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Abstract

Overdispersion models have been extensively studied for correlated normal and binomial data but 

much less so for correlated multinomial data. In this work, we describe a multinomial 

overdispersion model that leads to the specification of the first two moments of the outcome and 

allows the estimation of the global parameters using generalized estimating equations (GEE). We 

introduce a Global Blinding Index as a target parameter and illustrate the application of the GEE 

method to its estimation from 1) a clinical trial with clustering by practitioner and 2) a meta-

analysis on psychiatric disorders. We examine the impact of a small number of clusters, high 

variability in cluster sizes and the magnitude of the intra-class correlation on the performance of 

the GEE estimators of the Global Blinding Index using the data simulated from different models. 

We compare these estimators with the inverse-variance weighted estimators and a maximum-

likelihood estimator, derived under the Dirichlet-multinomial model. Our results indicate that the 

performance of the GEE estimators was satisfactory even in situations with a small number of 

clusters, whereas the inverse-variance weighted estimators performed poorly, especially for larger 

values of the intra-class correlation coefficient. Our findings and illustrations may be instrumental 

for practitioners who analyze clustered multinomial data from clinical trials and/or meta-analysis.
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1. Introduction

Various types of clustered data are often collected in epidemiological and clinical studies 

aimed at evaluating the efficacy and safety of certain medical interventions. For example, 

outcomes of individuals may be clustered within a practitioner, group therapy or center in 

randomized clinical trials (RCTs). In a meta-analysis, clusters are represented by different 

published studies that are analyzed jointly. In settings, where the patients are randomly 

assigned to the treatment arms within clusters, cluster-specific estimators of the effects, such 

as mean, odds ratio, relative risk, or risk difference, may be combined into one global 

estimator to improve the efficiency of the estimated effect size and increase the power of 

statistical tests. Potential correlation between the individual level outcome measures within 

the same cluster can lead to overdispersion (or extra variation) [1]. Proper accounting for 

extra variation is important for obtaining correct variances of the estimators of a global 

parameter and correct inference on test statistics [2]. Multilevel and marginal models are two 

major modeling approaches that can be used to model overdispersion in correlated data.

In multilevel models, the correlation is introduced by including a cluster-specific random 

effect in the assumed conditional mean model of an outcome. In the estimation of a global 

parameter, these models usually require some type of ‘marginalization’ ([3],[4]), which, in 

turn, often entails the use of computationally intensive algorithms to integrate over the 

random effects. For certain link functions and mixing distributions of random effects, as is 

the case with the multinomial overdispersion model (MOM) introduced in Section 2, the 

unconditional (on random effects) mean and variance of an outcome can be expressed 

analytically as functions of a global parameter and additional heterogeneity/overdispersion 

parameter(s). In such cases, the estimation of the unknown parameters of interest can be 

handled via generalized estimating equations (GEE) ([5], [6]).

In the marginal approach, the (unconditional) expectation of an outcome is modeled directly 

as a function of global parameters. Under mild regularity conditions and correct 

specification of the marginal mean model of an outcome, the GEE approach will lead to 

consistent estimators of a global parameter. The (‘working’) correlation matrix should be 

prespecified and its choice may affect the efficiency of the resulting estimators, especially if 

the correlations between the individual outcomes within a cluster are strong. An 

‘exchangeable’ correlation structure is frequently used with clustered data [7]. In the 

absence of reliable information about the correlation structure, the identity matrix is 

assumed. In this case, the estimation of a global parameter is handled via independence 

estimating equations, a special case of GEE. Potential correlations among the observations 

within clusters should be taken into account when estimating the variances of the estimated 

global effects. The robust (‘sandwich’) variance estimator is used to obtain consistent 

estimators of the variances of the estimated global parameters. This approach is widely used 

in survey sampling to estimate standard errors from clustered data [2].

In this paper, we introduce MOM and study the performance of the GEE estimators for 

estimating global probabilities of outcomes from clustered multinomial data. Our study was 

motivated by two studies: 1) an RCT with multiple practitioners, and 2) a meta-analysis of 

RCTs [8], both aiming at evaluating the extent of blinding in the trials ([9], [10]). As will be 
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described in the following sections, the data collected for blinding assessment can be viewed 

as a random sample from a multinomial distribution of order two (binomial), three 

(trinomial) or higher, and the target parameter can be presented as a linear combination of 

the global probabilities.

The GEE method has been applied to estimating the regression coefficients from 

longitudinal data with nominal and ordinal outcomes (e.g., [7], [11]). Krewski and Zhu [12] 

and Zhu et al. [13] estimated the regression parameters in dose-response models for 

clustered trinomial data arising from developmental toxicity studies. Robust variance 

estimators of the GEE estimators for global parameters have been shown to perform well in 

settings with a large number of clusters and a relatively small and equal number of 

observations within each cluster, as is typical in longitudinal studies. However, they tend to 

underestimate the true variance of the estimators with a small number of clusters and highly 

variable cluster size, as is common in meta-analyses and multi-center RCTs. Various 

corrections aimed at improving small-sample properties of the robust variance estimators in 

different settings have been proposed ([14], [15]). The performance of corrected variance 

estimators has been studied extensively for continuous and binary outcomes [16], but not for 

a multinomial outcome. Finally, the existing software to analyze clustered multinomial data 

using the GEE method are not very general or flexible.

This paper is organized as follows. In Section 2 we introduce MOM and show its connection 

with the Dirichlet-multinomial (DM) distribution and the exchangeable correlation model. 

We provide a description of the GEE method to estimate the global probabilities in MOM in 

Section 3. In Section 4 we introduce a Global Blinding Index (GBI) as a linear combination 

of the multinomial probabilities and propose five possible estimators of the GBI: two GEE 

estimators, two inverse-variance weighted (IVW) estimators, widely used in meta-analysis, 

and a maximum-likelihood estimator (MLE) derived under the DM model. In Section 5, we 

use simulations to compare the performance of the proposed estimators under different 

models and with special attention to small-sample properties of the robust variance 

estimators. The two real studies that motivated this paper are described and analyzed in 

Section 6. We conclude our paper with a discussion.

2. Multinomial Overdispersion Model

In this section we describe the overdispersion model that can accommodate the extra 

variation in clustered multinomial data and discuss the connection of this model with the 

exchangeable correlation model and the Dirichlet-multinomial (DM) model.

