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ABSTRACT OF THE THESIS

Mapping of an APNG Encoder to the Grid of Processing Cells Architecture

By

Vivek Govindasamy

Master of Science in Computer Engineering
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Professor Rainer Dömer, Chair

Modern processors experience memory contention when the speed of their computational

units exceeds the rate at which new data is available to be processed. This phenomenon

is well known as the memory bottleneck and is a great challenge in computer engineering.

In this thesis, a proposed computer architecture using local memory called ”checkerboard

architecture” is compared against existing shared memory architectures. Specifically, a well

known multimedia application, Animated Portable Network Graphics (APNG) is used to

benchmark the performance. APNG is a lossless image compression algorithm which we

have parallelized as well as recoded to use small memory buffers. These optimizations en-

able implementation on the checkerboard architecture. The specification and modeling of

the APNG encoder application and the checkerboard architecture are discussed. Next, the

application is mapped to the new architecture and is compared against existing types of ar-

chitectures such as existing shared memory processors to confirm the existence of the mem-

ory bottleneck and indicate possible solutions. Our experimental results show significant

decrease in both execution time and memory contention in the checkerboard architecture

compared to single core as well as shared memory processors.
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Chapter 1

Introduction

The increase in processor speeds over the past years has led to increased time spent in

accessing the main memory to retrieve data to perform more computations for a specified

time. As many cores try to access the same main memory it leads to contention and delays

as each core waits longer to access the shared memory. Most modern CPUs used are usually

shared memory processors. In this work, we explore if shared memory CPUs could benefit

from using distributed local memory.

1.1 System Level Modeling

Given the growing complexity of embedded systems, it is necessary to model a design at

higher abstraction levels to check whether it is suitable for implementation (Figure 1.1). To

solve this issue, Electronic System Level (ESL) design and verification was introduced in

the early 21st century [1]. An entire system can be modeled by using System-Level Design

Languages (SLDLs), such as SpecC [2] and SystemC [3]. ESL design achieves the concurrent

design of both the hardware and software components of an embedded system.
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Figure 1.1: System on Chip design methodology [4].

To perform ESL design, a simulator is required. An effective SLDL for this purpose is Sys-

temC, which simulates concurrent processes using C++ syntax [5]. SystemC uses concepts

inherited from the SpecC language. Using SystemC, a variety of models can be developed at

varying levels of abstraction (Figure 1.2). The initial model is untimed and has a simulated

time of zero, with only delta cycles passing. Delta cycles are used by the SystemC simulator

to order events which are meant to run in parallel. The next step introduces timing delays

in the modules. These delays can be used to measure the execution time of the model, and

determine whether the design is an improvement over its predecessors.

2



Figure 1.2: The increase in abstraction causes a reduction in accuracy at the system level
[4].

Modules are the basic building blocks of a SystemC design. They are used to represent

a component in a real system. SystemC uses Transaction-Level Modeling (TLM) which

allows communication between modules using a method call [6]. The original TLM-1.0

used channels to perform communication between modules. The channels were modeled

as FIFOs or buses. However, to obtain a more accurate model of a real world design, it

is essential to also include memories. For this purpose SystemC TLM-2.0 was introduced

where communication between modules takes place through explicit memories. In this work,

we are using TLM-2.0 features to create an abstract model of the proposed checkerboard

architecture [7] and map an application to it.

1.2 Problem Definition

A new type of computer architecture has been proposed, called the ”checkerboard architec-

ture” by Professor Dömer at the University of California, Irvine [7]. To test the effectiveness

of this new architecture, a multimedia application is run on the checkerboard architecture

3



and compared with currently used architectures such as the shared memory architecture

and single core architecture. The multimedia application and the different architectures are

modeled entirely using SystemC TLM-2.0. Modeling of the architecture was performed by a

team of the CECS group at UCI [8] including the author of this thesis. This work contains

three parts, (1) the application, (2) the architecture and (3) the mapping. First a suitable

application is chosen which can be modified to run effectively on both a shared memory

processor and a distributed memory processor.

The application used here is an Animated Portable Network Graphics (APNG) encoder [9].

APNG encoders are basically PNG encoders which concatenate the generated PNG images

with additional information chunks which contain parameters needed by video players such

as the frame rate. The increase in the number of compressed images lets the simulation run

for longer and provide improved results. PNG images [10] are ubiquitously used to store

screenshots and other pixel-based images [11]. However, the interior working is not as well

known as other image compression formats like JPEG [12]. PNG encoders have two main

working components which perform the actual compression, the filters and the DEFLATE

algorithm [13]. Filters are of five types, and they are mainly used to reduce pixel values so

that they occupy less space. The reduced pixel values require less number of bits to transmit,

providing some compression. Filtering also creates runs of data, and they are compressed

in a similar way as run length encoding. The filtered values are sent in as inputs to the

DEFLATE algorithm, which uses a combination of Lempel–Ziv–Storer–Szymanski (LZSS)

and Huffman encoding to perform lossless compression. DEFLATE works better on values

which are highly correlated to each other, which will be discussed later in this work.

For the architecture a ”checkerboard” style of many cores with local memory is used (Figure

1.4). The name comes from the checkerboard pattern where the cores and memory are

placed one after another, and each core has access to its own and three other neighbour

memories. We model the checkerboard architecture using SystemC TLM-2.0. It contains

4



several variations of a main logical component which is termed as a cell. Each cell is designed

with the ideology that it represents a core and components that are private to that particular

core. Therefore, the cell consists of a processing core which performs computation, a memory

for the core that also facilitates communication between the adjacent cores, a core multiplexer

which translates addresses seen by individual cores to global addresses, a memory multiplexer

which forwards data transfer requests coming from various cores to the intended memory

and a signal which the core uses to notify surrounding cores that it has modified data

at a specific memory location. On the edges of the checkerboard, four off-chip memories

are connected to the cores which do not have a memory on the edge of the checkerboard.

These off-chip memories are much larger than the local memories attached to each core. The

architecture can also be referred to as a grid of processing cells (GPC). The GPC contains the

checkerboard as well as four surrounding off-chip memory units with multiplexers attached

to them. The intention of this design is to accommodate the situation where multiple cores

try to access the off-chip memory at the same time. In a test bench, the off-chip memories

are connected to the stimulus and monitor modules which send and receive the input and

output data to the checkerboard.

5
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Figure 1.3: The simplified checkerboard model within the Grid of Processing Cells (GPC)
[7]. The red and green outlines denote cells.

The main objective in this thesis is the mapping of the application to the various cells on

the checkerboard. This step involves modifying the APNG encoder and rewriting the source

code so that it is suitable for the architecture. The main step of this modification is to split

computationally intensive parts of the encoder into smaller units and utilize communication

between the cells to accommodate the splitting of data. SystemC delays are introduced at

the multiplexers to time the performance and compare it to other possible mappings. Upon

mapping the application to the architecture, experimental results show highly decreased

execution time compared to the shared memory model with negligible amounts of memory

contention.
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1.3 Related Work

Computer architecture is a vast field which started with two types of possible architecture, the

von Neumann architecture [14] and Harvard architecture [15]. Von Neumann architectures

share both data and instruction memory, whereas for Harvard architecture the storage and

pathways are separate for data and instructions. The von Neumann architectures are simpler

but suffer from the issue of contention between data and instructions. This is known as the

von Neumann bottleneck [16]. Since then the most commonly used architecture has been

the modified Harvard architecture for most general purpose computers [17], in which there

exist seperate caches for both instruction and data but the address space is shared. Over

the past many years the general trend is that processors become faster as designers increase

the clock rate but the increase in access speed of memory is almost always slower [18].

This is known as the memory wall. To deal with this issue there has been more focus on

implementing and improving caches [19]. However even the most advanced caches suffer

from high miss rates if the cache is too small due to capacity misses or from higher memory

access times if associativity is increased too much [20]. Caches also must implement cache

coherence protocols so that the same data is shared between cores in the case of multicore

processors. Caches have given rise to the Non-Uniform Memory Access (NUMA) where

each core can access its own memory faster than the shared memory. An issue with NUMA

is that the time to maintain cache coherency is quite high [21] and leads to contention as

the interconnect used is common to every core. In this work we evaluate the proposed

checkerboard architecture, which aims to create multiple pathways between cores thereby

reducing contention significantly by changing the architecture of the processor itself and is

novel in the area of methods to mitigate the effect of memory contention.
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Chapter 2

The APNG Encoder Application

This chapter [22] discusses the process of creating an APNG file. The process starts with

compressing the input images into the PNG format and then using the output from DE-

FLATE to create an additional APNG file. A PNG image is comprised of multiple infor-

mation and compressed data packets called chunks [23]. Chunks carrying information are

not compressed, whereas every chunk carrying data has the data part compressed using the

DEFLATE algorithm. To effectively compress data, the data must first be filtered using one

of five different filter methods, which is discussed in Section 2.2.

Our SystemC model is structured as a parallel filtering architecture, followed by a compara-

tor to choose the optimal filtered result. Filters operate row-wise and each row is sent to

DEFLATE serially. SystemC modules then create chunks to be written to the final PNG

file. The pixels are filtered and then restructured as a 1 dimensional array. The change in

color is due to filtering and the subsequent reduction in pixel intensities. The first element

of the array represents the filtering method used. Every row is joined as one large array and

compressed to obtain the PNG data. Chunks are then created to provide information to the

decoder.

8



2.1 PNG Chunks

PNG chunks carry information about the image or the pixel data. Chunks are also the

only information that the PNG decoders are capable of reading. PNG decoders have been

developed with the intention of ignoring any unknown chunk types so that they can maintain

compatibility with newer encoders. APNG uses many chunks which are not recognizable to

PNG-only decoders, but they still use the PNG critical chunks such that when a APNG file

is opened on a PNG-only decoder it recognizes only the first frame and ignores the remaining

frames.

