
UC Berkeley
Recent Work

Title
SPath: A Path Language for XML Schema

Permalink
https://escholarship.org/uc/item/2m37k2c6

Authors
Wilde, Erik
Michel, Felix

Publication Date
2007-02-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2m37k2c6
https://escholarship.org
http://www.cdlib.org/

SPath: A Path Language for XML Schema

Erik Wilde (School of Information, UC Berkeley)
Felix Michel (ETH Zürich)

UCB iSchool Report 2007-001
February 2007

Available at http://dret.net/netdret/publications#wil07d

Abstract

While the information contained in XML documents can be accessed using numerous standards and
technologies, accessing the information in an XML Schema currently is only possible using proprietary
technologies. XML is increasingly being used as a typed data format, and therefore it becomes more
important to gain access to the type system of an XML document class, which in many cases is an XML
Schema. The XML Schema Path Language (SPath) presented in this paper provides access to XML
Schema components by extending the well-known XPath language to also include the domain of XML
Schemas. Using SPath, XML developers gain better access to XML Schemas and thus can more easily
develop software which is type- or schema-aware, and thus more robust.

Contents

1 Introduction 2

2 Problem 2

3 Use Cases 3

4 Navigating Schemas 4

5 SPath Design 6

6 Implementation Variants 11

7 Implementation 12

8 Related Work 13

9 Conclusions 14

1

http://ischool.berkeley.edu/
http://www.ee.ethz.ch/
http://dret.net/netdret/publications#wil07d

UCB iSchool Report 2007-001 SPath: A Path Language for XML Schema

1 Introduction

The XML Path Language (XPath) is one of the most successful specifications in the area of XML technologies.
It defines an expression language for selecting parts of an XML document (XPath 1.0 [6]), and is currently
being extended to a more powerful language (XPath 2.0 [1]). XPath 2.0 not only greatly extends the
functionality of XPath, it also extends the underlying data model to not only be derived from a document,
but rather from a document being validated and type-annotated by an XML Schema [3, 22]. Thus, XPath
2.0 becomes a typed language in the sense that it provides some functionality for working with the typed
content of an XML document.

XPath 1.0 XPath 2.0 SPath ?

instance-aware type-aware schema-aware model-aware

Figure 1: Scope of XPath Versions

Yet XPath 2.0 does not provide extensive functionality for accessing types in the context of the schema.
While the structures of an XML document are represented by a tree of interconnected nodes (which can be
navigated using one of XPath’s most popular syntactic constructs, location paths), there is no such structure
for types. Instead, types are identified by their qualified names (QNames), and a rather small number of
functions [18] is provided which work with these type identifiers. This makes it cumbersome to work with
types with XPath 2.0, and makes XPath 2.0 type-aware, but not schema-aware (as shown in Figure 11).

This paper introduces the XML Schema Path Language (SPath), which builds on XPath 2.0 in several
ways. It extends the data model to contain schema components as navigable structures, and it introduces
new axes to navigate them, new node tests to work with them, and additional functions. The goal of SPath
is to extend XPath to become a language which not only is well suited for working with XML documents, but
also with XML Schemas. Our use cases (Section 3) suggest that this is useful when working with documents
in a type-oriented environment, or working with schemas to perform tasks on schema structures.

In XPath 2.0, path expressions are /-separated sequences of expressions, where each expression other than
the last must only return nodes. Each expression is repeatedly evaluated with each node of the resulting
sequence of the previous expression as input. The results of all these invocations are then consolidated
and passed as a sequence to the following step’s expression. Because of this, function calls can be inserted
into location paths, as long as they make use of the context, and generate node sequences. Our prototype
(described in Section 7) is based on this by mapping SPath expressions to XPath expressions containing
function calls.

2 Problem

The introduction of the XML Information Set (Infoset) [7] solved the problem which data model applications
should use when working with XML documents. XPath 1.0, which is based on the Infoset, is one of the most
successful technologies to provide access to XML structures. It is reused in various contexts, for example
XSL Transformations (XSLT), XML Schema, and the Document Object Model (DOM). In all these cases,
documents are considered to be a tree of document contents, and XPath provides access to that tree.

With the advent of XML Schema, the situation has become more complicated, because XML Schema
turns XML documents into typed documents, with the type annotations being added by the validation

1The figure also includes a possible further development to make the underlying model available to XPath-based
processing, but this issue it outside of the scope of this paper.

February 2007 2 of 17

UCB iSchool Report 2007-001 SPath: A Path Language for XML Schema

C

< >

/

< >

< >

C
C

" "

" "

A

A

< >

C

Document Nodes Schema Nodes

Element
Declaration

Complex
Type

Complex
Type

Complex
Type

Complex
Type

Element
Declaration

Element
Declaration

Any
Type

Complex
Type" "A

Attribute
Declaration

Any Simple
Type

Simple
Type

Type Hierarchy

C: Parent-Child
A: Element-Attribute

O: Occurrence-Declaration
I: Instance-Declaration
S: Substitution Group

T: Declaration-Type
D: Type Derivation
M: Content Model

OccurrenceOccurrence

I

I

I

T

T

T

T

S

O

M M

D

D

D
D

D

D

D

I OElement
Declaration

Schema

Figure 2: Document and Schema Abstract Models

process. XML Schema thus made XML more powerful and more complex, and XPath 1.0 was not sufficient
anymore, because it is blind with respect to types. XPath 2.0 (which is developed in the larger context of
the XSLT 2.0 and XQuery 1.0 activities) adds types to its data model, but only as an unstructured set of
named items, and with little functionality to use them.

For a model which would allow users to navigate not only a document, but also the rich structure of
schemas, a data model is required which represents types (and other schema components) as a structured
set of nodes, and provides ways to navigate these structures in a way similar to XPath’s location paths for
document structures. Figure 2 shows how documents and schemas could co-exist in a data model representing
both, and the relationships between these structures (including relationships crossing the boundary between
documents and schemas). Section 3 discusses some examples where this is useful and opens new possibilities
for using XML and schemas.