In what follows, we assume that the data consist of K clusters, with ni participants’ 

responses in the i-th cluster (i = 1, 2,…, K) being classified into m + 1 mutually exclusive 

categories. Let Zi = (Zi1, Zi2,…, Zim)′ denote an m-dimensional vector of counts that 

corresponds to the first m categories such that each entry Zil represents the number of units 

(out of ni) that were classified into the l-th category, l = 1, 2,…,m, and 

Zi, m + 1 = ni − ∑l = 1
m Zil. Next, we define a vector of cluster-specific probabilities Pi = (Pi1, 

Pi2, …, Pim)′ such that 0 < Pil < 1; ∑l = 1
m Pil < 1 and Pi, m + 1 = 1 − ∑l = 1

m Pil. To introduce 
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the overdispersion, it can be assumed that Zi|Pi has a multinomial distribution of size ni and 

parameters Pi such that

E Pi = π;  Var Pi = ρ2 diag π − ππ′ ,

(1)

where π = (π1, π2, …, πm)′ such that 0 < πl < 1; ∑l = 1
m πl < 1 and πm + 1 = 1 − ∑l = 1

m πl. 

Here 0 ≤ ρ2 is an overdispersion parameter and it is usually treated as a nuisance parameter; 

ρ2 = 0 corresponds to the case of no overdispersion. The global probabilities πl’s, or any 

continuously differentiable function of them, can be defined as a target parameter.

Using the laws of conditional expectation and variance and the assumptions above, it can be 

shown that the first two moments (unconditional) of Zi are:

E Zi = niπ,

(2)

and

Var  Zi = ni 1 + ni − 1 ρ2 diag π − ππ′ .

(3)

This model is referred to as a multinomial overdispersion model (MOM) throughout this 

paper.

The full marginal (unconditional) distribution of Zi can be derived under additional 

assumptions. Neerchal and Morel [17] discussed two overdispersed multinomial 

distributions of Zi that have the first two moments as defined by (2) and (3): a DM 

distribution and a random-clumped multinomial (RCM) distribution. In this work, we restrict 

our attention to the DM distribution. If the random variables Pi are assumed to be distributed 

by a Dirichlet distribution with parameters π and ρ2, then their probability density function 

is expressed as
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f pi; π, ρ = Γ(c)
∏l = 1

m + 1Γ cπl
∏
l = 1

m + 1
pil

cπl − 1
,

(4)

where pi is a realization of Pi; c = ρ−2(1 − ρ2); 0 < ρ < 1; and Γ(·) is the gamma function. In 

this case, the marginal distribution of Zi is DM [18]. The DM distribution is a multivariate 

extension of the beta-binomial distribution, which has been used in the literature for 

modeling the overdispersed binomial data ([19], [20]).

It is worth noting the connection between MOM and the exchangeable correlation model [7]. 

Toward this end, for each participant j in cluster i (j = 1, 2,…, ni), let us define the vector Yij 

= (Yij1, Yij2,…, Yijm)′ of binary random variables, such that Yijl takes value 1 with 

probability πl, if the category l was selected among the first m mutually exclusive 

categories, and value 0 otherwise; and Y i j, m + 1 = 1 − ∑l = 1
m Y i jl takes value 1 with 

probability πm+1 and 0 otherwise. Since Yij is a multinomial random variable of size 1, the 

within-unit correlation is given by,

γll′ ≔  Corr Yi jl, Yi jl′ = −
πlπl′

πl 1 − πl πl′ 1 − πl′
, whenever l ≠ l′,

and γll = 1. In addition, denote ρjj′ ≔ Corr(Yijl, Yij′l) for any two individuals j ≠ j′ and 

assume that Corr(Yijl, Yij′l′) = ρjj′ · γll′ for any two categories l ≠ l′. Using the above 

notation, Zil = ∑ j = 1
ni Y i jl, j = 1, 2,…,ni for a given i, counts the number of times the category 

l was selected by individuals in cluster i. Under exchangeability assumption, ρjj′ = ρ* for j ≠ 

j′, implying V ar(Zi) = ni[1 + (ni − l)ρ*][diag(π) − ππ′] [21]. The latter expression is equal 

to (3) with ρ2 replaced by ρ*. Notice that ρ* can be negative as long as ρ* > −l/[max{ni} 

− 1]. The factor ϕi ≔ 1 + (ni − 1)ρ* is often referred to as the design effect due to clustering 

[22] and the parameter ρ* is an intra-class correlation coefficient (ICC).

3. Estimation of MOM parameters and their variance

3.1. GEE

Let θ = (π, ρ2) define the vector of unknown parameters of interest. Then, the GEE method 

([5], [6]) can be used to estimate θ. For fixed ρ2, the estimating equations for π have the 

form
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∑
i = 1

K
Di′Vi

−1Ri = 0,

(5)

where Di is a matrix of the first partial derivatives of E(Zi) with respect to π; Ri = Zi − niπ 
are the residuals; and Vi = ni[1 + (ni − l)ρ2][diag(π) − ππ′]. Also, under (2), Di = niIm×m, 

where Im×m is the identity matrix.

To estimate ρ2, an additional estimating equation should be added. One possible option is by 

equating the Pearson chi-square statistic ∑i = 1
K RiVi

−1Ri to its expected value [23]. Based on 

the fact that E RiVi
−1Ri = m, the equation has the form,

∑
i = 1

K
RiVi

−1Ri = mK,

(6)

The desired estimate θ = π, ρ2  is obtained by alternating between the equations (5) and (6) 

until convergence is achieved.

The same estimation approach can be used to estimate π from a marginal model under the 

assumption (2). This model also requires an assumption about the correlation structure of Zi, 

which may not be known in many practical applications. In these cases, Vi in (5) serves as a 

‘working’ covariance matrix, such that Vi ≈ V ar(Zi). The closer the approximation between 

the two matrices is, the more efficient π is likely to be [6]. In the absence of a sensible 

approximation, the independence working model, namely Vi ≔ ni[diag(π) − ππ′], is 

assumed for a multinomial outcome, leading to the ‘independence estimating equations’ in 

(5), a special case of GEE [5].

3.2. Robust variance estimator

Under mild regularity conditions, K-consistency of ρ2 given π, and correct specification of 

the marginal mean model (2), the estimator π is consistent and K(π − π) converges in 

distribution to a multivariate normal distribution with mean 0 and covariance matrix Var π , 

which can be consistently estimated using a robust variance estimator given by
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Var(π) = H−1GH−1,

(7)

H = ∑
i = 1

K
Di π Vi

−1 π, ρ2 Di π ,

G = N − 1
N − m

K
K − 1 ∑

i = 1

K
di − d di − d ′,

di = Di π Vi
−1 π, ρ2 Ri π and d =

∑i = 1
K di

K .

