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METHOD

SvAnna: efficient and accurate pathogenicity 
prediction of coding and regulatory structural 
variants in long-read genome sequencing
Daniel Danis1†, Julius O. B. Jacobsen2†, Parithi Balachandran1, Qihui Zhu1, Feyza Yilmaz1, Justin Reese3, 
Matthias Haimel4,5,6,7, Gholson J. Lyon8,9, Ingo Helbig10,11,12,13, Christopher J. Mungall3, Christine R. Beck1,14,15, 
Charles Lee1, Damian Smedley2* and Peter N. Robinson1,14*  

Abstract 

Structural variants (SVs) are implicated in the etiology of Mendelian diseases but have been systematically underas-
certained owing to sequencing technology limitations. Long-read sequencing enables comprehensive detection of 
SVs, but approaches for prioritization of candidate SVs are needed. Structural variant Annotation and analysis (SvAnna) 
assesses all classes of SVs and their intersection with transcripts and regulatory sequences, relating predicted effects 
on gene function with clinical phenotype data. SvAnna places 87% of deleterious SVs in the top ten ranks. The inter-
pretable prioritizations offered by SvAnna will facilitate the widespread adoption of long-read sequencing in diagnos-
tic genomics. SvAnna is available at https:// github. com/ TheJa ckson Labor atory/ SvAnna.
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Background
Structural variants (SVs) range from 50 base pairs (bp) to 
megabases in size and can be classified into a wide range 
of events including deletions, tandem and interspersed 
duplications, insertions, inversions, translocations, or 
complex combinations of these events [1]. The advent of 
short-read exome sequencing in 2010 ushered in a dec-
ade of novel discoveries in Mendelian genetics and led to 
the introduction of diagnostic exome and subsequently 
genome sequencing. Over 100 short read-based mappers 
and over 40 short-read variant callers have been intro-
duced since 2010; while performance has been steadily 

increasing, SV calling from short reads is reported to 
have a recall of between 10 and 70% associated with 
high false-positive rates [2, 3]. Long-read sequencing 
(LRS), including both PacBio single-molecule real-time 
sequencing (SMRT) and Oxford Nanopore sequenc-
ing, produces longer reads that can be more accurately 
mapped to the reference genome even in regions that are 
inaccessible to short-read sequencing (SRS) [4, 5].

LRS technology can address some of the shortcom-
ings of SRS and enable more comprehensive detection of 
a broader range of SVs. A recent study with LRS in con-
junction with additional methods such as single-cell tem-
plate strand sequencing estimated that while 78% of SVs 
identified by SRS are concordant with LRS SV calls, only 
30% of LRS SVs were observed in the short-read WGS 
callset; on average, 24,653 SVs were detected per genome 
by LRS [6]. SRS captures the majority of SVs affect-
ing coding sequence in genes with existing evidence for 
dominant-acting pathogenic mutations from OMIM, and 
the majority of SVs identified only by LRS are located in 
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highly repetitive regions that have been previously inac-
cessible to human disease studies [7]. Initial studies have 
appeared on LRS as a diagnostic tool for the diagnosis of 
Mendelian disease, with reports on the detection of large 
deletions, insertions, translocations, and tandem repeat 
expansions [4, 8–11]. LRS can be used to address cases in 
which SRS and sometimes cytogenetic or chromosomal 
microarray analysis has failed to identify an etiology, and 
therefore analysis may focus on intermediate size SVs 
(50 bp to 2 kb) difficult to detect with the other meth-
ods [12]. The community, however, lacks dedicated tools 
for prioritization of all classes of SVs identified by LRS 
experiments, which hinders the utility of LRS in Mende-
lian disease studies.

In this work, we introduce Structural variant Annota-
tion and analysis (SvAnna), an integrated tool for the 
annotation and prioritization of SVs called in LRS data 
starting from variant call format (VCF) files produced 
by LRS SV callers such as pbsv, sniffles [13], and SVIM 
[14]. SvAnna is freely available for academic use (https:// 
github. com/ TheJa ckson Labor atory/ SvAnna) [15]. 
SvAnna prioritizes variants in light of their overlap with 
structural elements of genes and promoters. On a curated 
set of 182 case reports of 188 SVs underlying Mendelian 
disease, SvAnna placed the correct variant within the top 
10 ranks (out of 62,337–107,233 variants per VCF file) in 
87% of cases.

Methods
Comprehensive and harmonized representation of variants 
in VCF files
SvAnna was designed to capture all classes of structural 
variation represented in VCF files. VCF specification 
allows three notations for storing variant coordinates, 
alleles, and attributes. The variant coordinates and vari-
ant alleles can be specified using (a) default (sequence) 
representation (the ALT sequence is known, the vari-
ant end position is inferred from length of the ALT 
sequence), (b) symbolic representation (the ALT 
sequence is not provided, e.g., <DUP>, <INV>, the end 
position is reported in the INFO field), or (c) breakend 
notation for complex rearrangements, where adjacen-
cies of the novel rearrangement are described on multi-
ple lines using the square bracket notation. We developed 
a Java library called Svart [16] that decodes all three 
notations and provides a consistent API for all variant 
categories. Besides modeling variants, Svart standard-
izes representation of genomic elements, such as genes, 
transcripts, enhancers, repetitive regions, and dosage-
sensitive regions, and handles conversion of coordinates 
between genomic coordinate systems and strands, and 
simplifies calculation of distances and overlaps between 
the genomic elements. SvAnna leverages Svart to 

represent structural variants specified in any valid VCF 
notation from both short-read and long-read VCF files in 
a harmonized form for the analysis of overlap of SVs with 
transcripts. For VCF records formatted in the breakend 
notation (BND), SvAnna assumes that the record rep-
resents a novel adjacency between the two contigs. The 
adjacencies are analyzed individually; SvAnna does not 
group the adjacencies based on the EVENT INFO field.

