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A DATA ASSIMILATION ALGORITHM: THE PARADIGM OF

THE 3D LERAY-α MODEL OF TURBULENCE.

ASEEL FARHAT, EVELYN LUNASIN, AND EDRISS S. TITI

Abstract. In this paper we survey the various implementations of a new data
assimilation (downscaling) algorithm based on spatial coarse mesh measure-
ments. As a paradigm, we demonstrate the application of this algorithm to
the 3D Leray-α subgrid scale turbulence model. Most importantly, we use
this paradigm to show that it is not always necessary that one has to collect
coarse mesh measurements of all the state variables, that are involved in the
underlying evolutionary system, in order to recover the corresponding exact
reference solution. Specifically, we show that in the case of the 3D Leray-α
model of turbulence the solutions of the algorithm, constructed using only
coarse mesh observations of any two components of the three-dimensional ve-

locity field, and without any information of the third component, converge, at
an exponential rate in time, to the corresponding exact reference solution of
the 3D Leray-α model. This study serves as an addendum to our recent work
on abridged continuous data assimilation for the 2D Navier-Stokes equations.
Notably, similar results have also been recently established for the 3D viscous
Planetary Geostrophic circulation model in which we show that coarse mesh
measurements of the temperature alone are sufficient for recovering, through
our data assimilation algorithm, the full solution; viz. the three components
of velocity vector field and the temperature. Consequently, this proves the
Charney conjecture for the 3D Planetary Geostrophic model; namely, that the
history of the large spatial scales of temperature is sufficient for determining
all the other quantities (state variables) of the model.

This paper is dedicated to the memory of Professor Abbas Bahri

MSC Subject Classifications: 35Q30, 93C20, 37C50, 76B75, 34D06.
Keywords: 3D Leray-α-model, subgrid scale turbulence models, continuous

data assimilation, downscaling, Charney conjecture, coarse measurements of veloc-
ity.

1. Introduction

Data assimilation is a methodology to estimate weather or ocean variables com-
bining (synchronizing) information from observational data with a numerical dy-
namical (forecast) model. In the context of control engineering, tracing back since
the early 70’s, data assimilation was also applied to simpler models in [59, 69, 78].
One of the classical methods of continuous data assimilation, see, e.g., [20, 37], is to
insert observational measurements directly into a model as the latter is being inte-
grated in time. For example, one can insert Fourier low mode observables into the
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evolution equation for the high modes, then the values for the low modes and high
modes are combined to form a complete approximation of the state of the system.
This resulting state value is then used as an initial condition to evolve the forecast
model using high resolution simulation. For the 2D Navier-Stokes, this approach
was considered in [9, 10, 39, 41, 52, 58, 70, 72]. The problem when some state
variables observations are not available as an input to the numerical forecast model
was studied in [13, 21, 37, 38, 42, 61] for simplified numerical forecast models.

Recent studies in [23–27] have established rigorous analytical support pertaining
to a continuous data assimilation algorithm similar to that introduced in [4], which
is a feedback control algorithm applied to data assimilation (see also [3]), previ-
ously known as nudging or newtonian relaxation. In these cases, the authors have
analyzed a data assimilation algorithm for different systems when some of the state
variable observations are not supplied in the algorithm. In other words, a rigorous
analytical support to a data assimilation algorithm that can identify the full state
of the system knowing only coarse spatial mesh observational measurements not
of full state variables of the model, but only of the selected state variables in the
system, were analytically justified. In this article we summarize our recent results
to provide support of the applicability of the scheme in several model equations.
We then demonstrate the application of this algorithm to the Leray-α subgrid scale
turbulence model which serves as an addendum to our recent work on abridged
continuous data assimilation for the 2D Navier-Stokes equations.

Starting from the work of [4], the recent works [23–27], mentioned above provided
some stepping stones to rigorous justification to some of the earlier conjectures of
meteorologists in numerical weather prediction. For example, the systematic theo-
retical framework of the proposed global control scheme allowed the authors in [4]
and [23] to provide sufficient conditions on the spatial resolution of the collected
spatial coarse mesh data and the relaxation parameter that guarantees that the ap-
proximating solution obtained from this algorithm converges to the corresponding
unknown reference solution over time (with the assumption that the observational
data measurements are free of noise). Without access to concrete theoretical anal-
ysis, earlier implementation of the “nudging” algorithm left geophysicists searching
for the optimal or suitable nudging coefficient (or relaxation parameter) through
expensive numerical experiments. Naturally, one wishes for the availability of a
sharper estimate for the operational characteristic parameters than what the the-
oretical results gives. However, these recent analytical results, although not sharp,
may allow one to track the correct parameter ranges without the expensive nu-
merical experiments. Computational studies implementing these algorithms under
drastically more relaxed conditions were demonstrated [2, 36] for example.

