes for the trimmed histograms have intermediate 

values removed to make small counts more visible. The width of the bins are kept constant 

Nishimura and Suchard Page 27

J Am Stat Assoc. Author manuscript; available in PMC 2024 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



throughout so that the y-axis values of the bars are proportional to probability densities and 

thus can be compared meaningfully across the plots.
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Figure 3. 
Plot of the posterior samples of τλj’s for j = 1, . . . , 250. The solid blue line and dashed 

green line correspond to the datasets simulated with βtrue,j = 1 for j ≤ 10 and for j ≤ 50, 

respectively.
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Figure 4. 
Histograms of the posterior samples of τλj’s. The two different colors indicate the distinct 

posteriors with 10 and 50 nonzero regression coefficients. To better expose the relative tail 

behaviors in the two distributions of τλj’s, the histograms on the right take the 250 largest 

values and plot their magnitudes relative to maxj τλj.
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Figure 5. 
Normalized histogram of the estimated preference scores for each group. Preference score 

transforms raw propensity score to make it a more interpretable measure (Walker et al. 

2013).
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Figure 6. 
Posterior means and 95% credible intervals for the regression coefficients of the treatment 

year and age group indicators. The age groups are divided into 5-year windows.
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Figure 7. 
Posterior distributions from the treatment effect model.
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