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Generation Following with Thermostatically Controlled Loads
via Alternating Direction Method of Multipliers Sharing Algorithm

Eric M. Burger, Scott J. Moura

Abstract— A fundamental requirement of the electric power
system is to maintain a continuous and instantaneous balance
between generation and load. The intermittency and uncer-
tainty introduced by renewable energy generation requires
expanded ancillary services to maintain this balance. In this
paper, we examine the potential of thermostatically controlled
loads (TCLs), such as refrigerators and electric water heaters,
to provide generation following services in real-time energy
markets (1 to 5 minutes). To control the non-linear dynamics of
hysteretic dead-band systems in a manner suitable for convex
optimization, we introduce an alternative control trajectory
representation of the TCLs and their discrete input signals. To
perform distributed optimization across large populations of
TCLs, we apply a variation of the alternating direction method
of multipliers (ADMM) algorithm. We numerically demonstrate
the algorithm’s potential for controlling a TCL population’s
total power demand within an error tolerance of 10 kW.

I. INTRODUCTION
A. Background and Motivation

The variability of renewable energy resources, particularly
wind and solar, poses a challenge for power system opera-
tors. Namely, as renewable penetration increases it will be
necessary for operators to procure more ancillary services,
such as regulation and load following, to maintain balance
between generation and load [1][2]. In the long-term, grid-
scale storage technologies (e.g. flywheels, batteries, etc.)
are sure to play a major role in providing these ancillary
services [3][4]. In the near-term, responsive thermostatically
controlled loads (TCLs) have a high potential for providing
such ancillary services [5][6].

This paper investigates the challenge of controlling a
heterogeneous TCL population to perform an ancillary ser-
vice, specifically 5-minute ahead generation following. For
experimental purposes, we define generation following as the
complement of load following whereby loads are employed
to smooth the power generation from renewable energy
sources. Novel contributions of this work include:

o The alternative control trajectory representation — a
novel approach for representing the control of agents
with non-convex constraints as a convex program. The
resulting convex program provides a solution that can
be interpreted stochastically for implementation.

o The application of an alternating direction method of
multipliers (ADMM) sharing algorithm for the dis-
tributed convex optimization of TCLs. Each TCL agent
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optimizes a private objective function, while the central
aggregator iteratively updates an incentive variable to
drive the population towards a global objective, such as
generation following.

The advantages of responsive TCLs over large storage
technologies include: 1) they are well-established technolo-
gies; 2) they are distributed throughout the power system thus
providing spatially and temporally distributed actuation; 3)
they employ simple and fast local actuation well-suited for
real-time control; 4) they are robust to outages of individuals
in the population; and 5) they, on the aggregate, can produce
a quasi-continuous response despite the discrete nature of the
individual controls [6][7].

Additionally, because TCLs are controlled according to
a temperature setpoint, customers are generally indifferent
to precisely when energy is consumed as long as the tem-
peratures are maintained within a deadband range. This
natural flexibility makes TCLs a promising candidate for
participating in power system services.

B. Literature Review

Past literature on modelling and control of TCL popula-
tions has generally focused on aggregation methods with cen-
tralized control. Malhame and Chong’s study [8] is among
the first reports to use stochastic analysis to develop an
aggregate model of a TCL population. The resulting coupled
Fokker-Planck equations, derived in [8], define the aggregate
behavior of a homogeneous population. More recently, [9]
developed a diffusion-advection partial differential equation
(PDE) model and parameter identification scheme for an
aggregated population of heterogeneous TCLs. In [10], the
authors present a deterministic hybrid PDE-based model
for heterogeneous TCL populations, and apply a uniform
deadband shifting strategy for control.

In [11], the author uses a linearized Fokker-Planck model
to describe the aggregated behavior of a TCL population.
Direct control is achieved by broadcasting a single time-
varying setpoint temperature offset signal to every agent.
Numerical results demonstrate how small perturbations to
the setpoint can enable TCLs to perform wind generation
following. Later work builds upon concepts in [11] by
considering sliding mode control [12], proportional-integral
control [13], and linear quadratic regulators [14].

In [15], the authors employ a linear time-invariant (LTT)
representation of a TCL population. As in [12], a “state bin”
modelling framework is used and the aggregate probability
mass is allowed to move through these bins. A Markov
Chain-based approach is used to predict the evolution of the



heterogeneous TCL population. Similarly, [16] uses a state-
bin concept with clustering to account for TCL heterogeneity.
In [7], the authors propose a proportional controller which,
at each time step, broadcasts a switching probability, 7, to
all the TCLs in the population. If n < 0, all TCLs that are
on must switch off with a probability of 7 and if n > 0,
TCLs that are off switch on with a probability of 7.

This work diverges from the above literature in multiple
respects:

o All the aforementioned research presents fully cen-
tralized control schemes. This paper presents a dis-
tributed control scheme with a centralized aggregator
via ADMM. Related distributed control schemes use
consensus coordination [17] or distributed model pre-
dictive control [18].

e In this paper, all TCL parameters, objectives, and
constraints remain private. Each TCL is simulated lo-
cally and independently of the population. The only
information that a TCL communicates with the central
aggregator is its predicted load trajectory. Therefore,
if necessary, TCL parameter identification can be per-
formed locally.

« We do not employ an aggregate model of the TCL popu-
lation. Thus, rather than modelling the entire population,
the central aggregator is only responsible for updating
an incentive variable that drives the population towards
a desired behavior.

« We do not use continuous setpoint control. In this paper,
all temperature setpoint offsets are integer valued and
therefore easily implementable on legacy hardware.

e In practice, a TCL is not required to participate at
every time step. Because the TCL population is not
centrally modelled, the distributed scheme is robust to
an arbitrarily large loss or acquisition of agents.

e Our proposed modelling and control approach is capable
of honoring highly non-convex constraints, such as
minimum dwell time - a critically important practical
constraint that eliminates compressor short-cycling.

For the distributed optimization of a TCL population, we

present a variant of the ADMM algorithm known as sharing
ADMM [19]. Due to its parallelizability and convergence
characteristics, the sharing ADMM algorithm is generally
applicable to the minimization of distributed agents. In this
paper, we develop a formulation of the ADMM algorithm
to enable a TCL population to perform S5-minute power
generation following. Under our proposed control scheme,
each TCL optimizes its behavior according to both a private
objective function (which primarily enforces feasibility) and
a shared objective function (which follows a generation
forecast). Optimization is achieved by iteratively updating a
shared incentive variable, which is calculated and broadcast
by a central aggregator, until the population converges to a
feasible solution.