The variance estimator (7) originates from expanding the left-hand side of the GEEs (5) 

using a Taylor series. In the usual expansion, d = 0, which holds if π is an exact solution of 

(5), and there is no factor N − 1
N − m . Both adjustments have been proposed to reduce small 

sample bias associated with the estimated deviations in G [15].

Once π and Var π  have been obtained, further inference about various parameters of interest 

defined as continuously differentiable functions of π is straightforward. One example, in 

which the target parameter is a linear combination of the entries of the vector π is described 

in the next section.

The GEE approach described above can be generalized for non-identity link functions which 

might be of interest in other applications; see [7] and [11] for examples in longitudinal 

context.

4. Application of MOM to blinding assessment in clinical trials

4.1. Global Blinding Index

Blinding is a crucial component in RCTs and its assessment is increasingly conducted by 

means of collecting empirical data and performing appropriate statistical analysis. 

Quantifying the amount of potential unblinding in a trial can be important from a quality 

control perspective (for example, in a pilot study) and the interpretation of study findings 

(e.g., effectiveness of treatment). For example, Wood et al. [24] have shown smaller effects 

in blinded than in unblinded trials. Blinding Indexes (Bis) have been proposed to quantify 

the degree of potential unblinding objectively and systematically ([25], [9]). The BI by Bang 
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et al. [9], used in this study, attempts to estimate the percentage of excess (beyond chance) 

of correct guesses for a given arm (T or C) of the trial.

Typical blinding data are collected, usually at the exit survey and separately for each arm, by 

asking a participant to provide the best guess regarding their treatment allocation among 

three possible choices: 1 (I was in T arm; T), 2 (I was in C arm; C), 3 (I don’t know; DKN). 

These data can be summarized in a 2 × 3 table (see Table 1) with two allocation arms and 

three choices: nl|a are the observed counts in cell (a, l) and na are the row totals, where a =T 

or C is the allocation arm and l = 1, 2, 3 is the guess. The two other popular formats are 2 × 

2 and 2 × 5. In the former, an I don’t know option is not allowed, in which case the data can 

be viewed as a sample from a binomial distribution for each arm. In the latter, the degree of 

belief is assessed in a multinomial format: 1 (Strongly believe I was in T arm), 2 (Somewhat 

believe I was in T arm), 3 (Somewhat believe I was in C arm), 4 (Strongly believe I was in C 

arm), 5 (I don’t know).

In the general case, the observed data in arm a can be viewed as a realization of a 

multinomial random variable with parameters na and Pa = (P1|a, P2|a, …,Pm|a), where Pl|a ≔ 
Pr(guessed l/(assigned a) for l = 1,…,m, and m is the number of all possible guesses minus 

one. Under this model, BI is defined as BIa = νa′ Pa, where νa is a vector of the corresponding 

constants/weights νl|a used to define a contrast in arm a. For example, for data collected in a 

2 × 3 format (i.e., a trinomial case): m = 2, BIT = (1, −1)(P1|T, P2|T)′ = P1|T − P2|T and BIC = 

(−1, 1)(P1|C, P2|C)′ = P2|C − P1|C. For 2×5 data: m = 4, BIT = (1, ν2|T,− ν3|T, −1) (P1|T, P2|T, 

P3|T, P4|T)′ and BIC = (−1, −ν2|C, ν3|C, 1) (P1|C, P2|C, P3|C, P4|C)′. It has been suggested to 

use ν2|T = ν3|T = ν2|C = ν3|C = 0.5 but other choices along with ancillary/validation data can 

be explored for sensitivity analysis ([9],[26]).

A Global Blinding Index (GBI) may be of interest when blinding assessment data have been 

collected from multiple centers, practitioners or studies as in meta-analysis. To address 

overdispersion due to clustering, assume that cluster-specific conditional probabilities Pi,a (i 
= 1,…, K) are a vector of random variables with the first two moments as defined by (1). 

Then, the GBI for arm a is defined by

GBIa = νa′ πa .

4.2. Five estimators for GBI

Estimation of BIa and its variance is discussed elsewhere ([9], [26]). In this section we focus 

on estimation of the GBI and propose five estimators: three estimators that utilize the 

estimated global probabilities πa, and two estimators that utilize the estimated cluster-

specific indexes BIi, a.

The GBI can be estimated directly from the definition as GBIa = νa′ πa, which, in turn, 

requires to estimate the global probabilities πa. The global probabilities can be estimated in 

three different ways using the ideas outlined in the earlier sections. The estimated global 
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probabilities under MOM are denoted as πa
exch and the corresponding GBI estimator is 

denoted as GBIa
exch. Assuming Vi ≔ ni[diag(π) − ππ′] in (5) leads to the independence 

estimating equations. The resulting estimated probabilities are denoted as πa
indep and the 

corresponding GBI estimator is denoted as GBIa
indep. Finally, the global probabilities can also 

be estimated using a maximum-likelihood method under the assumption that the outcomes 

follow the DM distribution, i.e., Zi,a ~ DM(ni,a; πa; ρ2). In this case, we denote the estimated 

probabilities as πa
DM and the corresponding GBI estimator as GBIa

DM. In all three cases, the 

variance of GBIa is estimated by Var GBIa = νa′ Var πa νa. The robust variance estimator (7) 

is used to estimate the covariance matrix of the estimated probabilities πa
exch and πa

indep. The 

asymptotic covariance matrix of πa
DM is obtained from the inverse of the Fisher information 

matrix.

Another approach to estimating the GBI would be to utilize the cluster-specific estimates of 

BI, i.e., BIi, a for i = 1, …, K, as is commonly done in meta-analysis. To do this, a multilevel 

model underlying the distribution of BIi, a can be formulated with BIi,a defined as random 

effects with expected value GBIa. In this case, GBIa is frequently estimated as

GBIa
IVW =

∑i = 1
K wi, aBIi, a

∑i = 1
K wi, a

,

(8)

where wi, a = 1/Var BIi, a  are the inverse-variance weights. The estimator (8) is called the 

inverse-variance weighted (IVW) estimator. Under assumptions of independence between 

the model errors and the random effects, and normality of the random effects, the IVW 

estimator can be derived as an MLE [27]. The variances of the IVW estimators are 

computed under the assumption that the weights wi,a are fixed quantities ([28], [20]). Under 

this assumption, Var GBIa
IVW = 1/∑i = 1

K wi, a and the IVW estimator is the estimator with 

minimal variance among all weighted estimators [29]. The IVW estimators deserve our 

attention as they are intuitive, straightforward in their calculation and have been widely used 

as a generic method in meta-analysis [30].

