UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Policy-Aware Connectionless Routing

Permalink
https://escholarship.org/uc/item/2m7066zK

Journal
Lecture Notes in Computer Science, 3266

Authors

Garcia-Luna-Aceves, J.J.
Smith, B.

Publication Date
2004-09-29

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2m7066zk
https://escholarship.org
http://www.cdlib.org/

Policy-Aware Connectionless Routing *

Bradley R. Smith and J.J. Garcia-Luna-Aceves

University of California, Santa Cruz

Abstract. The current Internet implements hop-by-hop packet forwarding based
entirely on globally-unique identifiers specified in packet headers, and routing
tables that identify destinations with globally unique identifiers and specify the
next hops to such destinations. This model is very robust; however, it supports
only a single forwarding class per destination. As a result, the Internet must rely
on mechanisms working “on top” of IP to support quality-of-service (QoS) or
traffic engineering (TE). We present the first policy-based connectionless routing
architecture and algorithms to support QoS and TE as part of the basic network-
level service of the Internet. We show that policy-aware connectionless routing
can be accomplished with roughly the same computational efficiency of the tra-
ditional single-path shortest-path routing approach.

1 Introduction

The current Internet architecture is built around the notion that the network layer pro-
vides a single-class best-effort service. This service is provided with routing protocols
that adapt to changes in the Internet topology, and a packet forwarding method based
on a single class of service for all destinations. Using one or more routing protocols,
each router maintains a routing-table entry for each destination specifying the globally
unique identifier for the destination (i.e., an IP address range) and the next hop along
the one path chosen for the destination. Based on such routing tables, each router for-
wards data packets independently of other routers and based solely on the next-hop
entries specified in its routing table. This routing model is very robust. However, there
are many examples of network performance requirements and resource usage policies
in the Internet that are not homogeneous, which requires supporting multiple service
classes [2].

Policy-based routing involves the forwarding of traffic over paths that honor policies
defining performance and resource-utilization requirements. Quality-of-service (QoS)
routing is the special case of policy-based routing in the context of performance poli-
cies, and traffic engineering (TE) is routing in the context of resource-utilization poli-
cies. Section 2 reviews previous solutions for supporting QoS and TE. All past and cur-
rent approaches to supporting QoS and TE in the Internet have been implemented “on
top” of the single-class routing tables of the basic Internet routing model. This leads
to inefficient allocation of the available bandwidth, given that paths computed based

* This work was supported in part by the Defense Advanced Research Projects Agency
(DARPA) under Grant N66001-00-8942 and by the Baskin Chair of Computer Engineering
at UCSC.

2 Bradley R. Smith and J.J. Garcia-Luna-Aceves

on shortest-path routing within autonomous systems have little to do with QoS and TE
constraints. Furthermore, current proposals for policy-based routing [1] are connection-
oriented, and require source-specified forwarding implemented by source routing or
some form of path setup.

There are two key reasons why policy-based path selection (with QoS and TE con-
straints) has not been addressed as an integral part of the basic routing model of the
Internet. Routing with multiple constraints is known to be NP hard [8], and the basic
Internet packet-forwarding scheme is based on globally-unique destination identifiers.
This paper introduces the first policy-aware connectionless routing model for the In-
ternet addressing these two limitations. It consists of the routing architecture presented
in Section 3, and the path-selection algorithms presented in Section 4. The proposed
policy-aware connectionless routing (PACR) architecture is the first to extend the no-
tion of label swapping and threaded indices [4] into connectionless packet forwarding
with multiple service classes. The path-selection algorithms we introduce generalize Di-
jkstra’s shortest path first (SPF) algorithm to account for both TE and QoS constraints.
These algorithms have been shown to be correct (i.e., they compute loop-less paths sat-
isfying TE and QoS constraints within a finite time) [12], and are the first of their kind
to attain computational efficiencies close to that of SPF for typical Internet topologies.