The basic format of chunks is shown in Figure 2.1. This format is universal across every

chunk and it consists of chunk type, chunk data and Cyclic Redundancy Check (CRC) [24].

The length parameter denotes the length of the data component of the chunk (Figure 2.1),

but is not actually a part of the chunk. This can be confusing as the length parameter

ignores the extra bytes used by the chunk type, and CRC. If a chunk of size 8 is encountered

by the decoder, it means that it carries 8 data bytes. However the true length of the chunk

is 16 data bytes. Extra zeros are added to the front of the length, chunk type and CRC in

case the value is too small, so that the size of 4 bytes is always maintained.

The chunk type parameter denotes the type of chunk and its purpose. Some chunks are

mainly used to transfer pixel values, whereas others are used for image attributes such as

the resolution. Chunk type is always denoted by four alphanumeric characters. The last part

of the PNG chunk is the CRC. This value is generated once the chunk type and chunk data

have been set. CRC is computed using the Adler-32 checksum [25]. The data used for the

computation of the checksum starts at the first letter of the chunk type and extends until

the last byte of the chunk data. A potential error in CRC computation is the inclusion of

the length parameter in front of the chunk. However, the PNG standard does not take the

length into CRC computation. Hence, this error should be avoided as the extra four bytes

9



representing the length could mark the chunk corrupt at the decoder side.

Length Chunk Type Chunk Data Cyclic Redundancy
Check

4 Bytes 4 Bytes Variable Bytes 4 Bytes

Figure 2.1: The universal format for every PNG and APNG chunk

At the very start of a PNG or APNG file, the 8 byte PNG signature is written. This universal

value is always 89 50 4E 47 0D 0A 1A 0A. When viewed in ASCII 50 4E 47 translates

to PNG for easy identification.

The following subsections discuss the various PNG and APNG chunks required by the en-

coder.

2.1.1 Chunks used by PNG

PNG image data is stored as chunks, such as Image Header (IHDR), Image Data (IDAT),

Frame Data(fDAT), Animation Controller(acTLl), Frame Controller(fcTL), Image Palette

(PLTE), Image Time (tIME), Image End (IEND), etc. Here we focus on IHDR, IDAT and

IEND for the PNG encoder as these are critical chunks. The other chunks are known as

ancillary chunks and are only required in specific situations. fDAT, acTL and fcTL are

used for the APNG encoder discussed in the next section. [26] provides more information on

encoders, and multiple encoder implementations in a variety of programming languages. The

SystemC model developed uses a different source code from LibPNG as it must be converted

to use small memory buffers and compatible with the new architecture which is being tested.

10



The Image Header Chunk (IHDR)

The IHDR is the chunk which contains important specifications about the image. It is

exactly 13 bytes long. To convey its length, the ’0D’ hex value is always present before

IHDR. Table 2.1 shows the specifications of IHDR chunk.

Table 2.1: Table for the PNG Header Chunk

Specification Number of Bytes
Chunk name (IHDR) 4 bytes

Width 4 bytes
Height 4 bytes

Bit depth 1 byte
Colour type 1 byte

Compression method 1 byte
Filter method 1 byte

Interlace method 1 byte
IHDR CRC 4 bytes

The bit depth (Table 2.1) is the number of bits per pixel color. Our SystemC encoder uses 8

bits per color, and hence 24 bits per pixel are used for RGB. Color type indicates the color

scheme. Truecolor is used in the SystemC model. Compression method is always 0, which

means that the data is compressed using DEFLATE. Filter method is also always 0, which

implies that the standard five filters are applied. Interlace is useful when it is required to

render some rows or columns before the others, but it isn’t required in the SystemC model

and hence interlacing is not used and it is set to 0. A CRC check is present at the end with

a length of 4 bytes.

The Image Data Chunk (IDAT)

The IDAT chunk contains the image data (Table 2.2). Similar to other chunks, before the

chunk type (IDAT) is specified, its length is specified as a hexadecimal value. The only

11



difference is that this value varies with parameters such as compression level, while it is fixed

for other chunks. It is possible to identify the size of the IDAT chunk only after the pixel

data is compressed using DEFLATE. The IDAT chunk contains the compressed data, held

within a zlib wrapper. PNG supports only zlib for now. The first two bytes of IDAT’s chunk

data are always 78, which specifies the zlib wrapper.

Table 2.2: Table for the PNG IDAT chunk

Specification Number of Bytes
Chunk name (IDAT) 4 bytes

Pixel data compressed using zlib Variable bytes
IDAT CRC 4 bytes

A property of the IDAT chunk is that it can be broken down into many smaller chunks.

These smaller IDAT chunks continue to use the same IDAT name, but carry different pixel

information. They also need to have their CRCs recomputed for every individual IDAT

chunk as a result. It is important to note that the multiple smaller IDAT chunks are still

part of a single zlib stream. To ensure correct decoding, they must be written in correct order

to the PNG file. This comes with the additional complexity of computing the zlib stream

and breaking the compressed data into smaller IDAT chunks. However, there is no known

advantage of splitting the IDAT chunk. Hence, the proposed APNG encoder uses only one

large IDAT chunk, and this leads to a simpler design. Further, small memory buffers are

used in the checkerboard model. Using small buffers adds a small increase in compression

size as DEFLATE now works as a sliding window, rather than compressing the entire input

data at once.

12



The Image End Chunk (IEND)

IEND is the final chunk in any PNG image. It always has the values- 49 45 4E 44 AE 42

60 82. The first four values translate to the numerical characters IEND when converted to

ASCII. The data field is empty. The last four values are the CRC values.

2.1.2 PNG Chunk Order

PNG chunks must follow the specific ordering of IHDR, IDAT followed by IEND. It is

essential that this ordering is followed as normal PNG does not support out of order chunks.

Figure 2.2 illustrates the chunk ordering of the SystemC PNG encoder.

IHDR Chunk Image Data Chunk IEND Chunk

13 Bytes Variable Bytes 0 Bytes

Figure 2.2: The PNG chunk order. The actual byte size of a chunk is the displayed value
and an additional 8 bytes for the chunk name and CRC.

2.1.3 Chunks used by APNG

APNG chunks are ancillary chunks only readable by APNG decoders [9]. PNG decoders are

able to recognize only the first frame as it is stored as an IDAT chunk, and they ignore the

other chunks.
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The Animation Controller Chunk (acTL)

The animation controller chunk is written immediately after the IHDR chunk to prepare the

decoder to allocate enough memory for the specified number of frames. Table 2.3 shows the

chunk specifications. APNG files can store a lot of frames (255 here), but it is ideal to keep

Table 2.3: Table for the APNG acTL chunk

Specification Number of Bytes
Chunk name (acTL) 4 bytes
Number of frames 4 bytes

Number of times to loop the frames 4 bytes
acTL CRC 4 bytes

the frame count low as the size of the file can grow fast if the individual PNG frames are

large. To infinitely loop frames a value of 0 is written to the four bytes before the CRC.

The Frame Control Chunk (fcTL)

The fcTL chunk provides information on the next frame to be rendered to the output buffer

(Table 2.4). One fcTL chunk is present for every frame in the APNG file. The fcTL chunk

starts with its sequence number in the APNG file. The meaning of this will be explained

in the next section. Width and height can be changed for every individual frame. The X

and Y offset denote the location of the first (top left) pixel to be rendered and subsequently

the image itself. These two parameters are useful when the currently rendered frame is of

a lower resolution than its predecessors. The delay numerator and denominator denote how

long the frame is rendered on the screen. If the target is 30 frames per second, the delay

numerator can be set to 1 and the denominator to 30. Frame disposal denotes what must

be done to a frame once it has finished rendering. A value of 0 means that the frame is

not disposed off and is left as is until it is overwritten, 1 means that the frame buffer is set
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to black before rendering the next frame, and a value of 2 means that the frame should be

disposed of completely. The final frame blending byte can take the value of either 0 or 1,

with 0 for no overwriting of pixel data of the next frame in the output buffer, and 1 for

blending of the R,G and B values between the current and next APNG frame.

Table 2.4: Table for the APNG fcTL chunk

Specification Number of Bytes
Chunk name (fcTL) 4 bytes
Sequence number 4 bytes

Width 4 bytes
Height 4 byte
X offset 4 byte
Y offset 4 byte

Delay numerator 2 byte
Delay denominator 2 byte
Frame disposal 1 byte
Frame blending 1 byte

fcTL CRC 4 bytes

The Frame Data Chunk (fdAT)

The fdAT chunk is very similar to the IDAT chunk, except they differ by 4 bytes, which is

the sequence number (Table 2.5). Every frame other than the very first frame must use the

fdAT chunk to store its pixel data. At the start of the fdAT chunk the sequence number is

specified. The sequence number is a very important parameter as it specifies the order in

which the fcTL and fdAT chunks must be read.

APNG decoders support out of order presence of fcTL and fdAT chunks so that if a fcTL

chunk comes with sequence number 8 at the end of the file, it will still be used before a fcTL

chunk with sequence number 12 at the start of the file. Due to this feature, fdAT chunks

can be broken down similarly to IDAT chunks and may appear out of order, as long as they

have a sequence number before their pixel data starts. To correctly order APNG chunks, the
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Table 2.5: Table for the APNG fdAT chunk

Specification Number of Bytes
Chunk name (fdAT) 4 bytes
Sequence Number 4 bytes

Pixel data compressed using zlib Variable bytes
fdAT CRC 4 bytes

very first fcTL chunk would have the sequence number of 0. The following chunk would be

the IDAT chunk which does not have a sequence number, but is automatically considered as

the very first frame. The next fcTL chunk would have a sequence number of 1, and its fdAT

chunk has a sequence number of 2 if it is not broken down into multiple chunks. The third

fcTL chunk would have a sequence number of 3 and its fdAT is 4. The nthth fcTL chunk

has a sequence number of n, and its fdAT chunks following it would have sequence numbers

of n+1, n+2, .. and so on. It is essential that every fcTL and fdAT chunk has a unique

sequence number associated with it.