C. Paper Outline

This paper is organized as follows. Section II discusses the
TCL model and the alternative control trajectory represen-

tation. Section III overviews the sharing ADMM algorithm.
Section IV formulates sharing ADMM for distributed TCL
control. Section V provides numerical examples of our
proposed algorithms, and highlights its applicability to highly
heterogeneous populations. Finally, Section VI summarizes
key results and the Appendix defines mathematical notation.

II. TCL MODEL AND OPTIMIZATION

A. Hybrid State Model

Each TCL is modeled using the hybrid state discrete time
model [11][20][21]

Tn+1 = 01T" + (]. — 91)(Tg + Hgm”) + 05
1 T < Ty — 32 o
m"tt =30 i T > T + 3

m™ otherwise

where state variables 7" € R and m™ € {0,1} denote the
temperature of the conditioned mass and the discrete state (on
or off) of the mechanical system, respectively. Additionally,
n =1,2,..., N; denotes the integer-valued time step, 1’ €
R the ambient temperature (°C), Ts.; € R the temperature
setpoint (°C), and 6 € R the temperature deadband width
°O).

In this paper, we define the time elapsed between each
time step as h = 1/60 (hours). The parameter ; represents
the thermal characteristics of the conditioned mass as defined
by 61 = exp(—h/RC) where C' is the thermal capacitance
(kWh/°C) and R is the thermal resistance (°C/kW), 05 the
energy transfer to or from the mass due to the systems
operation as defined by 6o = RP where P is the rate of
energy transfer (kW), and s is an additive process noise
accounting for energy gain or loss not directly modeled. We
assume that @5 is normally distributed with variance ho?
(bulk units of °C?). In this paper, we assume a noise standard
deviation o of 0.01°C//sec or 0.6°C/\/hr.

The power demand of a TCL at each time step is defined
by

n |P| n
P=cop™ @
where p" € R is the electric power demand (kW) and COP
the coefficient of performance.

The sign conventions in (1) assume that the TCL is
providing a heating load and that P (and thus 65) is positive.
Therefore, we expand the m-update statement to account
for both heating and cooling loads. Additionally, in this
paper, the optimal control of each TCL is based on setpoint
manipulation. In other words, at each time step n, a TCL
will either enforce T, or move the setpoint by u"™. While
we define u™ such that the setpoint may be adjusted at each
time step, in practice, we employ a single adjustment over
multiple consecutive time steps. The TCL model can now be
expressed as



T = 0,7 4 (1 — 01)(T™ 4 0ym™) + 65
1 if 6 > 0 and
T < Tyep — § +um
0 if 85 > 0 and
T > Ty + & +um
if 6 < 0 and
T > Toep + § +un
0 if 85 < 0 and
T < Ty — % +u”

otherwise

3)

m7z+1 _ 1

mn

As noted in [11][21], the discrete time model implicitly
assumes that all changes in mechanical state occur on the
time steps of the simulation. In this paper, we will assume
that this behavior reflects the programming of the systems
being modeled. In other words, we will assume that the TCLs
have a thermostat sampling frequency of 1/h Hz or once per
minute.

Finally, in this paper, we will emphasize heterogeneous
TCLs populations and thus vary R, C, P, and COP for
each agent in the population, as discussed in Section IV.
Because R, C, and P define the thermal mass and rate of heat
transfer, the parameters govern the system dynamics. The
COP parameter does not impact the system dynamics but
rather scales the magnitude of the electricity power demand.

B. Alternative Control Trajectory Representation

In this section, we consider the optimization of a TCL
represented by the hybrid state model above. While the
model presents an intuitive representation of a dead-band
control system, the discrete and piece-wise nature of the m-
update statement poses a numerical challenge for optimal
control. In particular, if the TCL’s temperature is near the
setpoint (i.e. away from the upper and lower bound), then
the mechanical state m™*! is dependent upon the previous
state m™.

This dependency, as well as the binary on/off state, makes
the system non-convex. There are optimization approaches,
such as dynamic programming and genetic algorithms, that
are well suited for solving such a non-convex problem
to identify an optimal control strategy. However, these
approaches are poorly suited for distributed optimization
problems because the number of optimization variables is
intractable for real-time control.

Therefore, we introduce a novel approach for representing
the control of non-linear systems in a manner suitable for
linear/convex programming. Put simply, we simulate the
system under multiple feasible alternative control inputs in
order to generate a discrete set of output trajectories. These
alternative control trajectories can be incorporated into a
convex program as a linear constraint, thereby enforcing
feasibility.

To begin, we define N, alternative control inputs for N
time steps

Uj = (U},U?7...,U§Vt) (4)
Vji=1,...,N,

with variable u; € RNt and u} € S, for n = 1,..., Ny,
where S, C Z is the constraint set of feasible/allowed
setpoint changes.

Next, for each control input u;, we simulate the TCL
model defined in (3) while imposing any additional physical,
mechanical, or numerical constraints, such as a minimal
dwell time. Given the simulation results, we generate IV, fea-
sible alternative trajectories as defined by the state variables
T and m. Since the power demand p” is linearly related
to the mechanical state m'™, we can also define the set of
alternative power demand trajectories.

Ty = (T}, 77,...., )" )

c N¢+1
mj:(m?,mj,...,mjt+ ) 5)
pi =3l .. plth

Vi=1,...,N,

The input and output variables can be expressed compactly
as

U = (ug,ua,...,un,)
T=T1,Ts,...,Tn,) ©)
M = (mq1,ma,...,mn,)

P= (p17p27--~,PNa)

with variables U, T, M, and P representing the set of all
u;, T5, mj, and p; sets for j = 1,..., N,. Naturally, we can
also view U, T, M, and P as matrices € RV *Nt guch that
the rows represent the alternative trajectories and the columns
represent the time step n. It should be noted that the function
defined by (3) is not one-to-one (i.e. a function f such that
f(u;) = m; is not injective). In other words, the distinctness
of u; does not guarantee the distinctness of T3, m;, and p;.
Thus, for computational efficiency, if T}, m;, or p; are equal
to any previously generated output for j = 2,..., N,, then
each set u;, T}, m;, and p; should be excluded from U,
T, M, and P. We define the number of distinct alternative
control trajectories as Ny such that Ny € {1,..., N,}.
Figures 1, 2, and 3 illustrate an example of a TCL (specif-
ically, a refrigerator) with N, = 3 alternative trajectories.
In the example, each alternative input u; for j = 1,2,3
is € {0,—1,1}2%. For trajectory j = 1, u} = 0 for n =
1,...,20. For trajectory j = 2, uy = 0 forn =1,...,10
and uy = —1 for n = 11,...,20. For trajectory j = 3,
uy =0forn=1,...,10 and v =1 for n =11, ..., 20.
The TCL has been simulated using (3) with a default
setpoint Ty.; of 2.5°C, a deadband width § of 2°C, an
initial temperature T of 3.3°C, and an initial mechanical
state m! of 0. Figures 1, 2, and 3 present the T} and p;
trajectories corresponding to each input u; for j = 1,2, 3.
The mechanical state trajectories m; can be inferred from
the T; and p; trajectories. As illustrated by the figures,
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Fig. 3: Example Alternate Trajectories given us

each distinct input u; produces a distinct T}, m;, and p;.
Therefore, in this example, Ny = N, = 3.