SPath treats schema structures as nodes, so that they can be used in the same way as XPath’s document-
oriented node kinds, most notably by being used in location paths. This requires novel navigational facilities
(i.e., axes), because XPath’s axes are designed to operate on document structures. SPath therefore not only
extends XPath’s data model, it also introduces new language constructs (axes, node tests, functions) to
operate on these nodes.

Section 5 presents SPath’s design, but this does not imply that this is the only way the language could
have been designed. There were a lot of design choices, and some of them could not be reconciled easily.
One example for this is the question whether navigation between both universes (instances and schemas)
should be done by using axes, or implicitly. We decided to have explicit axes, because otherwise we would
have had to change the semantics of existing XPath axes (which then would have to accept schema nodes
as well as document nodes as input). As a result, the current language design is a starting point from which
further developments in this area can continue.

3 Use Cases

While the extension of navigable structures from instance data to schemas may seem like a natural evolution
in the light of a more type-oriented view of XML, there still is the question of the use cases of such an
extension. Many of today’s applications seem to work well with the purely instance-based model of XPath

February 2007 3 of 17

UCB iSchool Report 2007-001 SPath: A Path Language for XML Schema

1.0, and the type-annotated model of XPath 2.0 provides type information to type-aware applications.
Possible use cases of SPath fall into two categories: applications where in addition to instance processing,
inspection of the schema opens up new possibilities (Section 3.1), and applications focusing on schemas
instead of being centered around instance processing (Section 3.2).

3.1 Instance-Guided Schema Access

A language providing schema access becomes particularly useful when the compile time schema (the schema
against which code has been written) is different from the runtime schema (the schema against which an
instance has been validated). A typical example for this is the field of Web service evolution, where a
Web service is implemented against a certain schema, but should be robust enough to be able to deal with
updated versions of the schema. While a number of design guidelines for schemas as well as for software
developers can help in making code more robust in such an environment [10], code that is able to access
updated schemas at runtime and explore the differences to the schemas available at compile time is more
likely to succeed in such an environment. In programming terms, this approach enables late binding of XML
instances to existing code with the added ability for type introspection (whereas XPath 2.0 only provides
type reflection).

3.2 Schema-Oriented Applications

In addition to instance-oriented applications, schema access is especially useful in schema-oriented applica-
tions. These are applications which mostly work on schemas, for example to create code which can then be
used to process instances of the schema. One example for this is the generation of XForms out of schemas [11].
In this work, XForms-based GUIs are generated out of schemas. XSLT is used to implement that transfor-
mation. However, the implementation is restricted to certain classes of schemas, because the processing of
arbitrary schema documents in XSLT is very hard. Better support of schema access in XPath would have
made the work much easier, and would have allowed to combine the best tool for XForm generation, XSLT,
with good support for accessing schema information.

Another example for schema-oriented applications is schema mapping [17,20], which, given a set of related
schemas, tries to (semi-)automatically generate a mapping of instances of one schema to the other. Schema
mapping is a very important area, because in many XML-based scenarios, peers would like to cooperate, but
since they do not use the same schema, there must be mapping code which transforms between schemas.

Another possible class of schema-oriented applications is that of schema checking: Because of the com-
plexity of XML Schema, many user groups employ XML Schema design guidelines to encourage or enforce
certain design patterns for XML Schemas. However, because of a lack of appropriate tools, it is hard to
automatically test schemas against these guidelines. Using SPath, it would be easily possible to create a
Schematron-like [14] language for defining rule-based assertions for XML Schemas.

4 Navigating Schemas

The most important aspect of SPath is that it makes XML Schemas available as navigable structures in
XPath 2.0. To make this possible, there must be a data model for the information of a schema which should
be accessible for navigation (Section 4.1), and there should be ways to move between the two universes of
documents and schemas, so that navigation becomes possible across the whole range of available information
(Section 4.2).

February 2007 4 of 17

UCB iSchool Report 2007-001 SPath: A Path Language for XML Schema

4.1 Schema Data Models

In the same way as the Infoset does not expose certain aspects of the XML document syntax, XML Schema
data models hide certain aspects of the XML syntax of XML Schema. And while the definition of the Infoset
has been a vividly discussed process of abstraction from an existing syntax, one could expect that in the case
of XML Schema, this had not been an issue, because XML Schema [22] defines an abstract data model, of
which the normative XML syntax is one possible representation. In practice, however, it becomes apparent
that the presence of an abstract data model does not rule out other data models with specific perspectives
and scopes. In fact, despite of the existence of the abstract data model, different data models for XML
Schema are proposed and used today.

Post Schema Validation Infoset (PSVI) contributions [22] include properties that are specified to be
isomorphic to the corresponding Schema components. This vagueness and the missing description of the
relationships between these properties leads to differing data models in implementations: The Xerces Native
Interface (XNI) for example introduces an additional layer of abstraction in terms of Schema nodes that
cover both simple and complex types.

Data models for XML Schema like Eclipse’s XML Schema Infoset Model (XSD), Microsoft’s XML Schema
Object Model (SOM), or Castor’s XML Schema Support all implicitly introduce a data model for XML
Schema that is shaped by the respective needs and priorities.

In a similar way as application interfaces have to make simplifications and adjustments, formal descrip-
tions of a data model apply a particular perspective as well. For instance, XML Schema Formal Semantics [4]
omit identity constraints, and XDM Formal Semantics [8], the formal description of the XQuery 1.0 and
XPath 2.0 Data Model (XDM) [9], only considers the type system of XML Schema, because this is the most
relevant part from the XDM perspective. The same document (in appendix D) defines how XML Schema
components are to be imported into XDM. This basically is a definition of another data model of XML
Schema from a certain perspective.

