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Optimization of the Eddy-Diffusivity/Mass-Flux Shallow
Cumulus and Boundary-Layer Parameterization
Using Surrogate Models

W. Langhans1 , J. Mueller2 , and W. D. Collins1,3

1Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA,
2Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 3Department of Earth
and Planetary Science, University of California, Berkeley, CA, USA

Abstract Physical parameterizations in global atmospheric and ocean models typically include
free parameters that are not theoretically or empirically constrained. New methods are required to
determine the optimal parameter combinations for such models in an objective, exhaustive, yet
computationally feasible manner. Here we propose to apply computationally inexpensive radial basis
function (RBF) surrogate models to minimize a “cost,” or error, function of an atmospheric model or a
physical parameterization. The RBF is iteratively updated as more input-output pairs are obtained during
the optimization. The approach is used to optimize the eddy-diffusivity/mass-flux boundary-layer
parameterization of the convective boundary-layer in a single-column model framework. The optimization
based on surrogate models is able to identify parameter combinations that reduce the error of the untuned
default setting by 41%. The probability to detect a low-error solution increases rapidly especially over
the first tens of single-column model evaluations. In comparison, a quadratic polynomial model only
yields an error reduction of 17% since (a) high-order parameter interactions are not accounted for
and (b) the construction of the polynomial is not based on an iterative sampling approach. The RBF
surrogate models achieve this 17% error reduction for 40% of the polynomial model's cost. Interestingly,
one of the emerging optimal settings describes a pure mass flux parameterization without eddy-diffusivity
component. A second optimal solution is characterized by a plume fractional area of 20–30% and an
eddy-mixing time scale of ∼700 s.

1. Introduction
Global atmospheric, ocean, and Earth system models are steadily becoming more costly due to the
refinement of numerical grid resolutions and the ongoing efforts to incorporate new climate system com-
ponents and physical process parameterizations. For example, global atmospheric models will attain global
convection-permitting resolutions with O(1 km) grid spacings with the advent of exascale computers. In
addition, parameterizations for microphysical, aerosol, turbulent, and other physical processes are growing
in complexity and in the number of free parameters. The latter are unfortunately often poorly constrained by
either observations or theory. As a result, parameterizations are improved through calibration, also known
as “tuning,” to increase the fidelity of the model relative to reference data sets. This may imply the minimiza-
tion of a cost function or the introduction of a Bayesian formulation of the calibration problem (Kennedy
& O'Hagan, 2001). In this paper we are interested in the former, an appreciably faster approach to parame-
ter optimization. To minimize the computational intensity of model tuning while simultaneously reducing
model error as much as practicable, computationally inexpensive methods are needed in order to identify
the parameter configuration(s) that lead to the optimal outcome.

The optimization of weather and climate applications presents several challenges. First, there are typi-
cally tens of tunable parameters. Second, each individual simulation is very expensive. Third, an analytical
expression of the cost function and its derivatives is not available (i.e., black box). And finally, the cost func-
tion can be expected to be multimodal with several local minima. Therefore, gradient based optimization
methods (see Nocedal & Wright, 1999) are usually not applicable because they require gradient informa-
tion (the approximation of gradients requires too many function evaluations) and usually stop at a locally
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optimal solution. Evolutionary algorithms such as genetic algorithms (Holland, 1992) do not require gra-
dient information, but they too require a large number of function evaluations (often many hundreds
or thousands) in order to converge to a solution. In order to efficiently solve computationally expensive
black-box optimization problems, Booker et al. (1999) introduced the idea of exploiting computationally
cheap surrogate models to approximate the expensive simulation throughout the optimization search. The
main idea is to exploit the predictions of the surrogate model when making iterative sampling decisions. Dif-
ferent types of surrogate models have been developed in the literature. For example, polynomial regression
models (Myers & Montgomery, 1995) have widely been used to study the relationship between input param-
eters and the experimental or simulation response. As reviewed by Hourdin et al. (2017), such approaches
have also been applied to atmospheric modeling in the past. For example, Neelin et al. (2010) successfully
used a quadratic polynomial model to tune a global climate model and the idea has been extended to include
cheaper lower-resolution versions of a climate model (Williamson et al., 2012). The quadratic model has led
to success also in regional climate modeling (Bellprat et al., 2012) where climate fields were found to vary
smoothly in parameter space. However, the applicability of quadratic polynomial models to the tuning of
small-scale processes like boundary-layer clouds has not yet been explored.

Interpolation approximation models such as radial basis functions (RBFs; Powell, 1992) have been used
in many optimization algorithms (Müller et al., 2013; Regis & Shoemaker, 2007, 2013) and applied to a
variety of science problems, for example, watershed management (Müller & Woodbury, 2017), methane
transport in the community land model (Müller et al., 2015), and the multiobjective design of airfoils (Müller,
2017). Closely related to using surrogate models for optimization purposes are Gaussian process emulation
approaches that have been used to quantify the uncertainty of microphysical parameters (Johnson et al.,
2015; Lee et al., 2012). In this paper, we make use of RBF models to tune a physics parameterization for
weather and climate applications and compare the approach to Neelin et al.'s (2010) quadratic model.