In summary, we have produced a representation of the
system’s dynamics under multiple alternative control tra-
jectories. This representation can be incorporated into a
convex program, as described in the next section. To the
authors’ knowledge, this is the first paper to introduce such
an approach. While we have developed the method with the
intention of enforcing non-linear system constraints in TCLs
(such as minimum compressor on/off dwell times), we have
found that the approach is well suited for the aggregated
control of energy systems in general. By abstracting the
system inputs, dynamics, and constraints into the U and
P matrices, we can also model the aggregated optimization
of heterogeneous energy systems such as residential solar
panels, battery storage, and electrified vehicles.

C. Convex Optimization

In this section, we detail how the alternative control
trajectory representation described above can be introduced
into a convex program. To begin, we will introduce a variable
w € {0,1}" such that

1 if trajectory j is selected
Wi = {0 otherwise @)
Vi=1,...,Ng
Thus, if 7 =1 is the selected trajectory (i.e. w; = 1)

UTw =y
T'w =T,
MTw=my
PTw=p

The multi-objective integer/binary program below demon-

strates how P, T, and w can be introduced to solve for the
optimal trajectory

minimize F(P7w) + G(T?w)
subject to Y w; =1 ®)
w € {0,134

where F : RY* — (—o0,00] and G : Rt — (—o00, 00] are
closed convex functions. Function F' represents the utility of
a power demand trajectory. This could be a cost function for
electricity, a penalty function for deviating from a predefined
profile, or a regularization function that flattens the power
demand. Function G represents the utility of a temperature
trajectory. For heating and air conditioning systems, G could
represent the thermal comfort/discomfort of occupants. For
TCLs like refrigerators or water heaters, G could quantify
the willingness of a customer to allow deviations from the
setpoint.

The above program is an example of the generalized
assignment problem (GAP). If feasible, (8) guarantees that
only one component of minimizer w* is non-zero. However,
since the program is non-convex and NP-complete, it is
unsuitable for many applications. By relaxing the binary
constraint such that @ € R¥4, we can express the convex
program as

minimize F(P7%) + G(T )
subject to > w; =1

>0

€ RN

)

Due to the linear constraints, minimizer w; € [0, 1] for
7 = 1,..., Ny and in practice, can be interpreted as the
probability of selecting control trajectory j. In other words,
we allow the convex program to form linear combinations
of the alternative control trajectories. Once the program has
converged to an optimal solution, we implement a single
trajectory based on the discrete probability distribution w*.
Expressed mathematically, we can generate a discrete ran-
dom variable X € {1,..., Ng} such that @} = Pr(X = j)
for j = 1,..., Ng. The value of X represents the index of
the probabilistically selected control trajectory. Thus, we can
define a variable 1 € {0, 1}"¢, representing the probabilistic
solution of (9), as



y 1 ifX=j

w; =

J 0 otherwise (10)
Viji=1,...,Ng

To reiterate, the optimal solution to (8) is physically
realizable (i.e. only one component of w* is non-zero) but
not solvable using convex optimization. By contrast, (9) is
convex but the optimal solution is not realizable (i.e. all
components of w* may be non-zero). Using (10), we can
transform w* into w, which is realizable (i.e. only one
component of w is non-zero). It should be noted that w*
and w* are guaranteed to be optimal solutions to (8) and (9),
respectively. However, @ may be an optimal or sub-optimal
solution to both (8) and (9).
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Fig. 4: Example Solution to Convex Program

By way of example, we again refer to the alternative
trajectories illustrated by Figures 1, 2, and 3. If we assemble
the trajectories into the T and P matrices and solve (8),
we might produce the solution w* = (1,0,0). In other
words, the program selects trajectory j = 1. If we solve
(9), we might produce the solution w* = (0.8,0.15,0.05).
In this case, the program selects a linear combination of
the 3 trajectories. The resulting power demand trajectory
x = PTw* is illustrated in Figure 4. Finally, if we apply
(10), there are 3 possible outcomes for w,

Pr(d = (1,0,0)) = 80%
Pr(w = (0,1,0)) = 15%
Pr(w = (0,0,1)) = 5%

Throughout this paper, we refer to the optimal power
demand profile (p = PTw) produced by (8) as the discrete
solution (w* € {0, 1}Nd), by (9) as the continuous solution
(w* € RV4), and by (9) and (10) as the probabilistic solution
(w € {0, 1}Na).

III. ALTERNATING DIRECTION
METHOD OF MULTIPLIERS

In this section, we briefly cover the alternating direction
method of multipliers (ADMM) algorithm for convex opti-
mization. We refer the reader to [19][22] for a more complete
description of the algorithm. Next, we discuss a special
case of block separable problems referred to as sharing
ADMM [19]. We derive a formulation of the sharing ADMM
algorithm suitable for the distributed optimization of TCLs
and present primal and dual residual equations and stopping
criteria not found in [19].

A. ADMM

The alternating direction method of multipliers is a com-
mon splitting method for solving problems of the form

f(z) +9(2)
subject to Az + Bz =c¢

minimize

(1)

with variables € RN+ and z € R™=, where f : RV> —
(—00,00] and g : RN= — (—o00,00] are closed convex
functions, A € RM*Nz and B € RM*N: are linear
operators, and ¢ € R%e is a vector. ADMM is a variant
of the augmented Lagrangian approach which uses partial
updates of the dual variables at each iteration. The algorithm
optimizes the coupled problem (11) by solving the uncoupled
unscaled steps

k+1

2* 1 = argmin f(z) + (\*, Az) (12a)
+ gHAgg + BzF —¢|)?