For utilizing a data model in practice, its components should be identifiable in order to be accessible.
XML Schema Component Designators [12] propose a path syntax for identifying XML Schema components.
Even though the objective is limited to identification and designation of components and the intended area
of application therefore is different from SPath, integration of these designators into SPath will be considered
depending on forthcoming draft versions.2

SPath also defines a data model which is a perspective of the abstract data model that is particularly
suited for what we think are the essential areas of use of SPath. Yet the above examples demonstrate that
there is no data model that fits all needs. Therefore we had to make design decisions connected to the design
objectives and areas of application as well as to the syntax of SPath. Section 5.1 discusses our data model
and these decisions. Section 7.1 presents the data model of the underlying function library of our prototype
implementation that allows for different views on XML Schema’s data model. The current disparity between
SPath’s data model and the function library’s data model reflects the fact that, when developing SPath as
a proposal which certainly will continue to evolve, we chose to introduce an implementation layer which
makes it as easy as possible to evolve SPath without having to constantly rewrite the complete data model
of SPath’s implementation.

4.2 Integration of Schemas and Documents

One of the fundamental questions when introducing schema components as first-class citizens into XPath is
how to integrate them with the existing data model, which is built around node kinds representing XML
document structures. The SPath data model (described in Section 5.1) introduces new node kinds for
schemas, which are then accessible for navigation by axes and functions. Figure 2 shows how this integration

2A function get-by-scd() could take such a designator and return the corresponding SPath node, which then
could be used in SPath expressions.

February 2007 5 of 17

UCB iSchool Report 2007-001 SPath: A Path Language for XML Schema

makes documents as well as schemas accessible as nodes. Because our design assumes that a well-defined
dividing line between these two classes of nodes is useful, we divide the SPath data model into two universes,
one containing the established XPath node kinds, whereas the other contains the new node kinds of the
SPath data model.

5 SPath Design

The primary goal of SPath’s design is to remain as much within the limits of XPath’s design principles and
syntax as possible. This is easier said than done, because XPath is not a strict “design by rule” language,
but has a lot of design decisions in it which instead are based on usability and utility. For example, the
seemingly simple question, what an axis is, is not easy to answer. The most accurate answer probably is
“anything that is likely to be used frequently as a way to explore relationships between nodes.”

For SPath’s design, the goal is to apply the design principles behind XPath to schemas, while still
maintaining a dividing line between these two universes, so that they are perceived as separate, but inter-
connected. The following principles have been adopted from XPath, but have been extended to cover XML
Schema structures as well:

• Node Kinds: XPath’s data model supports seven node kinds which are based on the nodes found in
an Infoset. Node kinds are important because they define which kind of structure can be represented
and navigated as a graph. In XPath 2.0, PSVI type information is not represented as a node, it is
represented as a QName.

• Navigating Structures: In XPath, structural information of XML documents is navigated using loca-
tion paths, while additional information is accessible through functions. XPath 2.0 introduces types;
however, these are only defined as QNames, and they are only accessible through functions. SPath
turns schema structures into nodes and makes them navigable through location paths as well.

• Axes: Frequently used relationships between nodes should be navigable using axes, which provide a
powerful and easily usable syntax for selecting nodes relevant to a given task.

• Bidirectional Navigation: Since navigation through axes provides access to relevant relationships be-
tween nodes, these relationships should be traversable bidirectionally. Like in XPath, this does not
make sense for all axes, but for basic navigational tasks, bidirectional navigation should be possible.3

• Node Tests as Predicate Shorthands: Node tests are shorthand notations for predicates. They are
useful because they allow the most frequently used predicates to be written in a more concise form.
Node tests depend on the nodes that may be selected by an axis, so for the new node kinds introduced
by SPath, there are new node tests as well.

Apart from these reused concepts, SPath introduces one new concept into XPath, which is the concept
of Axis Modifiers (described in detail in Section 5.3). The origin of this concept is the fact that for certain
kinds of navigational tasks, it is necessary to use the originating as well as the candidate node’s context
for selecting the nodes of an axis. Specifically, when limiting navigation of the type hierarchy to a specific
derivation method, it is important to inspect the whole chain of type derivation between the context nodes
of the step and candidate nodes. Thus, the derivation method must be part of the axis, because for node
tests and predicates, the context of the step is no longer available and thus cannot be used to test for the

3Note, however, that this does not imply that bidirectional navigational directions always cancel out each other.
For example, in XPath parent::node()/child::node() often is not equal to the context node itself, because it also
selects all siblings.

February 2007 6 of 17

UCB iSchool Report 2007-001 SPath: A Path Language for XML Schema

derivation method. Any change to this would have fundamentally changed how XPath’s process of evaluating
steps is defined.

Axis modifiers apply to SPath axes only and do not conflict with the syntax of XPath, because they use
hyphens to combine the axis name and the modifier. Thus, existing XPath syntax processing can be used
for parsing SPath as well.

5.1 SPath Data Model

As described in Section 4.1, the question which data model to choose for a schema-aware technology is not
an easy one. In the spectrum of possibilities, one end would be a data model isomorphic to the XML Schema
components, possibly even extended to retain the structure of the schema documents. The other end is a
highly customized model which is less faithful to XML Schema components, but more useful in terms of
what users want to do with it.

SPath’s data model is more on the side of the spectrum where full XML Schema isomorphism is not
supported, with the idea being that some of the idiosyncrasies of XML Schema internals can then be hidden
from users. Figure 4 shows the node kinds introduced by SPath, and these are added to XPath 2.0’s existing
set of node kinds (the seven node kinds derived from the Infoset’s eleven information item types).

The node kinds are a different view of the structures defined by an XML Schema, instead of being a
subset of XML Schema’s components. In part, one goal of the data model is to unify the worlds of elements
and attributes (inspired by the unified approach of RELAX NG [13]). Instead of replicating XML Schema’s
strong separation of these two concepts, declarations represent element as well as attribute declarations.
The same can be said about occurrences, which represent element as well as attribute usages in types.
If SPath users wish to make the distinction between elements and attributes, they can use node tests
(Section 5.4) for doing so.