2.1.4 APNG Chunk Order

IHDR Chunk Image Data Chunk IEND Chunk

13 Bytes Variable Bytes8 Bytes

acTL Chunk fcTL Chunk for
IDAT

fcTL Chunk for 
 fdAT 1 Frame Data Chunk 1

26 Bytes Variable Bytes26 Bytes

fcTL Chunk for 
 fdAT 2 Frame Data Chunk 2

Variable Bytes26 Bytes

... ...

0 Bytes

Figure 2.3: The APNG chunk order. The actual byte size of a chunk is the displayed value
and an additional 8 bytes for the chunk name and CRC. The ’...’ represents the fcTL and
fdAT chunks present for the remaining frames to be compressed in the APNG file.

In the case of APNG there is flexibility in the ordering of chunks. However, the default PNG

chunks, IHDR, IDAT, and IEND must still remain in order. Two additional requirements

are that the acTL chunk must follow the IHDR chunk and the IDAT chunk and its fcTL

chunk must come before every other fdAT chunk (Figure 2.3). The remaining fcTL and fdAT

chunks may come out of order. The SystemC model encodes the APNG file with ordered
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chunks, as small buffer sizes would not be suitable for holding the large amount of image

data processed by the encoder.

2.2 PNG Filtering Algorithms

The technical details of filtering are described now. Filtering is essential to improve the

compression level when the pixel data is compressed using the DEFLATE algorithm. The

filters operate on every row individually [27]. Filters are of five different types, namely None,

Sub, Up, Average and Paeth (Table 2.6).

Table 2.6: Table for PNG filter algorithms

Type Filter Name Filter Function Reconstruction Filter
0 None Filtered(x)=x Reconstructed(x)=Filtered(x)
1 Sub Filtered(x)=x-a Reconstructed(x)=Filtered(x)+Reconstructed(a)
2 Up Filtered(x)=x-b Reconstructed(x)=Filtered(x)+Reconstructed(b)

3 Avg Filtered(x)=x-floor((a+b)/2)
Reconstructed(x)=
Filtered(x)+floor(Reconstructed(a)+Reconstructed(b))/2

4 Paeth Filtered(x)=x-PaethPredictor(a,b,c)
Reconstructed(x)=
Filtered(x)+PaethPredictor(a,b,c)
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function Pr (a, b, c)
   begin
        p := a + b - c         
        pa := abs(p - a)      
        pb := abs(p - b) 
        pc := abs(p - c) 
        if pa <= pb AND pa <= pc then return a 
        else if pb <= pc then return b 
        else return c 
   end

p=a+b-c
pa=abs(p-a) 
pb=abs(p-b) 
pc=abs(p-c)

pa<=pb AND
pa<=pcPr=a

pb<=pcPr=b

Pr=c

c b

a x

Pixels

True

True

False

False

Paeth Predictor (Pr) algorithm

Figure 2.4: The steps to compute the Paeth Predictor (Pr), needed for the Paeth filter. The
x pixel on the bottom right is to be predicted by the Paeth Predictor. The Paeth Predictor
is then subtracted from the pixel value x.

The filters find similarities between adjacent pixels. This helps predict the next pixel and it

is a form of delta encoding, which provides a degree of compression. The most basic filter is

None, which performs no operation. The Sub filter correlates with the left pixel value, the

Up filter correlates with the previous row, the Avg filter correlates with both left and up

pixel values and the Paeth filter correlates with the left, up and diagonal pixel values. The

detailed algorithm for current pixel x is shown in Figure 2.4. The pixel on the left is denoted

by a, the top pixel by b and the diagonal pixel by c. The Sub filter subtracts the current

pixel value from the pixel on its left side (a), the Up filter subtracts the current pixel value

from the previous row’s pixel at the same index (b), and the Avg filter subtracts the current

pixel value from the floor value of (a+ b)/2.

The Paeth filter uses a function to calculate Paeth Predictor denoted by Pr to compute the
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Paeth filtered value. Figure 2.4 shows the method to compute the Paeth Predictor (Pr). Pr

is subtracted from the current pixel value to compute the Paeth filter output. The Paeth

filter is not as straightforward as the other filters. However experimental results show that

it is often better than other filters when there is a high degree of variance among pixels in

the current row. Up, Avg and Paeth filters require buffers to store the previous row in order

to compute their output. If the current pixel which needs to be filtered is in the first row or

column, then its neighbouring pixels a, b and c are assumed to be 0.

The five modeled filters operate in parallel. The filtered outputs are almost always stored as

8 bit characters (a byte), unless specified otherwise in ancillary chunks. If the filtered value is

negative, 256 is added to it. Once the filtered values are computed, only one filtered output

can be compressed by DEFLATE, as all of them represent the same row. The decision to

choose the optimal filtered output is dependent on the encoder and the choice is not clear

from the references. [27] recommends computing the absolute sum of the filtered row, and

selecting the row with the least sum. [28] suggests using the sub filter for the first row and

the Paeth filter for every other row.

While viewing the hexadecimal file of compressed PNG images, it was observed that images

which were generated by computer tools used the first method of filter selection. These

images used every filter available. However, images which were captured with a camera used

the second method. A possible explanation for this is that even though camera captured

images may have regions which seem to be of the same color (like an image of the sky), they

are actually pixels of different intensities and the Paeth filter works best for them.

Our SystemC version of the encoder uses the first method of filter selection, and this process

is done by a module called the Comparator.
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2.3 The DEFLATE algorithm

DEFLATE is an algorithm originally developed in 1996 by Phil Katz [29]. Using a com-

bination of LZSS [30] and Huffman Coding [31], it compresses data losslessly. It is widely

used, and a common example is the ZIP file format in computers. While many different

implementations of the DEFLATE algorithm exist (i.e. pkzip, zlib, gzip), it is important to

note that PNG uses only zlib [32]. The implementations have different headers, and zlib,

which starts with 78, is the only recognizable format by PNG decoders.

Brief descriptions are provided below for the two main coding algorithms used in DEFLATE.

To implement DEFLATE these details are not required, but they make it easier to understand

the DEFLATE function used in PNG.

2.3.1 LZSS Dictionary Coding

Dictionary coding is a lossless compression technique where matches are searched for in a

data set. The data set can be predefined or generated. LZSS creates a new dictionary entry

every time it encounters a new character or string. When the same string is repeated further

in the array, it is substituted with the distance from the starting point and the length of

the string [30]. For example, the string [I am Sam Sam I am], it is transformed to [I am

Sam (5,3) (0,4)]. The strings ’I am’ and ’Sam’ have not been encountered before, so they

are stored in the dictionary, but as they are repeated they can be directly substituted as

numbers which saves characters.

DEFLATE will always store dictionary strings as hash tables. DEFLATE also uses a sliding

window of 215=32768 characters. This means that it will retain up to 32768 possible hash

tables, and characters which are behind the current character by 32768 positions will be

discarded. This is done so that DEFLATE does not need to search the entire dictionary for
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each string, which significantly saves compression time. After this value is exceeded, new

Huffman codes are generated. This value can be changed to powers of 2, provided there is

enough buffer space, and larger sliding window sizes increase compression level.

2.3.2 Huffman Coding

Huffman coding is a lossless prefix coding technique, which tries to encode frequently re-

peated characters with the least number of bits [31]. Prefix coding ensures that there exists

no other code segment with the same initial segment as another code word. It employs

a greedy strategy and generates a near optimal code, which is unique. Huffman coding

generates binary characters only.

Here is a simple example to demonstrate Huffman coding. Consider an output from the LZSS

encoder as (5,3) with a 60% chance of appearing, (0,4) with 30% chance and (0,1) with a

10% chance. We would encode (5,3) as 0, (0,4) as 10 and (0,1) as 11. No two code segments

have the same prefix here. If an output stream is 0001110, the only possible decoded output

is (5,3), (5,3), (5,3), (0,1), (0,4). The code segments and their literal values are transmitted

along with the Huffman stream. DEFLATE has other technical details which can be found

on the official page [33].

2.3.3 The CRC computation algorithm

Cyclic Redundancy Check (CRC) is required for every chunk in the PNG stream [34]. PNG

universally uses only the Adler-32 checksum, as it is the default option in zlib. To compute

the checksum two individual 16 bit checksums are computed and their results are concate-

nated into a 32 bit integer.

A = (1 +D1 +D2 + ...+Dn) mod 65521
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B = ((1 +D1) + (1 +D1 +D2) + ...+ (1 +D1 +D2 + ...+Dn)) mod 65521

= (nD1 + (n− 1)D2 + (n− 2)D3 + ...+Dn + n) mod 65521

Adler − 32(D) = B × 65536 + A

Here A and B denote the two 16 bit partial checksums. D1, D2, ...Dn denote the decimal

version of the characters or the array in ASCII format. For example, the character ’C’ would

be 67 when used as an input to the Adler-32 checksum. The checksum values must then be

converted to hexadecimal. This results in an eight hexadecimal CRC value. The Adler-32

checksum will usually require the entire buffer of which the CRC needs to be computed.

However, a slight modification can allow it to be computed in a rolling manner which works

well with the SystemC version of small memory buffers.