To understand the value of the development of these analytical results stemming
from the series of studies, we should mention its valuable impact in meteorology.
In weather prediction, we’ve mentioned earlier the need to analyze the success
of a data assimilation algorithm when some state variable observations are not
available. Charney’s question in [13, 37, 38] of whether temperature observations
are enough to determine all the dynamical state of the system is an important
problem in meteorology and engineering. In [38], an analytical argument suggested
that the Charney’s conjecture is correct, in particular, for the shallow water model.
The authors in [38] derived a diagnostic system for the velocity field that gives
the velocity in terms of first and second time derivatives of the mass field (the



ABRIDGED DATA ASSIMILATION FOR 3D α MODELS 3

geopotential of the free surface of the fluid). A mathematical argument was then
presented to justify that the mass field and its first and second time derivatives
determine the velocity field fully. Similar diagnostic systems can be derived for
other simple primitive equation models. The work in [38] gave a precise theoretical
formulation of the Charney conjecture for certain simple atmospheric models.

Numerical tests in [38] suggested that in practice, it can be hard to implement
this method to solve for the velocity field using only measurements on the mass field.
Further numerical testing in [37] affirmed that it is not certain whether assimilation
with temperature data alone will yield initial states of arbitrary accuracy. The
authors in [37] considered the primitive equations (the main weather forecast model)
and tested and compared different time-continuous data assimilation methods using
temperature data alone. In their numerical experiments, they concluded that the
accuracy of the assimilation is highly dependent on assimilation method used and
on the integrity of the measured observational temperature data. A relevant recent
numerical study on a data assimilation algorithm for the 2D Bénard system [2],
inspired by the work in [23], showed that it is sufficient to use coarse velocity
measurements in the algorithm to recover the full true state of the system. On
the other hand, it was concluded in [2] that assimilations using coarse temperature
measurements only will not always recover the true state of the system. It was
observed that the convergence to the true state using temperature measurements
only is actually sensitive to the amount of noise in the measured data as well as
to the spacing (the sparsity of the collected data) and the time-frequency of such
measured temperature data. These results in [2] are consistent with the results of
the earlier numerical experiments in [38] and [37].

These results may indicate that the answer to Charney’s question is negative for
practical issues we have with our measuring equipments or our numerical solving
techniques. More recently, in [27], we proposed an improved continuous data assimi-
lation algorithm for the 3D Planetary Geostrophic model that requires observations
of the temperature only. We provided a rigorous mathematical argument that tem-
perature history of the atmosphere will determine other state variables for this
specific planetary scale model, thus justifying theoretically Charney’s conjecture
for this model. Numerical implementation of our algorithm for the 3D Planetary
Geostrophic model is subject to a new work to compare with the numerical results
obtained in [2], [37] and [38].

We will review relevant results starting from the algorithm introduced in [4]. The
algorithm in [4] can be formally described as follows: suppose that u(t) represents
a solution of some dynamical system governed by an evolution equation of the type

du

dt
= F (u), (1.1)

where the initial data u(0) = uin is missing. Let Ih(u(t)) represent an interpolant
operator based on the observations of the system at a coarse spatial resolution of
size h, for t ∈ [0, T ]. The algorithm proposed in [4] is to construct a solution v(t)
from the observations that satisfies the equations

dv

dt
= F (v) − µ(Ih(v) − Ih(u)), (1.2a)

v(0) = vin, (1.2b)
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where µ > 0 is a relaxation (nudging) parameter and vin is taken to be arbitrary
initial data. As mentioned from the previous literature, this particular algorithm
was designed to work for general dissipative dynamical systems of the form (1.1)
that are known to have global, in time, solutions, finite-dimensional global attractor
and a finite set of determining parameters (see, e.g., [18, 30, 32–35, 44, 47, 48] and
references therein). Lower bounds on µ > 0 and upper bounds on h > 0 can
be derived such that the approximate solution v(t) is converging in time to the
reference solution u(t). These estimates are not sharp (see the numerical results in
[2] and [36]) since their derivation uses the existing estimates for the global solution
in the global attractor of these dissipative systems.

In the context of the incompressible 2D Navier-Stokes equations (NSE), the
authors in [4] studied the conditions under which the approximate solution v(t)
obtained by the algorithm in (1.2) converges to the reference solution u(t) over time
(see also [36]). In [1], it was shown that approximate solutions constructed using
observations on all three components of the unfiltered velocity field converge in time
to the reference solution of the 3D Navier-Stokes-α model. Another application of
this algorithm i for the three-dimensional Brinkman-Forchheimer-Extended Darcy
model was introduced in [65]. The authors in [46] studied the convergence of the
algorithm to the reference solution in the case of the two-dimensional subcritical
surface quasi-geostrophic (SQG) equation. The convergence of this synchronization
algorithm for the 2D NSE, in higher order (Gevery class) norm and in L∞ norm,
was later studied in [8]. An extension of the approach in [4] to the case when the
observational data contains stochastic noise was analyzed in [7]. A study of the the
algorithm for the 2D NSE when the measurements are obtained discretely in time
and are contaminated by systematic error is presented in [31]. More recently in [68],
the authors obtain uniform in time estimates for the error between the numerical
approximation given by the Post-Processing Galerkin method of the downscaling
algorithm and the reference solution, for the 2D NSE. Notably, this uniform in
time error estimates provide a strong evidence for the practical reliable numerical
implementation of this algorithm.