Apparently, SPath has no direct representation of XML Schema’s model groups, even though it exposes
this information through axes which provide information about potential neighbors of a node. This means
that the grammar information of a schema is preserved in SPath. However, it is not available in terms of how
the grammar is defined, but rather in terms of what the language defined by that grammar is. Specifically,
occurrences have the properties optional and unbounded and refer to a declaration, and XML Schema’s
content models are mapped to this alternative representation of the grammar. This maps the hierarchical
structure of possibly nested model groups to an expanded sequence of occurrences.

This design has been chosen to better support the instance-oriented applications described in Section 3.1,
but it may not be the ideal solution for some of the purely schema-oriented applications described in Sec-
tion 3.2. Again, as described in Section 4.1, data models are determined by assumptions about possible
use cases, and since SPath focuses on integrating schema information with instance information, the design
approach was to put the focus instance-oriented applications.

5.2 SPath Axes

SPath’s main contribution is the introduction of new axes, which can be used to navigate the schema
structures represented by SPath’s new node kinds. In the same way as XPath axes never produce run time
errors when being applied to a node, SPath axes also can be used starting from any node kind. This means
that the “In” node kinds shown in Figure 3 are not the only node kinds for which an axis is permitted, but
the only ones for which an axis can yield a non-empty result. Similarly, standard XPath axes being applied
to SPath nodes will always return an empty sequence.

Some axes accept node kinds from both universes (for example the type axis, which returns the type of
an element or attribute in an instance, or of a declaration or occurrence in a schema), but all of them always
return node kinds only belonging to one of the universes. With one exception, they also always return only
one node kind from the schema universe. The exception is the substituted-by/substitutes axis pair,

February 2007 7 of 17

UCB iSchool Report 2007-001 SPath: A Path Language for XML Schema

Axis Name In Out Semantics

type e a d o s t Returns the nodes’ associated type. For document nodes, the type
annotation is used, for schema nodes the declared type.

declaration e a o c s t d Returns the declarations to which the node refers.

instance d o t e a Returns all nodes in type-annotated documents which are of that type
or use that declaration (or the declaration used by an occurrence).

occurrence e a d s o Returns the occurrences of the given context.

basetype e a d o t t Returns the direct base type of a type, or of a type inferred from
a non-type node (supported node kinds are elements and attributes
in instances, and declarations and occurrences in schemas). Returns
empty() for untyped elements or attributes.

supertype e a d o t t Recursive version of basetype, returning the types in reverse derivation
order.

supertype-or-self e a d o t t Same axis as supertype, but also includes the context node.

derivedtype e a d o t t Returns derived type(s) of a type, or of a type inferred from a non-type
node (supported node kinds are elements and attributes in instances,
and declarations and occurrences in schemas). Returns empty() for
untyped elements or attributes.

subtype e a d o t t Recursive version of derivedtype, returning the types in derivation
order.

subtype-or-self e a d o t t Same axis as subtype, but also includes the context node.

contains t o Returns a set of all occurrences (elements and attributes) within types.

followed-by e o o Returns a set of element occurrences, indicating which elements are
possible following-siblings of the context (which can be a document
or a schema node).

preceded-by e o o Returns a set of element occurrences, indicating which elements are
possible preceding-siblings of the context (which can be a document
or a schema node).

substituted-by e d o t d t Based on document or schema nodes, this axis returns the elements
and/or types which can be substituted by the given elements or types.

substitutes e d o t d t Based on document or schema nodes, this axis returns the elements
and/or types which can substitute the given elements or types.

constraint e d o s c Selects constraint nodes and selects all constraints which are defined
for the supplied context.

constrained-by e a o c Selects the constraints which select the node through their selector.

refer c c Selects the keys used by key references.

referred-by c c Selects the key references referred to by keys.

schema e a d t c s For schema universe nodes, this axis returns the schema node of the
containing schema. For instance universe nodes, it returns the schema
node of the schema which has validated this node.

Figure 3: SPath Axes (“In” and “Out” use shorthand notations for the supported node kinds: element,
attribute, declaration, occurrence, type, constraint, schema; see Section 5.1 for a description.)

February 2007 8 of 17

UCB iSchool Report 2007-001 SPath: A Path Language for XML Schema

schema Represents the schema as a whole, in particular it does not represent schema documents, but the
whole schema assembled from potentially multiple schema documents.

type Represents types, which in XML Schema can be simple or complex types.

declaration Represents declarations, which in XML Schema can be element or attribute declarations.

occurrence Represents occurrences of declarations in types, summarizes XML Schema’s concepts of particles
(referring to element declarations) and attribute uses.

constraint Represents an identity constraint, which is always associated with an element declaration.

Figure 4: SPath Node Kinds

which returns both declarations and types. The explanation for this is that the type substitution mechanism
itself mixes the two universes by allowing essentially the same type-perspective effect through the different
mechanisms of substitution groups (substituting elements) and type substitution (substituting types).

As in XPath, axes navigating through hierarchical structures (i.e., the type hierarchy) have various
variations, providing functionality for single step navigation (basetype/derivedtype), recursive naviga-
tion (supertype/subtype), and recursive navigation including the context node (supertype-or-self/
subtype-or-self).

5.3 SPath Axis Modifiers

Axis modifiers provide more specific navigational facilities than the pure axes. Their syntax is defined to not
violate the basic XPath syntax. This means that axis modifiers are appended to axis names, using a hyphen
as separator. It is possible to append several modifiers to an axis. Axis modifiers are only applicable to
the axes navigating the type hierarchy (basetype, derivedtype, supertype, subtype, supertype-or-self,
and subtype-or-self).