Assumptions about the distribution/moments of BIi, a will determine the shape of the weights 

wi,a. In this work, we consider two IVW estimators for illustration and comparison purposes: 

(1) GBIa
IVW, ρ* is the IVW estimator (8) with weights wi, a = 1 + ni − 1 ρ* Var BIi, a

−1, 

where ρ* is the ICC [31]; and (2) GBIa
IVW, 0 is a special case of, GBIa

IVW, ρ* when ρ* = 0 (no 

overdispersion). The latter estimator is also referred to in meta-analysis as a ‘naive’ 
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estimator. The former estimator, GBIa
IVW, ρ*, can be referred to as an ‘upgraded’ IVW 

estimator and its weights can be justified by assuming that observed data in arm a in study i 
is a realization of the DM distribution, i.e., Zi,a ~ DM(ni,a; πa; ρ*) [31].

The ICC parameter ρ* required for GBIa
IVW, ρ* can be estimated using a variety of methods. 

In this study, we used a moment estimator based on Cochran’s Q statistic derived in [20] 

using the same ideas as were used by DerSimonian and Laird [32] to derive a moment 

estimator for τ2, a heterogeneity parameter, closely related to ρ*.

4.3. Implementation

All five estimators have been implemented in the simulations (Section 5) and in the 

applications to real studies (Section 6). The GEE estimators were obtained using an R 

package OMGEE [33]. The MLE estimators were obtained using an R package 

OverdispersionModelsinR [34]. The CIs of the GEE estimators were computed using a t-
distribution with degrees of freedom equal to the number of independent clusters minus one 

since the GBI is estimated for each arm independently ([35], [36]). Satterthwaite-type 

degrees of freedom approximations have also been proposed in various settings ([14], [37], 

[38]) but were not explored in this paper. For other estimators the normal approximation was 

used.

5. Simulation study

In this section we evaluated the performance of the five estimators for GBI, described in 

Section 4.2, in a simulation study. In particular, we were interested in exploring the relative 

bias (RB) of the different estimators as well as the impact of the number of clusters, the 

coefficient of variation (CV) of the cluster sizes and the magnitude of the overdispersion 

parameter ρ2 on the performance of the robust variance estimators for the GBIs estimated 

using the GEE method. We also studied the robustness of the five estimators under different 

models used to generate clustered multinomial data.

5.1. Data generation

Clustered trinomial data for a given arm was generated from the following four models: (1) 

DM model with constant ρ2; (2) DM model with cluster-specific ρ2: ρi
2 U(a, b) for 0 < a < b 

< 1; (3) RCM model with common ρ2; (4) RCM model with cluster-specific ρ2: ρi
2 U(a, b)

for a and b as above; i = 1, …, K. To generate the data from the DM distribution with 

constant ρ2, a vector of cluster-specific probabilities Pi = (Pi1, Pi2, Pi3)′ was generated from 

a Dirichlet distribution (4) with parameters π and ρ2 at the first step. At the second step, the 

cluster-level outcome variable Zi was generated from the trinomial distribution of size ni and 

vector of parameters Pi. In all models we set π = (0.5, 0.4, 0.1)′, which implies GBI = 0.1 in 

arm T. The data generation process for the RCM distribution follows from the model 

definition as described in [17].

We generated data for all possible combinations of the four different models, three different 

values of the overdispersion parameter ρ2 (ρ2 = 0.1, 0.3, 0.5), three different values of K (K 
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= 8, 15, 30), and two different values of the CV of the cluster sizes (CV ≈ 90%, ≈ 40%), for 

a total of 72 scenarios. The cluster sizes ni were generated from a negative binomial 

distribution with probability of success p and size parameter r. In this case, the average 

cluster size and the CV of the cluster sizes are equal to r(1 − p)
p  and 1

r(1 − p)  respectively. 

The average cluster size (n) was set to 50 and the clusters have been constrained to contain at 

least 5 participants.

For each scenario, we generated 5,000 datasets and calculated the five GBI estimates, 

defined in Section 4.2, for each dataset. We obtained the RB, the sampling standard error of 

the estimator (SSE = standard deviation of the 5,000 estimated GBIs), the estimated standard 

error of the estimator (ESE = mean of the 5,000 estimated standard errors of the estimated 

GBIs) and the 95% coverage probability (CP) for the true GBI parameter. The SSE/ESE 

ratios were used to assess the performance of the robust variance estimators of the GEE 

estimators, under different scenarios, paying special attention to cases with a small number 

of clusters and a high CV of the cluster sizes. Ratios close to 1 indicate good performance, 

whereas ratios greater than 1 indicate underestimated variances.

5.2. Results

The results from the three scenarios that correspond to ρ2 = 0.1; 0.3; 0.5 for the data 

generated from the DM model with constant ρ2 are presented in Tables 2a, 2b and 2c, 

respectively. To save space, the results for the data generated from all four models are 

presented only for the most challenging scenario with ρ2 = 0.5, K = 8 and CV ≈ 90%; see 

Table 2d.

The results in Tables 2a–2c showed good performance of GBIexch: low RBs, SSE/ESE ratios 

close to 1 and good coverage probabilities were observed for all values of ρ2, K and CV that 

we studied. The performance of GBIexch was comparable with the performance of the 

estimator GBIDM, an MLE estimator under the DM model with constant ρ2, which was the 

model used to generate the data for Tables 2a–2c. With respect to GBIindep, it was nearly 

unbiased in all the scenarios and had SSE/ESE ratios slightly higher than 1 for scenarios 

with K = 8, CV ≈ 90% and higher values of ρ2. However, the SSE/ESE ratios for GBIindep

improved with an increase in the number of clusters and/or a decrease in the CV of the 

cluster sizes. The CPs for GBIindep were slightly lower than the nominal value for scenarios 

with a small number of clusters and a high CV of the cluster sizes. At the same time, the CP 

values around 90%, observed for this estimator in scenarios with only 8 clusters and CV ≈ 
90%, are still reasonably good for practical needs.

It is worth mentioning that the estimating equation (6) may not have a solution when ρ2 is 

very close to 0 and the number of clusters is very small, thus causing numerical errors for 

the GEE estimator under MOM. Rarely, numerical problems have also occurred with the 

MLE, again, for the cases where ρ2 was very close to 0 and the number of clusters was very 

small. In these situations, switching to the GEE estimator under the independence working 

assumption, which tended to be very stable numerically and also performed very well in 

scenarios with small ρ2 (Table 2a), should be considered. In addition to being numerically 
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stable, GBIindep was nearly as efficient as GBIexch, with the exception of some scenarios with 

a high CV of the cluster sizes.