The largest uncertainties in climate projections have been shown to originate from the parameterization of
clouds (Bony & Dufresne, 2005; Bony et al., 2006; Cess et al., 1989; Soden & Held, 2006; Webb et al., 2013).
The parameterization of convective clouds is of particular concern since it was identified as the leading
source for differences in climate sensitivities among models (Zhao, 2014; Zhao et al., 2016). The optimization
approach is therefore tested here for the optimization of a shallow-cumulus and boundary-layer parameter-
ization. This type of parameterization is expected to remain part of global atmospheric models for several
more decades until even the smallest-scale clouds become resolved on the computational grid (Schneider,
Teixeira, et al., 2017). We choose to optimize a scheme based on the eddy-diffusivity/mass-flux (EDMF)
approach since this scheme offers considerable potential for widespread adoption due to the option to unify
PBL turbulence, moist shallow, and deep convection (e.g., Soares et al., 2004; Sušelj et al., 2013; Tan et al.,
2018) and its extensibility to be scale aware (Sakradzija et al., 2016). We are particularly interested in the
optimization of EDMF for the convective boundary layer (CPBL). This will serve as a relevant test bed for
more complex future tasks such as optimizing global convection-permitting models with many more free
parameters (e.g., due to microphysics) or training a traditional GCM through locally targeted large-eddy
simulations (LES; Schneider, Lan, et al., 2017).

The total EDMF subgrid-scale flux is decomposed into two contributions from eddy-diffusivity and
mass-flux terms. A theory for the relative partitioning between these two contributions does not exist. As a
result, the magnitudes of the two terms depends on free parameters controlling each flux component. The
optimization will thus also demonstrate which flux partitioning performs best for the CPBL. Some nonlo-
cal convective flux is necessary to (a) establish the observed nonlocal counter-gradient flux in the top of
the CPBL and to (b) admit condensation in plume-like convective clouds (see Siebesma et al., 2007). How-
ever, an optimal scale at which the continuous spectrum of boundary-layer eddies should be divided into
small eddies and large plumes has never been theoretically established. Even pure mass-flux models without
eddy-diffusivity flux have been proposed for the parameterization of the CPBL (Cheinet, 2003, 2004).

The goals of this paper are to

1. develop a computationally cheap framework to optimize physics parameterizations based on RBF surro-
gate models,

2. compare the cost and efficiency of RBF surrogate models and Neelin et al. (2010)'s quadratic polynomial
model, and

3. determine the optimal EDMF parameter combination for the cloud-free and cumulus-topped CPBL.
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Table 1
Summary of the Six Free Parameters in EDMF, Their Tested Range, and Traditionally Used Values

a𝜃v
aqt

𝜏 l ŵmin; a 𝜏𝜖 b𝜖
Description Plume corr. coeff. Eddy-mixing Min. velocity of plumes; Entrainment Plume drag

for 𝜃v for qt time scale fractional area time scale coefficient
Range [0–4] [0–4] [0–2000] s [0–2]; [50–2.3%] [100–1000] s [0–2]
Default value 0.58 0.32 400 s 1.28; 10% 400 s 0.4

Note. EDMF = eddy-diffusivity/mass-flux.

The EDMF parameterization and its free parameters are described in section 2. The optimization strat-
egy based on RBF surrogate models is introduced in section 3. Section 4 presents the results from the
optimization and from the comparison between the RBF surrogate models and the low-order polynomial
model.

2. Eddy-Diffusivity/Mass-Flux Parameterization
Local eddy-diffusivity schemes without counter-gradient term are unable to model the stable stratification
in the upper parts of the CPBL where nonlocal transport is considerable (Deardorff, 1966; Stull, 1984). Non-
local mass-flux schemes, on the other hand, have traditionally been used to model moist deep convection
(Arakawa, 1969). The combined EDMF approach was first introduced by Teixeira and Siebesma (2000) and
Siebesma et al. (2007). It is formulated around the assumption that vertically coherent and strong orga-
nized plumes are represented by steady state plumes while the remaining turbulence is attributed to small
diffusive eddies.

In a multiplume model with Np represented classes of different rising plumes (see also Cheinet, 2003;
Cheinet & Teixeira, 2003; Tan et al., 2018), the total EDMF flux of a scalar 𝜙 is partitioned via

w′𝜙′(z) =
Np∑
i=1

Mi(z)[𝜙u
i (z)−𝜙

e(z)] − (1 −
Np∑
i=1

ai)K(z)dz𝜙
e(z), (1)

into a convective contribution from plumes and a diffusive contribution from eddies in the plumes' environ-
ment. Here Mi is the convective flux Mi = aiwu

i of plume class i with fractional area ai and vertical velocity
wi. The prime (′ ) represents the departure from the mean. Indices u and e indicate updraft and environment
properties, respectively, and K is an eddy diffusion coefficient in the environment. The multiplume model
is designed to represent either the full range of or parts of the continuum of weak to strong eddies. Six free
parameters have been identified to be critical (see Table 1). These parameters dictate the contributions from
the multiplume and the eddy-diffusivity part, respectively, and are explained in the next two sections.

2.1. Multiplume Model
The multiplume model is based on a discrete spectrum of nonprecipitating steady state entraining plumes.
Its design follows closely the scheme proposed by Cheinet (2003). Each discrete plume represents a class of
updrafts, which share the same initial thermodynamic and kinematic conditions. Through similarity the-
ory the initial conditions of plumes at the surface are linked to surface fluxes and to assumed probability
distributions for the vertical velocities. For w > 0 the latter is assumed to be a Gaussian with a standard
deviation 𝜎w, that is, half of the grid box has rising motion near the surface. A selected range of the distri-
bution between the minimum and maximum vertical velocities denoted by wmin and wmax, respectively, is
then discretized using Np = 40 plume classes. In a typical EDMF setup, wmin is chosen to be larger than
zero and the weakest eddies will be allocated to the the eddy diffusivity process. A pure mass flux model
following Cheinet (2003) would dictate wmin = 0 and cover all parts of the domain with rising motion, i.e.∑

iai = 0.5. The lower bound is set by the scaled velocity ŵmin = wmin∕𝜎w, with the hat indicating the scal-
ing operation. The upper bound is fixed at a sufficiently large velocity ŵmax = 3.5. Therefore, ŵ min sets the
total surface plume area fraction a.