2 Previous Work

Resource Management: Two Internet QoS architectures have been developed for re-
source management: The integrated services (intserv) architecture [2], and the differ-
entiated services (diffserv) architecture. Both work “on top” of an underlying packet
forwarding scheme. In Intserv, network resources must be explicitly controlled; appli-
cations reserve the network resources required to implement their functionality; and
admission control, traffic classification, and traffic scheduling mechanisms implement
the reservations. Diffserv provides resource management without the use of explicit
reservations. A set of per-hop forwarding behaviors (PHBs) is defined within a diffserv
domain to provide resource management services appropriate to a class of application
resource requirements. Traffic classifiers are deployed at the edge of a diffserv domain,
which classify traffic for one of these PHBs. Inside a diffserv domain, routing is per-
formed using the traditional hop-by-hop, single-class mechanisms.

Resource management for TE is quite simple. The desired resource utilization poli-
cies are used as constraints to the path-selection function, and traffic classification and
policy-based forwarding mechanisms are used to implement the computed paths. Cur-
rent proposals [1] define resource-utilization policies by assigning network resources to
resource classes, and then specifying what resource classes can be used for forwarding
each traffic class.

Routing Architectures: Currently proposed policy-based routing architectures are
based on a centralized routing model where routes are computed on-demand (e.g. on
receipt of the first packet in a flow, or on request by a network administrator), and
forwarding is source-specified through the use of source routing or path setup [6] tech-
niques. These solutions are less robust, efficient, and responsive than the original dis-
tributed routing method. The forwarding paths in on-demand routing are brittle, because

Policy-Aware Connectionless Routing (PACR) 3

the ingress router controls remote forwarding state in routers along paths it has set up,
and must re-establish the paths in the event that established paths are broken.

Path Selection: The seminal work on the problem of computing paths in the con-
text of more than one additive metric was done by Jaffe [8], who defined the multiply-
constrained path problem (MCP) as the computation of paths in the context of two ad-
ditive metrics. He presented an enhanced distributed Bellman-Ford (BF) algorithm that
solved this problem with time complexity of O(n*blog(nb)), where n is the number of
nodes in a graph, and b is the largest possible metric value. Many solutions have been
proposed for computing exact paths in the context of multiple metrics for special situa-
tions since Jaffe’s work. Wang and Crowcroft [14] were the first to present the solution
to computing paths in the context of a concave (i.e. “minmax”’) and an additive metric.
Ma and Steenkiste [9] presented a modified BF algorithm that computes paths satisfying
delay, delay-jitter, and buffer space constraints in the context of weighted-fair-queuing
scheduling algorithms in polynomial time. Cavendish and Gerla [3] presented a modi-
fied BF algorithm with complexity of O(n?) which computes multi-constrained paths
if all metrics of paths in an internet are either non-decreasing or non-increasing as a
function of the hop count. Recent work by Siachalou and Georgiadis [11] on MCP has
resulted in an algorithm with complexity O(nW log(n)). This algorithm is a special
case of the policy-based path-selection presented in Section 4 of this paper.

Several other algorithms have been proposed for computing approximate solutions
to the QoS path-selection problem. Both Jaffe [8] and Chen and Nahrstedt [5] propose
algorithms which map a subset of the metrics comprising a link weight to a reduced
range, and show that using such solutions, the cost of a policy-based path computa-
tion can be controlled at the expense of the accuracy of the selected paths. Similarly,
a number of researchers [8, 10] have presented algorithms that compute paths based
on a function of the multiple metrics comprising a link weight. These approximation
solutions do not work with administrative traffic constraints.

3 Policy-Aware Connectionless Routing (PACR)

Policy-based routing requires the ability to compute and forward traffic over multiple
paths for a given destination. For TE, multiple paths may exist that satisfy disjoint
network usage policies. For QoS, there may not exist a universally “best” route to a
given node in a graph. For example, which of two paths is best when one has delay of
Sms and jitter of 4ms, and the other has delay of 10ms and jitter of 1ms depends on
which metric is more critical for a given application. For FTP traffic, where delay is
important and jitter is not, the former would be more desirable. Conversely, for video
streaming, where jitter is very important and delay is relatively un-important, the latter
would be preferred. Such weights are said to be incomparable. In contrast, it is possible
for one route to be clearly “better than” another in the context of multi-component link
weights. For instance, a route with delay of 5ms and jitter of 1ms is clearly better than
a route with delay of 10ms and jitter of Sms for all possible application requirements.
Such weights are said to be comparable.