With regards to the IVW estimators, it should be noted that the ‘naive’ weighted estimator 

did not perform well even for very small values of the ICC, and its performance got 

markedly worse with an increase in ρ2, regardless of the model used to generate the data. 

The performance of the ‘upgraded’ estimator, GBIIVW, ρ*, was comparable with the 

performance of GBIindep for ρ2 = 0.1. However, the performance of GBIIVW, ρ* deteriorated 

for larger values of ρ2: RB values up to 60% and SSE/ESE ratios greater than 1.5 were 

observed in scenarios with ρ2 = 0.5. Overall, we can say that for higher values of ρ2, the 

‘upgraded’ IVW estimator was primarily biased, whereas the ‘naive’ IVW estimator was 

biased and also had underestimated variances. As a result, the CPs for the ‘naive’ IVW 

estimator were very low for large values of ρ2. Given the popularity of the IVW estimators 

in meta-analysis, these findings should serve as an important lesson for practical users. 

Based on our findings, we recommend using these estimators with great caution.

Furthermore, we evaluated the robustness of the five estimators under misspecified models. 

Keeping in mind that the DM and the RCM distributions have the same two first moments, 

we expected to see almost identical performance of the estimator GBIexch for the data 

generated from these distributions with constant ρ2. This was confirmed by the results in 

Table 2d. A slight decrease in the performance measures was observed for the estimators 

GBIindep and GBIDM when applied to the data generated from the RCM distribution. Models 

with varying versus constant ρ2 seemed to have little, if any, impact on the performance of 

the three estimators GBIindep, GBIexch, GBIDM. Interestingly, the ‘upgraded’ IVW estimator 

had an improved performance under the RCM models, with both constant and varying ρ2. 

The performance of the ‘naive’ IVW estimator was suboptimal across all four models.

6. Applications to real studies

6.1. Example 1: RCT with clustering by practitioner

Vernon and his colleagues [39] used the BI as a measure of blinding assessment of a sham 

manipulative procedure for the cervical spine in a pilot clinical trial. Recently, they designed 

a new RCT with multiple practitioners and defined the GBI as their ‘primary’ outcome 

measure (https://clinicaltrials.gov/ct2/show/NCT01772966).

In the follow-up study, the eligible participants were assigned randomly to one of two 

groups, Typical (T) or Alternative (C) intervention for mechanical neck pain. In this trial 

only the clinician providing the treatment and the data manager were aware of the group 

assignment. Neither the independent assessors performing baseline and outcome 

measurements nor the statistical analyst were aware of the group assignment. The treatment 

protocol included three identical treatments over a period of up to two weeks delivered by 

the same clinician for a given participant. The number of patients treated by different 

clinicians is highly variable, ranging from a few patients to 100 patients per clinician. At the 

end of the study, the patients were asked to provide the best guess about their treatment 
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allocation. The DKN option was not offered as a possible answer and, therefore, the blinding 

data were collected in a 2 × 2 format.

The real data from this study are not approved for public use at this time. Therefore, 

artificial data was generated for the purpose of illustration. We generated two datasets. First, 

we generated the data of the hypothetical responses in a 2 × 2 format collected from 411 

patients treated by 10 clinicians: 206 patients from Alternative and 205 from Typical 

intervention arms. These data was generated using the DM model with constant ρ2 as 

described in Section 5.1. We set the CV of the cluster sizes to 75%, the ICCs to 0.1 in arm T 

and 0.2 in arm C, and the GBIs to 0.1 in arm T and 0.2 in arm C. These values of the 

parameters were selected to closely match the corresponding parameters that were estimated 

from the real data. Next, we created an additional dataset of the hypothetical responses of 

the same participants that would have been obtained if they were asked to provide the best 

guess about their treatment allocation among three possible choices (i.e., data in a 2 × 3 

format). To do this, for each clinician, we randomly selected approximately 20% to 25% of 

the T and C responses proportionally to the size of each group in the generated 2 × 2 data 

and changed them to the DKN option. This proportion of the DKN guesses was obtained 

from an earlier, single clinician study in a 2 × 3 format [40]. The distribution of patients’ 

choices for each clinician along with clinician-level estimates for Bis for both settings are 

presented in Table 3a.

The five GBI estimates defined in Section 4.2 and their corresponding 95% CIs are 

summarized in Table 3b. Overall, we observed that the CIs of all the estimates, with the 

exception of GBIC
IVW, 0, contain 0. Also, the GBI estimates from all the methods were in the 

range (−0.2; 0.2), which suggests that blinding was satisfactory in both arms [41], [26]. The 

CIs of the estimates did contain values larger than 0.2 for many cases, which can indicate 

that blinding may not be ideal (i.e., random guessing). At the same time, it is important to 

keep in mind that the proposed threshold values of ±0.2 are only ad-hoc reference points and 

should not be used as a strict rule. In general, the focus of blinding assessment is on 

estimation rather than hypothesis testing, partly because blinding is a tool, not a goal. In 

addition, the values of GBIexch and GBIDM were fairly close as it would be expected, based 

on our findings from the simulation studies. Finally, it is interesting to notice that the GBI 

estimates in the T arm were closer to zero than the GBI estimates in the C arm. In the case of 

real data with a similar pattern, this finding may reflect the fact that patients were able to 

guess the sham procedure more easily, possibly because of lower treatment effect. Also, the 

GBIs estimated from a hypothetical 2 × 3 data were closer to zero in both arms and for all 

the methods, which indicates a tendency of attenuation of the GBI estimates in a 2 × 3 

format.

6.2. Example 2: Meta-analysis

In this section, we illustrate the estimation of the GBI in a meta-analysis setting. The 

systematic review of blinding assessment in RCTs was performed in Baethge et al. [42]. The 

review included 61 RCTs of affective disorders and schizophrenia that were published in 

either English or German during 2000 – 2010. Out of these 61 studies, 40 studies have 

provided sufficient data to assess blinding quantitatively: 10 studies provided the blinding 
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data in a 2 × 3 format, whereas 30 studies provided data in a 2 × 2 format. A meta-analysis 

of the BIs was performed by Freed et al. [8], where the authors used a ‘naive’ IVW estimator 

to estimate the GBI pooled over all 40 studies. The data are available upon request from the 

authors.