ZF1 = argmin g(2) + (\F, Bz2) (12b)
+ LllAz*! 4 Bz — ol

ML — NP 4 p(AzPTE 4 B2 — ) (12¢)

where variable A € R« is the dual variable, constant p>0
is the augmented Lagrangian parameter, also referred to as
the penalty parameter, and k is the integer valued iteration
of the ADMM algorithm.

The necessary and sufficient optimality conditions for the
ADMM problem (12) are given by the primal feasibility,

Az* + Bz" —c=0 (13)
and dual feasibility,

0=Vf(z*)+ AT\ (14)

0=Vg(z*)+ BT X* (15)

assuming f and g are differentiable.
The convergence of (12) can be summarized by
« Objective Convergence: f(z¥)+g(z%) — J* ask — oo
where J* denotes the optimal value of (11)
o Primal Residual Convergence: Residual r* — 0 as k —
oo where 7F = Ax* 4+ BzF — ¢
o Dual Variable Convergence: Dual \¥ — \* as k — oo
We refer the reader to [19][22] for a discussion of the aug-
mented Lagrangian, scaled form, primal and dual residuals,
and convergence rates.

B. Sharing ADMM

In this paper, we consider an ADMM-based method for
solving the generic sharing problem using distributed opti-
mization, as presented in [19]. In this section, we demon-
strate how the sharing problem can be represented as a
special case of (11) where f and A have a separable structure
that we can exploit. The method is well suited for solving
problems of the form



minimize Y fi(x;) + 9> ;) (16)
with variables x; € Fiv =, the decision variable of agent ¢ for
i=1,...,N, where F; represents the convex constraint set

of agent i, N the number of agents in the network, N, is
the length of x;, f; is the cost function for agent ¢, and g is
the shared objective function of the network. The function
g takes as input the sum of the individual agent’s decision
variables, x;. The sharing problem allows each agent in the
network to minimize its individual/private cost f;(x;) as well
as the shared objective g(>_ x;).

By introducing variable z; € R™=, a term that copies the
x; decision variable of each agent, the sharing problem can
be written in an ADMM-compatible form

minixmize > filxs) +9(> z)

subject to  x; —

(17)
2=0,i=1,...,N

with variables z; € Ffv“” 2z € RN+, Sz, € GN= for i =
1,..., N where G+ represents the convex constraint set of
the shared objective. Therefore, the unscaled form of sharing
ADMM is

xf“ = argmin f;(z;) + </\f, x;) + g”xl - zf||§ (18a)

X4

A+ = argmin g(3 ) (18b)
P
+ (A =) + Sl - zl3)
AEFL = MF o p(af = 2P (18¢)

with variable z = (21,...,2y) and augmented Lagrangian
parameter p > 0. Unlike (12), where there is a single globally
defined dual variable A, in (18), each agent has its own J;.
Thus, the x;-update and \;-update steps can be executed by
each agent ¢ = 1,..., N independently and in parallel. The
z-update step is executed by a collector or aggregator with
knowledge of each agent’s decision variable z;.

C. Sharing Optimality and Residuals

Next we derive the sharing ADMM residuals, which are
required to define stopping criteria. The necessary and suffi-
cient optimality conditions for the sharing ADMM problem
(18) are given by the primal feasibility,

x; —z =0 (19)

and dual feasibility,
0= Vfi(z") + A (20)
0=Vg(X =) - TN @1

fori=1,..., N assuming f; and g are differentiable.
Since zF*! minimizes (18b) by definition, we can show
that 25+ and \¥*1 always satisfy (21),

0

Vg(Z 2t = (SN + Xop(ai ™ = 2)
Vo(X 2 ) = X (O + plaf ™ = 2f)
Vo) = oA

Therefore, optimality is achieved by satisfying (19) and (20).
From (19), we can define the primal residual as

E4+1 _  k+1 k+1
v, = =z 22)

k1
0 = Vi@i™) + A + p(af ™ = 2f)

=V ilaP T 4 AF 4 p(ah = oF 4 Rk
=VFi@f ) + A+ p(f ™ = 2) + p(2f ! = 2F)

=V ™) + X+ p(e T - 2)

3 K2

Since x minimizes (18a) by definition, we can show

Thus, we can define the dual residual as
S = VA £ M = p(alt

D. Stopping Criterion

(23)

We define the stopping criterion as presented in [19] by

HrkHQ < 6;om'mal and HSkHQ < edual (24)

where 7% = (r¥, ... 7k, 8 = (s¥,... sk), and errimal >

0 and e?“e! > ( are feasibility tolerances for the primal and
dual conditions (19) and (20). In this paper, we set eprimal —
eduel — 1.0,

E. Averaged Sharing ADMM

As written, our sharing ADMM algorithm requires the
local calculation of a zF, \¥, and 7% term for each agent
i = 1,..., N in the network. Next, we will show that we
can simplify the algorithm by introducing global variables
z*, z%, and \* representing the arithmetic mean of all z¥,
2, and \F, respectively.

We begin by introducing z* into the z-update equation
(18b), which can be rewritten as

- - p
min g(N2) + 3 (A, —2) + Sllat ™ = 2il3)
’ 1 (25)
st Z = NZ 2

or in augmented Lagrangian form
ZL(2,7,1) = g(N2) + 32 (A}, —2)

p _ 1
+ DBt = l3) + T (2 - 3 2)

Thus, for every iteration of the sharing ADMM algorithm,
the optimal value of each z; is

ag * =k * g * 'U'*
0= azi(zivz y b ):)‘1{6+p(‘rf+li‘zz)+ﬁ
1 * ,
= O+ ) el —ar o)
. w* +)\—§—|—xk+1

Zp = 7
Np —p



Finally, we can calculate the optimal value of Z
1

_ 1 w ¥ k+1
“naly, )
1o 1
:7ﬁ%+52ﬁ+2ﬁ“)

27

*

NF
_H 4+

Np p

Thus, substituting p*/Np from (27) into (26),
N\F

2l =2Z"— —

p

+ i,k+1

pY:
—EF ¢ T gt (28)
p

or equivalently

1 _
Zf‘l’l _ 2/€+1 4 (xf+1 o ‘,Ek-‘rl) 4 ;(}\,’7 _ )\k}) (29)

k

NFHL = 0 pla )
= N plaltt - (g - i)
- (=3
= 24 p(zh L - gk

Next, we can replace z* ™! in the \;-update equation (18c)

(30)

which shows that the dual variables Ak are all equal to the
global \* and thus

Z’Zc-&-l — 2k+1 + (l,;c—&-l _ i,k+1)

€29

Therefore, the unscaled form of the averaged sharing
ADMM algorithm is

xf“ = argmin f;(z;) + (\F, z;) (32a)
+ Doy — 2k + 75 — |3

1 = argmin g(Nz) + (\F, —Nz) (32b)
+ S 23

ML = AP (kT — 2R (32c)

With this averaged sharing ADMM form, the individual
agents no longer update their own J\; variable. Instead, a
single aggregator updates \, along with Z and Z, and reports
these global variables to every agent in the network.