The goal of routing in the context of multi-component link weights is to find the
largest set of paths to each destination with weights that are mutually incomparable.

4 Bradley R. Smith and J.J. Garcia-Luna-Aceves

The weights in such a set are called the performance classes of a destination. Support-
ing policy-based connectionless routing requires three main functions: (a) computing
and maintaining routes that satisfy QoS and TE constraints for each destination, (b)
classifying traffic intended for a given destination on the basis of TE and QoS con-
straints, and (c) forwarding the classified traffic solely on the basis of the next hops
specified in the routing tables of routers for a given destination and for a given traf-
fic class. The rest of this section outlines our proposed solution, which we call PACR
(policy-aware connectionless routing).

3.1 Policy-Aware Route Computation

The routing protocols used in PACR must be designed to carry the link metrics re-
quired to implement the desired QoS and TE policies. This requires the use of either a
topology-broadcast (also called “link-state”) or link-vector routing protocol [7] that ex-
changes information describing the state of links. The implementation of these routing
protocols consists of two main parts: (a) information exchange signaling, and (b) local
path-selection.

The signaling component of the protocols is straightforward, because it suffices
to re-engineer the signaling of one of many existing routing protocols to accommodate
QoS and TE parameters of links. As we discuss subsequently, routing-table information
can be exchanged in such signaling, in addition to link-state information. The path-
selection component of the protocols is the complex part of PACR, because the path-
selection algorithm used must produce paths that satisfy QoS and TE constraints at
roughly the same speed with which today’s shortest-path algorithms compute paths in a
typical Internet topology. Section 4 presents the new path-selection algorithms required
in PACR, which arguably constitute the main contribution of the new architecture.

3.2 Packet Forwarding

w| AB [1|w[1

X|AB |2[-|-

Local Processes Y| AB |3 |W|3
z| A |4|z]6

z|l B |slwls

EEE

NN
>wEEE
P
ENIEZ

o

Fig. 1. Traffic flow in PACR Fig. 2. Forwarding labels in PACR

Policy-Aware Connectionless Routing (PACR) 5

Solutions for packet classification already exist and can be applied to distributed
policy-based routing. However, forwarding packets solely based on IP addresses would
require each relay of a packet to classify the packet before forwarding according to
the content of its routing table. We propose using label-swap forwarding technology
to require only the first router that handles a packet to classify it before forwarding it.
Accordingly, the forwarding state of a router must be enhanced to include local and next
hop label information, in addition to the destination and next hop information existing
in traditional forwarding tables. Traffic classifiers must then be placed at the edge of
an internet, where “edge” is defined to be any point from which traffic can be injected
into the internet. Figure 1 illustrates the resulting traffic flow requirements of a router
in PACR.

To date, label-swapping has been used in the context of connection-oriented (virtual
circuit) packet forwarding architectures. A connection setup phase establishes the labels
that routers should use to forward packets carrying such labels, and a label refers to
an active source-destination connection [6]. Chandranmenon and Varghese [4] present
threaded indices, in which neighboring routers share labels corresponding to indexes
into their routing tables for routing-table entries for destinations, and such labels are
included in packet headers to allow rapid forwarding-table lookups.

The forwarding labels in PACR are similar to threaded indices. A label is assigned
to each routing-table entry, and each routing-table entry corresponds to a policy-based
route maintained for a given destination. Consequently, for each destination, a router
exchanges one or multiple labels with its neighbors. Each label assigned to a destination
corresponds to the set of service classes satisfied by the route identified by the label. For
example, Figure 2 shows a small network with four nodes with the forwarding tables
at each node, two administrative classes A and B, and the given forwarding state for
reaching the other nodes.

4 Policy-Based Path-Selection Algorithm

We model a network as a weighted undirected graph G = (N, E), where N and E are
the node and edge sets, respectively. By convention, the size of these sets are given by
n =| N |and m = | FE |. Elements of F are unordered pairs of distinct nodes in N.
A(37) is the set of edges adjacent to 7 in the graph. Each link (¢, 7) € F is assigned a
weight, denoted by w;;. A path is a sequence of nodes < x1,Z2,...,2q > such that
(i, 2i41) € Eforeveryi =1,2,...,d — 1, and all nodes in the path are distinct. The
weight of a path is given by w,, = Z?;ll Wz, 2,4, The nature of these weights, and the
functions used to combine these link weights into path weights are specified for each

algorithm.