To obtain thermodynamic properties for each plume class in the surface layer, we follow Cheinet (2003) and
Lenschow et al. (1980) and diagnose the standard deviations of w, 𝜃v, and qt from surface layer similarity
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relations. The plume properties (indicated by index u) in the surface layer are parameterized by

qu
ti = qt + aqt

wu
i 𝜎qt

∕𝜎w (2)

𝜃u
vi = 𝜃v + a𝜃v

wu
i 𝜎𝜃v

∕𝜎w (3)

with the bar indicating the grid mean. For example, Cheinet (2003) uses correlation coefficients aqt
= 0.32

and a𝜃v
= 0.58. Plumes then rise until a zero vertical velocity is reached. The velocity profiles are obtained

following Simpson and Wiggert (1969), as

1∕2 dz(wu
i )

2 = abBu
i − b𝜖𝜖

u
i (w

u
i )

2, (4)

with the right-hand side terms describing effective buoyancy acceleration and drag. Coefficients ab and b𝜖

are the effective buoyancy and the entrainment coefficient, respectively, and 𝜖u
i is the fractional entrainment

rate of the updraft. Using LES data de Roode et al. (2012) pointed out a linear correlation between the two
rhs terms and suggested the relation ab = 𝛾b𝜖 + 𝜂. In line with their study we use 𝛾 = 0.4 and 𝜂 = 0.3 to
derive ab from the remaining drag coefficient b𝜖 . Fractional entrainment is described by the frequently used
parameterization introduced by Neggers et al. (2002), as

𝜖u
i = (𝜏𝜖wu

i )
−1, (5)

with 𝜏𝜖 the entrainment time scale. At each height a saturation adjustment scheme is used to infer the
condensed water content qu

li.

2.2. Eddy-Diffusivity Closure
A 1.5-order closure is applied to obtain the eddy-viscosities such that K = 0.5le1/2 with e the turbulent kinetic
energy in the environment of plumes and l is the mixing length scale. The formulation of the prognostic
equation for e follows Teixeira and Cheinet (2004) and is specifically designed to model the evolution of the
CPBL. Following Sušelj et al. (2013) the mixing length l is defined as

l = l23 + (𝜅z − l23)e−z∕100 m (6)

l−1
23 = l−1

2 + l−1
3 (7)

l2 = 𝜏l
√

e (8)

l3 =
⎧⎪⎨⎪⎩

max
(
Δz∕2, 0.7

√
e∕N2

b

)
if N2

b > 0

∞ if N2
b ≤ 0

(9)

with 𝜏 l an eddy-mixing time scale for the mixed layer, Nb the Brunt-Väisälä frequency, and 𝜅 = 0.4 the von
Kármán constant.

In summary, the five parameters a𝜃v
, aqt

, either ŵmin or a, 𝜏𝜖 , and b𝜖 control the flux of the multiplume
model. To first order the system of governing parameterizations described above is such that if entrainment
becomes larger or the fractional area becomes smaller, then the mass-flux component will become smaller.
The eddy-diffusivity flux is controlled through the eddy-mixing time scale 𝜏 l, with a larger 𝜏 l yielding more
vigorous mixing. Table 1 shows the parameter ranges tested in this study and the default values typically used
in traditional EDMF specifications. In section 4 we contrast the behavior of the EDMF scheme operating
under these default versus our optimized settings.

3. Optimization Strategy
3.1. Definition of the Objective Function
Two types of representative convective boundary layers are considered: a cloud-free convective boundary
layer (CPBL; Nieuwstadt et al., 1993; Teixeira & Cheinet, 2004) and a specific case of a steady state maritime
boundary layer topped by trade-wind cumuli observed during the Barbados Oceanographic and Meteoro-
logical Experiment (BOMEX; Siebesma et al., 2003). LESs of both cases are performed using the System for
Atmospheric Modeling (SAM; Khairoutdinov & Randall, 2003) to serve as benchmarks for the evaluation
of the single-column model (SCM). Domains discretized using 512 × 512 × 150 (256 × 256 × 200) points
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in the two lateral and one vertical dimension, respectively, with grid point volumes of 25 × 25 × 20 m3

(25 × 25 × 25 m3) are used for the BOMEX (CPBL) simulation.

The objective function measures the distance between our SCM simulations and these LES benchmarks
and is based on vertical profiles of grid-mean values and their fluxes and on vertical profiles of the ther-
modynamic properties of the fastest plumes. Minimizing the objective function therefore ensures the
maximization of both the large-scale and plume-scale skill of the SCM. Both grid-mean values and fluxes
are included in the formulation, despite being linked. The grid-mean values are critical in terms of GCM
performance since other parameterizations (e.g., radiative transfer) are only affected by them, but not by
higher-order terms. The fluxes are included here since differences due to the parameter setup first materi-
alize in different fluxes and only gradually affect the grid-mean values, especially in the steady state case.
All considered quantities have been averaged in time. For the transient CPBL, two 20-min time windows
centered around hour three and five are utilized. For the BOMEX case quantities have been averaged over
the third simulation hour. We interpolate the averaged LES data to the equidistantly-spaced grid (Δz = 20
m) of the SCM. The root-mean-square error (or distance) between profiles of a SCM quantity 𝜓 and the
corresponding LES benchmark 𝜓b is then defined for a position x in the parameter space, as

r𝜓 (x) =

[
1

Nz

Nz∑
k=1

(𝜓(x, k) − 𝜓b(k))2

]1∕2

, (10)

where Nz is the number of vertical levels in between the surface and the maximum evaluation height of 2,900
m. This distance is evaluated for the liquid water potential temperature 𝜃l, the total water mixing ratio qt, the
heat flux F𝜃l