Data sources
The input variants are filtered to remove the com-
mon SVs before the prioritization. SvAnna uses several 
sources of common SVs and their frequencies: Database 
of Genomic Variants [17], GnomAD SV [18], Human 
Genome Structural Variation Consortium (HGSVC) SVs 
freeze 3 [6], and dbSNP v151 databases (all accessed in 
April 2021). Transcript definitions were generated for 
RefSeq and Ensembl using Jannovar [19]. Enhancer defi-
nitions were extracted from the VISTA database [20]. 
Locations of repetitive elements were taken from the 
UCSC Genome Database [21]. Computational disease 
definitions were extracted from the Human Phenotype 
Ontology [22] (HPO) resource (06/2021 release).

Variant filtering
SvAnna lets the user filter the input variants by depth of 
coverage and by population frequency. The depth of cov-
erage is reported in idiosyncratic manner depending on 
the variant caller. We tested SvAnna to work with three 
long read structural variant callers: pbsv, sniffles [13], and 
SVIM [14] (Additional file  1: Table  S1). If the required 
attributes are not present, SvAnna still includes the vari-
ant in the output.

For population frequency-based filtering, we consid-
ered the variants occurring in more than 1% of the popu-
lation as common. SVs called in the VCF file are removed 
from the analysis if they show greater than 80% recipro-
cal overlap with a common variant in any of the source 
databases (DGV, gnomAD-SV, dbSNP, and HGSVC SVs). 
The user can adjust the frequency and reciprocal overlap 
thresholds via the command line interface.

Variant prioritization
To prioritize an SV, SvAnna first determines the set of all 
genes G = {g1, g2, …}—either the genes with at least one 
transcript affected by the SV or the closest upstream and 
downstream genes in case of an intergenic SV. SvAnna 
applies different rules for the various categories of SV. For 
each gene g ∈ G, a sequence deleteriousness score δ(g) is 
calculated to reflect the predicted effect of the variant on 
gene functionality and dosage, where δ stands for delete-
riousness. The rules for calculating δ(g) differ according 
to the SV type and are described in the following sections 

https://github.com/TheJacksonLaboratory/SvAnna
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and summarized in Table 1. δ(g)=0 for presumed neutral 
variants, with higher scores representing higher degrees 
of predicted deleteriousness.

Deletions, duplications, and inversions
Scoring δ(g) for deletions and duplications depends on 
the type of sequence affected. The maximal deleterious-
ness is scored for coding sequences. δ(g)=1 for deletions 
that disrupt the sequence of a transcript by removing 
the entire transcript or part of the coding sequence by 
deletion of one or more exons. For untranslated regions 
(UTRs), the score δ(g) for gene g is determined as a func-
tion of SV and UTR lengths as follows:

A deletion that encompasses 50% or more of the UTR 
will be assigned a score of 1 (maximal deleteriousness). 
Smaller deletions will receive proportionally less deleteri-
ous scores.

Analogously, a duplication that adds an entire copy of 
a transcript without disrupting the coding sequence is 
assigned a δ(g) score of 1 (a triplication would be assigned 
a score of 2, and so on). A duplication that affects coding 
sequence and/or splice site regions receives a δ(g) score 
of 1; however, a tandem duplication that extends beyond 
either start or end of the transcript, and thus does not 
alter the primary linear transcript sequence, is regarded 
as neutral (δ(g) = 0).

If a breakpoint of an inversion disrupts the coding 
sequence of a transcript, it is assigned a score of 1. How-
ever, an inversion that completely contains a transcript is 
assumed to be neutral, and receives a score of δ(g)=0.

Insertions
To score insertions located within the coding sequence of 
a transcript, SvAnna checks if the insertion disrupts the 
reading frame. Frame-shifting insertions are assigned a 

(1)δ(g) = min

(

2 lenSV

lenUTR
, 1

)

δ(g) = 0.9 and the insertions that do not alter the reading 
frame receive δ(g) = 0.2. If the insertion is located in the 
5′ or 3′ UTR, the δ(g) score is determined as a function of 
insertion and UTR length:

An insertion that adds the number of bases corre-
sponding to 100% of the UTR or more will be assigned a 
score of δ(g)=1. Shorter insertions receive proportionally 
lower deleteriousness scores. Insertions located outside 
of the coding sequence, splice site regions, promoter, and 
UTRs are assigned a score of δ(g) = 0 (non-deleterious).

Translocations
Translocation breakpoints that disrupt the transcript 
sequence or the promoter region are assigned a score 
of δ(G)=1. The scoring process applies to both breakends 
of a translocation.