The available axis modifiers are restriction, extension, list, and union, and they are used to limit
the navigation to all types being derived using the specified mechanism. If no axis modifier is specified, the
default is to not limit the navigation to a specific derivation mechanism. For example, starting from a type,
the SPath subtype-restriction::* will select all types being directly or indirectly derived by restricting
the context type, limiting the search through the type hierarchy to this derivation method only. Specifically,
the SPath will not select all subtypes which are derived by restriction from their base type (this is supported
by a node test), it will only select those which are derived by restriction only from the context node of the
SPath.

5.4 SPath Node Tests

Node tests in XPath can either be name tests or kind tests. SPath follows this principle. As in XPath,
name tests in SPath can be either a colon-separated combination of a prefix or wildcard and a local-name
or wildcard, or a single wildcard (*). Since the data model of XML Schema (and thus the data model of
SPath) contains unnamed nodes, the semantics of the wildcard have been extended to select unnamed nodes
as well.

XPath defines kind tests which cover all node kinds encountered in XPath. Likewise, SPath provides a
set of kind tests for each of the SPath node kinds that are described in Section 5.1. And as it is the case
for some of the kind tests in XPath, all of SPath’s kind tests have the appearance of functions accepting a
varying number of arguments for narrowing the set of nodes matched.

First of all, all kind tests can occur without any arguments, testing only the kind of nodes without
restricting the result set: type(), declaration(), occurrence(), constraint(), and schema().

February 2007 9 of 17

UCB iSchool Report 2007-001 SPath: A Path Language for XML Schema

The kind tests for nodes that can be named (i.e., type(), declaration(), and constraint()) accept a
first argument that can either be a QName or a wildcard (*). If the wildcard is specified, anonymous nodes
are returned as well.

Additionally, the kind test accept the following optional arguments that can be one of the strings that
are shown in the list:

• type(name-or-wildcard, category, derived-by)

category ’simple’, ’simple-atomic’, ’simple-union’, ’simple-list’, ’complex’
derived-by ’extension’, ’restriction’

• declaration(name-or-wildcard, category, scope)

category ’element’, ’attribute’
scope ’local’, ’global’

• constraint(name-or-wildcard, category)

category ’key’, ’keyref’, ’unique’)

• occurrence(category)

category ’element’, ’attribute’

• schema(namespace)

namespace The schema’s target namespace

The properties of all nodes can be further examined using the functions described in Section 5.6.

5.5 SPath Predicates

SPath does not change anything about the semantics of XPath predicates, which means that they are
evaluated in the usual way: for each item in the sequence produced by the expression preceding the predicate
list, each predicate is evaluated with this item as the context, and only if all predicates evaluate to true, the
item remains in the final result sequence of the step.

This means that predicates in SPath expressions can use the full set of XPath expressions as predicates.
An important task of predicates, however, is the filtering of nodes based on certain criteria which in many
cases are specific to the node kind. Because SPath defines a number of new node kinds, it also defines a
number of functions which allow the filtering of these node kinds in predicates. Section 5.6 describes the
functions available in SPath.

5.6 SPath Functions

A wide range of the functionality required for working with SPath is provided by the SPath axes and their
modifiers described in Sections 5.2 and 5.3, and by the node tests introduced in Section 5.4. The extent to
which such functionality should be covered by functions or rather by dedicated syntax constructs like axes,
is a question of language design. Rather than enumerating all functions defined by SPath, we explain our
rationale and show two different categories of SPath functions.

SPath follows the principle of defining functions only for information that is either a literal property
(rather than a structural) or where the function requires more or different arguments other than the context
node. Examples for the latter case are the functions shown in Figure 5, which could not be expressed as axes
without changing XPath’s axis syntax. Examples for the former case are functions returning node properties
like name, namespace URI, derivation control, or selector and field for constraint() nodes. It is obvious

February 2007 10 of 17

UCB iSchool Report 2007-001 SPath: A Path Language for XML Schema

constrains(constraint as constraint(), context

as occurrence()) as occurrence()*

Returns all occurrences that are constrained by con-

straint when evaluated in the context of occurrence.4

constrains(constraint as constraint(), context

as node()) as node()*

The same as above, but in the instance universe.

Figure 5: SPath Functions for Constraints

from this enumeration that such functions most often are in direct correspondence to Schema components
and thus (speaking in terms of our prototype implementation) to the second category of functions described
in Section 7.2.

Since many functions like name() or namespace-uri() are semantically equivalent to the corresponding
XPath functions, the respective XPath functions are extended to polymorphic functions accepting nodes
from both universes.

6 Implementation Variants

SPath is a proposal for how XPath could evolve from a type-aware to a schema-aware language. The
approach for implementing the language for experimentation took into account the fact that the language
will evolve for some time before settling into a mature (and maybe even standardized) language. The
following implementation variants were considered, and in order to keep the language as open for changes
and interested users as possible, the prototype implementation described in Section 7 uses the implementation
variant described in Section 6.3.

6.1 Extending the Language

The most efficient and most elegant solution would be to integrate SPath into the language itself. This way,
SPath would become an integral part of the language and be available in every processor. However, this
is not realistic in the short term, and also is not a good strategy for experimenting with SPath, because it
makes it too hard to change the language.

6.2 Extending the Processor

An easier way would be to extend a processor so that it supports SPath evaluation, for example by using
a special extension function of the processor. This would be better for prototyping than the previously
described solution, but would limit the language to a single processor and thus make it harder to get as
many prototype users as possible.

6.3 XSLT-Based Extension Functions

Since we believe that SPath is a useful prototype, but not the language that eventually may become a widely
accepted standard, we built our software to be as easily usable as possible. Our prototype implementation is
not limited to a special processor. Our approach pre-processes a stylesheet and substitutes SPath expressions
with function calls to a library. This library is written in XSLT. Thus, after pre-processing a stylesheet using
SPath, it can be run on any XSLT 2.0 processor.

4The second argument is necessary, because in XML Schema, the selector XPath is evaluated relative to a given
context.