F. Averaged Sharing Residuals

In order to apply the stopping criterion, we must redefine
the primal and dual residuals for the averaged form. We can
substitute zf“ from (31) into (22) and (23) in order to define
the primal residual r¥ and dual residual s¥ in terms of z

rtl = ghtl gkl (33)

sith = p((@"H —2%) — (a7 - af)
o (2k+1 . Ek))

and the corresponding /2-norms of the stopping criterion

(34)

Ir* )12 = Njz* — 2|2

(33)
[EPEDE >

IV. DISTRIBUTED TCL OPTIMIZATION FOR
GENERATION FOLLOWING

In this section, we describe the application of the sharing
ADMM algorithm to the distributed optimization of TCLs
with the objective of providing 5-minute ahead generation
following ancillary services. Specifically, we define the opti-
mization program for the individual TCLs and the aggregator.
Then, we describe the final sharing ADMM algorithm for the
TCL population. Results from multiple studies are described
in the next section. Our formulation is based on the following
assumptions:

1) Each TCL is capable of (i) manipulating its setpoint
by a discrete/integer amount, (ii) accurately monitoring
and forecasting its power demand, (iii) solving convex
programs, and (iv) communicating with a central ag-
gregator (representing a load-serving entity such as an
electric utility).

2) The consumer is indifferent to the relative energy costs
of the alternative control trajectories. In other words,
either the consumer does not pay for energy used by
the TCL or the compensation for participating in the
demand response program is such that the change in
energy cost is negligible. This does not imply that each
alternative trajectory is of equal utility.

3) At each ADMM iteration and time step, a TCL’s
decision variable and selected power demand trajec-
tory is shared with only the aggregator. The TCL’s
characteristics and decision making, including the P
matrix, remain private to that TCL.

A. TCL Optimization

In this paper, we consider four types of thermostatically
controlled loads: refrigerators, electric water heaters, heat
pumps, and electric baseboard heaters. Each TCL is simu-
lated using (3) with published model parameter ranges, given
in Table I and adopted from [7]. To generate a population,
parameters are randomly drawn from a uniform distribution
between the maximum and minimum values shown in the
table. For heat pumps and baseboard heaters, the C' parameter
is multiplied by the number of zones, an integer randomly
drawn from the range given. Additionally, for the ambient
temperature 7' of the heat pumps and baseboard heaters,
we utilize weather data for Berkeley, California from the
morning of 3/19/2015, shown in Figure 5 [23]. The electric
power demand of the TCL at each time step is given by (2).

TCL optimal control will take the form of setpoint ma-
nipulation. For each TCL type, we define a discrete set
of feasible/allowed setpoint changes, represented by S,,.
Though we simulate the TCLs using a one minute time scale
(h = 1/60 hours), we apply all setpoint changes over 5
consecutive time steps (N; = 5). Thus, for a refrigerator
with S, = {0, -2, 1},



Fridge Water Heat Baseboard
Heater Pump Heater
R |[80, 100]|[100, 140]| [1.5, 2.5] | [1.5, 2.5]
C ][04, 0.8]|[0.2, 0.6] |[0.15, 0.25]|[0.15, 0.25]
P |[-1,-0.2]| [4,5] |[14,25.2]] [0.5, 1.5]
CcoP 2 1 35 1
Teer |[1.7,3.3]] [43, 54] | [15, 24] [15, 24]
) [1, 2] [2, 4] [0.25, 1] | [0.25, 1]
T, 20 20 variable variable
Zones 1 1 [5,10] [1,2]
N, 3 3 3 3
Su |{0, -2, 1}[{0, -5, 5} {0, -2, 1} | {0, -2, 1}

TABLE I: TCL Parameter Ranges adopted from [7]

Temperature (°C)
(=) = = =
N £ ()] o]

=
(o]

0:00 2:00 4:00 6:00 8:00 10:00 12:00

Fig. 5: Ambient Temperature Data for Berkeley, CA, on the
Morning of 3/19/2015

up = (070a07070)
up = (—2,-2,-2,-2,-2)
us = (1,1,1,1,1)

In other words, the refrigerator has a maximum of N, =
3 alternative control trajectories. As stated previously, each
distinct input u; is not guaranteed to produce a distinct output
T;, my, or p;. Thus, for any given TCL, the number of
distinct alternative control trajectories, V4, is in the discrete
set {1,..., Ny}

The zero input u; represents the default TCL input and
is always first in the set of alternative control trajectories. If
N4 =1, we describe the TCL as fixed or inflexible. In other
words, the TCL is at a point in its cycle such that setpoint
manipulation does not impact the temperature trajectory. If
Ny = 2 and the mean of py is greater than the mean of
p1, then the TCL is only capable of increasing demand; if
N4 = 2 and the mean of ps is less than or equal to the mean
of p1, then the TCL is only capable of decreasing demand. If
Ng = 3, then the TCL is flexible and capable of increasing
or decreasing demand. This classification is used to interpret
results in Section V.

Thus, using the alternative control trajectory representa-
tion, we can simulate a TCL using U and (3) to output T, M,

and P matrices such that U, T, M, and P € RM+* Nt Now,
the individual TCL’s optimization problem can be defined as
a constrained least-squares fit.

minimize o || T? W% — Tyer||3
w

subject to > w; =1 (36)

w >0

with variables T € RM¢*Nt | representing the set of dis-
tinct temperature trajectories, @ € RN, representing the
optimal linear combination of trajectories and/or the discrete
probability distribution of selecting control trajectory j for
j=1,...,Ng, Tser € RNt the TCL’s temperature setpoint,
Ny the number of time steps simulated, Ny the number of
control trajectories, and o, a weighting term for the TCL’s
objective. As previously described, the continuous solution
for the power demand profile is determined by z} = PT?.
Given w; and (10), we denote the probabilistic solution as
pi = PTw,. As previously stated, @] and x} are guaranteed
to be optimal, but w; and p; may be sub-optimal.