We reanalyzed the data from [8] and obtained the GBI estimates in two ways: 1) by 

analyzing all 40 studies together (‘joint’ analysis) and 2) by analyzing 10 studies in a 2 × 3 

format and 30 studies in a 2 × 2 format separately (‘separate’ analysis). For a joint analysis 

of all 40 studies, the studies in a 2 × 2 format were converted to a 2 × 3 format by adding a 

column of zeros for the DKN choice. Therefore, the joint approach relies on the assumption 

that the participants of studies in a 2 × 2 format would never select the DKN option if 

offered. In our opinion, this is a strong and, perhaps, unrealistic assumption and, therefore, 

we believe that the separate analysis is more sound. A downside of the separate analysis is 

that it will result in two GBI estimates for each arm, one for each format. We present the 

results from both approaches for illustration and comparison; see Tables 4a and 4b, 

respectively.

As follows from the results in the tables, the GBI estimates from the joint analysis were 

roughly equal to the sum of the corresponding estimates from the 2 × 2 and 2 × 3 formats. 

However, the two separate analyses yielded quite different estimates for two different 

formats. The GBI estimates obtained from a separate analysis of the studies in the 2 × 2 

format were positive for T arm and negative for C arm. Also, the magnitude of the GBI 

estimates for T arm was approximately two times higher than those for C arm. These results 

might reflect some degree of a psychological scenario of “wishful thinking” [26] and/or a 

placebo effect. The GBI estimates obtained from a separate analysis of the studies in a 2 × 3 

format were close to zero in T arm and to 0.1 in C arm. Similarly to the results obtained 

from the RCT with multiple practitioners, this finding may indicate a low treatment effect.

Overall, most estimates were within the range (−0.2; 0.2), so we might conclude that the 

studies ‘passed’ the blinding test. The observed difference in the results from studies that 

used a 2 × 2 data format vs. studies that used a 2 × 3 data format might imply systematic 

difference or that the DKN guess option does not reflect the real ‘I don’t know’ state. This 

may support the importance of collecting ancillary validation data, e.g., by asking those who 

originally chose the option DKN to choose the treatment assignment (T or C) a second time 

(see [9] for more details).

7. Discussion

In this paper, we defined the multinomial overdispersion model and studied the performance 

of the GEE estimators for estimating global probabilities included in the specification of this 

model. The GEE estimation approach is very attractive because it requires specification of 

only the first two moments rather than the full parametric distribution of an underlying 

outcome, and it leads to consistent estimators under a correct marginal mean model of an 

outcome of interest. The robust variance estimator should be used for variance estimation. 

We illustrated the application of the methods to the estimation of the Global Blinding Index 
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(defined as a linear combination of the global probabilities) in simulations and two real 

studies that involve potential clustering.

We compared the performance of the five estimators for the Global Blinding Index: two 

GEE estimators, two inverse-variance weighted estimators, commonly used in meta-

analysis, and a maximum likelihood estimator derived under the Dirichlet-multinomial 

distribution. The performance of the GEE estimators was contrasted with the performance of 

the inverse-variance weighted estimators in simulations, while the maximum likelihood 

estimator served as a ‘gold standard’ when the data was generated from the Dirichlet-

multinomial distribution. We also studied the robustness of the five estimators to possible 

distortions from the DM model.

The GEE estimator under the independence working assumption showed satisfactory 

performance in all scenarios and under different models used to generate the raw data. This 

estimator may be appealing in practice when a good approximation to the correlation 

structure in the outcome variable is not available to researchers. Assuming a working 

correlation matrix to be the identity matrix means that the potential correlations among the 

observations within a cluster are not used to update the estimates during the iterative process 

of solving the GEEs. However, the correlations are taken into account in the robust variance 

estimator. If a sensible approximation to the true correlation matrix can be suggested for the 

working correlation matrix, it may be possible to obtain more efficient point estimators. At 

the same time, our results demonstrated that the GEE estimator with the independence 

working correlation was nearly as efficient as the GEE estimator with the exchangeable 

working correlation even for large values of the overdispersion parameter.

Concerns have been raised in the literature that a small number of clusters, high variability 

in cluster sizes and a high intra-class correlation may influence the performance of the 

robust variance estimator, which, in turn, may result in underestimated variances of the GEE 

estimators and suboptimal coverage probabilities. The two types of adjustments that have 

been proposed to address this problem are: adjustments that attempt to reduce the bias of the 

sandwich estimator and adjustments that use a t-distribution rather than a normal distribution 

to calculate significance levels or construct CIs [14]. In this study, we implemented the 

small-sample corrections in the robust variance estimator as suggested by Morel et al. [15]. 

We also used a t-distribution with degrees of freedom approximated by the number of 

clusters minus one when constructing the CIs for the GBI estimated using the GEE methods. 

These simple adjustments were straightforward in implementation and showed satisfying 

results in the scenarios that we studied.

Our illustrations indicate that for the designs with moderate variability in cluster sizes (CV ≈ 
40%), the performance of the GEE estimator under the independence working assumption 

was satisfactory and comparable with the performance of the GEE estimator under the 

exchangeable working model and an MLE, which are expected to have superior performance 

by design. We observed that high variability in cluster sizes in combination with a small 

number of clusters may decrease the performance of the GEE estimator under the 

independence working assumption. It is possible that additional, more sophisticated 

adjustments can be beneficial for these scenarios, and their exploration may be a good 
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direction for future research. Finally, we found that the inverse-variance weighted estimators 

performed poorly, especially in scenarios with higher values of ρ2, and, therefore, these 

estimators should be interpreted with caution in real applications.

In conclusion, our results re-emphasized the importance of accounting for extra-variation to 

obtain correct variances of the estimators and maintain appropriate coverage probabilities. 

We suggest using the GEE estimator under the independence working assumption when a 

reliable approximation to the true correlation structure is not available.
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Table 1.

Typical blinding assessment data

Allocation (a) Guess (l) Total

1 (=T) 2 (=C) 3 (=DKN)

T n1|T n2|T n3|T nT

C n1|C n2|C n3|C nC
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Table 2a.

