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Abstract: Acrylic bone cement is widely used in orthopedic surgery for treating various conditions
of the bone and joints. Bone cement consists of methyl methacrylate (MMA), polymethyl
methacrylate (PMMA), and benzoyl peroxide (BPO), functioning as a liquid monomer, solid phase,
and polymerization initiator, respectively. However, cell and tissue toxicity caused by bone cement
has been a concern. This study aimed to determine the effect of tri-n-butyl borane (TBB) as an initiator
on the biocompatibility of bone cement. Rat spine bone marrow-derived osteoblasts were cultured on
two commercially available PMMA-BPO bone cements and a PMMA-TBB experimental material.
After a 24-h incubation, more cells survived on PMMA-TBB than on PMMA-BPO. Cytomorphometry
showed that the area of cell spread was greater on PMMA-TBB than on PMMA-BPO. Analysis of
alkaline phosphatase activity, gene expression, and matrix mineralization showed that the osteoblastic
differentiation was substantially advanced on the PMMA-TBB. Electron spin resonance (ESR)
spectroscopy revealed that polymerization radical production within the PMMA-TBB was 1/15–1/20
of that within the PMMA-BPO. Thus, the use of TBB as an initiator, improved the biocompatibility
and physicochemical properties of the PMMA-based material.

Keywords: arthroplasty; balloon kyphoplasty; cytotoxicity; free radical; hydrophilic; implants;
orthopedic surgery; total hip replacement
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1. Introduction

The prevalence of skeletal diseases and disorders is on a sharp increase, due to the ageing
population. Polymethyl methacrylate (PMMA)-based bone cements are widely used for treating
these conditions [1–5]. Specifically, they are used to fix metallic implants and restore fractured or
diseased spines, bones, and joints. PMMA-based bone cements consist of PMMA powder, methyl
methacrylate (MMA) liquid, and benzoyl peroxide (BPO), which acts as a polymerization initiator.
Currently, commercially available bone cements have two clinical issues: implant failure and systemic
complications [6–10]. Due to the inevitable toxic effects of bone cement materials thus far, cells and
tissues around the cement often undergo pathogenic and necrotic changes, resulting in inflammation,
bone resorption, and eventually implant loosening, when used with a metallic implant [7,11–17].
A revision surgery is required within 20 years after first surgery in 15% of total hip replacement
cases, and even worse, when the surgery involves patients younger than 70 years, the lifetime risk
of revision surgery rises to 35% [18]. The systemic complications are collectively defined as bone
cement implantation syndrome (BCIS) [6,12,13,19]. Patients who undergo orthopedic surgery using
bone cement suffer from perioperative or postoperative complications, such as hypoxia, hypotension,
cardiac arrhythmias, increased pulmonary vascular resistance, cardiac arrest, or a combination of
these [6,12,13,19]. The incidence of BCIS is as high as 28% depending on the part of the body where
the surgery occurred [20] and can lead to unexpected death in a certain percentage of patients [12,21].

Many studies have been conducted to explain the mechanisms behind the toxic effects of bone
cements and explore potential solutions. Oxidative stress induced by the production of free radicals
during PMMA polymerization may be a primary cause [7,17,22,23]. Although radical or non-radical
reactive oxygen species (ROS) are important components in various metabolic activities in the human
body, they are harmful and trigger inflammatory reactions and functional damages at the cellular and
tissue levels [24–26], once it is overproduced or when an imbalance between the ROS and antioxidant
redox system is triggered. Specifically, free radicals and oxidative stress derived from bone cements
lead to a significant reduction in the cell viability, proliferation, differentiation, and mineralization of
osteoblasts [25–30]. To mitigate this problem, an effective measure was introduced to neutralize free
radicals. Adding an antioxidant amino acid, N-acetyl-cysteine (NAC), to PMMA materials scavenged
the radicals and significantly reduced the cytotoxicity in a dose-dependent manner [7,17,22,23].

The second problematic property of bone cements is their exothermic reaction during polymerization.
Heat is generated from cleavage of a carbon double-bond to a single bond. The temperatures within
polymerizing bone cements may reach 75 to 95 ◦C [31–34], which causes focal bone necrosis [35,36] and
local interference in blood circulation. Addition of chitosan and chitosan/graphene oxide nanocomposite
powders successfully lowered the polymerization temperature by more than 10 ◦C, resulting in the
increased survival of osteoblastic cells cultured on the bone cement [37].