Phenotype matching
SvAnna takes a list of HPO terms describing the clini-
cal manifestations of the proband as input. It matches 
them to the 7981 computational disease models of the 
HPO using symmetric Resnik matching [23]. Briefly, to 
calculate the Resnik symmetric matching score ɸ(Q, D) 
for disease D annotated with {d1, …, dm} HPO terms and 
query Q consisting of {q1, …, qn} HPO terms describing 
the clinical manifestations of the proband, SvAnna uses:

where sim(Q → D) is a method for obtaining one-sided 
semantic similarity between Q and D. The one-sided 
semantic similarity is obtained as:

(2)δ(g) = min

(

lenINS

lenUTR
, 1

)

(3)φ(Q,D) =
sim(Q → D)+ sim(D → Q)

2

Table 1 Summary of rules for calculating sequence deleteriousness score δ(g)

Higher scores indicate a greater degree of predicted deleterious effect on transcript function. t ⊂ SV: The SV fully contains the transcript in question. t ⇌ SV: Partial 
overlap of the transcript and the SV. SV ⊂ e The SV is completely contained within the indicated sequence element. {0.8, 1} and {0.2, 0.9} indicate scores for {in-frame, 
frameshift} variants
a Duplication of the entire gene is assigned a score of 1, triplication is assigned a score of 2, and so on

SV class t ⊂ SV t ⇌ SV SV ⊂ e

Coding or splice UTR Intronic Promoter

DEL 1 1 {0.8, 1} 0 ≤ δ(g)≤1 0 0.4

DUP 1a 0 {0.8, 1} 0 ≤ δ(g)≤1 0 0.4

INV 0 1 1 0 ≤ δ(g)≤1 0 0.4

INS – – {0.2, 0.9} 0 ≤ δ(g)≤1 0 0.4

BND – – 1 1 1 0.4
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To save computational time, SvAnna pre-calculates the 
information content of the most informative common 
ancestor IC(MICA(t1, t2)) for all terms t used to annotate 
computational disease models.

The PSV score
The Pathogenicity of Structural Variation (PSV) score 
is calculated based on the sequence deleteriousness 
score δ(g) and phenotype similarity score ɸ(Q, D) for 
all affected genes G. The sequence score δ(g) for each 
affected gene is weighted by the phenotypic similarity 
score ɸ(Q, D).

Here, the PSV score is calculated as a function of the 
query HPO terms (Q), the set of affected genes G, and 
the Mendelian diseases D associated with the genes in G. 
δ(g) is weighted by the exponentiated phenotypic simi-
larity ɸ(Q, D) of the query terms Q to a computational 
model of a disease D that is associated with variants in g. 
SvAnna uses the highest ɸ(Q, D) if more than one disease 
is associated with variants in g.

Performance benchmarks and comparison of with other 
algorithms for ranking pathogenic SVs
We conducted a manual review of the scientific lit-
erature to create a dataset of disease-associated SVs for 
benchmarking SvAnna and other tools for SV annota-
tion and prioritization. The dataset comprised 188 dis-
ease-associated SVs from 182 case reports published in 
146 articles (Table 2, Additional file 1: Fig. S1). In addi-
tion to genomic coordinates and genotypes of the causal 
variants, we recorded NCBI Gene and OMIM identi-
fiers for the causal gene and the associated disease, and 
we encoded the clinical features of the proband into 

(4)

sim(Q → D) =
1

m

∑m

i=0
maxd∈DIC(MICA(qi, d))

(5)PSV (Q,G,D) =
∑

g∈G
δ(g)· eφ(Q,D)

Human Phenotype Ontology terms [22, 24]. The curated 
SVs included deletions, duplications, inversions, inser-
tions, and translocations affecting a differing number 
of genomic elements. The number of clinical features 
ranged from 1 to 22 with a median of 5 features per case. 
We recorded the case reports in the Global Alliance for 
Genomics and Health (GA4GH) Phenopacket format 
[25]. The phenopackets are available at Zenodo (https:// 
zenodo. org/ record/ 50712 67) [26].

To provide a realistic background in the performance 
benchmark, we used ten VCF files with SVs generated by 
PacBio long read whole genome sequencing (see below) 
of peripheral blood samples obtained from ten individu-
als. The ten individuals are not related to 182 curated 
case reports. Since all benchmarked tools evaluate each 
variant independently, we used a simple strategy to sim-
ulate a variant dataset by adding disease-associated SVs 
into a background VCF file derived from PacBio whole-
genome sequencing (see below). We ran the benchmark 
on a case basis; we added all variants of the case report 
(i.e., both SVs in case of compound heterozygous geno-
type) in turn to one of ten background VCF files, and 
we recorded the median SV rank from the ten VCF files. 
We used the benchmarking schema to compare SvAnna 
with AnnotSV [27], X-CNV [28], SvScore [29], and Clas-
sifyCNV [30]. The benchmark was performed using 
the pipeline engine Nextflow [31]. In our performance 
benchmarks, variants whose ALT allele is supported by 
< 3 reads are removed prior variant prioritization. To 
ensure that the causal SV is not filtered out prior to pri-
oritization, we set allelic depth to 5:5 when evaluating 
heterozygous SV, and 0:10 when evaluating homozygous 
or hemizygous SV.