4.1 Administrative Policies

We use a declarative model of administrative policies in which constraints on the traffic
allowed in an internet are specified by expressions in a boolean traffic algebra. The traf-
fic algebra is composed of the standard boolean operations on the set {0, 1}, where a set
of p primitive propositions (variables) represent statements describing characteristics of

6 Bradley R. Smith and J.J. Garcia-Luna-Aceves

network traffic or global state that are either true or false. The syntax for expressions in
the algebra is specified by the BNF grammar:

=01 vi...op | (=) | (@A) (V)| (p—)

The set of primitive propositions, indicated by v; in the grammar, can be defined in
terms of network traffic characteristics or global state. Administrative policies are spec-
ified for an internet by assigning expressions in the algebra to links in the graph, called
link predicates. These predicates define a set of forwarding classes, and constrain the
topology that traffic for each forwarding class is authorized to traverse, as required by
the administrative policies.

A SAT(y) primitive is required for expressions in the traffic algebra which is
the SATISFIABILITY problem of traditional propositional logic. Satisfiability must
be tested in two situations: to determine if traffic classes exist that are authorized to
use an extension to a known route, and to determine if all traffic authorized for a new
route is already satsified by known shorter routes. The first is true iff the conjunction
of these expressions is satisfiable (i.e., SAT (¢; A €;;)). The second is true iff the new
route’s traffic expression implies the disjunction of the traffic expressions for all known
better routes (i.e., (¢; — €;, V &;, V ..) is valid, which is denoted by (¢; — &;) in the
algorithms). Determining if an expression is valid is equivalent to determining if the
negation of the expression is unsatisfiable. Therefore, expressions of the forme; — €2
are equivalent to ~SAT (—(e; — &2)) (or 7"SAT (g1 A —e3)). Satisfiability has many
restricted versions that are computable in polynomial time. We have implemented an
efficient, restricted solution to the SAT problem by implementing the traffic algebra as
a set algebra with the set operations of intersection, union, and complement on the set
of all possible forwarding classes.

4.2 Performance Characteristics

Path weights are composed of multi-component metrics that capture all important per-
formance measures of a link such as delay, delay variance (“jitter”), available band-
width, etc. Our path-selection algorithm is based on an enhanced version of the path
algebra defined by Sobrinho [13], which we enhance to support the computation of the
best set of routes for each destination. Formally, the path algebra P = < W, ¢, X, C
,0,30 > is defined as a set of weights WV, with a binary operator &, and two order
relations, = and C, defined on W. There are two distinguished weights in W, 0 and
o0, representing the least and absorptive elements of WV, respectively. Operator @ is the
original path composition operator, and relation =< is the original total ordering from
[13]. Operator @ is used to compute path weights from link weights. The relation <
is used by the routing algorithm to build the forwarding set, starting with the minimal
element, and by the forwarding process to select the minimal element of the forwarding
set whose parameters satisfy a given QoS request.

We add a new relation on routes, C, to the algebra and use it to define classes of
comparable routes to select maximal elements of these classes for inclusion in the set
of forwarding entries for a given destination. Relation C is a partial ordering (reflexive,
anti-symmetric, and transitive) with the additional property that (w, C wy) = (wg =

Policy-Aware Connectionless Routing (PACR) 7

algorithm Policy-Based-Dijkstra
begin

—_) then begin

; f“Shgfs’ S"O’ 1>,£71 Ps); 14 Push(<1i,pi,w:, e, >, Pi);

or eac {(5’]‘) € A(s)} 15 for each {(i,5) € A(i) | SAT(ei Neij)}
3 Insert(<j,s,wsj,es5 >, T); begin
4 while (|T'| = 0) 16 e wi D Wi €5 — €44

begin wj Wi Wij; €5 ij5
5 gn o Ain T 17 it (T; = 0)