2.4 APNG Modeling Details with Parallelism

Our initial model of the APNG encoder is modeled by creating separate modules for every

computationally intensive unit (Figure 2.5). The modules are the Color Splitter, the Subtract

filter, the Up filter, the Average filter, the Paeth filter, the Comparator, the Compressor and

the APNG Encoder. Three identical modules of the filters are instantiated for the three color

channels sent by the color splitter. In total twelve filters are instantiated. These modules are

rearranged when they are mapped onto the checkerboard model, while their functionality

remains the same.

Note that our modeling aims at operating most operations in parallel. This enables par-

allel execution on architectures with parallel computation units and thus results in shorter

execution time. In other words we are modeling a parallel implementation of an APNG

encoder.
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Figure 2.5: Our parallel APNG encoder as a TLM-2.0 model with memories between mod-
ules.

The APNG encoder communicates using two data types- Row and Interlaced Row (Table

2.7). The Row data type holds the red, green or blue color intensities of a row. The size

of its data parameter is approximately the width of the image. The Interlaced Row data

type holds a much larger data parameter which is three times the length of the image plus

one. Both these data types contain additional parameters. The Row data types also carries

the filter type signifying which filtering scheme is used on it. The Interlaced Row carries

the length of relevant compressed data in its data parameter. It also carries the CRC of the

IDAT and fdAT chunks.

Small memories are used to communicate between adjacent modules. Row and Interlaced Row

are the only two data types which are communicated using the SystemC TLM-2.0 b transport

function. They can be thought of as the packets used to transfer pixel data between mod-

ules. Only the portable pixel map (.ppm) used by Linux computers is readable by the APNG

23



encoder. Other formats can be converted to .ppm using ImageMagick or other image pro-

cessing software [35]. This limitation exists because reading multiple image formats would

require more complex decoders.

Table 2.7: Table for APNG data structures

Data Structure Approximate Size Important Parameters Used by Modules
Row Image Width Pixel Data, Filter Type Stimulus, Color Splitter, Compressor, APNG Encoder, Monitor

Interlaced Row 3*Image Width Pixel Data, length, IDAT & fdAT CRC Color Splitter, Filters, Comparator

2.4.1 Stimulus Module

The APNG model takes input from a stimulus module which reads the .ppm image using

basic C++ file I/O and sends it to the color splitter module using the Interlaced Row data

type via a memory. The .ppm image format contains the interlaced RGB data after a fixed

offset which is calculated using the height and width parameters set in the preprocessor

macros section. Each Interlaced Row holds exactly one row of the input .ppm image, which

is sent to the Color Splitter through a memory connected using sockets.

2.4.2 Color Splitter Module

The Color Splitter is the module which splits the interlaced RGB color stream that comes

from the stimulus module into the individual color components and sends them to the in-

dividual filters. It rearranges the interlaced pixel data sent by the Stimulus into individual

R, G, and B channels stored in the Row data type. The individual Rows carrying the R, G,

and B pixel data are then sent to the four filters and additionally sent as unfiltered values

to the Comparator module. The color splitter has fifteen output sockets of which twelve are

connected to the filters through the memory units. The remaining three red, green and blue

outputs are directly connected to the Comparator module.
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2.4.3 Filtering Modules

The five filters operate completely in parallel. Each filter performs the computation only

on a single row at any given time. Filtered values are computed using the mathematical

equations which describe them, by using multiple for-loops to calculate the value of each

individual filtered pixel. Filtering is performed on each row containing the pixel values. For

the Up, Avg and Paeth filters the computed result is stored in a row buffer for the next

row which will require the previous pixel values. Once these values are computed, the filter

makes a computation of the absolute sum of pixel values. This value is stored in the Row

data structure as the Row Sum value for the row of a specific color. The row is then sent to

the Comparator module through a memory.

2.4.4 Comparator Module

The Comparator receives the Row data types from all of the filters and the Color Splitter.

First it computes the Row Sum of the unfiltered R,G and B values. Next, it performs a

comparison operation, and using multiple ”if else statements” chooses the filtered row with

the smallest Row Sum to send to the Compressor. The selected row is then sent to the

Compressor, after setting a Filter Type parameter in the Row data type. The Filter Type

takes a value from 0 to 4. A value of 0 refers to Unfiltered, 1 to Subtract filter, 2 to Up filter,

3 to Average filter and lastly 4 to Paeth filter. This is performed individually for the three

colors. The rows are then sent to the Compressor using another small memory in between

the two modules to perform the transactions.
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2.4.5 Compressor Module

Using the three Rows from the Comparator, the Compressor creates an Interlaced Row which

contains the Filter Type at the start, followed by the pixels of the three rows, interlaced such

that the pixels appear as R,G,B triplets. This entire Interlaced Row is then compressed using

zlib library functions.

The procedure for compression works as follows. First a z stream data type is created.

This is the basic compression data type used by zlib which stores the Huffman characters.

Next, two arrays ’in’ and ’out’ are created. The ’in’ array takes the next array of values

to be compressed. The output buffer is ’out’ which contains the compressed values. It is

important to note that the output buffer may often have nothing in it, as the z stream data

type may wait to output the values at once. To check what length of the ’out’ buffer has

usable data, another variable ’have’ is initialized.

The compression work is performed using a call to the ’ret=deflate(strm, flush)’ function.

The ’flush’ parameter indicates whether all of the pending data stored in the z stream data

structure should be written to the output buffer when the deflate function is called. Ideally,

this value should be Z NO FLUSH except in the case of the very last row, where it should

be Z FINISH. Other options such as Z SYNC FLUSH exist, but these are not required in

the case of PNG. Using two ”do while loops”, the ’in’ buffer is continuously updated with

the next Interlaced Row coming from the Comparator module. The outer loop uses the

condition that while the ’flush’ parameter is not Z FINISH, compression is continued. The

inner loop checks whether the output buffer is full, in which case the data is simultaneously

written to the PNG file and also sent to the APNG encoder module to create the APNG

image. Compression stops when Z FINISH is set as the value for the ’flush parameter’, which

is determined, by using a counter, whether it is the last row. The amount of time that the

’out’ buffer has useful data in it is completely variable and changes between images. To
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ensure that the APNG encoder receives the correct number of output rows, a variable called

Last Row is initialized in the Interlaced Row data type. When the two ”while loops” finish,

the value of Last Row is set to 1, so that the APNG encoder knows that the entire data

has been received. This implementation of DEFLATE for APNG encoding in SystemC is a

highly modified version of the zpipe.c example by Mark Adler, an author of the zlib library

[36].

The IDAT CRC and fdAT CRC are computed while the two ”do while loops” are running.

Initially, the CRCs are set to 0. Every time new compressed data is created, the CRC is

updated using the data in the ’out’ buffer as well as the amount of valid data using ’have’.

The continuous update of the CRC is possible by creating a CRC table, computing and

storing newly encountered values in it. This avoids creating a large array to store the entire

IDAT/fdAT chunk (which invalidates the idea of small memory buffers) and then find the

CRC value. The fdAT CRC is sent to the APNG Encoder using a parameter ’fdAT CRC’.

CRC computation is performed using a modified version of the function which uses a large

buffer provided by the PNG developers [34].

When the Compressor thread starts, it first creates and sends the IHDR chunk to the PNG

thread of the monitor module. The IHDR chunk requires only the resolution of the image.

It then performs the above listed compression procedure to generate the IDAT chunk, which

is sent to the PNG thread of the monitor module. This process repeats over a variable

number of times, and the Compressor also sends the ’have’ variable to signify the length of

the compressed data generated by the deflate function. The IDAT chunk is sent through

the Interlaced Row data type. Lastly, the threads write out the IEND chunk when deflate

has finished producing output. These steps are repeated for every .ppm image such that for

every .ppm image a compressed PNG file is produced from the Compressor module.
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2.4.6 APNG Encoder Module

This module produces the APNG image chunks. It creates the various chunks required for

APNG such as the IHDR, acTL, and fcTL for IDAT at the start. These chunks require the

resolution of the image, number of frames, and frame rate which are set in the pre-processor

macros section of the source code. The chunks are passed to the APNG thread of the

monitor module which performs the writing of these chunks on the APNG file. Then, using

the compressed data from the Compressor module, APNG Encoder creates the IDAT chunk

for the very first frame it receives. From the next frame onward, fcTL and fdAT chunks are

created and sent to the APNG thread of the monitor module. When the Compressor module

has no more data to send, the APNG Encoder sends the final IEND chunk to the monitor

module.

2.4.7 Monitor Module

The final module ”Monitor Module” produces both PNG and the APNG images. It uses

two separate threads running in parallel called PNG thread and APNG thread. This is

performed so that both PNG images and the APNG image can be generated in parallel as

well as to avoid any accidental writing of an APNG chunk to the PNG file and vice versa.

The two threads first create appropriate names and then write the chunks to their respective

files as they are sent by the Compressor and APNG Encoder module.
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Chapter 3

Grid of Processing Cells (GPC)

Architecture

One instance of the Grid of Processing Cells (GPC) is the checkerboard architecture [7]

(Figure 1.4) with off-chip memories connected to the checkerboard. The off-chip memories

transfer data to the checkerboard for computation. They are also connected to the stimulus

and monitor modules which function as the I/O devices.
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3.1 Checkerboard Architecture
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Figure 3.1: Detailed 4×4 checkerboard model [8]. The stimulus and monitor can be moved
to different off-chip memory locations if necessary. Signals exist between every core and its
neighbour, as well as cores adjacent to the stimulus and monitor.

The proposed checkerboard architecture (Figure 3.1) is a new type of multiprocessor archi-

tecture which could be a suitable replacement for shared memory processors (SMP). The

idea behind the architecture came from Professor Dömer [7] and modeling was carried out by

the CECS group [8]. The checkerboard model is similar to a distributed memory computer

with individual cores with local memory which can be accessed also by their neighbours.