February 2007 11 of 17

UCB iSchool Report 2007-001 SPath: A Path Language for XML Schema

7 Implementation

The prototype implementation relies on a function library written in plain XSLT 2.0 which has been developed
from a basic function library [19]. The function library does neither require a Schema-aware XSLT processor,
nor any extensions or modifications to be made to the processor. It retrieves the Schema information from
the XML Schema for XML Schemas and from the XML Schema documents representing the XML Schema
and that has been written in the normative XML syntax. It then represents the information of the assembled
XML Schema using a data model that consists of what can be called XSLT objects. These objects represent
a subset of the Schema components from XML Schema’s abstract data model [22] as well as the node kinds
from SPath’s data model as it is introduced in Section 5.1, and they make the properties and relationships
easily accessible through XPath.

We consider our function library to be a useful tool kit for experimenting with SPath expressions, for
developing its syntax, and for identifying use cases for schema-aware applications. Furthermore, the functions
available in the library are more modular and fine-grained than the expressions and functions of SPath, and
can be used for any application aiming for easy access to schema information. In fact, the expressions found
in SPath are only shorthand notations for common combinations of function calls, additionally providing
a more powerful syntax. Bearing in mind the considerations from Section 6, our main objectives are high
portability and use of open standards, instead of utmost performance or robustness.

7.1 Data Model Entities

In order to process the information from XML Schemas, first of all a representation of the entities of which
the data model consists has to be provided. The Infoset calls these entities Information Items, the abstract
data model of XML Schema is composed of Schema Components, and SPath makes these entities accessible
and navigable as nodes. As described in Section 4.1, our function library provides a set of structures that
cover both a large subset of the XML schema components, as well as the node kinds of SPath as described
in Section 5.1. Since the library is written in XSLT, and since XML is a format for structured data, it is an
obvious choice to use XML for representing these structures. Therefore the library contains XSLT functions
that return temporary XML trees that contain the information of the respective data model entities. The
contents of these XML structures can easily be accessed through XPath, and with the type support of XSLT
/ XPath 2.0, they can be used as structured types, and functions accepting only those types can be written.
Alluding to terms known from Object Orientation, one may want to refer to these structures as objects, to
the sub-elements as properties, to the former functions as constructors, and to the latter as methods.

7.2 Functions

Our library provides a wide set of XSLT functions accessible in a namespace that usually is mapped to
the prefix scf (for schema component functions). Instead of enumerating all functions, the following list
describes five categories into which the available functions can be divided:

1. Constructor functions returning the XSLT objects described above.

2. Functions representing properties of the data model nodes. The property {type definition} of the
Element Declaration Schema component is represented by a function scf:type-definition() that
takes an element declaration object and returns a type definition object. The polymorphism described
in Section 5.6 is implemented using wrapper functions that disambiguate the kind of node and perform
the appropriate action.

3. Axis-supporting functions: For example, the scf:get-supertypes() function backs the supertype
axis. However, the functions generally are more modular than the SPath expressions, letting the

February 2007 12 of 17

UCB iSchool Report 2007-001 SPath: A Path Language for XML Schema

design of SPath control the level of granularity and degree of implicitness (e.g., whether a type axis
should resolve all substitutions or not).

4. Functions that provide for operators and language constructs that are needed for comparing and testing
the XSLT objects. For example, scf:type-equal() tests equality of two scf:type objects, and
scf:instance-of() is required in order to extend XPath’s instance of construct to cover complex
types as well.

5. Internal functions that are not accessible to applications. Encapsulation of these functions is achieved
by declaring internal functions in a different namespace. Internal functions include functions concerned
with particularities of XML Schema’s XML syntax, or helper functions (e.g., easing conversion of
QNames).

7.3 SPath Mapping

As described in Section 6.3, the current prototype is based on the approach to textually substitute SPath
expressions in an XSLT stylesheet with function calls to an XSLT library implementing SPath. Instead of
parsing all XPath expressions into a parse tree, we use XPath’s and XSLT’s regular expression processing
facilities, which are sufficient to implement some pattern-based search and replace heuristics, but have
inherent limitations. For small experiments, the current implementation is sufficient, but it does not work
for all possible SPath/XPath expressions. For a more robust implementation, we are currently considering
either an XSLT-based parser, or a non-XSLT implementation of the mapping process using available parser
generation tools such as JavaCC.

7.4 Example Mapping

Figure 6 (on page 16) shows an XSLT stylesheet that uses SPath, the intermediate stylesheet after prepro-
cessing, and the output of the stylesheet when run with a simple document and schema (shown in Figure 7
on page 17) as inputs. The parts of the initial stylesheet which are relevant for SPath as well as the
corresponding mapped counterparts in the generated XSLT are highlighted.

As one example of the mapping, the basetype-extension::* step of the SPath expression is mapped to
scf:base-type-modified(., ’extension’) in the resulting XPath. The following rules have driven that
mapping:

• Axes are mapped to the functions which are backing these axes (as described in Section 7.2) in the
function library. The scf:base-type-modified() function is backing any basetype axis step using
an axis modifier. The modifier(s) of the axis step are mapped to an argument of the function (all axis
functions have the current context as first argument).

• The node test of the axis is mapped to a predicate, but since the node test does not define any filter,
no such predicate is generated in the example mapping.

The sample schema defines a small type hierarchy using type extension and restrictions, and the output
shows the result of the demo:type-hierarchy function being called with the sample instance’s document
element as input.

8 Related Work

Work related to the path-based navigation of XML Schemas can be found in different areas. The fundamental
question of XML Schema data models as discussed in Section 4.1 is one of these areas. The (to our knowledge

February 2007 13 of 17

UCB iSchool Report 2007-001 SPath: A Path Language for XML Schema

abandoned) attempt to make XML Schema accessible through the DOM [5], and the interfaces of specific
parsers [16] is another area which is related to the work presented in this paper. While all of this work is
relevant to SPath, all of it only has overlaps with SPath, leaving out some of the issues relevant to our work,
while including others which are not significant for our work. To our knowledge, so far there have been no
attempts to expand XPath to cover full navigational access to XML Schemas in a way directly comparable
to SPath.