B. Aggregator Objective

In this paper, the aggregator, representing a load-serving
entity, will influence the behavior of the TCLs so as to
perform 5-minute power generation following. To demon-
strate this potential, we consider 5 minute ahead forecasts
of wind and solar generation retrieved from the California
Independent System Operator (ISO) [24]. Figure 6 presents
the wind and solar power generation for the morning of
3/19/2015. The center plot shows a smooth polynomial fit of
the total renewable generation. The error between the actual
generation and the smooth fit will serve as our exemplary
5-minute generation following signal in this paper, shown in
the bottom plot.

Ideally, 5-minute generation following is a zero net energy
service. Accordingly, the mean of the control signal is
1.229 x 10~7 MW. Considering that the signal is on the
order of 10 MW and that TCLs are on the order of 1 kW
loads, in this paper, we will utilize the TCLs to respond to
1% of the signal shown in Figure 6. Additionally, we are
simulating the TCL’s using a one minute time scale but the
signal is on a five minute time scale. Thus, we will treat
the signal as a piecewise constant function. It is possible to
interpolate between the current and previous control signal
to produce a smooth or piecewise linear signal. Nonetheless,
we are electing to use a piecewise constant interpretation.

To perform generation following, the aggregator’s objec-
tive function can be defined as an unconstrained least-squares
fit.

minimize o || 7; — d||3 (37)

with variables d € RM¢, the aggregator’s desired power
demand given the generation following signal y € R™¢, and
x; € RNt the power demand of TCL i for i = 1,..., N,
where N represents the number of TCLs in the network and
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Fig. 6: California ISO Wind and Solar Generation 5-Min
Forecasts for 3/19/2015 (Top), Smooth Polynomial Fit of To-
tal Generation (Center), and exemplary 5-minute Generation
Following Signal (Bottom)

N; = 5 is the number of time steps in d and x;. Lastly, a,
is a weighting term for the aggregator’s objective.

We calculate the desired power demand d by adding the
current generation following signal y to the power demand of
the population in the previous time step (i.e. d™ = >, pI' '+
y™ for n = 1,..., NVy). Since the value of the signal only
changes once every 5 minutes, we optimize the aggregated
power demand over a horizon of Ny = 5 time steps and thus,

Sy =
dn—t otherwise
Vn=1,...

(38)
aNt

C. TCL Sharing ADMM

Given the TCL and aggregator optimization programs (36)
and (37), we can now define the sharing ADMM algorithm
for power generation following using a population of TCLs.

WP = argmin ay, | T W; — Teer.il|2 (392)
+ 8 PTay) + DIPT —af + b3
s.to Yy =1, w>0
w§+1 _ PiwaH (39b)
41 argmin 0, N2 - g + (%, -NZ @99
N
+ Ll -2l
FhAL _ ghtl _ skl (394d)
NEFL 3k +_p(rkﬂ) (39%¢)

Aggregator
Z,%T,7, A
VA W/
Di 7* \F
TCL TCL e o o TCL
x1,p1 | | T2,P2 TN, PN

Fig. 7: Distributed TCL Optimization Structure

In our implementation, the ADMM algorithm is run once
every 5 minutes to determine the optimal power demand of
the TCL population over the next 5 minutes at a 1 minute
time scale. For simplicity, we report the power demand of
the TCLs as a 5 minute average. For fixed TCLs (i.e. Ng =
1), the power demand profile is reported to the aggregator
before the first ADMM iteration. The N and d parameters
are adjusted accordingly and the ADMM algorithm run on
the remaining population.

Figure 7 illustrates the structure of the distributed system.
At each ADMM iteration, the TCLs report their decision
variables :z:f*’1 to the aggregator but not to the other agents
in the network. At the end of the iteration, the aggregator
reports the updated incentive variable A\**! and the mean
primal residual 7! (i.e. the difference between Z**! and
zF*1) to the TCL population. Each TCL’s T, P, and "
remain private. In addition to the stopping criteria (24), we
impose a limit on the absolute value of \ (i.e. stop if |\"| >
Ay forn =1,..., Ny). This limit is empirically selected and
serves as a means of detecting if the population of TCL’s is
able to match the signal within a certain tolerance. As defined
by (37), any power demand is feasible, but in practice, we
only want to perform generation following if we are within
a certain error tolerance, €"¢9.

At optimality, x represents the TCL’s continuous solution
and is not directly implementable. While it is conceptually
possible to cluster complementary TCLs or to incorporate
energy storage so as to directly achieve the continuous
solution, we assume no such coordination in this paper.
Instead, each TCL in the population will implement a single
control trajectory given the discrete probability distribution
w;. The TCLs’ states are updated and the resulting power
demand profile, refereed to as the probabilistic solution p;,
is reported to the aggregator. The potential for error between
the continuous and probabilistic solution is addressed in the
next section.

D. Divide and Conquer

At optimality, the solution x represents the continuous
solution of the relaxed form of the general assignment
problem, as described in (9). While this relaxation is essential
for distributed convex optimization, the continuous solu-



Lagrangian Penalty p 10

Aggregator Coefficient Q, 20
TCL Coefficient

) Oy 0
(Refrigerator)
TCL Coefficient
Qg 0
(Water Heater)
TCL Coefficient !
Oy
(Heat Pump)
TCL Coefficient
oy 1

(Baseboard Heater)

Primal Feasibility Tolerance|eP" ™| 1.0

Dual Feasibility Tolerance | €% | 1.0
Error Tolerance €9 |10 kW
X Limit Ay 50

TABLE II: ADMM Parameters

tion is not directly implementable. Instead, we employ the
probabilistic solution p; and thereby introduce the potential
for error between the solution returned by the ADMM
algorithm and the actual power demand of the TCLs. For
highly homogeneous populations of TCLs, we have observed
that the aggregated continuous and probabilistic solutions
are comparable (i.e. have similar errors with respect to the
signal). The logical explanation is that due to the homo-
geneity, many TCLs converge to similar solutions. Thus,
their probabilistic solutions are complementary such that the
aggregated power demand is close to the continuous solution
returned by the ADMM algorithm. For highly heterogeneous
populations, however, this is not the case.

To address this, we investigated the introduction of a
sparsity-inducing weighted ¢; norm [25] into the TCL’s
objective function to drive the probabilities towards 0% or
100% (Due to the non-negativity constraint in (9), tradition
{1-regularization is ineffective). However, we found that
sparsity came at the cost of slower convergence and higher
errors between the continuous solution and the signal.