The main difference is that the memory size is small and the cores themselves only perform

computation comparable to that of a desktop CPU. The small memories are referred to as

on-chip memories, and are expected to be as fast as the cache in a multi-core computer.
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An interesting question is whether smaller distributed memories can be a viable alternative to

one large shared memory. The answer depends on a variety of factors, such as the application

itself and its ability to be re-coded to support an efficient multiprocessor implementation,

delays caused by the multiplexers namely the memory multiplexer and the core multiplexer,

the contention in memory access between a small memory and its four neighbours, etc. A

detailed presentation and analysis of timing results is presented in the next section.

The off-chip memories facilitate interaction of the checkerboard architecture with the outside

world, and they can be considered as the method of sending Input/Output (I/O) to it. For

our 4 × 4 checkerboard the size of each off-chip memory is up to 0x20000000 bytes. Since a

single off-chip memory contains multiple ports, a memory multiplexer is required to choose

the correct signal coming from one of the cores. The stimulus and the monitor are connected

to the other side of the off chip memory. Only these two modules perform I/O operations.

The checkerboard is restricted to performing only computations.

The interior part of the GPC contains the 4 × 4 checkerboard model (Figure 1.4). It has

sixteen individual cores and memory units, along with their respective multiplexers, the core

multiplexer and the memory multiplexer. The term cell is used to describe, the four modules

joined together (Figure 3.2). The checkerboard can be scaled to any number of even cells,

as long as the user can instantiate the required modules. No change of the source code

pertaining to the cells is required. This work has been described in greater detail in the M.S.

thesis by Yutong Wang [37]. It was found that the GPC is scalable to an even number of cells

such as 8 × 8 or 16 × 16 but odd numbers where excluded as they add further complexity

to the cell types.
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Figure 3.2: The interior components of a cell. Note that the number of sockets may vary on
the multiplexers and on the exterior of the cell.

Our checkerboard is modeled using SystemC TLM-2.0 which provides the complete features

of C++ and TLM-2.0. The model specifically uses TLM-2.0, rather than channels, because

it is memory accurate. Also, the multiplexers can have delays and hence timing can be

simulated.

3.2 The Cell Architecture

The description and modeling details of the core, memory, core multiplexer, and memory

multiplexer modules are provided in this section.

3.2.1 Core Module

The core module is the primary computation component of the cell. It contains a single

socket through which it is connected to the core multiplexer. It is a C++ class containing
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frequently used communication and general arithmetic functions. The primary communica-

tion functions are the SystemC blocking transport (b transport), which is used by TLM-2.0,

and synchronization functions to prevent possible race conditions when interacting with other

cores. The most vital component of the core responsible for efficient communication to other

cores is the SystemC event (sc event) object which is a member of the SystemC core library.

Each core has its own signal which is passed by reference to adjacent cores. A total of four

events are available for use by the core. Whenever communication is necessary it calls by

reference the neighbouring core’s signal and transfers data safely without the possibility of

any race conditions arising.

The communication scheme (Figure 3.3) uses counters instantiated in the common memory

shared between the cores. When a core reads or writes, it signals the other core to wait until

it completes its operation, and modifies the received/sent counter variable in the memory. It

then proceeds to use a b transport call to receive or send the data, and sets the sent/received

counter that it has finished receiving/writing the data. A few other functions are also

implemented. When instantiating specific cells present in the checkerboard the core class

and its functionality are inherited. Instantiated cells are then provided additional cell specific

functions. Each core contains a main thread which is used to perform the actual computation,

and from where the communication functions can be called.
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Figure 3.3: Signal based communication between adjacent cells.

3.2.2 Core Modeling Details

The core module uses a single socket named CoreBus which is directly bound to the core

multiplexer. The core has six variables which are passed to it as references, namely the four

signals which are used to communicate to other cores and another two integer variables x

and y which identify its position on the checkerboard. Among the communication functions,

the primary function is memAccess() (Input parameters are not listed here unless it is sim-

ple). The memAccess() function serves as a wrapper to the real communication function

b transport. Before performing a b transport call, several different variables must be set.

These include whether to read or write the data, the location of where to store or send the

data, where it must be read from or placed in memory, the size of the processed data and

whether direct memory interface should be turned on or not. The memAccess() takes all

of these parameters and conveniently combines them into a single function. Synchronized

communication between cores is performed mainly through the two functions PushRow()

and PopRow(). The use of these two functions is made possible through the presence of

counters in the memory. Only the communication of the Row and Interlaced Row data type
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is used throughout the SystemC model, and hence the functions are named as such. Two

counters are used in the memory, the receive counter and sent counter. The receive counter

is incremented when there is a free spot to write and the b transport is performed. The

working mechanism is similar to the bounded buffer problem.

PushRow() first checks the value of the received counter and then proceeds to send data, if

there is a free spot in the buffer or waits in a while loop if there is no space. Whenever there

is a change in the received counter value, it checks the loop condition again and it proceeds

to either write or wait depending on the space available.

PopRow() functions similar to PushRow(), except it reads the data and checks the sent

counter instead. Each of the counter increments are always followed by an sc event statement

to immediately notify the adjacent core the change in counter values. The sc events are

passed by references so that both cores share the event. When the checkerboard model is

initialized all the counters between cores must be set to 0. For this, the checkerboard uses

the SystemC core library command to wait one second, which is wait(SC ZERO TIME).

This way every counter starts at 0 to prevent the possibility of any core writing or reading

ahead of the others.

A few other functions are also present in the core module, such as LoadRow() and StoreRow().

These are mainly wrapper functions for receiving and sending of the Row data type. The

last function Convert To Byte Format() converts unsigned long numbers (such as the CRC)

used by various modules of the APNG encoder into the correct byte format which is written

onto the APNG file.
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3.2.3 Memory Module

Each core has its own memory to store its data. The size of this memory is up to 0x08000000

bytes. Each memory has only one port, to keep the architecture as real as possible to modern

computers. The address space of each local memory module starts at 0x00000000. The

memory can only have its contents modified by the four neighbouring cores, and it uses

TLM-2.0 communication protocol.

3.2.4 Memory Modeling Details

The memory used throughout the SystemC model is known as the ’Memory1p’ which stands

for a one socket memory. Memory in actual hardware has only one socket and is connected

to the bus or multiplexer so that the SystemC model resembles a real computer scenario.

The constructor of the one socket memory accepts the size of the memory required so it can

be chosen when instantiated both in the cell for the small local memory (on-chip memory)

and in the top module for the off-chip memory. The on-chip memories in the cell have a size

of up to 0x08000000 and the off-chip memories are of size up to 0x20000000. These values

can be changed in the pre-processor macros section in case a smaller memory size is required.

3.2.5 Core Multiplexer Module

In order to communicate with the neighbours of each core, a core multiplexer is needed to

translate addresses. The core multiplexer contains one socket to communicate to the core and

four sockets to connect to the adjacent memory multiplexers. The issue of address translation

arises from the default memory sizes. Since each address has a space from 0x00000000 to

0x08000000, the core would specifically need to choose which memory it wants to either read

or write to. However, it would be a better choice if the core just chooses an address to write
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to and the core multiplexer then chooses the correct memory to write to. This would also

be the more realistic solution as modern operating systems use page tables similar to the

core multiplexer to translate the addresses from logical to physical. The core multiplexer

forwards b transport calls after performing the address translation. The global address space

used by the checkerboard architecture refers to the four off chip memories on the outside

and the local address space refers to the small memories near the cores.

3.2.6 Core Multiplexer Modeling Details

The core multiplexer is the module responsible for the conversion of the logical addresses seen

by the core module into the physical address used by the memories. The core multiplexer

(referred to as CoreMux in the source code) is connected to its own core and memory multi-

plexer directly. Connection to the three neighbouring memory multiplexers is accomplished

through hierarchical binding of sockets on the exterior of the cell.

Our checkerboard architecture uses 32-bit addresses (Figure 3.4). The address calculation

works as follows. The most significant bit (MSB) denotes whether the address is global or

local. Global addresses always have 1 on their MSB and local addresses always have 0. Once

an address has been determined as local, bit 30 and bit 29 are checked to find the row of the

cell. Bits 28 and 27 are then used to determine the column address of the cell.
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Figure 3.4: The address calculation method. This address translates to 0x38000000 which
implies a local communication to Core 13

Table 3.1 provides the details on which off-chip memory is accessed.

Table 3.1: Table for global addresses

Hex Address Bit 30 Bit 29 Accessed off chip memory
0x80000000 0 0 Off chip memory 0
0xA0000000 0 1 Off chip memory 1
0xC0000000 1 0 Off chip memory 2
0xE0000000 1 1 Off chip memory 3

If the memory is local, which is the case when the MSB is set to 0 the following methodology

is used (Table 3.2). The bits 30 and 29 are used to find the column of the core to which

communication must be established. The cells on the even and odd rows differ in the position

of the memory multiplexers. ”if and else” statements are used to determine whether the row is

even or odd, using the column address. If the column address matches the core multiplexer’s

column (which is passed by reference at the elaboration phase), it is confirmed that the

targeted memory is either itself or on the opposite side. In this case, bits 28 and 27 are used

to check which row the core is trying to communicate to. An if statement is used to check if

the core is trying to write to its own memory or not. Depending on this a decision is made

on whether the b transport is forwarded to its own memory or to the opposite one. If the

column address differs, then it is checked to determine whether the core wants to write to
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the top or bottom memory. In this case it is not required to check bits 28 and 27.