Simulation results for ρ2 = 0.1 over 5,000 repetitions under the DM model with constant ρ2. RB = relative 

bias; SEE = sampling standard error of the estimator [= standard deviation of the 5,000 estimated BIs]; ESE = 

estimated standard error of the estimator [= mean of the 5,000 estimated standard errors]; 95% CP = 95% 

coverage probability

Estimator CV ≈ 90%, n ≈ 50 CV ≈ 40%, n ≈ 50
K = 8 K = 15 K = 30 K = 8 K = 15 K = 30

GBIindep

RB, % −1.66 −0.44 −0.09 −0.08 0.99 0.40

SSE/ESE 1.160 1.092 1.049 1.056 1.049 1.009

ESE 0.056 0.044 0.032 0.057 0.042 0.030

95% CP 90.82 93.14 93.24 94.06 94.54 94.82

GBIexch

RB, % −3.69 −0.84 −0.68 −0.74 1.09 0.41

SSE/ESE 0.968 0.992 1.007 0.949 1.009 0.996

ESE 0.065 0.046 0.032 0.062 0.044 0.030

95% CP 95.72 95.47 94.81 96.73 95.70 95.25

GBIDM

RB, % −1.84 −0.79 −0.56 −0.63 1.11 0.46

SSE/ESE 1.089 1.057 1.034 1.048 1.067 1.018

ESE 0.059 0.044 0.031 0.056 0.042 0.030

95% CP 95.47 94.84 94.72 96.49 94.96 94.92

GBIIVW, ρ*

RB, % 4.17 6.10 6.72 7.42 6.51 7.25

SSE/ESE 1.095 1.110 1.084 1.060 1.058 1.050

ESE 0.065 0.047 0.033 0.060 0.044 0.031

95 % CP 91.06 91.50 91.80 92.44 92.72 92.96

GBIIVW, 0

RB,% 3.65 5.30 5.72 5.65 7.22 6.76

SSE/ESE 1.429 1.460 1.479 1.342 1.382 1.348

ESE 0.048 0.034 0.024 0.047 0.034 0.024

95% CP 89.74 85.82 82.36 91.90 87.22 86.88
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Table 2b.

Simulation results for ρ2 = 0.3 over 5,000 repetitions under the DM model with constant ρ2. RB = relative 

bias; SEE = sampling standard error of the estimator [= standard deviation of the 5,000 estimated GBIs]; ESE 

= estimated standard error of the estimator [= mean of the 5,000 estimated standard errors]; 95% CP = 95% 

coverage probability

Estimator CV ≈ 90%, n ≈ 50 CV ≈ 40%, n ≈ 50
K = 8 K = 15 K = 30 K = 8 K = 15 K = 30

GBIindep

RB, % 1.79 −0.64 0.73 −1.85 −1.47 −0.99

SSE/ESE 1.217 1.152 1.065 1.068 1.051 1.017

ESE 0.113 0.091 0.069 0.109 0.082 0.059

95% CP 89.18 90.32 93.06 93.66 93.58 94.72

GBIexch

RB, % −1.75 −2.35 −1.39 −1.78 −0.86 −0.87

SSE/ESE 1.046 1.041 0.995 1.028 1.021 1.006

ESE 0.112 0.083 0.059 0.108 0.080 0.057

95% CP 94.69 93.54 95.30 94.96 94.54 95.12

GBIDM

RB, % −1.54 −2.50 −1.56 −1.64 −0.81 −0.91

SSE/ESE 1.111 1.070 1.007 1.084 1.052 1.020

ESE 0.105 0.080 0.058 0.101 0.077 0.056

95% CP 94.91 94.10 95.44 95.40 94.72 95.18

GBIIVW, ρ*

RB, % 18.11 20.61 24.14 22.57 28.18 30.05

SSE/ESE 1.261 1.241 1.245 1.238 1.244 1.251

ESE 0.116 0.088 0.064 0.114 0.086 0.062

95% CP 85.14 86.14 85.86 86.04 86.16 85.46

GBIIVW, 0

RB,% 22.23 23.24 26.51 22.14 24.64 26.62

SSE/ESE 3.599 3.966 4.077 3.266 3.247 3.502

ESE 0.045 0.032 0.022 0.044 0.032 0.023

95% CP 49.12 41.16 37.08 53.06 46.00 42.68
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Table 2c.

Simulation results for ρ2 = 0.5 over 5,000 repetitions under the DM model with constant ρ2. RB = relative 

bias; SEE = sampling standard error of the estimator [= standard deviation of the 5,000 estimated GBIs]; ESE 

= estimated standard error of the estimator [= mean of the 5,000 estimated standard errors]; 95% CP = 95% 

coverage probability

Estimator CV ≈ 90%, n ≈ 50 CV ≈ 40%, n ≈ 50
K = 8 K = 15 K = 30 K = 8 K = 15 K = 30

GBIindep

RB, % −0.59 −5.53 −1.87 3.30 −1.44 0.20

SSE/ESE 1.216 1.121 1.070 1.065 1.044 1.016

ESE 0.180 0.145 0.110 0.170 0.129 0.093

95% CP 88.46 90.68 92.46 92.82 93.56 94.28

GBIexch

RB, % −5.51 −9.38 −6.27 3.55 −1.59 −0.81

SSE/ESE 1.031 1.018 1.013 1.027 1.021 1.003

ESE 0.166 0.123 0.087 0.166 0.123 0.088

95% CP 94.17 94.50 94.90 94.20 94.50 94.82

GBIDM

RB, % −7.73 −12.09 −9.29 1.01 −4.48 −4.08

SSE/ESE 1.085 1.031 1.008 1.092 1.042 1.007

ESE 0.152 0.116 0.084 0.150 0.115 0.083

95% CP 94.30 94.64 95.22 94.08 94.78 94.84

GBIIVW, ρ*

RB, 95% 41.89 49.78 49.99 51.62 60.16 62.93

SSE/ESE 1.470 1.508 1.541 1.488 1.551 1.567

ESE 0.180 0.140 0.105 0.182 0.142 0.105

95% CP 76.82 76.84 75.98 75.72 74.26 73.16

GBIIVW, 0

RB,% 45.46 51.66 67.89 61.10 60.57 69.98

SSE/ESE 8.363 9.966 12.021 7.847 8.982 9.715

ESE 0.038 0.027 0.018 0.037 0.026 0.018

95% CP 22.42 17.32 13.90 22.68 18.22 15.48
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Table 2d.

Simulation results for data generated under different models over 5,000 repetitions. DM = Dirichlet-

multinomial distribution, RCM = Random Clumped Multinomial distribution. RB = relative bias; SEE = 

sampling standard error of the estimator [= standard deviation of the 5,000 estimated GBIs]; ESE = estimated 

standard error of the estimator [= mean of the 5,000 estimated standard errors]; 95% CP = 95% coverage 

probability. In all scenarios: π = (0.5, 0.4, 0.1), CV ≈ 90%, n ≈ 50, K = 8.