In [23], a continuous data assimilation scheme for the two-dimensional incom-
pressible Bénard convection problem was introduced. The data assimilation algo-
rithm in [23] constructed the approximate solutions for the velocity u and tem-
perature fluctuations using only the observational data of the velocity field and
without any measurements for the temperature fluctuations. In [24], we introduced
an abridged dynamic continuous data assimilation for the 2D NSE inspired by the
recent algorithms introduced in [4, 23]. There we establish convergence results for
the improved algorithm where the observational data needed to be measured and
inserted into the model equation is reduced or subsampled. Our algorithm required
observational measurements of only one component of the velocity vector field. The
underlying analysis were made feasible by taking advantage of the divergence free
condition on the velocity field. Our work in [24], was then applied and extended for
the convergence analysis for a 2D Bénard convection problem, where the approxi-
mate solutions constructed using observations in only the horizontal component of
the two-dimensional velocity field and without any measurements on the tempera-
ture, converge in time to the reference solution of the 2D Bénard system. This was a
progression of the recent result in [23] where convergence results were established,
given that observations are known on all of the components of the velocity field
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and without any measurements of the temperature. In [25] we propose that a data
assimilation algorithm based on temperature measurements alone can be designed
for the Bénard convection in porous medium. In this work it was established that
requiring sufficient amount of coarse spatial observational measurements of only the
temperature measurements as input is able to recover the full state of the system.
Subsequently, in [27] we proposed an improved data assimilation algorithm for re-
covering the exact full reference solution (velocity and temperature field) of the 3D
Planetary Geostrophic model, at an exponential rate in time, by employing coarse
spatial mesh observations of the temperature alone. In particular, we presented a
rigorous justification to an earlier conjecture of Charney which states that temper-
ature history of the atmosphere, for certain simple atmospheric models, determines
all other state variables.

2. Application to Turbulence models

All the analysis of the proposed data assimilation algorithm assumes the global
existence of the underlying model and uses previously known estimates. It is for this
reason that we are not able to prove similar results for the 3D NSE case, even though
numerical testing may be applicable and feasible. Note, however, that we are able
to formulate the analytical setting for a family of globally well-posed subgrid scale
turbulence models belonging to a family called α−models of turbulence. These are
simplified models through an averaging process that is designed to capture the large
scale dynamics of the flow and at the same time provide reliable closure model to
the averaged equations. The first member of the family is introduced in the late
1990’s called the Navier-Stokes-α (NS-α) model (also known as Lagrangian averaged
Navier-Stokes-α (LANS-α) or viscous Camassa-Holm equations [14–16, 28, 29]) is
written as follows:

∂tv + u · ∇v +∇u · v +∇p = ν∆v + f, (2.1a)

∇ · u = 0, and v = u− α2∆u. (2.1b)

Unlike other subgrid closure models which normally add some additional dissipa-
tive process, this new modeling approach regularizes the NSE by restructuring the
distribution of the energy in the wave number k > 1/α of the inertial range [28].
In other words, NS-α smooths the nonlinearity of the NSE, instead of enhancing
dissipation. Many other α models, such as the Leray-α [17], the Clark-α [11], the
Navier-Stokes-Voigt (NSV) equation [49, 50, 73, 74], and the models we have in-
troduced, namely, the modified Leray-α (ML-α) [45], the simplified Bardina model
(SBM) [12, 55], and the NS-α-like models [71], were inspired by this regularization
technique. These models can be represented by a generalized model of the form

∂tu+Au+ (Mu · ∇)(Nu) + χ∇(Mu)T · (Nu) +∇p = f(x), (2.2a)

∇ · u = 0, (2.2b)

u(0, x) = uin(x), (2.2c)

where A, M , and N are bounded linear operators having certain mapping proper-
ties, χ is either 1 or 0, θ controls the strength of the dissipation operator A, and the
two parameters which control the degree of smoothing in the operators M and N ,
respectively, are θ1 and θ2. Table 1 summarizes certain α−models of turbulence.
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Table 1. Some special cases of the model (2.2) with α > 0, and with
S = (I − α2∆)−1 and Sθ2

= [I + (−α2∆)θ2 ]−1.

Model NSE Leray-α ML-α SBM NSV NS-α NS-α-like

A −ν∆ −ν∆ −ν∆ −ν∆ −ν∆S −ν∆ ν(−∆)θ

M I S I S S S Sθ2

N I I S S S I I
χ 0 0 0 0 0 1 1

All of the models just mentioned have global regular solutions and posses fewer
degrees of freedom than the NSE. Moreover, mathematical analysis also proved that
the solutions to these models converge to the solution of NSE in the limit as the filter
width parameter α tends to zero. In addition, several of the α-models of turbulence
have been tested against averaged empirical data collected from turbulent channels
and pipes, for a wide range of Reynolds numbers (up to 17 × 106) [14–16]. The
successful analytical, empirical and computational aspects (see for example [28,
40, 62, 63] and references therein) of the alpha turbulence models have attracted
numerous applications, see for example [5] for application to the quasi-geostrophic
equations, [51] for application to Birkhoff-Rott approximation dynamics of vortex
sheets of the 2D Euler equations, [60, 66, 67] for applications to incompressible
magnetohydrodynamics equations. See also [53, 54] for the α-regularization of the
inviscid 3D Boussinesq equation. A unified analysis of an additional family of α-
type regularized model, also called a general family of regularized Navier-Stokes
and MHD models on n-dimensional smooth compact Riemannian manifolds with
or without boundary, with n ≥ 2 is studied in [43]. For approximate deconvolution
models of turbulence see [56, 57]. For other closure models see [6] and references
therein.