<Py Wi, & > in(T); 18 then Insert(<j,i,w;,e; >, T)
6 DeleteMin(B;); 7

. v 19 elseif (w; < Tj.w)
7 if (| Bi| = 0) 20 then D]ecrea;eKey(<j i,wji,e; >, T);
8 then Delete Min(T) 21 Insert(<j,i,w;,e; >, By o
9 else IncreaseKey(Min(B;), T;); end PR IR
10 Etmp — €i; ptr — Tail(P;); end
11 while ((etmp # 0) A (ptr #0)) end
12 Etmp — Etmp A TPtr.€; ptr «— pir.next; end

13 if (€emp # 0)

Fig. 3. General-Policy-Based Dijkstra.

wy). The relation C defines an ordering on routes in terms of the containment (subset)
of the set of constraints satisfied by one route within the set satisfied by another, i.e., if
w; C wj, then the set of constraints that route ¢ can satisfy is a subset of those satisfiable
by route j.

A route 7, is a maximal element of a set R of routes in a graph if the only element
r € R where r,,, C ris r,, itself. A set R,,, of routes is a maximal subset of R if, for all
r € Reitherr ¢ R,,,orr € Ry, and forall s € R—{r}, =(r C s). The maximum size
of a maximal subset of routes is the smallest range of the components of the weights

(for the two component weights considered here).

4.3 Path Selection

Path selection in PACR consists of computing the maximal set of routes to each des-
tination in an internet for each traffic class (stated through link predicates and multi-
component link weights) for which a path to the destination exists.

The path-selection algorithm in PACR maintains a balanced tree (3;) for each node
1 in the graph to hold newly discovered, temporary labeled routes for node . A heap
T contains the lightest weight entry from each non-empty B; (for a maximum of n en-
tries), and the heap entry for node i is denoted by 7. Lastly, a queue, P;, is maintained
for each node which contains the set of permanently labeled routes discovered by the al-
gorithm, in the order in which they are discovered (which will be in increasing weight).
The general flow of the path-selection algorithm is to take the minimum entry from the
heap 7', compare it with existing routes in the appropriate P;, if it is incomparable with
existing routes in FP; it is pushed onto P;, and add “relaxed” routes for its neighbors to
the appropriate B, ’s.

The correctness of the PACR path-selection algorithm is based on the maintenance
of the following three invariants: for all routes I € Pand J € B,,I <X J,all
routes to a given destination ¢ in P are incomparable for some set of satisfying truth
assignments, and the maximal subset of routes to a given destination j in P; U B; rep-
resents the maximal subset of all paths to j using nodes with routes in P. Furthermore,

8 Bradley R. Smith and J.J. Garcia-Luna-Aceves

P, = Queue of permanent routes to node 7.
T = Heap of temporary routes.
T,, = Entryin T for node n.
B,, = Balanced tree of routes for node n.
Table 1. Notation.
Notation Description
Queue
Push(r, Q) INSERT RECORD r AT TAIL OF QUEUE @ (O (1))
Head(Q) RETURN RECORD AT HEAD OF QUEUE Q (O (1))
Pop(Q) DELETE RECORD AT HEAD OF QUEUE Q (O(1))
PopTail(Q) DELETE RECORD AT TAIL OF QUEUE Q (O (1))
d-Heap
Insert(r, H) INSERT RECORD 7 INHEAP H (O (log 4(n)))

IncreaseKey(r, ry) REPLACE RECORD rj IN HEAP WITH RECORD r HAVING GREATER KEY VALUE (O (d log 4 (n)))
DecreaseKey(r, rp) REPLACERECORD rj, IN HEAP WITH RECORD 7 HAVING SMALLER KEY VALUE (O (log 4(n)))

Min(H) RETURN RECORD IN HEAP H WITH SMALLEST KEY VALUE (O(1))
DeleteMin(H) DELETE RECORD IN HEAP H WITH SMALLEST KEY VALUE (O (d log 4(n)))
Delete(ry) DELETE RECORD r;, FROM HEAP (O (d log 4 (n)))
Balanced Tree
Tnsert(r, B) INSERT RECORD r IN TREE B (O (log (1))
Min(B) RETURN RECORD IN TREE B WITH SMALLEST KEY VALUE (O (log(n)))

DeleteMin(B) DELETE RECORD IN TREE B WITH SMALLEST KEY VALUE (O (log(n)))

Table 2. Operations on data structures.

these invariants are maintained by the following two constraints on actions performed
in each iteration of these algorithms: (1) only known-non-maximal routes are deleted or
discarded, and (2) only the smallest known-maximal route to a destination ¢ is moved
to P;. The details of this proof are presented elsewhere [12].