AnnotSV
AnnotSV is an open source tool that annotates struc-
tural variants stored in VCF and BED format with func-
tional, regulatory, and clinical information and classifies 
SVs into five pathogenicity classes: benign, likely benign, 

Table 2 Summary of curated collection of deleterious SVs

We curated a collection of 188 published deleterious SVs based on 182 cases published in 146 clinical case reports. We considered five classes of SVs commonly 
present in LRS variant calling results: deletions, duplications, inversions, insertions, and translocations. We further classified the SVs into five functional categories 
based on the number of affected genes and the relative location of the SV region with respect to transcripts of genes. The case reports are available for download

Deletions Duplications Inversions Insertions Translocations Total

Multiple genes 7 2 4 N/A 5 18

Multiple exons 37 19 5 N/A N/A 61

Single exon 81 16 2 3 N/A 102

Promoter 5 0 0 0 0 5

Intronic 2 0 0 0 N/A 2

Total 132 37 11 3 5 188

https://zenodo.org/record/5071267
https://zenodo.org/record/5071267
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variant of uncertain significance, likely pathogenic, and 
pathogenic. AnnotSV reports results in the tabular for-
mat. We performed a local installation of AnnotSV v3.0.9 
(accessed on June 25 2021). We used full annotation 
mode when running AnnotSV to produce a single row per 
SV in the result file, and we set the -SVminSize to 1 to 
ensure SVs shorter than 50 bp (including causal SVs) are 
analyzed. The tabular output reports the annotated SVs 
as one SV per row, and the rows are ordered by decreas-
ing priority. We used the row number to determine the 
variant rank. If the causal variant was assigned patho-
genicity class = NA instead of one of the five pathogenic-
ity classes, and therefore missed, we assigned the variant 
the rank 40,000.

SVScore
SVScore [29] is a tool for scoring structural variants by 
aggregating genome-wide CADD [32] scores. The CADD 
scores are aggregated in multiple ways (operations), and 
reported to the output VCF file. We used UCSC’s LiftO-
ver tool to remap the variant coordinates into GRCh37 
reference genome and we ran SVScore v0.6 with the fol-
lowing operations: sum, max, mean, meanweighted, 
top10, and top10weighted. To calculate the variant rank, 
we extracted values of the SVSCOREMAX, SVSCORE-
SUM, SVSCOREMEAN, and SVSCORETOP10 attrib-
utes from the VCF INFO field. If the value was equal to 
− 1, we assigned the variant the rank 40,000.

X‑CNV
X-CNV [28] uses extreme gradient boosted trees to pre-
dict deleteriousness of deletions and duplications in the 
form of meta-voting prediction (MVP) score. The MVP 
score integrates several dozens of features, including SV 
characteristics (type, allele frequency based on DGV, 
dbVar), functional deleteriousness predictions, non-cod-
ing features (CTCF, cCREs, pELS, and dELS elements), 
and genome-wide annotations. X-CNV ingests variant 
coordinates in BED format and provides a CSV file with 
feature values and MVP score. To benchmark X-CNV, 
we used UCSC’s LiftOver tool to remap the coordinates 
of deletions and duplications into GRCh37 reference 
genome, and we stored the coordinates into a BED file. 
We ran X-CNV (accessed on February 9 2022), and we 
used the MVP score to determine the variant rank. If 
the causal variant was not a deletion or duplication, and 
therefore missed, we assigned the variant the rank 40,000.

ClassifyCNV
ClassifyCNV [30] is a tool that calculates numeric del-
eteriousness scores for deletions and duplications, and 
assigns the ACMG category based on predefined score 
thresholds. The tool follows the criteria of the ACMG 

scoring rubrics to assign points, and writes the overlap-
ping dosage-sensitive genes, protein-coding genes, the 
clinical classification, and the sum of points into a TSV 
file. To benchmark ClassifyCNV, we converted the coor-
dinates of deletions and duplications into BED format 
and we ran ClassifyCNV v1.1.1 with default parameters. 
We used the Total score to determine the variant rank. 
In case of tied variant scores, the variant was ranked 
as the variant located in the middle of the tied variant 
group. We assigned rank 40,000 to all non-deletions and 
non-duplications.

Long read sequencing
We used VCF files from ten in-house long read (PacBio) 
whole genome sequencing experiments as background 
files for the simulations in order to provide a realistic 
background in the performance benchmark. Samples 
were obtained from Ludwig Boltzmann Institute for Rare 
and Undiagnosed Diseases, Vienna, Austria, the Depart-
ment of Human Genetics, New York State Institute for 
Basic Research in Developmental Disabilities, Staten 
Island, New York, USA, and the Children’s Hospital of 
Philadelphia with relevant ethical approval. The ten back-
ground VCF files are not related to the 182 case reports 
used for performance benchmarks. We used a similar 
strategy to assess the performance of the Exomiser tool 
[33] under the assumption that a more accurate assess-
ment of the accuracy of prioritization results can be 
obtained with real rather than simulated VCF files, and 
indeed the performance of Exomiser with in-house VCF 
files was inferior to the performance obtained by using 
VCF files from the 1000 Genomes Project Consortium as 
background [34]. Currently, we are not aware of collec-
tions of publicly available long-read VCF files that could 
be used for bioinformatic simulations.

High molecular weight (HMW) DNA extraction
The HMW gDNA was extracted using the Gentra Pure-
gene (Qiagen) kit. Frozen cells or tissues were first pul-
verized using a mortar and pestle and transferred to a 
15 mL tube that contained Qiagen Cell Lysis Solution. 
The lysate was then incubated with Proteinase K for 3 h 
at 55 °C, followed by RNase A for another 40 min at 37 °C. 
Samples were cooled on ice, and Protein Precipitation 
Solution was added. Samples were then vortexed and 
centrifuged. The supernatant was transferred to a new 
tube containing isopropanol for precipitation. Pellet was 
washed with 70% ethanol, air dried, and rehydrated in 
PacBio Elution Buffer until dissolved.