Our solution is a relatively brute force, divide and conquer
approach. Stated simply, we run ADMM on the entire
population of TCLs. Upon convergence, we fix a certain
number of the TCLs (10-20% of the total population) using
the probabilistic solution. These TCLs are them removed
from the population being optimized and the N and d
parameters are adjusted accordingly. Next, we repeat the
ADMM algorithm to find the continuous solution of the
remaining population using the previous value of A and
adjusted values of z and Zz as a warm start. This process
is repeated until all TCLs are fixed. For successive ADMM
runs, we decrease the number of ADMM iterations as the
problem becomes more constrained. Numerical examples are
provided next.

V. EXPERIMENTAL RESULTS

In this section, we present results for 4 experimental
studies. In each experiment, we model a population of
TCLs to follow 1% of the signal described in Figure 6.
This 5-minute generation following is achieved by running
the sharing ADMM algorithm every 5 minutes between
midnight and noon for the morning of 3/19/2015. In the
first experiment, we consider a large, highly homogeneous
population of refrigerators. Second, a small, heterogeneous
population of refrigerators. Third, a highly heterogeneous
population of refrigerators, water heaters, heat pumps, and
baseboard heaters. Fourth, a highly heterogeneous population
of refrigerators, water heaters, heat pumps, and baseboard
heaters using the divide and conquer approach described
above.

For each study, we employ the ADMM parameters in Ta-
ble II. For refrigerators and water heaters, o, = 0 indicating
that the consumer is indifferent to the selection of a control
trajectory. Thus, the TCL’s objective function (36) is constant
and weakly convex. At each iteration, the TCL enforces
feasibility and adjusts its power demand according to the
incentive signal A. For heat pumps and baseboard heaters,
o, = 1 indicating that the consumer would prefer to keep
the temperature near the setpoint. The weight ., is not large
enough to prevent the selection of any alternative control
trajectory, but rather numerically incentives the utilization of
more cooperative/responsive refrigerators and water heaters
before heat pumps and baseboard heaters. Lastly, S, defines
a set of 3 feasible change in setpoint values. Thus, each TCL
has a maximum of N, = 3 alternative control trajectories.

For each of the experimental studies, we present the
aggregated power demand and response of the population
for the respective experiment. The aggregated continuous and
probabilistic power demand are presented as the mean of the
total power demand over each N; = 5 minute interval.

1 Ny N

ok = E;;W)* (40)
1 Ny N

= ﬁt;;ﬁ? (41)

where variables 2%, p% € R, N is the number of TCLs in
the population, and k denotes the integer valued time step of
each ADMM run (i.e. each N; = 5 minute interval between
midnight and noon).

The continuous and probabilistic responses of the popula-
tion denote the change in power demand, and are respectively
given by

Th =ay -5 (42)
pA =% -yt (43)

Because x] is not directly realizable, x% is calculated relative
to the previous probabilistic demand pz_l.

For each time step k, we also present the minimum and
maximum power demand that the population of TCLs could
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Fig. 8: Highly Homogeneous Population

have achieved given the set of feasible power trajectories P;
for each TCL. For each TCL 7, we denote the trajectories
with the minimum and maximum mean power demand as
p;-“i“ € P; and p™™* € P,, respectively. Therefore, the mini-
mum and maximum mean power demand of the population
is

1 Ny N
k n\min
= . 44
Prminy Nt nz::l ;(pz ) ( )
1 N: N
Phas = 3 30 D)™ @)
n=11:=1

Thus, the maximum up or down response of the population
is given by

Phina = Phiny — P& (46)

p]r?]axA = prl:laxZ - p];]_l (47)
where variable p¥. \ corresponds to demand decrease and
pk A to demand increase (from the perspective of the load).
In the case that p¥. \ > 0 or pk . < 0, the population
is incapable of decreasing or increasing its power demand,
respectively.

A. Highly Homogeneous Population

To begin, we present the results using a highly homo-
geneous population of refrigerators. Specifically, we have
modeled and controlled a population of N = 40,000 refrig-
erators with identical parameters (the mean of the parameter
ranges in Table I). The peak feasible power demand of the
population is 12 MW, significantly more than the maximum
signal of 0.47 MW (1% of the signal in Figure 6). Because
we have such a large population for this experiment, we have
limited the number of ADMM iterations to 10.

Figure 8 presents the results from the homogeneous exper-
iment. The top plot shows how well the continuous responses
xz and the probabilistic responses p’i compare to the signal
y* for each 5 minute interval between midnight and noon. To
reiterate, the continuous response is the difference between
the aggregated solution to the ADMM algorithm and the
power demand in the previous time step. The probabilistic
response is the difference between the aggregated proba-
bilistically selected TCL trajectories and the power demand
in the previous time step. The RMSEs of the continuous
and probabilistic responses are 6.61 kW and 26.62 kW,
respectively. The algorithm only failed to converge to a
solution within the error tolerance of 10 kW during one
interval at 1:20 AM, resulting in a generation following
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Fig. 9: Heterogeneous Population

success rate of 99.3% over the time period studied.

The second plot in Figure 8 shows the probabilistic p%,
the minimum p*, ., and the maximum pf_ . power demand
of the population at each time interval. The third plot
shows the corresponding minimum p%, . and maximum
pk . potential (i.e. the difference between the minimum
or maximum power demand and the demand in the previous
time step). While it is possible for the aggregator to discern
these minimum and maximum values by manipulating \ to
drive the TCLs to their extremes, we have assumed no such
behavior in our implementation. Thus, the aggregator can
only determine if the signal and the feasible up or down
responses are within the specified error tolerance after the
ADMM algorithm converges. The only exception is if A
violates the A limit, indicating that the ADMM algorithm
is attempting to drive the population toward an infeasible
solution so as to reduce the aggregator’s objective function
(though the TCLs will guarantee that the solution at each
iteration is feasible).

Examples of this behavior are shown at the 1:15, 1:20,
and 1:25 intervals. In each case, the signal is slightly outside
the feasible region, as shown in the third plot. In the fourth
plot, which shows the number of ADMM iterations executed
before stopping, we see that the ADMM algorithm hit the
iterations limit of 10 for these time intervals. For the 1:15

and 1:25 intervals, the continuous response returned by the
ADMM algorithm was within the error tolerance despite the
fact that the stopping criteria were not met. For the 1:20
interval, however, the tolerance was not met and thus load
following was not performed. In this case, each TCL returned
to its default behavior.