9 Conclusions

The main contribution of SPath to the evolving landscape of XML technologies is the integration of schemas
into the data model of XPath. Additionally, SPath’s expressive syntax allows the easy navigation of the
complex structure defined by an XML Schema. SPath supports applications which process XML data in
a type- and schema-aware way, rather than treating XML data as untyped character data. Using SPath’s
navigational features, applications can explore schemas at runtime and thus be programmed in a way which
better supports loose coupling scenarios of XML-oriented software components.

Recent surveys of XML Schema usage [2,15] suggest that currently most schemas are simple in structure
and thus processing them does not require a language as expressive as SPath. We believe, however, that the
growing stack of XML technologies and its ongoing maturing into an integrated part of software design and
development makes more robust ways of handling XML inevitable, and that typed XML and well-designed
type systems (i.e., XML Schemas) will thus become more important.

In particular, for loosely coupled system design such as publicized by the Service-Oriented Architectures
(SOA) approach, it will be become necessary to focus more on independent versioning of individual compo-
nents of such an architecture. Such a view will require approaches comparable to the late binding principle
of object-oriented design, and type reflection and introspection will be important foundations of such a
development.

References

[1] Anders Berglund, Scott Boag, Donald D. Chamberlin, Mary F. Fernández, Michael
Kay, Jonathan Robie, and Jérôme Siméon. XML Path Language (XPath) 2.0. World Wide Web
Consortium, Recommendation REC-xpath20-20070123, January 2007.

[2] Geert Jan Bex, Wim Martens, Frank Neven, and Thomas Schwentick. Expressiveness of
XSDs: From Practice to Theory, There and Back Again. In Proceedings of the 14th International
World Wide Web Conference, pages 712–721, Chiba, Japan, May 2005. ACM Press.

[3] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes Second Edition. World
Wide Web Consortium, Recommendation REC-xmlschema-2-20041028, October 2004.

[4] Allen Brown, Matthew Fuchs, Jonathan Robie, and Philip Wadler. XML Schema: For-
mal Description. World Wide Web Consortium, Working Draft WD-xmlschema-formal-20010925,
September 2001.

[5] Ben Chang, Elena Litani, Joe Kesselman, and Rezaur Rahman. Document Object Model
(DOM) Level 3 Abstract Schemas Specification. World Wide Web Consortium, Note NOTE-DOM-
Level-3-AS-20020725, July 2002.

[6] James Clark and Steven J. DeRose. XML Path Language (XPath) Version 1.0. World Wide
Web Consortium, Recommendation REC-xpath-19991116, November 1999.

February 2007 14 of 17

UCB iSchool Report 2007-001 SPath: A Path Language for XML Schema

[7] John Cowan and Richard Tobin. XML Information Set (Second Edition). World Wide Web
Consortium, Recommendation REC-xml-infoset-20040204, February 2004.

[8] Denise Draper, Peter Fankhauser, Mary F. Fernández, Ashok Malhotra, Kristoffer
Rose, Michael Rys, Jérôme Siméon, and Philip Wadler. XQuery 1.0 and XPath 2.0 Formal Se-
mantics. World Wide Web Consortium, Recommendation REC-xquery-semantics-20070123, January
2007.

[9] Mary F. Fernández, Ashok Malhotra, Jonathan Marsh, Marton Nagy, and Norman
Walsh. XQuery 1.0 and XPath 2.0 Data Model (XDM). World Wide Web Consortium, Recommen-
dation REC-xpath-datamodel-20070123, January 2007.

[10] Adam FitzGerald. Best Practices for XML Schema Evolution in Application Development. In
Proceedings of XML 2005 [21].

[11] Patrick Garvey and Bill French. Generating User Interfaces from Composite Schemas. In
Proceedings of XML 2003, Philadelphia, Pennsylvania, December 2003.

[12] Mary Holstege and Asir S. Vedamuthu. XML Schema: Component Designators. World Wide
Web Consortium, Working Draft WD-xmlschema-ref-20050329, March 2005.

[13] International Organization for Standardization. Information Technology — Document
Schema Definition Languages (DSDL) — Part 2: Grammar-based Validation — RELAX NG.
ISO/IEC 19757-2, November 2003.

[14] International Organization for Standardization. Information Technology — Document
Schema Definition Languages (DSDL) — Part 3: Rule-based Validation — Schematron. ISO/IEC
19757-3, April 2006.

[15] Ralf Lämmel, Stan Kitsis, and Dave Remy. Analysis of XML Schema Usage. In Proceedings of
XML 2005 [21].

[16] Elena Litani and Lisa Martin. An API to Query XML Schema Components and the PSVI. In
Proceedings of XML Europe 2004, Amsterdam, Netherlands, April 2004.

[17] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic Schema Matching with
Cupid. Technical report, Microsoft Corporation, Redmond, Washington, August 2001.

[18] Ashok Malhotra, Jim Melton, and Norman Walsh. XQuery 1.0 and XPath 2.0 Functions and
Operators. World Wide Web Consortium, Recommendation REC-xpath-functions-20070123, January
2007.

[19] Felix Michel. Opening XML Schema’s Data Model to XPath 2.0. Technical Report TIK Report No.
264, Computer Engineering and Networks Laboratory, ETH Zürich, Zürich, Switzerland, November
2006.

[20] René J. Miller, Mauricio A. Hernández, Laura M. Haas, Lingling Yan, C. T. Howard
Ho, Ronald Fagin, and Lucian Popa. The Clio Project: Managing Heterogeneity. ACM SIGMOD
Record, 30(1):78–83, March 2001.

[21] Proceedings of XML 2005, Atlanta, Georgia, November 2005.