The PACR path-selection algorithm, presented in Figure 3 computes an optimal
set of routes to each destination subject to multiple general (additive or concave) path
metrics, in the presence of traffic constraints on the links. The notation used in the
algorithms presented in the following is summarized in Table 1. Table 2 defines the
primitive operations for queues, heaps, and balanced trees used in the algorithms, and
gives their time complexity used in the following analysis. The worst-cast time com-
plexity of Policy-Based-Dijkstrais O(nWW?2 A?), where the maximum number of unique
truth assignments is denoted by A = 2P (p is the number of primitive propositions in
the traffic algebra), and the maximum number of unique weights by W = min(range
of weight components). The performance of special-case variants of this algorithm for
traffic-engineering and QoS (called the “Basic” algorithms below) are O(mAlog(A))
and O(mW log(W)), respectively. Furthermore, for these variants, refinements in the
data structures result in algorithms (called the “Enhanced” algorithms below) with
O(mAlog(n)) and O(mW log(n)) complexity. Details of these variants and the com-
plexity analysis are presented elsewhere [12].

4.4 Performance Results

Figures 4 and 5 present performance results for the path-selection algorithm. The ex-
periments were run on a 1GHz Intel Pentium 3 based system. The algorithms were
implemented using the C++ Standard Template Library (STL) and the Boost Graph Li-
brary. Each test involved running the algorithm on ten random weight assignments to
ten randomly generated graphs (generated using the GT-ITM package [15]).

Policy-Aware Connectionless Routing (PACR) 9

Runtime(graph size) - Maximum Metric = 1000 Normalized Runtime(Vert Cnt) - MaxMet = 1000, Deg = 8, # Traffic Classes = 32

Runtime (secs)

T T T T
Basic QoS Dijkstra (Deg = 32) ——
Enhanced QoS Dikstra (Deg = 32) -----
Traditional Dijkstra (Deg = 32) -+
Basic QoS Dijkstra (Deg = 8)
Enhanced QoS Dikstra (Deg = 8) —---
Traditional Dijkstra (Deg = 8) -~

Force Secs)

Runtime

T s —emm T

o ST S
200 400 600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
Graph size (# vertices) Vertex Count

Fig. 4. QoS Runtime(Size) Fig. 5. TE Norm Runtime(Size)

Fig. 4 show the worst-case measurements for each test of the QoS algorithms. The
“Traditional” algorithm is an implementation of Dijkstra’s shortest-path-first (SPF) al-
gorithm using the same environment as that used for the other algorithms for use as a
reference. The metrics were generated using the “Cost 2 scheme from [11], where the
delay component is randomly selected in the range 1..M axz M etric, and the cost com-
ponent is computed as cost = o(MaxMetric — delay), where o is a random integer
in the range 1..5; this scheme was chosen as it proved to result in the most challenging
computations from a number of different schemes considered.

Tests were run for performance (both runtime and space) as a function of graph
size, average degree of the graph, and the maximum link metric value. Due to space
constraints, only the graphs for runtime as a function of size are shown here with a
maximum metric of 1000. These results show that, while costs increase with both graph
size and average degree, the magnitude and rate of growth are surprisingly tame for
what are fundamentally non-polynomial algorithms.