B. Heterogeneous Population

To begin introducing heterogeneity, we have modeled
the control of N = 10,000 refrigerators with parameters
randomly drawn from the uniform distributions in Table I.
We have also raised the ADMM iterations limit to 40. The
results from this study are presented in Figure 9 and show
a success rate of 95.8% over the time period studied. The
RMSEs of the continuous and probabilistic responses are
8.81 kW and 17.84 kW, respectively.

In this study, we have significantly decreased the popula-
tion size and thus the potential for increasing demand. The
second and third plots indicate that as we approach noon,
we experience a decline in the maximum feasible power
demand p®_ . and the demand increase potential p* .. The
fourth plot shows the percentage of the population that is
either fixed, flexible, or capable only up or down responses
and presents some insight into the loss of demand increase
potential. Between midnight and 7:00, we observe that the
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TCLs generally oscillate between up only and down only, 3 5:
with the percent of fixed and flexible TCLs remaining small. 3.0l
After 7:00, the TCLs in the down only population begin to E 2.5
become fixed. Finally, the TCLs begin switching between up 5 2.0}
. . . . c
only and fixed, making it more difficult to perform generation g 13
following and driving up the number of ADMM iterations. g ;'g'
C. Highly Heterogeneous Population 001
0:00 2:00 4:00 6:00 8:00  10:00  12:00

In this study, we consider a highly heterogeneous pop-
ulation of refrigerators, water heaters, heat pumps, and
baseboard heaters with parameters randomly drawn from the
uniform distributions in Table I. We model 3,000 refrig-
erators, 2,000 water heaters, 1,800 heat pumps, and 1,800
baseboard heaters for a total of N = 8,600 TCLs. We set
the ADMM iterations limit to 20.

The results, presented in Figure 10, show a generation
following success rate of 91.0% over the time period studied.
Based on the fifth plot, we observe that for 96.5% of the time
steps, the stopping criterion were not met and the ADMM
algorithm hit the iterations limit of 20. However, in 90.3% of
these time steps, the error was within the tolerance of 10 kW.
The RMSEs of the continuous and probabilistic responses
are 4.39 kW and 81.78 kW, respectively. This increase in
the error of the probabilistic response can be attributed to
the increased heterogeneity of the TCL population.

Fig. 12: Power Demand on 1 Minute Time Scale

The fourth plot in Figure 10 shows that at each time
interval, the percentage of fixed TCLs remained over 40%.
Nonetheless, the potential for increasing the demand re-
mained near 8 MW, declining slightly after 9:00 due to the
rise in ambient temperatures (and thus a loss in demand
increase potential from heat pumps and baseboard heaters).
Overall, the population suffered from an insufficient potential
for decreasing demand. This could be addressed by better
conditioning the TCLs so that more remain in a flexible or
down only condition or by extending the forecasting horizon
beyond the next 5 minutes, allowing the aggregator and TCLs
to better prepare for future signals.
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D. Heterogeneous Population with Divide and Conquer

To address the error between the probabilistic response
pk and the signal r*, we have re-simulated the highly
heterogeneous population of N = 8,600 TCLs using the
divide and conquer approach. In other words, we have run
the ADMM algorithm 5 times. After each run, we fixed 20%
of the total population so that after the final run, all 8,600
TCLs are fixed. Additionally, between each run, the NV and d
parameters are adjusted according to the results of the newly
fixed TCLs. Lastly, as a warm start, the previous value of A
and adjusted values of Z and z are employed to initialize the
next ADMM run. If the error tolerance is violated at the end
of an ADMM run, the algorithm is terminated. For the first
ADMM run, the iteration limit is set to 20. For successive
ADMM runs, the limit is 10.

To improve the performance of the algorithm, we have
sorted the TCLs such that those with the highest power
demand are fixed first and those with the lowest are fixed
last. In other words, the order of consideration is heat
pump, electric water heater, electric baseboard heater, and
refrigerator.

The test results are presented in Figure 11. While we
have increased the total number of ADMM iterations at each
time interval, the RMSEs of the continuous and probabilistic

responses are now significantly reduced to 7.19 kW and 9.56
kW, respectively. This demonstrates that the TCLs can be
controlled such that the probabilistic response p% is within
the error tolerance of 10 kW. The success rate for the
time period simulated is 88.9%. Once again, the population
struggles to match the required demand decrease. In the
previous studies, the failed attempts terminated at 40 ADMM
iterations, the upper limit. In this study, failed attempts are
terminated after the first ADMM run of 20 iterations.
Lastly, because we are simulating each TCL with a one
minute time step, we can reproduce the power demand for
every minute, as shown in Figure 12. Because of the piece-
wise constant interpretation of the signal and the formulation
of the aggregator’s objective function, the electric power
demand of the TCL population has step-like appearance.

VI. CONCLUSIONS

In this paper, we have presented an alternative control
trajectory representation. This representation allows for the
modelling of a TCL as a generalized assignment problem
and fully recognizes the nonconvex constraints of hysteretic
dead-band systems. By relaxing the binary constraint, the
problem becomes convex and the optimal solution can be
interpreted as both a continuous and probabilistic solution.



We have also presented a formulation of the sharing
ADMM algorithm suitable for the distributed optimization of
TCLs. The formulation is highly parallelizable and requires
the broadcasting of only A* and (z* — z*). Given the
objective function of every agent is convex, the algorithm
is guaranteed to converge to an optimal solution.

Finally, we have applied the sharing ADMM algorithm
with TCL alternative control trajectory representation to
the problem of 5-minute renewable energy generation fol-
lowing. Using actual wind and solar generation forecasts,
ambient temperature records, and TCL parameters, we have
demonstrated how heterogeneous populations of TCLs can
be optimized to perform fast power system services. For
highly heterogeneous populations, we have shown that a
divide and conquer approach can be employed to minimize
the error between the probabilistic solution and the signal.

Using our sharing ADMM algorithm, we have demon-
strated the potential for TCLs to help maintain a con-
tinuous and instantaneous balance between generation and
load by participating in real-time ancillary service markets.
The deployment of such responsive load will be essential
for maintaining the stability of power systems with high
renewable energy penetration.

APPENDIX

A. Notation

To simplify equations, we employ the following notation
and abbreviations throughout the paper.

{1-norm:
N
lzll = |l (48)
i=1
{5-norm:
N
lell = | > ? (49)
i=1
Root Mean Squared Error:
1 N
RMSE = | =) (z;— 2;)? (50)
N i=1
Mean:
1N
T= ; x; (51)
Sum:
N
Ywi=Y (52)
i=1
Inner product:
N\ z)y =g (53)

with variable z, A € RY.
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