Lawrence Berkeley National Laboratory

Recent Work

Title

Coral Reef Genomics: A Genome-Wide Approach to the Study of Coral Symbiosis

Permalink

https://escholarship.org/uc/item/2m47m06s

Authors

Schwarz, Jodi Brokstein, Peter Lewis, Cindy <u>et al.</u>

Publication Date

2005-03-17

¹Joint Genome Institute, ²SUNY Buffalo, ³Lawrence Livermore National Laboratory, ⁴California Academy of Sciences, ⁵University of North INTRODUCTION

Co
foo
and
wit
bio
env
COV
ove
it h

QUESTIONS

How do coral hosts and dinoflagellate symbionts establish and regulate the symbiosis?

- What genes or pathways are involved in the establishment of the symbiosis?
- Does the host initiate an immune response? Do the symbionts evade the response?
- How is gene expression affected by environmental conditions, symbiont strain, etc.

• Master's student developing a coral-related curriculum lending kit for schools coral symbiosis

Corals release pink egg/sperm bundles

Mesh nets capture egg/sperm bundles

Eggs / sperm stocks established for fertilization experiments

cDNA library construction and EST Sequencing

Sample genes from both hosts from as many stages of symbiosis as possible

2. Sequence a portion of each library to identify some of the genes expressed at each stage

16 libraries will be constructed, representing both partners in the non-symbiotic and 3. symbiotic conditions for two coral species and their dominant strains of *Symbiodinium*

Symbiosis		Number	of ESTs
Status	Source of RNA	M. faveolata	A. palmat
NS	Coral Eggs	1536	3840
NS	Coral Embryos	1536	1536
NS	Coral Larvae	1536	1536
S	Coral Larvae	1536	1536
S	Coral adult colony	2304	In progress
NS	Symbiodinium grown in culture	In progress	In progress
S	Symbiodinium isolated from larvae	In progress	In progress
S	Native Symbiodinium isolated from adult colony	In progress	In progress
		Total ESTs	= 16896

NS= Nonsymbiotic, S= symbiotic

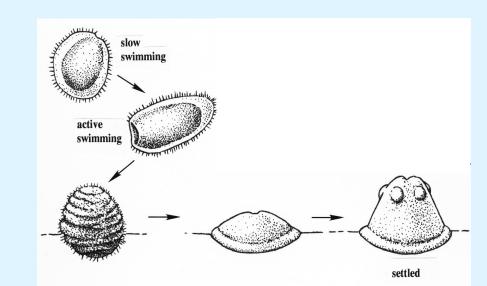
Status of library construction and EST sequencing for the planned target stages for both host species and symbiont strains

Coral Reef Genomics: A Genome-wide Approach to the Study of Coral Symbiosis

Jodi Schwarz¹, Peter Brokstein¹, Cindy Lewis², Chitra Manohar³, Dave Nelson³, Carol Tang⁴, Alina Szmant⁵, Mary Alice Coffroth², Mónica Medina¹

oral reefs are among the most beautiful and biodiverse ecosystems, upon which 500 million people depend for od, coastal protection, and other resources¹. At the heart of the reef ecosystem is a symbiosis between corals l endosymbiotic dinoflagellates (Symbiodinium spp.). The presence of the photosynthetic Symbiodinium thin coral tissues promotes tight nutrient recycling, enhanced production of coral skeleton, and increased mass, which in turn supports the reef. Yet coral reefs are threatened by the declining health of the marine vironment: coral bleaching and coral disease are causing the world's reefs to suffer drastic declines in coral ver. In the Caribbean alone, the primary reef-building coral, Acropora palmata has suffered >80% decline er the past 30 years¹. We want to understand how this symbiosis is established, how it is maintained, and how it breaks down under conditions of environmental stress.