= cp𝜌w′𝜃′l , the latent heat flux Fqt = Lv𝜌w′q′
t , and the mean water and buoyancy excess (q′

t and
𝜃′v) of the fastest plumes covering 1% of the horizontal domain. The latter have been diagnosed from the LES
simulations based on grid points with a vertical velocity larger than the 99th percentile. In case of BOMEX,
r𝜓 is evaluated also for cloud liquid mixing ratio qc. In case of the CPBL, we additionally evaluate the bulk
static stability of the upper CPBL (between 700 m and the inversion) using a linear regression of 𝜃. For this
specific parameter we define r𝜓 based on the absolute difference to the static stability of the benchmark.
Thus, for both cases seven performance metrics are included. These are scaled by the respective average
values r𝜓 as determined from a grid sampling of the six-dimensional parameter space. The grid sampling
divides each parameter range into equidistant intervals and evaluates the objective function at the resulting
96 grid points by running the SCM. Then the average of the seven scaled distances is taken as a final distance.
In case of BOMEX, this final distance defines the objective function. In case of the CPBL, we average the
3- and 5-hr final distances to arrive at the objective function. The overall objective function is taken as the
average of the case-specific objective functions.

3.2. Optimization Using RBF Surrogate Models
The optimization of the free parameters in EDMF is complicated by the computational expense of running
the SCM repeatedly, the absence of analytic partial derivatives of its response surfaces, and the multimodal-
ity and “black box” characteristics of its emergent behavior. In response to these difficulties, we employ an
adaptive surrogate model optimization approach. In fact, we compare the performance of two recent surro-
gate optimization methods, namely, the Metric Stochastic Response Surface (StochRBF hereafter) method
(Regis & Shoemaker, 2007) and the DYnamic COordinate search using Response Surface models (DYCORS
hereafter) method (Regis & Shoemaker, 2013). Both methods start with an initial experimental design to
decide at what points the objective function gets evaluated first. An RBF model is computed based on this
initial data. Generally speaking, an RBF model is an interpolating model that makes predictions for an
unsampled parameter vector based on its distance to already evaluated parameter vectors. We use a cubic
RBF model, that is, we use the cubed distance for interpolation (see Appendix A for the general definition
of the RBF model). A large set of candidate points is generated by (1) perturbing the best parameter vector
that has been found so far and (2) by randomly generating points from the parameter space. The candidate
points are ranked based on (a) their distance to the set of already evaluated points and (b) their function
values as predicted by the RBF model. A weighted combination of these two criteria determines the best
candidate point at which the next expensive function evaluation is done. The RBF model is then updated
with the new data and the method iterates through candidate point generation, computation of the criteria,
evaluation of the expensive simulation at the newly selected point, and the update of the RBF model until
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Figure 1. The average (lines) and standard deviation (vertical bars) of the single-best objective function values of 20 trials are shown as a function of the
number of SCM evaluations performed for (a) StochRBF and (b) DYCORS. The objective function value obtained with the default parameter combination
(DEF) is shown as reference (green dot in (a) and (b)). (c) The fraction of StochRBF (solid) and DYCORS (dashed) trials that detected a parameter combination
that reduces the error of the default setting by 0%, 10%, 20%, 30%, 35%, and 40% as function of the number of evaluations.

a specified cutoff criterion is reached. Here iterations stop after 300 evaluations. We refer the reader to the
above cited works for the implementation details.

The main difference between StochRBF and DYCORS lies in the approach to perturbing the values of the
best parameter vector found so far. While StochRBF perturbs all parameters, DYCORS only perturbs a subset
of the parameters. In particular, DYCORS perturbs each parameter with a probability that decreases as the
number of function evaluations increases and approaches the maximum number of evaluations (here, 300).
Thus, the DYCORS search can be interpreted as one that becomes increasingly more local as fewer and fewer
parameters are perturbed. Second, when random perturbations are added to the best point found so far, it is
possible that the resulting candidate point falls outside the bounds of the parameter space. StochRBF simply
projects the point onto the corresponding boundary that has been exceeded, whereas DYCORS reflects the
point to inside the parameter space. Thus, StochRBF is more likely to generate and sample points that lie on
the boundary.

Note that both algorithms are inherently stochastic because the candidate points are generated by adding
random perturbations to the parameters (or a subset of them) of the best point found so far. Thus, in order
to obtain statistics about the average performance of the algorithms, for example, we run each algorithm 20
times starting from a different initial experimental design. This allows us to investigate the robustness of the
results to this randomness. The goal of using the two algorithms is to examine if one outperforms the other
for our specific application, and thus to derive recommendations regarding whether or not an increasing
focus on the local search as done in DYCORS leads to better solutions and should therefore be preferred for
the type of optimization applications that we consider here.

Table 2
Overview of Parameter Combinations and Their Performances

Name a𝜃v
aqt

𝜏 l (s) ŵmin; a (%) 𝜏𝜖 (s) b𝜖 OF

DEF 0.58 0.32 400.00 1.28; 10 400.00 0.40 0.640
OPTS 0.52 0.74 729.00 0.88; 19 430.00 0.49 0.378
OPTD 0.49 0.73 719.00 0.58; 28 438.00 0.49 0.376
OPTS𝜏 l0 0.23 0.38 0.00 0.72; 24 457.00 0.56 0.378
MM_G 0.50 0.50 750.00 0.50; 31 550.00 1.00 0.532
MM_S 0.66 0.42 825.00 0.77; 22 493.00 0.99 0.529
OPTG 0.50 0.50 750.00 0.75; 23 438.00 0.50 0.380

Note. Shown are parameter values and objective function values OF for configurations discussed
in the text.
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Figure 2. Box plots showing parameter distributions (min, 25%, median, 75%, max) for the single-best configurations of 20 trials from (red) StochRBF and
(blue) DYCORS. The green dots show the default parameter values. The filled red and blue dots indicate the OPTS and OPTD configurations, respectively, and
red circles indicate the OPTS𝜏 l0 configuration, the best configuration found with 𝜏 l = 0 s.