PacBio HiFi whole genome sequencing
This protocol was carried out using the PacBio SMRTbell 
Express Template Prep Kit 2.0 and the SMRTbell Enzyme 
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Cleanup Kit. Fifteen micrograms of DNA was sheared 
to 20 kb using g-TUBE (Covaris). The sheared DNA was 
purified using Ampure PB beads (PacBio). Ten micro-
grams of sheared DNA was used in removing single 
strand overhangs, followed by DNA damage repair and 
End repair/A-tailing. The repaired/modified DNA was 
used for V3 adapter Ligation. The adapter ligated library 
was treated with Enzyme mix for Nuclease treatment to 
remove damaged or non-intact SMRTbell templates. The 
purified library was then size selected using two-step 
size selection with Blue Pippin (Sage Science) generating 
9–13 kb and > 15 kb fractions. The size selected and puri-
fied > 15 kb fraction of the library was used for sequenc-
ing on a Sequel II device.

Alignment and variant calling
We aligned long-read PacBio HiFi WGS data to the 
GRCh38 (hg38) reference using pbmm2 (v1.3.0) with 
--preset CCS option enabled. We identified SVs on the 
indexed bam files using pbsv (v2.4.0).

Results
We developed SvAnna, a tool for phenotype-driven 
annotation and prioritization of SVs detected in LRS. 
SvAnna was designed to prioritize a broad range of SV 
classes such as deletions, duplications, inversions, copy 
number variants (CNVs), insertions, and translocations 
that affect one or more genes. SvAnna filters out com-
mon SVs and calculates a numeric priority score for the 
remaining rare SVs by integrating information about 
genes and promoters with phenotype matching to prior-
itize potential disease-causing variants. SvAnna outputs 
its results as a comprehensive tabular summary and as an 
HTML file intended for human consumption that visu-
alizes each variant in the context of affected transcripts, 
enhancers, repeats, and dosage sensitive regions, provid-
ing information about the effects of the variant on tran-
scripts, chromosomal locations, and Mendelian diseases 
associated with the affected genes.

Pathogenicity of Structural variation (PSV) score
SvAnna assesses each variant in the context of its 
genomic location. SvAnna first compares each variant 
to three sources of common SVs on the basis of recipro-
cal overlap. In addition to Database of Genomic Variants 
(DGV), gnomAD-SV, and dbSNP, which are largely based 
on data from SRS, SvAnna includes a recent dataset of 
SVs called by LRS (HGSVC) [6]. Common variants are 
removed according to user-defined frequency and over-
lap constraints (Methods).

For each SV, SvAnna determines the extent of overlap 
with genomic elements, including promoters and tran-
scripts. For each transcript, it determines which exon or 

exons are affected and whether the transcriptional start 
site of the coding sequence is disrupted.

For each class of variant, SvAnna defines rules to assess 
a sequence deleteriousness score δ(G) for a set of genes 
G affected by the variant (Fig.  1A). At the same time, a 
phenotypic relevance score Φ(Q,D) is calculated based 
on the similarity of patient phenotypes Q encoded using 
Human Phenotype Ontology [22, 24] (HPO) terms and 
the ~ 8000 computational disease models D of the HPO 
project (Fig.  1B). The candidates are ranked based on 
a PSV score that is calculated as a function of the δ(G) 
and Φ(Q,D) scores. The following sections explain the 
approach to specific classes of SV.

Deletions and duplications
To calculate the priority of a deletion of a genomic region, 
SvAnna determines the relative location of each overlap-
ping gene with respect to the variant. Deletions can fully 
contain a transcript, partially overlap, or be contained in 
a transcript region. SvAnna assigns complete transcript 
deletions a δ(g) score of 1. Deletions of single exons are 
assigned a score of 1 if they include coding sequence or a 
canonical splice site region and lead to shift of the reading 
frame. In-frame deletions involving one or more exons 
receive a score of 0.8. If a deletion is located in an intron, 
it is assigned a score of 0 (not deleterious). If a deletion 
affects an untranslated region (UTR), it is assigned a 
score based on the length of the SV and the UTR, with 
higher (more deleterious) scores being assigned to SVs 
that are large compared to the UTR sequence. In some 
cases, the effect of an SV is different for different tran-
scripts of a gene. SvAnna chooses the highest transcript 
score and uses that score as the δ(g) score for the gene. If 
a deletion encompasses multiple genes, the δ(g) score is 
assigned in this way for each gene.

For example, a ~ 6.9 kb-long deletion that leads to in-
frame loss of 48 amino-acid residues encoded by exon 2 
of NF1 (NM_000267.3) is considered to alter the func-
tion of the gene (δ(g) = 0.8) as the deletion removes the 
entire exon from the transcript [35]. Together with the 
phenotype features of the proband consisting of plexi-
form neurofibroma (HP:0009732), spinal neurofibromas 
(HP:0009735), tibial pseudarthrosis (HP:0009736), and 
multiple cafe-au-lait spots (HP:0007565), the variant 
attains rank 1 with a final PSV score of 157.95 (Fig. 2A). 
SvAnna generates an HTML output of the variant and its 
position with respect to the affected transcripts, repeti-
tive elements, and enhancers (see Additional file  1: Fig. 
S2 for this example). The median rank of 81 cases with 
single exon deletions was 1.

A deletion of three exons in BRCA1 received a PSV 
score of 427.0 and rank 1 (Additional file 1: Fig. S3). The 
median rank of multiple-exon deletions was 1. SvAnna 
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uses a slightly different approach to prioritize multi-
gene SVs. For instance, a deletion at chr2:109,923,337–
110,405,062 (hg38) affects four genes (LIMS3, MALL, 
NPHP1, and MTLN). SvAnna calculates the δ(g) score of 
each gene as 1, weighted by the phenotype score accord-
ing to equation 5 (Methods). Only NPHP1 is associated 
with a phenotypically relevant disease (Joubert syndrome 
4) and its contribution to the final PSV score is highest 
(Additional file 1: Fig. S4). The median rank of deletions 
affecting multiple genes was 1.