Table 3.2: Table for local addresses

Hex Address Bit 30 Bit 29 Bit 28 Bit 27 Accessed Core
0x00000000 0 0 0 0 Core 00
0x08000000 0 0 0 1 Core 01
0x10000000 0 0 1 0 Core 02
0x18000000 0 0 1 1 Core 03
0x20000000 0 1 0 0 Core 10
0x28000000 0 1 0 1 Core 11
0x30000000 0 1 1 0 Core 12
0x38000000 0 1 1 1 Core 13
0x40000000 1 0 0 0 Core 20
0x48000000 1 0 0 1 Core 21
0x50000000 1 0 1 0 Core 22
0x58000000 1 0 1 1 Core 23
0x60000000 1 1 0 0 Core 30
0x68000000 1 1 0 1 Core 31
0x70000000 1 1 1 0 Core 32
0x78000000 1 1 1 1 Core 33

3.2.7 Memory Multiplexer Module

The memory multiplexer module is connected to the small memory unit and to its adjacent

core multiplexers. Its only purpose is to forward b transport calls from adjacent core mul-

tiplexers to its memory module. It has a varying number of sockets which are dynamically

generated depending on its location on the checkerboard.

The cell is a single module which contains the above listed modules and a varying number of

sockets depending on its position on the checkerboard. The sockets are pass through sockets

which the multiplexers use to connect to the multiplexers of other cells. The cell is the base

class from which every instantiated cell inherits. It is responsible for providing the position

of the four components inside it and their connections to other cells.
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3.2.8 Memory Multiplexer and Cell Modeling Details

The modeling of the memory and the cell is the most challenging aspect of the entire ar-

chitecture. The challenge arises from the sockets on the edges of cells and their hierarchical

binding. In SystemC, sockets cannot be left unbound. Otherwise an elaboration error occurs,

as each socket must be bound to a memory. Ideally only a single core module and memory

multiplexer module should exist but as the detailed architecture (Figure 3.1) shows, this is

not possible since extra sockets are present on the left and right side as well as on the sides.

Another complication is that there can be two types of cells depending on whether the cell

is present on an odd or even row. If it is even, the memory and its multiplexer is on the

right side with the core and its multiplexer on the left. If it is odd, the entire cell is flipped.

Because of this reason, eight different cell types are possible in the 4 × 4 checkerboard as well

as memory multiplexers. Figure 3.5 shows an example of top left cell on the checkerboard.

The initial solution to this is to use the SystemC multi-pass through sockets, which supports

unbound sockets. This solution seems to work and the program compiled with no errors or

warnings. It is found that a memory could be accessed by only its own core, however other

cores were not able to do so. This issue is due to the hierarchical binding of the memory

multiplexer’s multi pass through sockets to the other core multiplexer of adjacent cores.
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Cell Type A

MemoryCore

Memory 
 Mux

Core 
 Mux

Figure 3.5: The interior components of a cell. Note that the number of ports may vary on
the multiplexers and on exterior of the cell.

Two solutions are implemented. First is the creation of eight different cells and memory

multiplexers and the second is to connect unbound sockets to fake initiator sockets in the

off-chip memory. Both solutions do not use the multi-pass through socket and instead use

regular SystemC TLM-2.0 target and initiator sockets. While the second solution works

well, it is not used because of the potential problems that may arise in the future due to

the connection which is extra and unnecessary, and hence the first solution is chosen. The

code to create eight different versions of the same cells (first solution) is highly repetitive. It

works efficiently but it could be improved through the use of some C++ features.

The options of shortening the code are the use of pre-processor macros, dynamic creation

of class objects (the sockets on the cell and the memory multiplexer), inheritance, and

templates. Among these options the best solution is the dynamic creation of sockets. Note

that the same procedure is used for both the cell and memory multiplexer, because the

sockets on the cell simply act as pass through sockets for the real sockets created by the
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Cell Type A

(a)

Cell Type B

(b)

Cell Type E

(c)

Cell Type F
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Cell Type C

(e)

Cell Type D

(f)

Cell Type G

(g)

Cell Type H

(h)

...

Figure 3.6: The eight different possible cell types, derived from the cell multi type module.

memory multiplexer module. The eight different cells generated are derived from the module

Cell Multi Type. They are named alphabetically as cell type A,B,C,D,E,F,G and H. Figure

3.6 shows the complete set of different cell possibilities. Cell types A, B, E, F are colored

green in the figure as their core is on the left side of the cell, whereas cell types C, D, G, and

H are colored red to show that the core is on the right side.

The dynamic cell type creation is as follows (Figure 3.6). First the module starts with

pointers initialized to the four possible sockets that could exist. Then in the constructor

of the module if-else statements are used to check where the cell is on the checkerboard

architecture. Depending on the location, sockets are created using the C++ operator ’new’.

The ’x’ and ’y’ parameters passed as references are useful here. Eight if conditions are used

to find out and create the new sockets required by the cell. First the ’y’ value is checked to

determine if it is on an odd or even row. If it is even, then the ’left’ and ’down’ sockets are

created. If the ’y’ value is not 0, then the ’top’ socket is created. This is because cells on

the top edge do not have top sockets for the memory multiplexers.
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Next the ’x’ value is checked to determine if it is the last cell on the row. If it is then it has

only two sockets, and no new sockets are created. Cell type B is created in this method if a

top socket was not generated, else it is a cell type F. If it is not the last cell on the row, an

extra ’right’ socket is created and cell type A is the result if the top socket was not created,

otherwise the output is cell type E.

A similar procedure is applied to cells on odd rows. First the ’top’ and ’right’ sockets are

created. If the ’y’ value represents the last row on the checkerboard, then the ’down’ socket

is not created, otherwise it is initialized using ’new’. Finally the ’x’ value is checked to see if

it is the first cell in the current row. If it is then the ’left’ socket is not required. Cell type G

is the final cell type if the down socket was not created, otherwise the result is cell type C. If

’x’ is not 0 then the final ’left’ socket is generated. This creates cell type D if all sockets were

created else the final cell is cell type H. Table 3.3 shows the cell and memory multiplexer

socket generation process. To avoid any future problems the pointers of uninitialized sockets

are set to ’NULL’ . This effective solution reduces the number of lines drastically and also

Table 3.3: Table for cell types

Even or Odd Row x value y value Ports created Cell/Multiplexer Type
Even Last Column 0 Left, Down B
Even Last Column Not 0 Left, Down , Up F
Even Not Last Column 0 Left, Down, Right A
Even Not Last Column Not 0 Left, Down, Right, Up B
Odd 0 Not Last Row Up, Right G
Odd 0 Last Row Up, Right, Down H
Odd Not 0 Last Row Up, Right, Left C
Odd Not 0 Not Last Row Up, Right, Left, Down D

enables communication between the cores. The SystemC model is now also scalable to any

even number of cells with this method, as any future cells will be one of these eight types

(Figure 3.6). Detailed discussion of this is present in [37].
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3.3 Off-chip Memory Modeling Details

The dynamic creation of sockets turns out to be better than expected and a similar procedure

is adopted for the off-chip memories. This modeling also uses templates so that any number

of cells can connect to the off chip memories. The off-chip memory is created as a template

class which takes the number of sockets as a parameter. Then an array of socket pointers

is initialized. In the constructor these sockets are dynamically created using ’new’. The

off-chip memory’s constructor also takes an additional input parameter which is the memory

size. Now the memory multiplexer sockets can be bound in the top module by referencing

its sockets as array members. The memory size can be changed at initialization time of the

off-chip memory to a different size.
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Chapter 4

Mapping APNG on Checkerboard

For experimental evaluation, it is necessary to map the APNG encoder application on the

checkerboard architecture. The mapping on the checkerboard results in change of com-

munication between modules. Since some modules can no longer be connected to a large

number of other modules, the data which needs to go to a specific module must be forwarded

through neighbouring modules. This is the case for the color splitter and the various filters

surrounding it. Forwarding increases the communication cost for each cell. To reduce the

cost incurred by forwarding, it is better to send data which can also used by an adjacent

cell. For example, sending the three R, G, and B color values to the Up filter through the

Subtract filter would be a good choice as the unfiltered values are used by both filters. In

most of the cases, each APNG module becomes the main function of a checkerboard cell.

4.1 Checkerboard Mappings

Two checkerboard mappings have been implemented, a simpler initial mapping in which

cores perform individual filtering on the three colors on the same core, and an improved
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mapping which splits the colors between cores to filters. In the initial mapping nine cores

are involved in encoding with three cores forwarding data. The improved mapping has every

core utilized in APNG encoding.

4.1.1 Initial Checkerboard Mapping

Stimulus

Monitor

Sub Filter M00 Color Splitter M01 Avg Filter M02 M03

M20 APNG Encoder M21 Compressor M22 Forwarding M23

M10 Up Filter M11 Paeth Filter M12 Comparator M13 Forwarding

M30 M31 Forwarding M32 M33

Off-chip Memory 0

Off-chip Memory 3

O
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ip

 M
em

or
y 
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em
ory 2 

Checkerboard

Device under test (DUT)

Figure 4.1: An initial mapping that was successfully implemented on the checkerboard.

The main idea behind the initial mapping is to avoid the use of excessive forwarding (Figure

4.1). For instance, the subtract filter receives the red, green, and blue values from the

color splitter. Next, it performs the computation and sends both the filtered values and the

unfiltered values to the Up filter. The Up filter performs its own computation and sends the

filtered Sub, Up and unfiltered values to the Paeth filter. The Paeth filter then computes the

Paeth filtered output, and sends it to the Comparator while also forwarding both outputs

from the Up filter and Sub filter. The same process is performed in the Average filter route.

At the Comparator the least sum filtered row is chosen and sent to the Compressor. The
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compressed output is forwarded through neighboring cells to the right and written to the

output file using the monitor. It is also sent to the APNG Encoder module which creates

chunks necessary for APNG encoding and forwards it to the second monitor thread.