3.3. Neelin's Quadratic Polynomial Model
The basic idea proposed by Neelin et al. (2010) is to design a second-order polynomial, as

�̃�(x̃)= 𝜙ref + x̃Ta + x̃TBx̃, (11)

to describe the behavior of 𝜙 across the parameter space. The linear and quadratic term describe the devia-
tion from a known reference value 𝜙ref as a function of the parameter perturbation vector x̃ = x − xref. The
reference point xref is defined to be the center of the parameter domain. Here vector a contains the linear
coefficients for each parameter, and matrix B contains the quadratic and interaction terms in the diagonal
and off-diagonal elements, respectively. In Neelin et al. (2010), 𝜙 represents a climatological field such as
surface precipitation. Here we utilize this polynomial to model the profiles of our quantities of interest. For
example, 𝜙 represents the total water mixing ratio at a specific model level or the bulk stability of the CPBL.

To obtain the coefficients a and B a few evaluations of the SCM are required at so-called saturation points
in the six-dimensional parameter space. As further described in Appendix B, the number of evaluations
needed is 2d2, which equals 72 for d = 6. The objective function for a specific parameter combination can
then be evaluated by following the same procedure as outlined above for the SCM.

4. Results
4.1. Performance of the RBF Surrogate Models
Figures 1a and 1b show the average and standard deviation of the single-best objective function value (also
referred to as error from now on) of the 20 trials as a function of the number of SCM evaluations performed.
For each trial the single-best error is the lowest objective function value detected over all evaluations con-
ducted so far. For both algorithms the average error decreases rapidly over the first ∼90 evaluations. The
average then asymptotes to a value of about 0.38. After 300 evaluations the two algorithms reach a single-best
parameter combination denoted by OPTS (for StochRBF) and OPTD (for DYCORS) with a remaining error
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Figure 3. Results obtained for the CPBL simulation using the default parameter combination DEF, the two optimized configurations OPTS𝜏 l0 and OPTD, and
the LES. Shown are (a) 𝜃, (b) qt , (c) F𝜃l

, (d) Fqt
, (e) eddy-diffusivity (solid) and mass-flux (dashed) parts of F𝜃l

, (f) eddy-diffusivity (solid) and mass-flux (dashed)
parts of Fqt

, (g) perturbation virtual potential temperature 𝜃′v, and (h) perturbation water mixing ration q′t of the fastest plumes covering a fractional area of 1%.
Panel (a) lists the bulk stability of the upper CPBL for the various configurations.

of 0.378 and 0.376, which corresponds to an error reduction relative to the default setting (DEF) by 41% (see
Table 2).

The probability of a single trial to reduce the default error by a certain percentage is shown in Figure 1c.
Generally, the chance to improve by a certain percentage increases mostly during the first tens of evaluations
and less during subsequent evaluations. The probability to perform as well or better than the default con-
figuration reaches 100% after only 32 and 30 evaluations with the StochRBF and DYCORS algorithm,
respectively. As another example, for StochRBF the probability to reduce the error by 30% increases from
0% after 13 evaluations to 90% after 98 evaluations.

Parameter distributions based on the 20 single-best configurations (including OPTD and OPTS) are shown
in Figure 2 for both algorithms. The two algorithms find very similar medians and interquartile ranges.
The four parameters a𝜃v

, aqt
, 𝜏𝜖 , and b𝜖 have narrow interquartile ranges. Since all of these configurations

result in a low error, this points at a significant sensitivity to these parameters. In contrast, 𝜏 l and ŵ min have
wide interquartile ranges indicating that the error might be less sensitive to the eddy-mixing time scale and
the plume area fraction. The alternative explanation could be that these distributions are multimodal and
therefore have wider ranges. We will explore this idea further later in the paper. Many configurations exist
with plume fractional areas larger than in the default setup (i.e., a smaller ŵ min). Note that the median of
the 𝜏 l distribution is at least two times as large as the default value of 400 s. The OPTS and OPTD config-
urations are shown by the red and blue markers, respectively. These single-best configurations detected by
the algorithms are very similar (see also Table 2) and parameter values fall into the interquartile range of
the respective parameter distribution. The main differences to the default setting are larger plume fractions,
larger eddy-mixing time scales, and larger surface moisture perturbations of plumes.

We further find that for StochRBF three out of the 20 trials find a single-best configuration with 𝜏 l = 0, that
is, a pure plume model without eddy-diffusivity mixing. DYCORS on the other hand never evaluates the SCM
at a point with 𝜏 l = 0 because it reflects points falling outside the parameter space back inside rather than
placing them on the boundary. StochRBF appears more suitable for detecting such outlier configurations. In
fact, 38 and 1 out of the best 60 and best 6, respectively, detected configurations in StochRBF have 𝜏 l < 100
s while only 3 of the 60 best and none of the 6 best configurations in DYCORS have 𝜏 l < 100 s. Note that
of those 38 with 𝜏 l < 100 s, 36 have a 𝜏 l = 0 s. This is an important finding as more than half of the best
1% of all 6,000 sampled configurations in StochRBF have 𝜏 l = 0 s and none in DYCORS. This difference
is a consequence of the different treatments of the boundaries and the fact that StochRBF does a thorough
global search, while DYCORS spends more time on the local search. The best configuration with 𝜏 l = 0,
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Figure 4. Results obtained for the BOMEX simulation using the default parameter combination DEF, the two optimized configurations OPTS𝜏 l0 and OPTD,
and the LES. Shown are (a) qt , (b) qc, (c) F𝜃l

, (d) Fqt
, (e) eddy-diffusivity (solid) and mass-flux (dashed) parts of F𝜃l

, (f) eddy-diffusivity (solid) and mass-flux
(dashed) parts of Fqt

, (g) perturbation virtual potential temperature 𝜃′v, and (h) perturbation water mixing ration q′t of the fastest plumes covering a fractional
area of 1%.