Duplications are handled in a similar way to deletions 
except that the gene g that is entirely spanned by a dupli-
cation is assigned a δ(g) score of 1. Similar considera-
tions about duplications that affect individual exons or an 
entire transcript pertain as with deletions. Tandem dupli-
cations that do not alter the primary linear sequence of a 
transcript (e.g., a duplication of the final exon of a tran-
script) are assigned a score of 0 (i.e., are assumed not to 
be deleterious). For example, a pathogenic duplication of 
36 bp within one exon of the PIBF1 gene was assigned a 
PSV score of 3.38 (Additional file 1: Fig. S5).

Inversions
An inversion is prioritized using a similar approach 
to that used for evaluating a deletion, with 

several differences. The δ(g) score for a genomic element 
spanned by an inversion is defined as 0 (since the primary 
sequence of the element is unchanged). If the sequence 
of a transcript is interrupted by inversion breakends, a 
δ(g) score of 1 is assigned. Additionally, inversions that 
affect one or multiple (but not all) exons of a transcript 
are assigned a score of 1. An inversion located completely 
within an intron is assigned a score of 0 (not deleterious).

For example, breakpoints of a 12 kb copy neutral inver-
sion identified in monozygotic twins suffering from intel-
lectual disability disrupt genic regions of BRPF1 and 
CPNE9 [36]. Since each breakpoint disrupts the gene 
sequence, the δ(g) score is set to 1 for both genes. Delete-
rious variants in BRPF1 are associated with Intellectual 
developmental disorder with dysmorphic facies and ptosis 
(OMIM:617333). The final PSV score of 9.25 aggregates 
scores of two disrupted genes: phenotypically relevant 
BRPF1 (8.25) and disrupted, but phenotypically not rel-
evant CPNE9 (1.0) (Figs. 2B, Additional file 1: Fig. S6).

5′UTR and transcriptional start site variants
SvAnna has specific rules for prioritizing SVs in non-cod-
ing sequences. SvAnna assumes that variants affecting 
UTR regions, especially SVs, are less likely to have a func-
tional impact on gene expression or translation. SvAnna 

Fig. 1 Overview of SvAnna algorithm. A Sequence deleteriousness score δ(G). The score assesses deleteriousness (predicted effect on gene 
function) by means of a series of heuristics for different SV classes (Table 1). B Phenotype similarity score Φ(Q,D). SvAnna calculates the phenotypic 
similarity for a set of HPO terms Q representing the patient’s phenotypic features and HPO terms D for a disease. SvAnna computes the information 
content (IC) of the most informative common ancestor (MICA) for all term pairs q, d for q ∈ Q and d ∈ D. The mean ICs μQ and μD are calculated for Q 
and D, and the final similarity score Φ is calculated as the mean of μD and μQ. The δ(G) and the Φ(Q,D) scores are combined to obtain the final PSV 
score (Methods)
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calculates the δ(g) score for a UTR variant as a function 
of the variant length and UTR length (Methods). How-
ever, the variants that disrupt transcription start sites 
(TSS) are considered just as deleterious as variants that 
affect coding sequences. As an example, we evaluated de 
novo deletion of 1571 bp affecting the first non-coding 
exon of AMER1 [37]. The deletion was processed as a loss 
of TSS, leading to a PSV score of 10.4 (Additional file 1: 
Fig. S7).

Promoter variants
SvAnna extends the prioritization rules to variants in 
gene promoters with a potential to change the gene 
expression. The promoter regions are assumed to encom-
pass 2 kb upstream of the TSS. To calculate the δ(g) score, 
SvAnna assigns SVs in promoter regions a score that is 
40% of that of an SV in a coding sequence. Effectively, this 
means that only promoter variants in genes with a good 
phenotype match get high priority scores. This is a limita-
tion of the approach that could be overcome as our abil-
ity to build computational models of promoter variants 
improves. If the variant affects a promoter and another 

genic region (e.g., TSS, UTR), the most deleterious δ(g) 
score for any of the regions is used to calculate the PSV 
score. For example, a 13-bp deletion in the promoter of 
the von Willebrand factor (VWF) gene in a patient with 
type 1 von Willebrand disease [38] was assigned a PSV 
score of 63.2 (Additional file 1: Fig. S8).

Translocations
SvAnna applies a series of rules to assess the pathogenic-
ity of translocations. A translocation that disrupts the 
coding sequence of a gene g or separates the transcrip-
tion start site of g from its coding sequence is assigned a 
δ(g) score of 1. The PSV score is calculated based on the 
predicted effects of the translocation at both breakpoints. 
For example, a translocation that disrupts the coding 
sequence of SLC6A1 in a case of myoclonic-atonic epi-
lepsy was assigned a PSV score of 4.74 (Additional file 1: 
Fig. S9).

SvAnna achieves clinically relevant sensitivity
We are not aware of any other tool that specifically tar-
gets VCF data as produced by modern LRS SV callers. 