The third drawback of bone cements leading to its toxicity is the residual monomer after
polymerization. The immediate or gradual release of unreacted monomers is cytotoxic and tissue
toxic [38]. N,N-dimethyl-p-toluidine (DmpT) has been proven to decrease the amount of residual
monomer by increasing the completeness of polymerization and is used in commercial bone cement
products as a polymerization activator or co-initiator with BPO [39–41]. Optimizing the DmpT
concentration is difficult and dependent on the various conditions of other ingredients [39,41,42].
The adverse chemical effects of the residual monomers in current bone cements remain to be addressed.
In addition, there is a chemical dilemma that there is a greater increase in temperature with more
complete polymerization [42,43].

Although the above-mentioned additive measures to counteract the negative physicochemical
properties of bone cements were effective to improve its biocompatibility, cytotoxicity and clinical
complications still remain significant concerns, due to the fundamental reaction and behavior of PMMA
polymerization [8,21,32,44–46]. In addition, adding ingredients can be an additional source of toxicity,
like in the case of residual DmpT [41,47]. In this study, we hypothesize that replacing a polymerization
initiator without altering or adding to PMMA and MMA, can lead to a significant improvement
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in bone cement biocompatibility. Therefore, we tested tri-n-butyl borane (TBB) as a new initiator,
since it has been used in the development of dental adhesive materials [48,49]. The objective of this
study was to examine the biological compatibility of an experimental bone cement material made of
PMMA/MMA-TBB, compared to two commercially available PMMA/MMA-BPO bone cements.

2. Results

2.1. Improved Initial Attachment of Osteoblasts on PMMA-TBB

The initial cell attachment was assessed by the number of osteoblasts attached to the three different
bone cement surfaces after a 24-h culture using water-soluble tetrazolium salts-1 (WST-1) assay.
The number of cells attached to the PMMA-BPO1 surface was significantly higher than that attached on
the PMMA-BPO2 surface (Figure 1). More importantly, even more cells were attached to the PMMA-TBB
surface than the PMMA-BPO1 and PMMA-BPO2 surfaces. The osteoblast attachment on PMMA-TBB
was approximately 10 and 20 times greater than those of PMMA-BPO1 and PMMA-BPO2, respectively.
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day 3 after seeding. The number of propagated cells was higher in the order of the PMMA-TBB, 
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the PMMA-BPO cements (Figure 2B). Cells appeared to be elongated, colonized, and networked on 

Figure 1. Attachment of osteoblasts on the three different bone cement surfaces during the initial stage
of culture. The number of cells attached to each material surface during a 24-h incubation, evaluated
using a water-soluble tetrazolium salts-1 (WST-1) assay. Each value represents the mean ± standard
deviation of triplicate experiments (n = 3). * p < 0.05, ** p < 0.01, one-way ANOVA followed by
a Bonferroni test.

2.2. Improved Osteoblast Proliferation on PMMA-TBB

To assess the proliferative activity of osteoblasts after settling, WST-1 assay was continued on day 3
after seeding. The number of propagated cells was higher in the order of the PMMA-TBB, PMMA-BPO1,
and PMMA-BPO2, revealing a more biocompatible local environment on the PMMA-TBB continuing
from day 1 to 3 (Figure 2A). The results of the WST-1 assay were confirmed using a fluorescent
microscopic observation showing a greater number of cells on the PMMA-TBB than on the PMMA-BPO
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cements (Figure 2B). Cells appeared to be elongated, colonized, and networked on the PMMA-TBB,
whereas they appeared scattered and isolated from each other on the PMMA-BPO materials.
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on the PMMA-TBB were apparently larger than those on the two other bone cements, having a 
spindle shape, with more developed cyto-projections and intense expression of cyto-skeletal actin 
(Figure 3A). In addition, an overlapping morphology of cells with multiple nuclei was seen on the 
PMMA-TBB, indicating the advance of cellular colonization/proliferation. These qualitative 
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higher values for the area, perimeter, and Feret’s diameter of the cells on PMMA-TBB than on the 
PMMA-BPO materials (Figure 3B). 

Figure 2. Proliferation of osteoblasts on the three different bone cement surfaces during the mid-stage
of the culture. (A) The number of cells attached to the surface of each material at day 3 of incubation,
evaluated using a WST-1 assay. (B) Visualized osteoblasts 3 days after seeding on the material.
Representative fluorescence microscopy images of cells stained with rhodamine phalloidin for actin
filaments (red) and DAPI for nucleus (blue). Each value represents the mean ± standard deviation of
triplicate experiments (n = 3). * p < 0.05, ** p < 0.01, one-way ANOVA followed by a Bonferroni test.
Scale bar = 200 µm.