OPTS𝜏 l0, is also listed in Table 2 and indicated by the red circles in Figure 2. To check if we could find even
better configurations for the pure plume model we reduce the number of free parameters to five and fix
𝜏 l = 0 s. Indeed, if we repeat the optimization this way then both algorithms yield single-best configurations
with an error of 0.374, slightly smaller than those of OPTS and OPTD. We also tested a version of EDMF
in which we set the mixing length l to zero (𝜏 l = 0 still allows for minuscule mixing in the surface layer)
and confirmed our findings regarding the high quality of a plume-only parameterization. OPTS and OPTD
are based on very similar setups, but the equally-well performing OPTS𝜏 l0 configuration is conceptually
completely different. As seen in Table 2, OPTS and OPTD apply similar parameter configurations, result in
the same considerable improvement over the default setup, and yield the same profiles for the CPBL and
BOMEX cases (therefore, only OPTD is shown and discussed below).

Figure 5. (a) The average objective function value in the ŵmin − 𝜏l parameter space computed for the best 0.1% of the
grid-sampled configurations. (b) The minimum values detected in this parameter plane. In both panels white areas
indicate that no configurations belong to the best 0.1%. The bullets show (white) OPTG detected by grid sampling,
(gray) OPTD detected by DYCORS, and (black) OPTS𝜏 l0 detected by StochRBF.
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Figure 6. Frequency distributions for (black) the best 0.1% combinations of the 96 single column model results and (blue) the best 0.1% of the 96 grid-sampled
quadratic polynomial model results.

Figure 3 shows the profiles used when constructing the objective function for the CPBL case. Only the time
averages centered around hour three are shown. With the default setup the eddy-diffusivity flux is active in
the lowest 1,000 m only, while above that only the mass-flux component is active (Figures 3e and 3f). The
described transition causes an irregularity at around 1,000 m that affects all profiles shown in Figure 3 and
is particularly well visible in Figures 3a, 3g, and 3h. While this particular partitioning of the flux does allow
for a stably stratified upper CPBL, the bulk stability is too large in this setup (Figure 3a). Figure 4 shows the
profiles for BOMEX. In this case, the default setup leads to too small vertical fluxes (Figures 4c and 4d), to a
too small cloud liquid water content (Figure 4b), and slightly off profiles of the plume properties (Figures 4g
and 4h).

The OPTS𝜏 l0 configuration is just as skillful as OPTS and OPTD but, interestingly, based on a completely
different flux partitioning (Figures 3e and 3f and 4e and 4f). Basically all flux is carried by the mass-flux
component. The increase in the convective flux appears to be mostly made possible by a larger entrain-
ment time scale. The OPTD configuration increases the eddy-diffusivity time scale such that the layer with
active eddy-diffusivity flux becomes slightly deeper than in the default setup (Figures 3e and 3f). OPTD also
increases the convective moisture flux near the surface by using a larger surface moisture perturbation for
plumes.

While both OPTS𝜏 l0 and OPTD improve each of the two cases individually, the improvements are much
more significant for the CPBL case. Both optimized settings, OPTD and OPTS𝜏 l0, improve the simulation
of the CPBL by capturing the stability of the upper CPBL more accurately (Figure 3a) and by providing
better thermodynamic profiles of the fastest plumes (Figures 3g and 3h). The profiles of the two solutions
are mostly indistinguishable but are based on a completely different flux partitioning.

We now want to address the question whether the larger variances of 𝜏 l and ŵmin (seen in Figure 2) are a
result of a multimodal behavior of the objective function. To this end, we analyze the best configurations in
the ŵmin − 𝜏l parameter plane. Figure 5a shows the average objective function value for the best 0.1% of all
grid-sampled configurations. Figure 5b shows the minimum value found for each combination of the two
parameters. In both plots excellent solutions can be found across a wide range of ŵmin and 𝜏 l values. The best
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Figure 7. The objective function value shown for the plane spanned by the scaled plume vertical velocity ŵ min (which
sets the plume area fraction) and the eddy-mixing time scale 𝜏 l for (a and c) the single column model and (b,d) the
quadratic polynomial model. The coordinates of the remaining four parameters are those of (a and b) the reference
point xref and those of (c and d) the OPTG solution.

among the top 0.1% configurations are found in the bottom-left quadrant and the center of this parameter
plane. There is no strong evidence for the existence of isolated regions of very small errors. Rather, a wide
spectrum of combinations is found to lead to low errors. Let us define the best configuration detected by
the grid sampling as OPTG. The OPTG and OPTD configurations are indicated by white and gray bullets,
respectively. With plume fractions around 20–30% and a 𝜏 l of about 750 s they are located closer toward the
center of the plain. Very low objective function values can be found for many parameter pairs between those
and the bottom-left corner (plume-only configurations with 50% plume area fraction). StochRBF samples
the low errors in the bottom-left corner of the plane but detects an even better sample, OPTS𝜏 l0 (black
bullet), that is not captured by the grid sampling. This indicates that more detailed distributions would be
obtained by increasing the density of the grid sampling and that a 50% plume fraction is not necessary to
achieve excellent skill of the plume-only configuration, at least for this specific multiplume model.