Fig. 2 Prioritization of variants. A A case of proband with a single-exon deletion in the NF1 gene [35]. The deletion results in δ(g) = 0.8 for NF1. To 
calculate semantic similarity Φ(Q,D) for NF1, SvAnna evaluates five computational disease models associated with variants in NF1. In case of this 
proband, Neurofibromatosis, Type I (OMIM:162200) is the disease model that matches the proband’s clinical condition the best (Φ(Q,D) = 5.28). As 
NF1 is the only gene affected by the deletion, δ(g) and Φ(Q,D) of NF1 are the only determinants of the final PSV score. B A case of proband with 
an inversion involving 3′ end of CPNE9 and 5′ end of BRPF1 [36]. SvAnna assigns δ(g) score of 1 to both CPNE9 and BRPF1 that are disrupted by the 
inversion. Unlike the case of NF1 variant, the inversion involves > 1 genes; therefore, the final PSV integrates the scores of phenotypically relevant 
BRPF1 (8.25) and disrupted, but phenotypically non-relevant CPNE9 (1.00)
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We ran SvAnna on 10 in house VCF files called with pbsv, 
sniffles [13], and SVIM [14] and were able to annotate 
~ 99.9% of variants (i.e., identify nature and position of 
overlaps with transcripts). We are aware of only one com-
parable published tool for VCF-based phenotype-driven 
SV prioritization: AnnotSV [27], a standalone command-
line script that annotates SVs with functional, regulatory, 
and clinical information to filter out neutral variants and 
rank the candidate pathogenic variants, while the pheno-
type matching is delegated to a separate tool, Exomiser 
[33]. AnnotSV is able to annotate only DEL and DUP calls 
and missed INS, BND, CNV, and INV calls that were pro-
cessed by SvAnna. For instance, on a VCF file called by 
pbsv, AnnotSV missed 25,198 (40%) of 63,084 variants. 
We additionally tested three representative tools for SV 
analysis; we transformed the coordinates of CNVs found 
in the ten LRS VCF files into BED format to enable com-
parison with SVScore, X-CNV, and ClassifyCNV. SvAnna 
showed substantially superior performance to these tools 
(Fig. 3).

No other tool we are aware of is able to process all SV 
categories found in typical long-read VCF files as SvAnna 
can.

To assess the practical utility of SvAnna and to com-
pare performance with AnnotSV, SVScore, X-CNV, and 
ClassifyCNV, we developed a simulation strategy based 
on 182 curated case reports (Methods). We used 10 VCF 
(62,337–107,233 variants) generated by our in-house 
LRS pipeline and added the causal variant(s) to simulate 
10 runs per curated case, for a total of 1,820 data sets. 
Then, we prioritized the simulated variant dataset and 
calculated the median rank for the causal variant across 
10 runs. Overall, SvAnna placed the causal variant on the 
top of all variants in 60% of cases, the causal variant was 
at rank 10 or better in 87% of cases, and 91% of variants 
were placed at a rank of 20 or better (Fig. 3A, B).

We further evaluated the performance on different 
variant types. SvAnna showed consistent performance 
for all variant types from our benchmark set. SvAnna 
was confident in prioritization of deletions, duplications, 
inversions, and insertions, assigning median variant rank 
of 1. The breakend variants had a median variant rank 
of 4. SvAnna supports prioritization of all variant types 
(Fig.  3C, D). SvAnna performed consistently in cases 
with both low and high numbers of HPO clinical features 
(Additional file 1: Fig. S10).

SvAnna software
SvAnna presents its results both as tabular and VCF files 
suitable for bioinformatics analysis as well as a visually 
appealing HTML report to support clinical interpreta-
tion. The HTML report is a single page with a tabular 
and graphical summary of the top 100 variants, with 

information about the variant (read counts, VCF id, posi-
tion and length, and genotype if available), genes that 
overlap the variant and Mendelian diseases associated 
with the genes [39], and a list of all overlapping tran-
scripts as well as the position and effect on the transcript. 
A graphical display is generated for each variant (such as 
those shown in Fig. 4 and Additional file 1: Figs. S2-S9) 
as a scalable vector graphics (SVG) file that is embedded 
directly in the HTML code. The SVG shows the SV and 
its position compared to that of overlapping transcripts, 
whose coding exons are shown in green and non-coding 
exons in yellow. If applicable, overlapping repeats [21] 
and VISTA enhancers [20] are shown as tracks beneath 
the variant (Screenshot in Additional file 1: Fig. S11). The 
SVGs additionally display dosage sensitive regions (hap-
loinsufficiency and triplosensitivity) as reported by Clin-
Gen [40]. SvAnna is made freely available for academic 
use as a Java command-line application. The application 
annotates a VCF file containing ~ 60,000 SVs in ~ 3 min 
on a consumer laptop. The GitHub repository contains 
source code, a pre-built executable, and links to detailed 
instructions for use, as well as a VCF file with the eight 
examples presented here and a tutorial.

Discussion
Our ability to analyze the role of SVs in Mendelian dis-
ease has lagged significantly behind as compared to our 
capability to interpret single nucleotide variants and 
other small variants. The reasons for this include tech-
nical difficulties in calling SVs, the relative lack of func-
tional data on the effects of SVs on gene regulation, and 
the paucity of genome-wide association studies for SVs 
[1]. The advent of LRS promises to greatly improve the 
detection of SVs in patient samples. PacBio LRS was 
shown to be about three time more sensitive than a 
SRS ensemble calling approach, with the improvement 
was predominantly derived from improved detection 
of repeat-associated SV classes, particularly of inter-
mediate-sized SVs (50 bp to 2 kb), and insertions across 
the SV size spectrum [41]. However, progress on many 
fronts will be required to fully realize the promise of 
LRS for genetic medicine, including continued techni-
cal improvements, cost reductions, better SV calling 
algorithms, and more comprehensive knowledge of the 
medical relevance of classes of SVs that were difficult or 
impossible to ascertain with previous technologies.