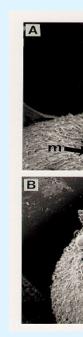
Acropora palmata


Montastraea faveolata

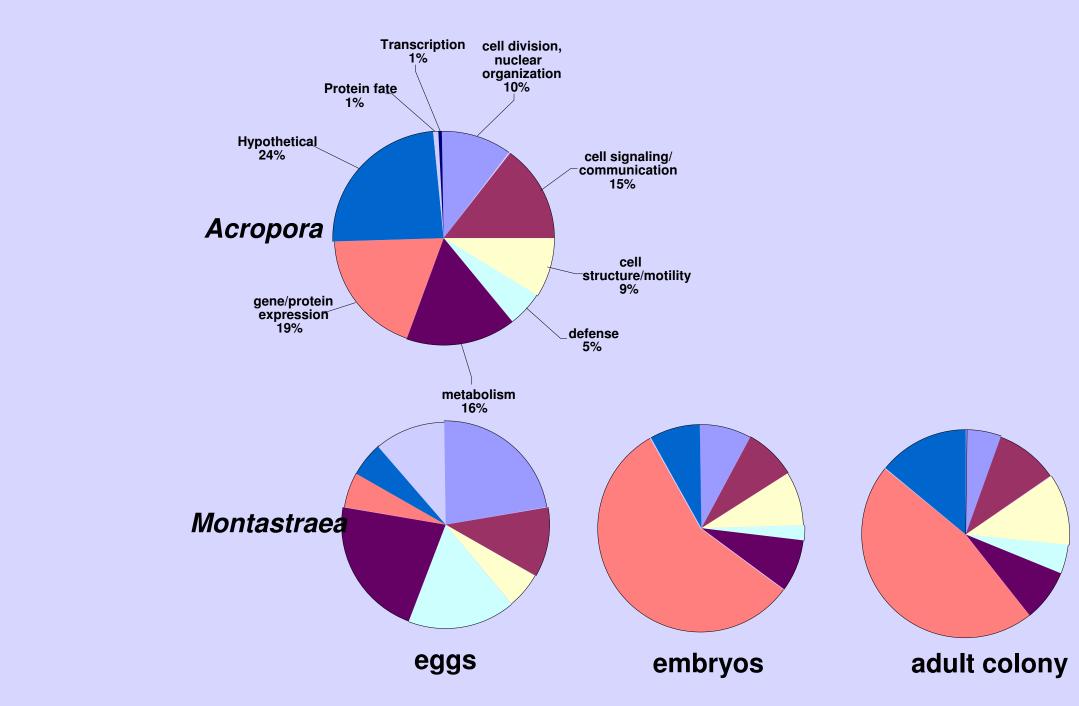
EDUCATION COMPONENT coordinated through **CALIFORNIA ACADEMY OF SCIENCES**

• Careers in Science program: development of a hands-on coral reef demonstration for public use at the museum

Field collections and experiments

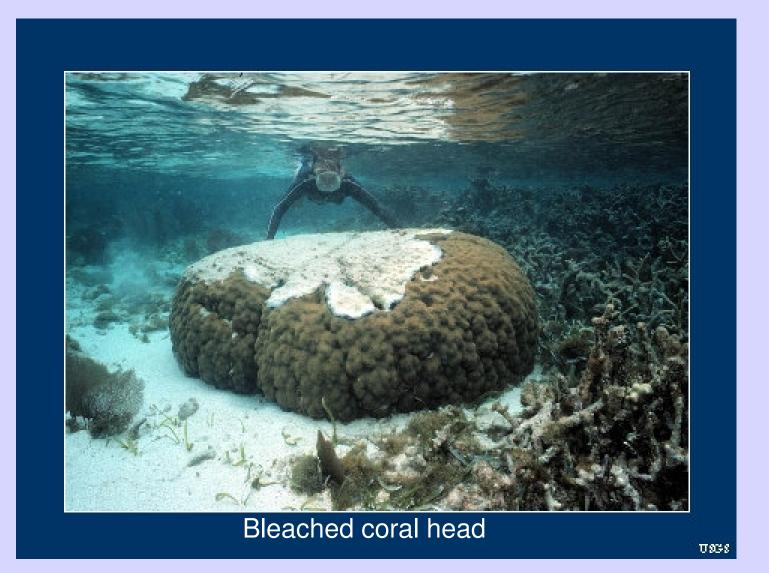

ita

Fertilized eggs develop into larvae, and metamorphose into polyps

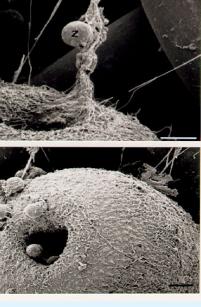

Cultures of Symbiodinium strains used for experimental infections

Annotation of ESTs

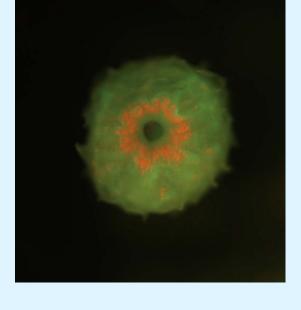
Obtain information about the potential functions of genes


- 1. Gene identity as deduced from BLAST searches
- 2. Grouping of genes into larger-order biological processes