4.2. Comparison Against the Quadratic Polynomial Model
The quadratic polynomial model has been used to predict the objective function values on a six-dimensional
grid using nine points in each parameter direction (i.e., 96 points) equally spaced between the minimum and
maximum of each parameter range. To test the influence of this sampling strategy, we also stochastically
selected 106 points at which we evaluated the objective function with the quadratic polynomial model. The
best parameter combinations obtained with the quadratic polynomial model on the grid and stochastically
(MM_G and MM_S) result in errors of 0.532 and 0.529 (Table 2). This corresponds to an error reduction of
only 17%. The grid sampling of the SCM using the described 96 points yields a best configuration, OPTG,
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that reduces the error of the default setup by 41% (see Table 2) indicating that the poor performance of the
quadratic polynomial cannot be blamed on the grid-sampling strategy.

Remember that the RBF surrogate model optimizations used more evaluations than the 72 used to fit the
quadratic polynomial. Still, after 72 evaluations 20 and 19 out of StochRBF's and DYCORS' 20 trials found a
single-best solution with an error smaller than the error of the best estimate from the quadratic polynomial.
The average single-best error after 72 evaluations is 0.422 and 0.416 for StochRBF and DYCORS, respectively.
This still amounts to an average error reduction of 35%. In other words, for the same cost the surrogate
models still on average reduce the error of the quadratic polynomial by 21%. Further, StochRBF and DYCORS
reach an average single-best error equal to or smaller than the error of the quadratic polynomial after only
27 evaluations. The same accuracy is therefore accomplished by the RBF surrogate models with only ∼40%
of the quadratic polynomial's cost.

To better understand why the quadratic polynomial model performs much worse, we construct fre-
quency distributions for all six parameters. We are interested here in the combinations that perform best.
Figure 6 thus shows distributions based only on the best 0.1% of all configurations from both the 96

grid-sampled SCM simulations and the 96 grid-sampled quadratic polynomial model evaluations. The
results from the stochastically-sampled quadratic polynomial model are very similar to the grid-sampled
ones and therefore not shown.

The quadratic polynomial model suffers from two major deficiencies. First, the frequency of small and large
ŵmin (i.e., area fraction) is underestimated (Figure 6d). Instead of having a pronounced peak in the center
of the range, the SCM shows a rather homogeneous distribution indicating that good solutions exist across
all convective area fractions. Second, the distribution for b𝜖 peaks at a too large value (Figure 6f). Further,
the subtle increase in frequencies toward the minimum value of 𝜏 l is not captured by the polynomial model
which instead models a rapid drop in frequencies.

Apparently, the second-order truncation of the quadratic polynomial model is insufficient to model the
behavior of the CPBL and BOMEX cases across the parameter space. This is further illustrated in Figure 7
which shows the error as a function of two parameters. As an example, we again show here the behavior in
the ŵmin − 𝜏l plane, but insufficiencies could be demonstrated for any other parameter pair. By design the
quadratic polynomial model performs best for planes through the reference point since higher-order terms
involving other parameters are zero. This indeed leads to a reasonable agreement with the SCM at the ref-
erence point (Figures 7a and 7b). However, the error is no longer reproduced accurately by the quadratic
polynomial model for planes that run through points away from the reference point. Figures 7c and 7d
illustrate this for the same parameter pair but analyzed at the global minimum, OPTG, detected by grid sam-
pling of the SCM. The quadratic polynomial model does not pick up the low errors found in the center and
bottom-left corner of this plane. This indicates that terms describing correlations between three parameters
or more cannot be neglected if the true boundary-layer state is to be replicated in parameter space. The RBF
surrogate models are not subject to the same limitation since they are by construction more flexible and
unlike a polynomial model, they do not by design impose a certain “shape” (e.g., quadratic) on the objective
function.

5. Conclusions
To our knowledge this is the first time that RBF surrogate models have been applied to the optimization of
a physical parameterization of an atmospheric model. Two algorithms based on RBFs, the Metric Stochas-
tic Response Surface (StochRBF) method (Regis & Shoemaker, 2007) and the DYnamic COordinate search
using Response Surface models (DYCORS) method (Regis & Shoemaker, 2013), have been utilized to opti-
mize an EDMF boundary layer and shallow cumulus scheme for the convective boundary layer. The results
are very encouraging since both algorithms lead to a significant error reduction of 41% relative to the default
model setup. In contrast, a frequently used quadratic polynomial model (see Neelin et al., 2010) leads to a
reduction of only 17%. While the quadratic polynomial model was found sufficient for the optimization of
global climate and regional climate models, it was here shown that for the optimization of a boundary-layer
parameterization the higher-order terms and/or a better sampling strategy are critical to the functional
form of the error. In contrast to polynomial models, RBFs do not impose a certain functional form (such as
quadratic) on the objective function, and they are therefore more flexible when modeling nonlinearities. The
major disadvantages of using polynomial models of a certain degree is that (1) they are highly unreliable for
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making predictions globally if the true underlying function does not look like a polynomial of the chosen
degree, and (2) the number of samples that are needed to fit a polynomial of higher order quickly becomes
infeasible when function evaluations are expensive. Thus, even if fitting a cubic polynomial to our data, we
do not expect it to outperform the RBF surrogate model because much more than 72 points are needed to fit
a cubic polynomial, and as shown above, the RBF models on average converge during the first ∼100 evalu-
ations. Another major difference between the methods is the adaptivity of the RBF surrogate models. The
quality of the latter is iteratively improved as new information is obtained. The method proposed by Neelin
et al. (2010), on the other hand, is a one-shot approach in which the quadratic model is built once and then
never updated or improved.