Compared to the large variety of approaches avail-
able for SRS, there are very few computational methods 
for assessing the relevance of SVs for rare disease [5]. 
Numerous algorithms, databases, and tools have been 
developed to support the medical interpretation of diag-
nostic SRS. Although details vary from tool to tool, in 
general, variant pathogenicity is assessed on the basis of 
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variant allele population frequencies, evolutionary con-
servation, and functional impact prediction for missense, 
splice, and regulatory variants [42–44]. Disease genes can 
be prioritized based on functional and genomic data [45], 

or on the basis of phenotypic similarity of patient phe-
notype definitions with computational disease models of 
the HPO project [22, 46].

Fig. 3 Comparison of prioritization performance of different methods for prioritization of SVs. A Median ranks of 188 deleterious SVs obtained 
from simulated analysis runs. Top 5 means that the rank assigned by the tool was between 1 and 5, and so on. B Plot showing the cumulative rank 
for prioritizations by SvAnna, AnnotSV, X-CNV, SvScore, and ClassifyCNV. C SvAnna assigns the best rankings to all 5 evaluated SV classes. D SvAnna 
attains the best median ranks for SVs of all sizes, performing notably well in prioritization of variants involving multiple genes. In C and D, the boxes 
represent distributions of the median ranks. Each box plot is defined so that the center line is at the median variant rank, the box borders mark the 
25th and 75th percentiles, and the whiskers stretch to denote 1.5 times the interquartile range
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There is a need to extend these algorithms for LRS. 
SvAnna includes a number of innovations to this end. 
VCF files represent SVs in multiple ways including the 
default (sequence) representation and symbolic notation. 
Translocations are represented as breakend calls on two 
lines. SvAnna uses a harmonized computational model 
of variants to represent each category of variant, which 
enables it to apply a single prioritization approach to all 
categories of SV. We are aware of only one previously 
published tool for phenotype-driven prioritization of 
SVs, AnnotSV [27]. In contrast to SvAnna, AnnotSV was 
primarily designed to analyze SV events identified in SRS 
and array-based experiments and only supports the anal-
ysis of deletions and duplications. SvAnna demonstrated 
a substantially better overall performance than AnnotSV 
in the ranking of all classes of the causal SVs. SVScore, 
X-CNV, and ClassifyCNV do not include phenotype 
matching into the variant scoring. Furthermore, X-CNV 
and ClassifyCNV are limited to deletions and duplica-
tions. These factors may partially explain their relatively 
poorer performance compared to SvAnna.

In our study, SvAnna prioritized 87% of SVs in the 
first 10 ranks. The case reports were chosen from 182 

publications, seven of which reported diagnostic results 
from LRS [4, 10, 12, 36, 47–49]. Current published expe-
rience with LRS in a human genetic diagnostic setting is 
limited, and it is too early to assess the potential advan-
tage of LRS over SRS in diagnostic settings. Given that 
LRS detects SVs in genomic regions that were difficult or 
impossible to characterize by SRS, the medical relevance 
of variation in these regions will need to be assessed. 
SvAnna will benefit from future updates to the HPO 
resource in this area.

SvAnna’s ability to predict the medical relevance of SVs 
that affect presumptive enhancer sequences is limited. 
We are aware of no current database with a comprehen-
sive representation of Mendelian-disease associated SVs 
in regulatory sequences, and the majority of relevant 
case reports in the literature are not linked to enhancer 
databases such as VISTA or FANTOM. As information 
accrues in the literature about mechanisms of disease-
associated variation in enhancer sequences, it will be 
important to develop predictive models to accelerate 
discoveries.

SvAnna runs in < 5 min for a typical genome on a con-
sumer laptop (faster if computations are performed on 

Fig. 4 Inversion affecting BRPF1. Screenshot of the graphic generated by SvAnna for inv(chr3)(9725702; 9737931), a ∼12.23 kb inversion that 
disrupts the coding sequence of the CPNE9 and BRPF1 genes observed in patient with intellectual disability with dysmorphic features [36]. The 
graphic displays the relative location of the inversion (red box) with respect to individual transcripts of the affected genes. The transcripts are 
drawn as boxes (exons) and lines (introns) where green represents the coding regions, and yellow the non-coding regions. In addition, the graphic 
presents nearby repeat sequence loci to help with discovering variant calling artifacts, as well as interpretation of deleterious SVs that are often 
flanked with repeat regions
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multiple threads). All required data for running SvAnna 
are provided as a compressed archive for download. 
SvAnna is implemented as a standalone application with 
no external dependencies.

Conclusions
We developed SvAnna, an interpretable method for phe-
notype-driven prioritization of deleterious SVs obtained 
from high-throughput sequencing experiments. SvAnna 
is currently the only tool for phenotype-based prioritiza-
tion of SVs that is specifically designed to work with VCF 
files produced by typical LRS SV callers. We are likely 
to be at the beginning of a period of rapid expansion of 
LRS in diagnostic settings. SvAnna will play an important 
role in this process by promoting improved clinical inter-
pretation of a range of SVs. The interpretable prioritiza-
tions provided by SvAnna will facilitate the widespread 
adoption of LRS in diagnostic genomics. SvAnna is freely 
available for academic use at https:// github. com/ TheJa 
ckson Labor atory/ SvAnna [15].
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