The proposed algorithms in [23–27] sparked an idea that perhaps for this α-model
one can construct approximate solutions using only observations in the horizontal
components and without any measurements on the vertical component of the ve-
locity field converge in time to the reference solution. This is indeed the case, made
possible by taking advantage of the divergence free condition for the velocity field.
Similar results can be claimed for the other certain α-models. In this paper, we
apply the data assimilation algorithm for the case of 3D Leray-α model which we
recall below [17]:

∂tv − ν∆v + (u · ∇)v = −∇p+ f, (2.3a)

∇ · u = ∇ · v = 0, (2.3b)

v = u− α2∆u, (2.3c)

v(0, x, y, z) = vin(x, y, z), (2.3d)

u, v and p are periodic, with basic periodic box Ω = [0, L]3. (2.3e)

The nonlinearity is advected by the smoother velocity field and notice that consis-
tent with all the other alpha models, the above system is the Navier-Stokes system
of equations when α = 0, i.e. u = v.

Let Ih(ϕ) represent an interpolant operator based on the observational mea-
surements of the scalar function ϕ at a coarse spatial resolution of size h. Given
the viscosity ν, the proposed algorithm for reconstructing u(t) and v(t) from only
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the horizontal observational measurements, which are represented by means of the
interpolant operators Ih(v1(t)) and Ih(v2(t)) for t ∈ [0, T ] is given by the system

∂tv
∗

1 − ν∆v∗1 + (u∗ · ∇)v∗1 = −∂xp
∗ + µ (Ih(v1)− Ih(v

∗

1)) + f1, (2.4a)

∂tv
∗

2 − ν∆v∗2 + (u∗ · ∇)v∗2 = −∂yp
∗ + µ (Ih(v2)− Ih(v

∗

2)) + f2, (2.4b)

∂tv
∗

3 − ν∆v∗3 + (u∗ · ∇)v∗3 = −∂xp
∗ + f3, (2.4c)

∇ · u∗ = ∇ · v∗ = 0, (2.4d)

v∗ = u∗ − α2∆u∗, (2.4e)

v∗(0, x, y, z) = v∗in(x, y, z). (2.4f)

supplemented with periodic boundary conditions, where µ is again a positive pa-
rameter which relaxes (nudges) the coarse spatial scales of v toward those of the
observed data.

Consequently, v∗(t, x, y, z) is the approximating velocity field, with v∗(0, x, y, z) =
v∗in(x, y, z) taken to be arbitrary. We note that any data assimilation algorithm us-
ing two out of three components of the velocity field also works. Here, observational
data of the horizontal components Ih(v1(t)) and Ih(v2(t)) were chosen as an exam-
ple.

We will consider interpolant observables given by linear interpolant operators
Ih : H1(Ω) → L2(Ω), that approximate identity and satisfy the approximation
property

‖ϕ− Ih(ϕ)‖L2(Ω) ≤ γ0h ‖ϕ‖H1(Ω) , (2.5)

for every ϕ in the Sobolev spaceH1(Ω). One example of an interpolant observable of
this type is the orthogonal projection onto the low Fourier modes with wave numbers
k such that |k| ≤ 1/h. A more physical example are the volume elements that were
studied in [47]. A second type of linear interpolant operators Ih : H2(Ω) → L2(Ω),
that satisfy the approximation property

‖ϕ− Ih(ϕ)‖L2(Ω) ≤ γ1h ‖ϕ‖H1(Ω) + γ2h
2 ‖ϕ‖H2(Ω) , (2.6)

for every ϕ in the Sobolev space H2(Ω), can be considered with this algorithm. An
example of this type of interpolant observables is given by the measurements at a
discrete set of nodal points in Ω (see Appendix A in [4]). The treatment for the
second type of interpolant is slightly more technical (see, e.g. [23, 24]), and thus
we won’t consider it here for the sake of keeping this note concise.

We prove an analytic upper bound on the spatial resolution h of the observa-
tional measurements and an analytic lower bounds on the relaxation parameter µ
that is needed in order for the proposed algorithm (2.4) to recover the reference so-
lution of the 3D Leray-α system (2.3) that corresponds to the coarse measurements.
These bounds depend on physical parameters of the system, the Grashof number
as an example. We remark that extensions of algorithm (2.4), for the cases of mea-
surements with stochastic noise and of discrete spatio-temporal measurements with
systematic error, can be established by combining the ideas we present here with
the techniques reported in [7] and [31], respectively.
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3. Preliminaries

We define F to be the set of divergence free L-periodic trigonometric polynomial
vector fields from R

3 → R
3, with spatial average zero over Ω. We denote by L2(Ω),

W s,p(Ω), and Hs(Ω) ≡ W s,2(Ω) the usual Sobolev spaces in three-dimensions, and
we denote by H and V the closure of F in L2(Ω) and H1(Ω), respectively.