2.3. Enhanced Spreading Behavior of Osteoblasts on PMMA-TBB

We continued microscopic observation using high-magnification images on day 3. Osteoblasts on
the PMMA-TBB were apparently larger than those on the two other bone cements, having a spindle
shape, with more developed cyto-projections and intense expression of cyto-skeletal actin (Figure 3A).
In addition, an overlapping morphology of cells with multiple nuclei was seen on the PMMA-TBB,
indicating the advance of cellular colonization/proliferation. These qualitative observations on cellular
behaviors were confirmed using cytomorphometry, showing significantly higher values for the
area, perimeter, and Feret’s diameter of the cells on PMMA-TBB than on the PMMA-BPO materials
(Figure 3B).
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Figure 3. Representative high-magnification fluorescence microscopy images of the spreading
osteoblasts 3 days after seeding on three different bone cement surfaces. (A) Fluorescence microscopic
images of osteoblast following immunochemical staining for cytoskeletal actin (red) and nucleus (blue).
Scale bar = 40 µm. (B) Histograms for cytomorphometric parameters measured from the images.
Each value represents the mean ± standard deviation of six measurements (n = 6). ** p < 0.01, one-way
ANOVA followed by a Bonferroni test. Scale bar = 40 µm.

2.4. Improved Osteoblastic Functional Phenotype on PMMA-TBB

Furthermore, we examined how functional differentiation and phenotypes of osteoblasts are
influenced on the three different materials. On day 7 of culture, quantitative PCR showed that the
expression of collagen typeIalpha 1 (collagen-1) was significantly higher on the PMMA-TBB than
on the PMMA-BPO1 and PMMA-BPO2 materials (Figure 4A). A similar result was obtained on the
expression of the osteocalcin gene.

Alkaline phosphatase (ALP) activity, an early-to-mid stage maker, measured on day 7, was also
significantly higher on the PMMA-TBB than on both the PMMA-BPO cements (Figure 4B). Lastly,
the matrix mineralization, a late-stage maker of osteoblastic differentiation, evaluated using alizarin
red stain on day 14, was significantly higher on the PMMA-TBB than on the two PMMA-BPO cements
(Figure 4C).
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Figure 4. Biological characteristics of osteoblasts on three different bone cement surfaces. (A) Real-time
qPCR analysis of mRNA expression of bone-related genes of collagen type I alpha 1 (collagen-1) and
osteocalcin on the three different materials on day 7 using osteoblastic cell cultures. Relative expression
levels (2−∆∆Ct values) of the genes of interest were normalized to that of the housekeeping gene Gapdh.
(B) Alkaline phosphatase (ALP) activity at day 7, colorimetrically quantified and standardized relative
to cell number. (C) Representative images of mineral deposition evaluated using Alizarin red staining
at culture day 14 (top). The histogram of the percentage of the Alizarin-positive area relative to total cell
growth area on a culture well on the same day (bottom). Each value represents the mean ± standard
deviation of triplicate experiments (n = 3). * p < 0.05, ** p < 0.01, one-way ANOVA followed by
a Bonferroni test.
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2.5. Physicochemical Properties of the PMMA-TBB Material

The degree of heat generation during polymerization was assessed by measuring the temperature
of the water where the bone cement material was immersed. The temperature peaked at 34 to 36 ◦C for
PMMA-BPO bone cements approximately 7 to 8 min after mixing, whereas the temperature remained
as low as 29 ◦C for the PMMA-TBB without a typical spike (Figure 5). After 9 min, the temperature
remained at 33 ◦C or higher around the PMMA-BPO cements without a clear downturn, while the
temperature dropped below 28 ◦C around the PMMA-TBB material.
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The hydrophilic/hydrophobic state was evaluated on the three materials by measuring the contact
angle of 10 µL ddH2O placed on the material surfaces. The contact angle was greater than 60 ◦C on the
PMMA-BPO cements, indicating that the surfaces were hydrophobic (defined as a contact angle of
45 ◦C or higher), whereas it was approximately 35 ◦C on the PMMA-TBB cements, indicating that the
surface was hydrophilic (Figure 6A).
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Figure 6. Characteristics of the contact angle and free radical generation on the different bone cement
surfaces. (A) Hydrophilic/hydrophobic property of the surfaces of the three different materials. Bird’s
eye view images of 10 µL ddH2O placed on the materials after mixing the materials. The graph on
the bottom represents the average contact angle of ddH2O for each surface. Each value represents the
mean ± standard deviation of triplicate experiments (n = 3). ** p <0.01, one-way ANOVA followed by
a Bonferroni test. (B) Free radical generation in polymerizing three different materials evaluated using
electron spin resonance spectroscopy (ESR). ESR spectrums recorded 24 h after mixing materials.