Fig. 5 shows the performance of the “Basic” traffic engineering algorithm on a
similar range of parameters. Each data point represents the worst performance of the
algorithm out of 9 runs (3 randomly generated graphs with 3 random link weight as-
signments each). To control the number of forwarding classes in a graph, each graph
was generated as two connected subgraphs. Bridge links were then added between 32
randomly selected pairs of vertices from each subgraph to form a single graph with
at most 32 paths between any two nodes in different original subgraphs. 32 tests of
the algorithm are then run with all traffic classes initially allocated to one bridge link
(resulting in one forwarding class for all 32 traffic classes), and successive runs are
performed with traffic classes distributed over one additional link for each test, with
the final run allowing one traffic class over each bridge link (resulting in a one-to-one
mapping of traffic classes to forwarding classes). In each test, the link predicate of all
non-bridge links is set to allow all traffic classes (i.e. it is set to true). Each plot shows
the results for 1, 8, 16, 24, and 32 forwarding classes in terms of the runtime of the
algorithm normalized as a fraction of the “Brute Force” runtime required to run the
traditional Dijkstra algorithm once for each traffic class. The plots show that the algo-

10 Bradley R. Smith and J.J. Garcia-Luna-Aceves

rithm provides significant savings when the number of forwarding classes is small, and
gracefully degrades as the number of forwarding classes grows.

5 Conclusions

We have defined policy-aware routing as the computation of paths, and the establish-
ment of forwarding state to implement paths, in the context of non-homogeneous per-
formance requirements and network usage policies. We showed that a fundamental re-
quirement of policy-aware routing is support for multiple paths to a given destination,
and that the address-based, single-forwarding-class Internet routing model cannot sup-
port such a requirement. We presented PACR, which is the first policy-based connec-
tionless routing architecture, and includes the first policy-based routing solution that
provides integrated support of QoS and TE. The path-selection algorithms introduced
for PACR constitute the most efficient algorithms for path selection with QoS and TE
constraints known to date. Furthermore, their computational efficiency is comparable
to that of shortest-path routing algorithms, which makes policy-aware connectionless
routing in the Internet feasible.

References

1. D. O. Awduche, J. Malcom, J. Agogbua, M. O’Dell, and J. McManus, “Requirements for
Traffic Engineering Over MPLS,” RFC 2702, December 1999.
2. B. Braden, D. Clark, and S. Shenker, “Integrated Services in the Internet Architecture: an
Overview,” RFC 1633, June 1994.
3. D. Cavendish and M. Gerla. “Internet QoS Routing using the Bellman-Ford Algorithm,”
Proc. IFIP Conference on High Performance Networking, 1998.
4. G. P. Chandranmenon and G. Varghese, “Trading Packet Headers for Packet Processing,”
IEEE ACM Trans. Networking, 4(2):141-152, Oct. 1995.
5. S. Chen and K. Nahrstedt, “An Overview of Quality of Service Routing for Next-Generation
High-Speed Networks: Problems and Solutions,” IEEE Network, pp. 64-79, Nov. 1998.
6. B. Davie and Y. Rekhter, MPLS: Technology and Applications, Morgan Kaufmann, 2000.
7. J.J. Garcia-Luna-Aceves and J. Behrens, “Distributed, Scalable Routing Based on Vectors of
Link States,” IEEE JSAC, Oct. 1995.
8. J. M. Jaffe, “Algorithms for Finding Paths with Multiple Constraints,” Networks, 14(1):95—
116, 1984.
9. Q. Ma and P. Steenkiste, “Quality-of-Service Routing for Traffic with Performance Guaran-
tees,” Proc. 4th International IFIP Workshop on QoS, May 1997.
10. P. Van Mieghem, H. De Neve, and F. Kuipers, “Hop-by-hop quality of service routing,”
Computer Networks, 37:407-423, November 2001.
11. S. Siachalou and L. Georgiadis, “Efficient QoS Routing,” Proc. Infocom’03, April 2003.
12. Brad Smith, “ Efficient Policy-Based Routing in the Internet “, PhD Thesis, Computer Sci-
ence, University of California, Santa Cruz, CA 95064, September 2003.
13. J. L. Sobrinho, “Algebra and Algorithms for QoS Path Computation and Hop-by-Hop Rout-
ing in the Internet,” IEEE/ACM Trans. Networking, 10(4):541-550, Aug. 2002.
14. Z. Wang and J. Crowcroft, “Quality-of-Service Routing for Supporting Multimedia Appli-
cations,” IEEE JSAC, pp. 1228-1234, Sept. 1996.
15. E. W.Zegura, K. Calvert, and S. Bhattacharjee, “How to Model an Internetwork,” Proc. IEEE
Infocom 96, 1996.