We denote the dual of V by V
′

and the Helmholz-Leray projector from L2(Ω)

onto H by Pσ. The Stokes operator A : V → V
′

, can now be expressed as

Au = −Pσ∆u,

for each u, v ∈ V . We observe that in the periodic boundary condition case
A = −∆. The linear operator A is self-adjoint and positive definite with compact
inverse A−1 : H → H . Thus, there exists a complete orthonormal set of eigenfunc-
tions wi in H such that Awi = λiwi where 0 < λi ≤ λi+1 for i ∈ N. The domain of
A will be written as D(A) = {u ∈ V : Au ∈ H}.

We define the inner products on H and V respectively by

(u,v) =

3
∑

i=1

∫

T3

uivi dx and ((u,v)) =

3
∑

i,j=1

∫

T3

∂jui∂jvi dx,

and their associated norms (u,u)1/2 = ‖u‖L2(Ω), ((u,u))
1/2 =

∥

∥A1/2u
∥

∥

L2(Ω)
. Note

that ((·, ·)) is a norm due to the Poincaré inequality

‖φ‖2
L2(Ω)

≤ λ−1
1 ‖∇φ‖2

L2(Ω)
, for all φ ∈ V, (3.1)

where λ1 is the smallest eigenvalue of the operator A in three-dimensions, subject
to periodic boundary conditions.

We use the the following inner products in H1(Ω) and H2(Ω), respectively

((u, v))H1(Ω) = λ1

[

(u, v) + α2(A1/2u,A1/2v)
]

,

and

((u, v))H2(Ω) = λ2
1

[

(u, v) + 2α2(A1/2u,A1/2v) + α4(Au,Av)
]

.

The above inner products were used in [17] so that the norms in H1(Ω) and H2(Ω)
are dimensionally homogeneous. Using these definitions, one can observe that

λ1 ‖v‖L2(Ω) ≤ ‖u‖H2(Ω) ≤ 2λ1 ‖v‖L2(Ω) , (3.2)

where v = u− α2∆u.

Remark 3.1. We will use these notations indiscriminately for both scalars and
vectors, which should not be a source of confusion.

Let Y be a Banach space. We denote by Lp([0, T ];Y ) the space of (Bochner)
measurable functions t 7→ w(t), where w(t) ∈ Y , for a.e. t ∈ [0, T ], such that the

integral
∫ T

0
‖w(t)‖pY dt is finite.

Hereafter, c denotes a universal dimensionless positive constant. Our estimates
for the nonlinear terms will involve the Sobolev inequality in three-dimensions:

‖u‖L∞(Ω) ≤ cλ
−1/4
1 ‖u‖H2(Ω) . (3.3)

Furthermore, inequality (2.5) implies that

‖w − Ih(w)‖
2
L2(Ω) ≤ c20h

2
∥

∥

∥
A1/2w

∥

∥

∥

2

L2(Ω)
, (3.4)
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for every w ∈ V , where c0 = γ0.
Here, G denotes the the Grashof number in three-dimensions

G =
‖f‖L2(Ω)

ν2λ
3/4
1

. (3.5)

We recall that the 3D Leray-α model (2.3), subject to periodic boundary condi-
tions, is well-posed and posses a finite-dimensional compact global attractor.

Theorem 3.2 (Existence and uniqueness). [17] If vin ∈ V and f ∈ H, then,
for any T > 0, the 3D Leray-α model (2.3) has a unique global strong solution
v(t, x, y, z) = (v1(t, x, y, z), v2(t, x, y, z), v3(t, x, y, z)) that satisfies

v ∈ C([0, T ];V ) ∩ L2([0, T ];D(A)), and
dv

dt
∈ L2([0, T ];H).

Moreover, the system admits a finite dimensional global attractor A that is compact
in H.

The following bounds on solutions v of (2.3) can be proved using the estimates
obtained in [17].

Proposition 3.3. [17] Let τ > 0 be arbitrary, and let G be the Grashof number
given in (3.5). Suppose that v is a solution of (2.3), then there exists a time t0 > 0
such that for all t ≥ t0 we have

‖v(t)‖
2
L2(Ω) ≤ 2ν2λ

−1/2
1 G2, (3.6a)

and
∫ t+τ

t

‖∇v(s)‖2L2(Ω) ds ≤ 2(1 + τνλ
1/2
1 )νG2. (3.6b)

We also recall the following bound on the solutions v in the global attractor of
(2.3) that was proved in [22]. This estimate improves the estimate in [17] on the

enstrophy
∥

∥A1/2v
∥

∥

2

L2(Ω)
.

Proposition 3.4. [22] Suppose that v is a solution in the global attractor of (2.3),
then

∥

∥

∥
A1/2v(t)

∥

∥

∥

2

L2(Ω)
≤ c̃

ν2G4

α4λ
3/2
1

, (3.7)

for large t > 0, for some dimensionless constant c̃ > 0.