[22] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML Schema
Part 1: Structures Second Edition. World Wide Web Consortium, Recommendation REC-xmlschema-
1-20041028, October 2004.

February 2007 15 of 17

UCB iSchool Report 2007-001 SPath: A Path Language for XML Schema

XSLT 2.0 using SPath:

<xsl:stylesheet version="2.0" xmlns:xsl="..." xmlns:demo="...">

:::::::::::::::::

<xsl:import-schema
::

namespace="http://dret.net/www2007example"
::::::::::::::::::::::::::::

schema-location="sample.xsd"/>

<xsl:function name="demo:type-hierarchy">

<xsl:param name="element" as="element()"/>

<xsl:value-of select="
:::::::::::::

name($element)"/>

<xsl:text> ∈ </xsl:text>

<xsl:value-of select="demo:type-and-decls($element/
:::::::

type::*)"/>

</xsl:function>

<xsl:function name="demo:type-and-decls">

<xsl:param name="type" as="
:::::

type()"/>

<xsl:value-of select="
::::::::::

name($type)"/>

<xsl:if test="
::::

$type
:::

ne
::::::::::

anyType()">

<xsl:variable name="decls" select="
:::::::::::::::::::

$type/declaration::*" as="
::::::::::::

declaration()*"/>

<xsl:value-of select="if ($decls) then

string-join((’(’, for $i in $decls return
::::::::

name($i), ’)’), ’ ’) else ()"/>

<xsl:text>
 </xsl:text>

<xsl:value-of select="if ($type/
::::::::::::::::::::

basetype-extension::*) then ’ extends ’ else ’ restricts ’"/>

<xsl:value-of select="demo:type-and-decls($type/
:::::::::::

basetype::*)"/>

</xsl:if>

</xsl:function>

</xsl:stylesheet>

SPath Expressions translated to Function Library:

<xsl:stylesheet version="2.0" xmlns:xsl="..." xmlns:xs="..." xmlns:demo="..." xmlns:scf="...">

::::::::::

<xsl:import
::::::::::::::::::

href="SClib.xsl"/>

::::::::::::

<xsl:variable
:::::::::::

name="SCFS"
:::::::::::::::::::::::::::

select="doc(’sample.xsd’)"/>

<xsl:function name="demo:type-hierarchy">

<xsl:param name="element" as="element()"/>

<xsl:value-of select="
:::::::::::::::::

scf:name($element)"/>

<xsl:text> ∈ </xsl:text>

<xsl:value-of select="demo:type-and-decls($element/
::::::::::::::

scf:get-type(.))"/>

</xsl:function>

<xsl:function name="demo:type-and-decls">

<xsl:param name="type" as="
::::::::::::::::

element(scf:type)"/>

<xsl:value-of select="
::::::::::::::

scf:name($type)"/>

<xsl:if test="
:::::::::::::::::::::::

scf:type-not-equal($type,
::::::::::::::

scf:anyType())">

<xsl:variable name="decls" select="
::::::::::::::::::::::::::::::::::

$type/scf:type-definition-inverse(.)" as="
:::::::::::::::::::

element(scf:element)*"/>

<xsl:value-of select="if ($decls) then

string-join((’ (’, for $i in $decls return
:::::::::::

scf:name($i), ’)’), ’ ’) else ()"/>

<xsl:text>
 </xsl:text>

<xsl:value-of select="if ($type/
::::::::::::::::::::::::

scf:base-type-modified(.,
::::::::::::

’extension’))

then ’ extends ’ else ’ restricts ’"/>

<xsl:value-of select="demo:type-and-decls($type/
:::::::::::::::::::::::::

scf:base-type-definition(.))"/>

</xsl:if>

</xsl:function>

</xsl:stylesheet>

Processing Results:

USwestCoastBusinessAddress ∈ USwestCoastBusinessAddressType (USwestCoastBusinessAddress)

restricts USbusinessAddressType (USbusinessAddress)

extends USaddressType (USaddress)

extends addressType (address europeanAddress)

restricts anyType

Figure 6: Sample XSLT, Mapping, and Results

February 2007 16 of 17

UCB iSchool Report 2007-001 SPath: A Path Language for XML Schema

Sample XML Schema:

<xs:schema xmlns:xs="..." targetNamespace="http://dret.net/www2007example" xmlns="...">

<xs:element name="address" type="addressType"/>

<xs:element name="europeanAddress" type="addressType"/>

<xs:element name="USaddress" type="USaddressType"/>

<xs:element name="USbusinessAddress" type="USbusinessAddressType"/>

<xs:element name="USwestCoastBusinessAddress" type="USwestCoastBusinessAddressType"/>

<xs:complexType name="addressType">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="USaddressType">

<xs:complexContent>

<xs:extension base="addressType">

<xs:sequence>

<xs:element name="state" type="stateType"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="USbusinessAddressType">

<xs:complexContent>

<xs:extension base="USaddressType">

<xs:sequence>

<xs:element name="companyname" type="xs:string"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="USwestCoastBusinessAddressType">

<xs:complexContent>

<xs:restriction base="USbusinessAddressType">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="state" type="westCoastStateType"/>

<xs:element name="companyname" type="xs:string"/>

</xs:sequence>

</xs:restriction>

</xs:complexContent>

</xs:complexType>

<xs:simpleType name="stateType">

<xs:restriction base="xs:token">

<xs:length value="2"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="westCoastStateType">

<xs:restriction base="stateType"/>

</xs:simpleType>

</xs:schema>

Sample XML Document:

<USwestCoastBusinessAddress xmlns="...">

<name>Erik Wilde</name>

<state>CA</state>

<companyname>UC Berkeley</companyname>

</USwestCoastBusinessAddress>

Figure 7: Sample Schema and Instance

February 2007 17 of 17

	Introduction
	Problem
	Use Cases
	Navigating Schemas
	SPath Design
	Implementation Variants
	Implementation
	Related Work
	Conclusions