4.1.2 Improved Checkerboard Mapping

While the initial mapping works, it could be further improved by splitting the filtering work

of each core to three cores with each core filtering a different color component. This is

because some filters, such as the Paeth filter take too much time to compute. Since there

are sixteen cores available, it is possible to map every core to one module.

Stimulus

Monitor

Sub Filter R M00 Color Splitter M01 Sub Filter G M02 Sub Filter B M03

Avg Filter R M20 Paeth Filter G M21 Paeth Filter B M22 Avg Filter B M23

M10 Up Filter R M11 Avg Filter G M12 Up Filter G M13 Up Filter B

M30 Paeth Filter R M31 Comparator M32 Compressor M33 APNG Encoder
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Device under test (DUT)

Figure 4.2: The improved mapping which splits computation more evenly.

This mapping should technically be faster as the filter computation is now approximately

three times faster. As the checkerboard model is pipelined, the cycle time becomes the

computational delay of the module which takes the longest time. This concept is presented

in the chapter based on pipelining in [20]. The exact computational delay of each module is
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presented in the experimental results section.

4.2 Models for comparison

To provide further comparisons, a single core model and two shared memory processor models

are created in SystemC. These models use a single large global memory with a templated

memory multiplexer connecting the cores to the memory. The memory is of the same speed

as the off-chip memory in the checkerboard model. The single core model performs every

one of the computations in only one core and is therefore not pipelined. The shared memory

models work very similar to the checkerboard architecture, using the same communication

functions to transfer pixel data between cores, but have a greater amount of contention.
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Figure 4.3: Single core model with no pipelining. Some contention is present due to sharing
the multiplexer with the stimulus and monitor modules.
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Figure 4.4: Shared memory processor with 8 cores. The filters for the R,G and B pixels are
combined in this case.

The SMP with 8 cores performs the filtering operation on the different color channels in

the same core. The computation time per core is increased, which subsequently reduces

communication per unit time. Doubling the number of cores provides a 16 core model in

which the cores perform less work but communication is increased per unit time leading to

higher chances of contention. This model is similar to the better checkerboard mapping and

the 8 core SMP matching the initial checkerboard mapping.
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Figure 4.5: Shared memory processor with 16 cores, with the computation work split
between multiple cores.
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Chapter 5

Experimental Results

With a total of five different models for APNG encoding implemented in SystemC, it is

possible to compare execution times and benchmark the performance of the modeled archi-

tectures.

5.1 Modeling of Delays

To measure experimental results, it is desirable to reflect timing in the models. There

are three types of timing in the model - (1) memory access delays, (2) delays caused due

to contention between cores, and (3) computation delays. The computation time of each

module is estimated by running the gprof tool on Linux. Timing is first computed by

running the encoder a few times and then averaged to get an approximate computation time

per pixel. The number of pixels also changes for different resolution images which is why

this calculation is done. These values are measured on an i5-1135G7 at 2.40 Ghz CPU with

8 cores. SystemC is single threaded, so only 1 core is actually used during the execution of

the program [38]. These values are dependent on the processor clock rate, if the processor is
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faster or slower then the values are scaled linearly. The observed timing for computational

delays is shown in Table 5.1. These delays are measured by running the APNG encoder

model in Figure 2.5 on 30 images of the UCI Engineering Hall with a resolution of 2704 ×

1502 for five times. A sample APNG frame is shown in figure 5.1. The time of each module

is averaged and rounded. This value is divided by 30 (number of frames) to get the time

each module spends per frame. Time per frame is further divided by 3 (as there are R,G and

B color channels) and image resolution to obtain the per pixel delay. These values change

every time the encoder is run on the same set of images, and even more so when they are

run on different images. Therefore they are rounded and are only approximations of the

computation delays. A detail to be noted in this table is that the filtering operations are

the most time consuming in the whole encoder. Therefore it is more important to make the

filters operate in parallel compared to the other modules, which was the reason for creating

the improved mapping.

Table 5.1: Table for computation delays measured at 2.4 Ghz on 30 images of 2704 × 1502
resolution of the UCI Engineering Hall

Module Name Total time for encoder Time per frame Time per pixel
Color Splitter 4s 0.133s 11ns
Subtract Filter 30s 1.000s 82ns

Up Filter 33s 1.100s 88ns
Average Filter 50s 1.667s 137ns
Paeth Filter 102s 3.400s 274ns
Comparator 8s 0.267s 21ns
Compressor 14s 0.467s 38ns

APNG Encoder 1s 0.033s 3ns

Next the communication delays must be considered (Table 5.2). For this purpose the memory

access times have been referred from [20]. The off-chip memory is assumed to be made of

slower DRAM, and the on-chip memory is assumed to be made of high speed SRAM. [20]

does not have much information about multiplexer delays, so a realistic 4x1 multiplexer has

been considered such as the AD8170/AD8174, which has an approximate fast switching time
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of 10 ns [39].

Table 5.2: Table for communication delays

Delay Name Time in Nanoseconds
Off-chip Memory Read Time 50
Off-chip Memory Write Time 50
On-chip Memory Read Time 2.5
On-chip Memory Write Time 2.5
Multiplexer Switching Time 10

Another important metric is the contention time, which is how much time each core spends

waiting for access to the memory. Memory accesses have been modeled so that only a single

core can access a memory at any time when contention is turned on [40]. This value is based

on the communication delays that have been computed, as they control how long it takes

for a core to access the main memory. Contention does not have any specific delay value

associated with it defined by the user.

Figure 5.1: A sample image (Rainer Dömer, EECS 222 course material) compressed by the
APNG encoder. The APNG encoder compresses data without any loss.
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Note that the absolute delay times do not really matter here. We are interested only in the

relative timing of the models when compared against each other.

5.2 Measurement of Delays

To measure delays we create three global variables of the type sc time called Computation Time,

Read Time, Write Time and Contention Time. These variables provide an accurate value of

how the time in each SystemC model was spent, and are present in every model. Using them

it is possible to also come up with formulas to compute the total execution time in some

cases. The Computation Time is the summation of time spent by every core on the values

listed in Table 5.1, and is meant to represent how much time a real computer would have

spent in compressing the data provided to it. Read Time and Write Time are other impor-

tant variables which keep track of the total time spent by the model accessing the memory.

Added together they are called as the Communication Time or the RW Time. The Checker-

board model does this in a more detailed way explained below. Lastly the Contention Time

is the total time spent by every core waiting to access the memory. This time can easily

exceed the execution time of the model if there are a lot of cores attempting to access the

memory at the same time, as each core will be waiting to access the memory and all of these

times add up to get the Contention Time.

For the Checkerboard models these variables have also been instantiated for each and every

core as well as for the off-chip multiplexers. This information is useful as it provides a way

to find which core takes the longest to complete its task of computation and communication,

and the longest stage of the pipeline can be identified. Another reason for this is that it

gives an idea of how contended each individual memory is, and whether the modeling of the

checkerboard is successful in addressing the important underlying issue of memory contention

leading to the memory bottleneck.
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5.3 Simulated Timing Results

With the three types of possible back-annotated, it is possible to obtain results on the five

SystemC models as well as derive formulas predicting the total execution time in some of the

models. There is a one second reset delay in every model, this is mainly provided to model

the effect that when a computer is turned on the memory values have random values and

need to be initialized to zero. Table 5.3 shows the variation in model timings as the clock

rate is gradually increased, thereby decreasing computation time per module and increasing

the frequency of memory access requests. The test images are 2704×1502 PPM images of

the UCI Engineering Hall with 10 frames which are compressed and added to the APNG

file. The five SystemC models shown are the single core, 8 core shared memory, 16 core

shared memory, initial checkerboard mapping, and the improved checkerboard mapping.

These models are compared with each other at different processor clock rates to observe the

decrease in execution time as the computation speed of the processor increases. The clock

rates that have been chosen start at 0.25 Ghz and are doubled until it reaches 8 Ghz. These

values are reasonable assumptions as these have been the approximate CPU clock rates for

the past two decades. The Pentium-II processor had an approximate clock rate of 266 Mhz

[41] in the year 1997. Modern CPUs today have a clock rate of 4-5 Ghz and 8 Ghz may be

reachable soon.

An important assumption made in the case of the five models is that no cache memory exists.

The reasoning for this assumption is that we want to observe memory contention directly,

undisturbed by caching behaviour. Also, the implementation of a cache is quite complicated

and will be added later in a future work involving replacement of cores with a real virtual

core which uses an instruction set simulator.

Table 5.3 shows the comparison of the three types of delays and the overall execution time.

The table shows the simulated variation in execution time over the years as processor speed
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rises, and how the delay values are affected. Time spent in computation linearly reduces,

but the contention time goes up in every model, to varying degrees. Time spent in accessing

memory remains nearly constant, which matches the real world case in which memory access

speeds are not as greatly improved as processor speeds. The increase in contention time is

the reason why execution time start to show less improvement (Table 5.3). Computation

time varies slightly for the single core model as part of the source code involved with timing

was changed more compared to the other models.