4. Analysis of the data assimilation algorithm

We will prove that under certain conditions on µ, the approximate solution
(v∗1 , v

∗

2 , v
∗

3) of the data assimilation system (2.4) converges to the solution (v1, v2, v3)
of the 3D Leray-α (2.3), as t → ∞, when the observables operators that satisfy (2.5).

Theorem 4.1. Suppose Ih satisfy (2.5) and µ > 0 and h > 0 are chosen such that
µc20h

2 ≤ ν, where c0 is the constant in (2.5). Let v(t, x, y, z) be a strong solution of
the Leray-α model (2.3) and choose µ > 0 large enough such that

µ ≥ 2
cc̃νG4

α4λ1
, (4.1)
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and h > 0 small enough such that µc20h
2 ≤ ν, where the constants c, c̃, and c0

appear in (4.15), (3.7) and (3.4), respectively.
If the initial data v∗0 ∈ V and f ∈ H, then the continuous data assimilation sys-

tem (2.4) possess a unique global strong solution v∗(t, x, y, z) = (v∗1(t, x, y, z), v
∗

2(t, x, y, z),
v∗3(t, x, y, z)) that satisfies

v∗ ∈ C([0, T ];V ) ∩ L2([0, T ];D(A)), and
dv∗

dt
∈ L2([0, T ];H).

Moreover, the solution v∗(t, x, y, z) depends continuously on the initial data v∗in
and it satisfies

‖v(t)− v∗(t)‖L2(Ω) → 0,

at exponential rate, as t → ∞.

Proof. Define p̃ = p− p∗, ũ = u − u∗, and ṽ = v − v∗, thus ṽ = ũ − α2∆ũ. Then
ṽ1, ṽ2 and ṽ3 satisfy the equations

∂ṽ1
∂t

−∆ṽ1 + ũ1∂xv1 + ũ2∂yv1 + ũ3∂zv1 + (u∗ · ∇)ṽ1 + ∂xp̃ = −µIh(ṽ1), (4.2a)

∂ṽ2
∂t

−∆ṽ2 + ũ1∂xv2 + ũ2∂yv2 + ũ3∂zv2 + (u∗ · ∇)ṽ2 + ∂y p̃ = −µIh(ṽ2), (4.2b)

∂ṽ3
∂t

−∆ṽ3 + ũ1∂xv3 + ũ2∂yv3 + ũ3∂zv3 + (u∗ · ∇)ṽ3 + ∂z p̃ = 0, (4.2c)

∂xṽ1 + ∂y ṽ2 + ∂z ṽ3 = ∂xũ1 + ∂yũ2 + ∂zũ3 = 0. (4.2d)

Since we assume that v is a reference solution of system (2.3), then it is enough
to show the existence and uniqueness of the difference ṽ. In the proof below, we
will derive formal a-priori bounds on ṽ, under appropriate conditions on µ and
h. These a-priori estimates, together with the global existence and uniqueness
of the solution v, form the key elements for showing the global existence of the
solution v∗ of system (2.4). The convergence of the approximate solution v∗ to the
exact reference solution v will also be established under the tighter condition on
the nudging parameter µ as stated in (4.1). Uniqueness can then be obtained using
similar energy estimates.

The estimates we provide in this proof are formal, but can be justified by the
Galerkin approximation procedure and then passing to the limit while using the
relevant compactness theorems. We will omit the rigorous details of this standard
procedure (see, e.g., [19, 75, 77]) and provide only the formal a-priori estimates.

Taking the L2(Ω)-inner product of (4.2a), (4.2b) and (4.2c) with ṽ1, ṽ2 and ṽ3,
respectively, and obtain

1

2

d

dt
‖ṽ1‖

2
L2(Ω) + ν

∥

∥

∥
A1/2ṽ1

∥

∥

∥

2

L2(Ω)
≤ |J1| − (∂xp̃, ṽ1)− µ(Ih(ṽ1), ṽ1),

1

2

d

dt
‖ṽ2‖

2
L2(Ω) + ν

∥

∥

∥
A1/2ṽ2

∥

∥

∥

2

L2(Ω)
≤ |J2| − (∂y p̃, ṽ2)− µ(Ih(ṽ2), ṽ2),

1

2

d

dt
‖ṽ3‖

2
L2(Ω) + ν

∥

∥

∥
A1/2ṽ1

∥

∥

∥

2

L2(Ω)
≤ |J3| − (∂z p̃, ṽ3),
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where

J1 := J1a + J1b + J1c := (ũ1∂xv1, ṽ1) + (ũ2∂yv1, ṽ1) + (ũ3∂zv1, ṽ1),

J2 := J2a + J2b + J2c := (ũ1∂xv2, ṽ2) + (ũ2∂yv2, ṽ2) + (ũ3∂zv2, ṽ2),

J3 := J3a + J3b + J3c := (ũ1∂xv3, ṽ3) + (ũ2∂yv3, ṽ3) + (ũ3∂zv3, ṽ3).