Estimator Data generation mechanism

DM, ρ2 = 0.5
DM, ρi

2 U 0.2, 0.8
RCM, ρ2 = 0.5

RCM, ρi
2 U 0.2, 0.8

GBIindep

RB, % −0.59 −2.17 −0.24 −6.27

SSE/ESE 1.216 1.263 1.244 1.196

ESE 0.180 0.186 0.249 0.247

95% CP 88.46 88.44 83.30 85.22

GBIexch

RB, % −5.51 −6.13 −8.20 −9.83

SSE/ESE 1.031 1.006 0.998 0.966

ESE 0.166 0.180 0.234 0.230

95% CP 94.17 94.31 93.58 94.07

GBIDM

RB, % −7.73 −10.35 −13.82 −16.89

SSE/ESE 1.085 1.144 1.216 1.158

ESE 0.152 0.154 0.166 0.166

95% CP 94.30 93.74 91.64 92.96

GBIIVW, ρ*

RB, % 41.89 33.02 32.64 29.93

SSE/ESE 1.470 1.776 1.145 1.236

ESE 0.180 0.187 0.227 0.230

95% CP 76.82 68.86 85.18 83.06

GBIIVW, 0

RB, % 45.46 37.56 41.30 34.96

SSE/ESE 8.363 11.249 9.489 10.899

ESE 0.038 0.035 0.033 0.032

95% CP 22.42 15.14 14.54 13.58
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Table 3a.

Example 1: Two sets of simulated data that closely mimic the data in a multi-clinician RCT.

Arm Chiropractor 2×2 study 2×3 study Total

n2|C BIC n1|C n2|C BIC nC

Alternative

A 6 −0.14 6 4 −0.14 14

B 2 −0.33 3 1 −0.33 6

C 3 0.20 2 2 0.00 5

D 20 0.67 3 15 0.50 24

E 11 0.29 5 8 0.18 17

F 2 −0.20 2 2 0.00 5

G 13 −0.16 13 10 −0.10 31

H 4 0.33 1 3 0.33 6

J 29 0.35 10 22 0.28 43

I 27 −0.02 31 10 −0.38 55

Total 206

n1|T BIT n1|T n2|T BIT nT

Typical

A 4 −0.43 3 8 −0.36 14

B 3 0.00 2 3 −0.17 6

C 3 0.00 3 2 0.17 6

D 7 −0.39 5 13 −0.35 23

E 6 −0.25 4 8 −0.25 16

F 4 0.33 3 2 0.17 6

G 18 0.16 14 10 0.13 31

H 3 0.20 2 2 0.00 5

J 24 0.12 18 15 0.07 43

I 41 0.49 32 11 0.38 55

Total 205

n2|C and nC represent the count of the correct guesses and the total number of patients in arm C, respectively; n1|T and nT represent the count of 

the correct guesses and the total number of patients in arm T, respectively; BIC and BIT  are the estimates of clinician-level BIs for arms T and C, 

respectively.
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Table 3b.

Estimated GBI values and their 95% confidence intervals (CI) from the RCT with multiple practitioners in 2 × 

2 format and 2 × 3 format

Method 2 × 2 format 2 × 3 format

Alternative arm Typical arm Alternative arm Typical arm

GEE (indep)
GBIindep

0.136 0.108 0.005 0.059

95% CI (−0.106, 0.378) (−0.192, 0.408) (−0.316, 0.325) (−0.194, 0.311)

GEE (exch)

GBIexch
0.135 0.050 0.020 0.059

95% CI (−0.107, 0.377) (−0.270, 0.371) (−0.303, 0.343) (−0.210, 0.186)

ρ2
0.029 0.034 0.010 n/a

DM

GBIDM
0.134 0.040 0.030 0.030

95% CI (−0.096, 0.364) (−0.207, 0.288) (−0.153, 0.213) (−0.142, 0.203)

ρ2
0.206 0.232 0.172 0.111

IVW, ρ*

GBIIVM, ρ*
0.175 0.034 0.049 −0.012

95% CI (−0.045, 0.394) (−0.203, 0.272) (−0.186, 0.284) (−0.210, 0.186)

ρ* 0.079 0.100 0.155 0.077

IVW (ρ* = 0)
GBIIVM

0.183 0.121 0.013 0.062

95% CI (0.056, 0.311) (−0.008, 0.249) (−0.096, 0.122) (−0.053, 0.176)
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Table 4a.

Estimated GBI values and their 95% confidence intervals (CI) from meta-analysis of psychiatric disorders 

(‘joint’ analysis of 40 studies)

Method Control arm Treatment arm

GEE (indep)
GBIindep

−0.040 0.120

95 % CI (−0.132; 0.052) (0.007; 0.233)

GEE (exch)

GBIexch
−0.020 0.121

95 % CI (−0.108, 0.067) (0.019, 0.224)

ρ 0.294 0.261

DM

GBIDM
0.000 0.103

95 % CI (−0.158; 0.159) (−0.051; 0.258)

ρ 0.492 0.486

IVW, ρ*

GBIIVM, ρ*
−0.007 0.163

95% CI (−0.083; 0.070) (0.056; 0.270)

ρ 0.061 0.152

IVW (ρ* = 0)
GBIIVM

−0.016 0.138

95% CI (−0.052; 0.021) (0.105; 0.171)
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Table 4b.

Estimated GBI values and their 95% confidence intervals (CI) from meta-analysis of psychiatric disorders 

(‘separate’ analysis of 30 2 × 2 studies and 10 2 × 3 studies)

Method 2 × 2 format 2 × 3 format

Control arm Treatment arm Control arm Treatment arm

GEE (indep)
GBIindep

−0.092 0.151 0.107 0.031

95% CI (−0.200, 0.016) (0.004, 0.297) (−0.006, 0.219) (−0.073, 0.136)

GEE (exch)

GBIexch
−0.076 0.140 0.148 0.052

95% CI (−0.180, 0.029) (0.012, 0.268) (0.029, 0.267) (−0.076, 0.181)

ρ2
0.219 0.300 0.113 0.065

DM

GBIDM
−0.076 0.143 0.121 0.040

95% CI (−0.178, 0.026) (0.015, 0.270) (−0.064, 0.306) (−0.097, 0.178)

ρ2
0.204 0.304 0.339 0.224

IVW, ρ*

GBIIVM, ρ*
−0.103 0.232 0.098 0.038

95% CI (−0.206, −0.001) (0.091, 0.372) (0.007, 0.188) (−0.082, 0.159)

ρ* 0.057 0.169 0.033 0.059

IVW (ρ* = 0)
GBIIVM

−0.105 0.221 0.068 0.023

95% CI (−0.157, −0.053) (0.177, 0.264) (0.018, 0.118) (−0.028, 0.074)
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