Table 5.4 shows the execution time and other delays when either the computation or con-

tention delay is turned off. This is useful in observing what the hypothetical increase in

performance would be if only communication delays existed. The results in this table also

provide a way of finding out if any co-relation exists between the three delays and whether

the execution time can be estimated from them.
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Table 5.3: Table for simulated timing results

Model Name Execution Time Computation Time RW Time Contention Time
Clock rate of 0.25 Ghz

Single Core 746.693s 705.599s 46.195s 33.972s
SMP with 8 Cores 350.038s 707.231s 185.237s 378.815s
SMP with 16 Cores 265.042s 707.231s 185.220s 471.747s
Initial Checkerboard 324.495s 707.231s 57.528s 4.564s

Improved Checkerboard 115.103s 707.231s 58.030s 2.648s
Clock rate of 0.5 Ghz

Single Core 393.895s 352.799s 46.195s 33.972s
SMP with 8 Cores 207.695s 353.615s 185.236s 392.710s
SMP with 16 Cores 208.789s 353.615s 185.221s 529.793s
Initial Checkerboard 164.488s 353.615s 57.528s 4.564s

Improved Checkerboard 59.593s 353.615s 58.030s 2.480s
Clock rate of 1 Ghz

Single Core 217.495s 176.400s 46.195s 33.973s
SMP with 8 Cores 186.233s 176.808s 185.231s 428.378s
SMP with 16 Cores 190.746s 176.808s 185.219s 587.320s
Initial Checkerboard 84.484s 176.808s 57.529s 4.681s

Improved Checkerboard 32.269s 176.808s 58.030s 2.750s
Clock rate of 2 Ghz

Single Core 129.295s 88.200s 46.195s 33.973s
SMP with 8 Cores 186.233s 88.404s 185.231s 457.149s
SMP with 16 Cores 187.222s 88.404s 185.219s 595.828s
Initial Checkerboard 44.482s 88.404s 57.529s 6.013s

Improved Checkerboard 21.020s 88.404s 58.030s 4.096s
Clock rate of 4 Ghz

Single Core 85.196s 44.100s 46.195s 33.973s
SMP with 8 Cores 186.233s 44.202s 185.231s 455.554s
SMP with 16 Cores 186.720s 44.202s 185.218s 619.839s
Initial Checkerboard 24.482 44.202 57.529 8.362s

Improved Checkerboard 19.002 44.202 58.031 6.837s
Clock rate of 8 Ghz

Single Core 63.146s 22.050s 46.195s 33.973s
SMP with 8 Cores 186.232s 22.101s 185.231s 434.962s
SMP with 16 Cores 186.470s 22.101s 185.218s 644.136s
Initial Checkerboard 18.005s 22.101s 57.530s 16.140s

Improved Checkerboard 19.002s 22.101s 58.031s 7.308s

Using the results in Table 5.4 it is possible to make some empirical estimates on the execution

times. For example, in the single core model the execution time when both computation

and contention delays are switched off is approximately half of the communication time (RW

time). This is because the communication from Stimulus to the Core and Core to the Mon-

itor can happen at the same time (Figure 4.3), which results in only half the time spent for
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Table 5.4: Table for the increase in timing due to added contention and computation delays
at 4 Ghz

Timings included Execution Time Computation Time RW Time Contention Time
Single Core at 4 Ghz

None 24.115s 0s 46.195s 0s
Only contention 47.195s 0s 46.195s 46.167s
Only computation 68.215s 44.100s 46.195s 0s

Both 85.196s 44.100s 46.195s 33.973s
Shared Memory Processor with 8 cores at 4 Ghz

None 64.081s 0s 185.231s 0s
Only contention 186.232s 0s 185.231s 296.704s
Only computation 64.582s 44.202s 185.231s 0s

Both 186.233s 44.202s 185.231s 455.554s
Shared Memory Processor with 16 cores at 4 Ghz

None 51.165s 0s 185.217s 0s
Only contention 186.219s 0s 185.217s 483.542s
Only computation 57.538s 44.202s 185.219s 0s

Both 186.720s 44.202s 185.218s 619.839s
Checkerboard Initial Mapping at 4 Ghz

None 17.999s 0s 57.530s 0s
Only contention 18.002s 0s 57.530s 16.560s
Only computation 24.466s 44.202s 57.529s 0s

Both 24.482s 44.202s 57.529s 8.362s
Checkerboard Improved Mapping at 4 Ghz

None 18.998s 0s 58.031s 0s
Only contention 19.001s 0s 58.031s 7.979s
Only computation 18.999s 44.202s 58.031s 0s

Both 19.002s 44.202s 58.031s 6.837s

communication. When contention is turned on, it becomes the communication time with an

additional one second caused due to the reset delay. This is also observed in the case of the

SMP models. Again in the single core case, when contention is turned off but computation

is turned on, it is observable that the execution time becomes the summation of the com-

putation time and half of the communication time. When all three delays are present the

execution time for the single core model becomes-

Execution time = Computation time+ (Communication time+ Contention time)/2 + 1

This formula does not give the exact execution time because it does not consider the mul-

tiplexer switching time or the presence of overhead in the encoder. However the predicted

execution time is still quite accurate. This empirical formula is possible because of the single
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core model is simple and has no parallelism or pipelining.

5.4 Observations and Comparison

Figure 5.2: APNG Encoder execution time scaling with increase in clock rate for the five
SystemC models.

Plotting the values from Table 5.3 provides insight on the change in execution time as the

clock rate is doubled (Figure 5.2). For the single core model it is seen that the decrease in

computation speed leads to great increase in speed up, until a certain point where diminishing

returns are observed. This becomes noticeable at around 4 Ghz. The plot for the single

core resembles a multiplicative inverse. The shared memory processors start off with low

execution time, but they start to stagnate at around 1 Ghz. The lack of cache severely limits

the performance of the SMP models (which we intentionally omitted as mentioned above).

The initial checkerboard model starts with an execution time similar to the 8 core SMP model

but quickly decreases in execution time as the clock rate is increased. In fact it performs

slightly better than the improved checkerboard at 8 Ghz. The improved checkerboard is

the fastest model at low clock rates, but at higher clock rates it becomes only about as fast
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as the initial checkerboard. To understand this better it is necessary to know the factor

affecting execution time on the checkerboard. This important component which determines

the checkerboard model’s execution time is the longest stage in the pipeline. Using the per-

core timings it is possible to make an estimate on total execution time of the checkerboard

models. At 1 Ghz, the computation time of core 11 in the initial mapping is about 79

seconds, this high computation time is caused by the Paeth filter. The total execution time

of the model is 84 seconds. Therefore core 11 takes as much as 94 % of the execution time.

The total execution will have some overhead but the longest stage is still a nearly accurate

measure of how long it will take to execute the model. For the improved checkerboard core

21 is the longest stage in the pipeline because it performs the computation of a Paeth filter

component and also performs forwarding of the computed filter values to the Comparator

through memory 31. These delays must be added as the pipelining is not present for these

operations. The computation takes about 27 seconds and the memory accesses takes 3

seconds, which gives 30 seconds for total time of 30 seconds. The total execution time is 34

seconds, so 88 % of the time is represented by the longest pipeline stage. As the core clock

rates reach 8 Ghz, the longest stage in the pipeline is no longer core or on-chip memories,

but the off-chip memory 3 on the bottom of model. This memory has contention from core

32 and the Monitor module which leads to it taking about 17 seconds as the communication

time. Since the model execution time are 19 seconds this memory now becomes the largest

stage in the pipeline taking about 90% of the time.

It is now possible to visualize the memory bottleneck. The increase in number of processors

does not seem to cause a decrease in execution speed if the memory is shared. The contention

creates a situation where the cores keep competing and even if the computation time is

negligible, the communication time along with the contention time result in a situation of

stagnant performance. To improve execution time architectures which have very limited

contention should be considered. This results in a sustainable decrease in execution speed

as the clock rate is increased.
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Figure 5.3: Contention time scaling with increase in clock rate for the five SystemC models.

Figure 5.3 shows the increase in contention as the clock rate increases. When the clock rate

increases processors can perform more instructions per second, thereby reducing computation

time. This increases the rate at which memory is accessed by the cores so that they can

process more data, which leads to a rise in contention time. Contention decreases slightly

for the 8 core model, possibly because the increase in clock rate makes the cores access data

in a more scheduled way. But this is not the case for the 16 core CPU, as the contention is

steadily increasing.

For the single core model contention exists because the cores are accessing the memory along

with the stimulus and monitor. This contention is however minimal, and the checkerboard

models have even less contention. The initial checkerboard mapping suffers from a linear

increase in contention, but the improved checkerboard remains constant. Therefore the

checkerboard model is a good alternative to shared memory processors as clock rate increases,

as its contention is much less.
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Chapter 6

Conclusion

The increase in processor speeds over the years has resulted in much faster computers but

this trend has been hampered due to slower memory speed increases. The newly proposed

checkerboard architecture may be one possible way to mitigate the effects of slower memory

access speeds. This would require a substantial amount of effort from engineers from different

aspects of computer engineering. The entirety of CPU architectures may need to be modified

as almost all of the CPUs in the market are based on shared memory. Writing programs

for this type of architecture will be challenging and as seen in the case of the initial and

improved mapping, the improved mapping was slower than the initial mapping at high clock

rates. Manually assigning a thread to each core can be time consuming and not ideal as the

performance varies depending on many factors. The compiler for such an architecture would

need to be much more advanced to make the decision on which core should be assigned

a specific thread. In other words, the compiler must also be responsible for the mapping

operation presented in Chapter 3.

Before implementing this architecture on a real die it will be necessary to perform further

virtual prototyping. A good next step would be to replace the current cores with high-level

RISC-V virtual CPUs. These cores can be borrowed from [42] and they have working caches.
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With such an architecture, the detailed performance of the checkerboard architecture can be

compared with the shared memory processor which will now include a cache. Then a more

definitive statement can be made at which clock rate contention becomes severe enough that

the execution time of most programs becomes limited.
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release V0. 3.0: Out-of-order parallel simulatable SystemC subset. 2016.

[39] AD8170 and AD8174 Multiplexer datasheet. https://www.mouser.com/datasheet/

2/609/AD8170_8174-1502101.pdf.

[40] Emad Malekzadeh Arasteh and Rainer Dömer. Improving Parallelism in System Level
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