By Hölder inequality, inequality (3.2) and the Sobolev inequality (3.3), we can
show that

|J1a| = |(ũ1∂xv1, ṽ1)| ≤ ‖∂xv1‖L2(Ω) ‖ũ1‖L∞(Ω) ‖ṽ1‖L2(Ω)

≤ cλ
−1/4
1 ‖∂xv1‖L2(Ω) ‖ũ1‖H2(Ω) ‖ṽ1‖L2(Ω)

≤ cλ
3/4
1 ‖∂xv1‖L2(Ω) ‖ṽ1‖

2
L2(Ω)

≤ cλ
1/4
1 ‖∂xv1‖L2(Ω) ‖ṽ1‖L2(Ω)

∥

∥

∥
A1/2ṽ1

∥

∥

∥

L2(Ω)

≤
ν

8

∥

∥

∥
A1/2ṽ1

∥

∥

∥

2

L2(Ω)
+

cλ
1/2
1

ν
‖∂xv1‖

2
L2(Ω) ‖ṽ1‖

2
L2(Ω) . (4.3)

Using similar analysis as above, we obtain the following estimates:

|J1b| = |(ũ2∂yv1, ṽ1)| ≤
ν

8

∥

∥

∥
A1/2ṽ2

∥

∥

∥

2

L2(Ω)
+

cλ
1/2
1

ν
‖∂yv1‖

2
L2(Ω) ‖ṽ1‖

2
L2(Ω) , (4.4)

|J1c| = |(ũ3∂zv1, ṽ1)| ≤
ν

20

∥

∥

∥
A1/2ṽ3

∥

∥

∥

2

L2(Ω)
+

cλ
1/2
1

ν
‖∂zv1‖

2
L2(Ω) ‖ṽ1‖

2
L2(Ω) , (4.5)

|J2a| = |(ũ1∂xv2, ṽ2)| ≤
ν

8

∥

∥

∥
A1/2ṽ1

∥

∥

∥

2

L2(Ω)
+

cλ
1/2
1

ν
‖∂xv2‖

2
L2(Ω) ‖ṽ2‖

2
L2(Ω) , (4.6)

|J2b| = |(ũ2∂yv2, ṽ2)| ≤
ν

8

∥

∥

∥
A1/2ṽ2

∥

∥

∥

2

L2(Ω)
+

cλ
1/2
1

ν
‖∂yv2‖

2
L2(Ω) ‖ṽ2‖

2
L2(Ω) , (4.7)

|J2c| = |(ũ3∂zv2, ṽ2)| ≤
ν

20

∥

∥

∥
A1/2ṽ3

∥

∥

∥

2

L2(Ω)
+

cλ
1/2
1

ν
‖∂zv2‖

2
L2(Ω) ‖ṽ2‖

2
L2(Ω) , (4.8)

|J3a| = |(ũ1∂xv3, ṽ3)| ≤
ν

20

∥

∥

∥
A1/2ṽ3

∥

∥

∥

2

L2(Ω)
+

cλ
1/2
1

ν
‖∂xv3‖

2
L2(Ω) ‖ṽ1‖

2
L2(Ω) , (4.9)

|J3b| = |(ũ2∂yv3, ṽ3)| ≤
ν

20

∥

∥

∥
A1/2ṽ3

∥

∥

∥

2

L2(Ω)
+

cλ
1/2
1

ν
‖∂yv3‖

2
L2(Ω) ‖ṽ2‖

2
L2(Ω) . (4.10)

Next, using integration by parts and the divergence free condition (4.2d) we
obtain

J3c = (ũ3∂zv3, ṽ3) = −(v3, ∂z(ũ3ṽ3))

= −(v3, ∂zũ3ṽ3)− (v3, ũ3∂z ṽ3)

= (v3, (∂xũ1 + ∂yũ2)ṽ3) + (v3, ũ3(∂xũ1 + ∂yũ2))

=: J3d + J3e.

Integration by parts once again implies

J3d = (v3, (∂xũ1 + ∂yũ2)ṽ3)

= −(v3, ũ1∂xṽ3)− (v3, ũ2∂y ṽ3)− (∂xv3, ũ1ṽ3)− (∂yv3, ũ2ṽ3)

=: J3d1 + J3d2 + J3d3 + J3d4,



12 ASEEL FARHAT, EVELYN LUNASIN, AND EDRISS S. TITI

and

J3e = (v3, ũ3(∂xũ1 + ∂yũ2))

= −(v3, ∂xũ3ṽ1)− (v3, ∂yũ3ṽ2)− (∂xv3, ũ3ṽ1)− (∂yv3, ũ3ṽ2)

=: J3e1 + J3e2 + J3e3 + J3e4.

Using Hölder inequality, inequality (3.2) and Sobolev inequality (3.3), we have

|J3d1| = |(v3, ũ1∂xṽ3)| ≤ ‖v3‖L2(Ω) ‖ũ1‖L∞(Ω) ‖∂xṽ3‖L2(Ω)

≤ cλ
−1/4
1 ‖v3‖L2(Ω) ‖ũ1‖H2(Ω) ‖∂xṽ3‖L2(Ω)

≤ cλ
3/4
1 ‖v3‖L2(Ω) ‖ṽ1‖L2(Ω) ‖∂xṽ3‖L2(Ω)

≤ cλ
1/4
1

∥

∥

∥
A1/2v3

∥

∥

∥

L2(Ω)
‖ṽ1‖L2(Ω) ‖∂xṽ3‖L2(Ω)