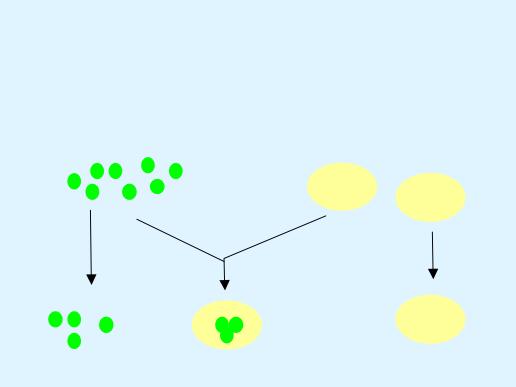
Comparison of larger-order biological processes between 4 cDNA libraries from two species and 3 developmental stages

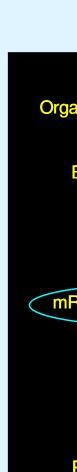


Brown spherical dinoflagellate symbionts within host tentacle



EXPERIMENTAL APPROACH


Experimentally initiate the symbiosis, sample RNA from each partner throughout the onset of symbiosis Create libraries of expressed genes, design cDNA microarrays to identify symbiosis-related genes Construct large-insert genomic BAC libraries to examine genomic context of symbiosis-related genes


symbionts enter host gastric cavity (photo of Fungia scutaria)

Acropora palmata larva (green) infected with Symbiodinium (red)

Sampling methods: Experimentally infect larvae with Symbiodinium and collect samples of the symbiotic partners and nonsymbiotic partners throughout the infection process

Extra librari

Microarray design and experiments

Identify symbiosis-related genes by comparing gene expression patterns prior t and maturation of the symbiosis

- Select cDNAs to include in microarrays based on functional information obtained
- 2. Probe the microarrays with RNA samples at various timepoints of the symbiosis
- 3. Identify the relative expression of genes at different stages

	Fold Change	Best Blast hit Gene Identity	Organism	Accession #	E-value	Score
Up in adults	22.48	beta actin	Aiptasia pulchella	AAQ62633.1	1x10 ⁻¹³	73.9
	15.94	catalase	Drosophila melanogaster	NP_536731.1	1x10 ⁻¹⁴	81.3
	15.77	Tubulin alpha chain	Gallus gallus	P02552	1x10 ⁻⁸⁵	315
	12.92	ubiquitin/ribosomal protein S27a fusion protein	Branchiostoma belcheri tsingtaunese	AAL55470.1	1x10 ⁻⁶⁰	231
	9.03	histone H4	Styela plicata	JN0688	1x10 ⁻⁴²	172
	7.67	vitellogenin	Pseudocentrotus depressus	AAK57983	1x10 ⁻¹²	74
	4.34	dynein	Rattus norvegicus	NP_062099.2	1x10 ⁻⁸⁵	317
	2.43	ankyrin 1	Homo sapiens	B35049	1x10 ⁻⁴²	175
	1.88	no hit				
Up in eggs	2.76	protein tyrosine phosphatase type IVA	Homo sapiens	NP_003454.1	1x10 ⁻⁵⁵	216
	2.66	no hit				
	2.54	chromatin-binding protein (Drosophila HP1 beta)	Danio rerio	NP_956040	1x10 ⁻¹²	71.2
	2.45	estrogen receptor binding protein	Homo sapiens	AAQ95169	1x10 ⁻³³	142
	2.34	no hit				

Relative gene expression levels in *M. faveolata* eggs vs. adult corals (p<0.1)

References: ¹Status of Coral Reefs of the World: 2004 Vol. 1. C. Wilkinson, ed. This work was performed under the auspices of the US Department of Energy's Office of Science, Biological and Environmental Research Program and by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-ENG-48, Lawrence Berkeley National Laboratory under Contract No. DE-AC03-76SF00098 and Los Alamos National Laboratory under Contract No. W-7405-ENG-48, Lawrence Berkeley National Laboratory under Contract No. DE-AC03-76SF00098 and Los Alamos National Laboratory under Contract No. W-7405-ENG-48, Lawrence Berkeley National Laboratory under Contract No. DE-AC03-76SF00098 and Los Alamos National Laboratory under Contract No. W-7405-ENG-36.

Docent Program: docent education on

isms and Interactior	S	
ological Pathways		
Proteins	and the second	re expressed genes and rmine their sequences
	→ mRNA —	AAAAA
IA (expressed gene)	5	
Gene	cDNA	AAAAA
xpressed sequence	e tags (ESTs) —	
t RNA from al	samples for	construction of cDNA

o and throughout the onso	
rom EST annotation	*****
	0 3 6 6 9