Both RBF algorithms are inherently stochastic due to the randomness applied during the selection of eval-
uation points. It is found that the probability to detect configurations with a certain error reduction rapidly
increases over the first tens of evaluations. Thus, on average the skill of the quadratic polynomial model
is reached for only 40% of its cost. It is hoped that the approach can therefore be applied also to problems
with a larger number of tunable parameters such as, for example, encountered in a cloud-resolving model
with a full physics package. The stochasticity of these algorithms could even be exploited to represent the
model uncertainty of physical parameterizations (e.g., Weisheimer et al., 2014) or to account for the natural
variability of small-scale processes (e.g., Dawson & Palmer, 2015).

By design DYCORS reflects out-of-bounds evaluation points back into the parameter domain while
StochRBF places them right on the boundary that was overshot. Further, StochRBF performs a more thor-
ough global search in the parameter space while DYCORS focuses on a more local search. As a consequence,
StochRBF is able to detect excellent solutions with a zero eddy-mixing time scale, while DYCORS is unable
to discover any solutions at the boundary of the parameter space. More than half of the best 1% of all sam-
pled configurations in StochRBF have 𝜏 l = 0 s (i.e., the value of the lower boundary) and none in DYCORS.
Both algorithms pick up another optimal solution with 𝜏 l ∼ 700 s and a fractional area of about 20-30%.

This suggests that the default EDMF can be improved significantly by either turning to a pure plume model
or by specifying larger fractional areas and simultaneously increasing the eddy-mixing time scale. Of course,
both versions require an EDMF formulation that does not apply the assumption of small plume fractional
areas. Interestingly, high-density grid sampling also revealed that excellent configurations can be found for
a wide range of combinations of the eddy-mixing time scale and the convective fractional area.

While conceptually different in terms of flux partitioning, the two optimal configurations yield a nearly
indistinguishable boundary layer behavior. It is unclear at this point why these two models deliver the same
behavior, and we hope future research will address this question. Note that multiplume schemes without
eddy-diffusivity term have had great success with the modeling of convective boundary layers (e.g., Cheinet,
2003, 2004) and even successful implementations of EDMF into operational global models are found to
have negligible eddy-diffusivity fluxes (Sušelj et al., 2014). Also note that our conclusions are based only on
two cases with convective boundary layers. An extension to other cases would be needed to provide general
guidelines for the tuning of EDMF for, for example, operational applications. Further, we only studied the
convective boundary layer without shear. It seems plausible, however, that shear-driven turbulence can be
added successfully to a pure plume model and be parameterized with an eddy-diffusivity term.

Appendix A: RBFs
The algorithms we employ in this work use RBFs (Powell, 1992) to approximate the expensive objective
function. Generally, one could use other types of surrogate models such as kriging (Matheron, 1963), poly-
nomial regression models (Myers & Montgomery, 1995), or ensembles of surrogate models(Müller & Piché,
2011; Müller & Shoemaker, 2014). RBFs have the property that they are interpolating, which is convenient
in our case because the objective function is deterministic and an interpolating model will repredict the true
function value at an already evaluated point. Moreover, RBFs scale relatively well with the problem dimen-
sion, and they have been shown to perform well in previous work (Müller, 2017; Müller & Woodbury, 2017;
Regis & Shoemaker, 2007, 2013). The RBF interpolant is defined as

s(x) =
n∑

i=1
𝜆i𝜙(||x − xi||2) + 𝜌(x) (A1)
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where s(x) denotes the prediction of the RBF model at the point x, 𝜆i, i = 1…n, are that RBF model
parameters, 𝜙(·) denotes the RBF (here the cubic 𝜙(r) = r3), 𝜌(x) is a polynomial tail whose order depends
on the chosen RBF type (for the cubic RBF, we need at least a linear tail 𝜌(x) = 𝛽0 + 𝛃Tx, 𝛃 = (𝛽1, … , 𝛽d)T),
and xi, i = 1…n, are the points at which we have already evaluated the expensive function f(x). || · ||2
denotes the Euclidean norm. The parameters of the RBF model are determined by solving a linear system
of equations. We have to evaluate initially at least d + 1 affinely independent points in order to solve the
linear system, with d = 6 the number of unknown parameters.

Appendix B: Construction of Neelin's Quadratic Polynomial Model
In a first step, the two end points of each parameter range and the reference point will provide the diagonal
elements of B and elements of vector a. That amounts to a total of 2d additional points. In a second step, at
least one corner point of a pairwise plane is needed to solve for the corresponding off-diagonal element of B.
Since bij = bji, this amounts to at least another (d2 − d)∕2 points. Same as in Neelin et al. (2010) and Bellprat
et al. (2012), the off-diagonal elements are computed here using a linear regression based on all four corner
points. Therefore, the total amount of points needed is 2d + 4(d2 − d)∕2 = 2d2, which is equal to 72 if d = 6.
We apply this procedure to obtain a and B for each atmospheric variable and for each height. The coefficients
of the bulk stability of the upper CPBL have obviously no height dependence. In case of plume properties q′

t
and 𝜃′v we need to consider an alternative strategy. While each parameter configuration will result in plumes
rising over at least a few model levels of the single column model, the top height of the plumes is not know a
priori. Therefore, at a given model level one or more saturation points might not have any plumes in which
case the thermodynamic perturbations q′

t and 𝜃′v would not be defined. For this reason we decide to compute
the coefficients directly for the errors (see equation (10)) of these two-parameter profiles.
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