≤
ν

20
‖∂xṽ3‖

2
L2(Ω) +

cλ
1/2
1

ν

∥

∥

∥
A1/2v3

∥

∥

∥

2

L2(Ω)
‖ṽ1‖

2
L2(Ω) ,

and similarly,

|J3d2| = |(v3, ũ2∂y ṽ3)| ≤
ν

20
‖∂y ṽ3‖

2
L2(Ω) +

cλ
1/2
1

ν

∥

∥

∥
A1/2v3

∥

∥

∥

2

L2(Ω)
‖ṽ2‖

2
L2(Ω) .

By a similar argument as in (4.3), we can show that

|J3d3| = |(∂xv3, ũ1ṽ3)| ≤
ν

20

∥

∥

∥
A1/2ṽ3

∥

∥

∥

2

L2(Ω)
+

cλ
1/2
1

ν
‖∂xv3‖

2
L2(Ω) ‖ṽ1‖

2
L2(Ω) ,

and

|J3d4| = |(∂yv3, ũ3ṽ2)| ≤
ν

20

∥

∥

∥
A1/2ṽ3

∥

∥

∥

2

L2(Ω)
+

cλ
1/2
1

ν
‖∂yv3‖

2
L2(Ω) ‖ṽ2‖

2
L2(Ω) .

Thus,

|J3d| ≤
ν

5

∥

∥

∥
A1/2ṽ3

∥

∥

∥

2

L2(Ω)
+

cλ
1/2
1

ν

∥

∥

∥
A1/2v3

∥

∥

∥

2

L2(Ω)

(

‖ṽ1‖
2
L2(Ω) + ‖ṽ2‖

2
L2(Ω)

)

.

We apply similar calculations to J3e and obtain

|J3e| ≤
ν

5

∥

∥

∥
A1/2ṽ3

∥

∥

∥

2

L2(Ω)
+

cλ
1/2
1

ν

∥

∥

∥
A1/2v3

∥

∥

∥

2

L2(Ω)

(

‖ṽ1‖
2
L2(Ω) + ‖ṽ2‖

2
L2(Ω)

)

.

This yield

|J3c| = |(ũ3∂zv3, ṽ3)|

≤
2ν

5

∥

∥

∥
A1/2ṽ3

∥

∥

∥

2

L2(Ω)
+

cλ
1/2
1

ν

∥

∥

∥
A1/2v3

∥

∥

∥

2

L2(Ω)

(

‖ṽ1‖
2
L2(Ω) + ‖ṽ2‖

2
L2(Ω)

)

. (4.11)

Young’s inequality and the assumption µc20h
2 ≤ ν imply that

−µ(Ih(ṽi), ṽi) = −µ(Ih(ṽi)− ṽi, ṽi)− µ ‖ṽi‖
2
L2(Ω)

≤ µc0h ‖ṽi‖L2(Ω)

∥

∥

∥
A1/2ṽi

∥

∥

∥

L2(Ω)
− µ ‖ṽi‖

2
L2(Ω)

≤
ν

2

∥

∥

∥
A1/2ṽi

∥

∥

∥

2

L2(Ω)
−

µ

2
‖ṽi‖

2
L2(Ω) , i = 1, 2. (4.12)
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Also we note that

(∂xp̃, ṽ1) + (∂y p̃, ṽ2) + (∂z p̃, ṽ3) = 0, (4.13)

due to integration by parts, the boundary conditions, and the divergence free con-
dition (4.2d).

Combining all the bounds (4.3)–(4.13) and denoting ‖ṽH‖2L2(Ω) := ‖ṽ1‖
2
L2(Ω) +

‖ṽ2‖
2
L2(Ω), we obtain

d

dt
‖ṽ‖

2
L2(Ω) +

ν

2

∥

∥

∥
A1/2ṽ

∥

∥

∥

2

L2(Ω)
≤

(

cλ
1/2
1

ν

∥

∥

∥
A1/2v

∥

∥

∥

2

L2(Ω)
− µ

)

‖ṽH‖
2
L2(Ω) ,

or, using Poincaré inequality (3.1), we have

d

dt
‖ṽ‖

2
L2(Ω) +

νλ1

2
‖ṽ‖

2
L2(Ω) + β(t) ‖ṽH‖

2
L2(Ω) ≤ 0, (4.14)

where

β(t) := µ−
cλ

1/2
1

ν

∥

∥

∥
A1/2v

∥

∥

∥

2

L2(Ω)
. (4.15)

Since v(t) is a solution in the global attractor of (2.3), then
∥

∥A1/2v
∥

∥

2

L2(Ω)
satisfies

the bound (3.7) for t > t0, for some large enough t0 > 0. Now, the assumption
(4.1), yields

d

dt
‖ṽ‖

2
L2(Ω) +min

{

νλ1

2
,
µ

2

}

‖ṽ‖
2
L2(Ω) ≤ 0,

for t > t0. By Gronwall’s lemma, we obtain

‖v(t) − v∗(t)‖
2
L2(Ω) = ‖ṽ(t)‖L2(Ω) → 0,

at an exponential rate, as t → ∞. �
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