Lastly, we examined the amount of polymerization free radical production using electron spin
resonance (ESR). The ESR spectrum 24 h after mixing showed a great contrast between the PMMA-TBB
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and PMMA-BPO cements (Figure 6B). There was a clear detection of free radicals for the PMMA-BPO
cements, whereas the PMMA-TBB did not show an identifiable signal. The level of free radical production
quantified from the spectra was lower in the order of PMMA-TBB, PMMA-BPO2, and PMMA-BPO1.
The radical production within the PMMA-TBB was 1/15–1/20 of that within the PMMA-BPO cements.

2.6. Mitigated Toxicity of Bone Cement Materials by Radical Scavenger

We lastly examined how bone cement materials respond to the addition of free radical scavenging
molecules. The antioxidant amino acid, N-acetyl cysteine (NAC), was added to each material. Then,
the WST-1 assay was performed 24 h after seeding the osteoblasts. The addition of NAC drastically
increased the number of cells attached on both PMMA-BPO cements (Figure 7). The number of
cells attached to PMMA-TBB, which was high without NAC, did not increase as much as that of the
PMMA-BPO cements, although it was of note that the WST-1 value with NAC was as high as the one
in the polystyrene dish without a cement. The values for the PMMA-BPO cements with NAC were
very similar to the values for the PMMA-TBB without NAC.
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Figure 7. A rescue attempt of three different materials by incorporating the antioxidant amino acid
derivative, N-acetyl cysteine (NAC), into the materials examined by the ability of the materials to
facilitate cell attachment. The number of osteoblasts attached 24 h after seeding evaluated using WST-1
assay is shown with or without NAC. Each value represents the mean ± standard deviation of triplicate
experiments (n = 3). ** p < 0.01, Welch’s t-test.

3. Discussion

This study revealed an improved biocompatibility of the PMMA-TBB material compared to
the PMMA-BPO materials selected as representative commercial bone cement products. There was
a significant improvement, starting with the number of attached osteoblasts, the initial interaction
between the cells and materials, and the growth and ending with their differentiation and mineralization.
After 24 h of incubation, the number of cells that survived and were attached on the PMMA-TBB
was 10 times greater than that on the PMMA-BPO materials. The greater biocompatibility of the
PMMA-TBB material continued to be effective after day 1, resulting in a remarkable increase in the
number of propagated cells on day 3. In addition, the result of WST-1 on day 3 was more pronounced
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than the microscopic observation on the same day. Although there were more cells on the PMMA-TBB
than on the PMMA-BPO materials under microscopy, the difference was not as significant as the
WST-1 result. The WST-1 assay had to indicate the number of cells by measuring their metabolic
activity and was used to evaluate the number of initially attached cells on the surface or the rate of
cellular proliferation depending on the culture stage. We assumed that the cells which survived on the
PMMA-BPO materials were in the reduced metabolic state, thereby lowering the number of WST-1
results. Indeed, the cells on the PMMA-TBB appeared much larger with more intense expression
of cytoskeletal actin, whereas the cells on PMMA-BPO remained smaller and circular, supporting
the assumption.

The improved response, behavior, and function of osteoblasts on the PMMA-TBB material
were primarily attributed to the reduced toxicity of the material. We found a drastic decrease in
the production of polymerization radicals within the PMMA-TBB compared with the PMMA-BPO
cements. This decrease was greater than our expectation and as significant as 1/15–1/20 after 24 h.
The production of radicals continued to be robust within the PMMA-BPO even after 24 h. The effect of
free radicals triggering cellular apoptosis and necrosis and further undermining cellular proliferation
and differentiation has been extensively reported. The amount of residual monomer, as another potential
source of chemical toxin, was not assessed in the present study and is our future interest. Unreacted
monomer and its continuous release as a result of depleted BPO, which has been unavoidable thus far,
has been repeatedly reported as a major drawback of current PMMA bone cements [39,50]. If the use
of TBB instead of BPO reduces the amount of residual monomer, it would be of additional significance.
In addition, we cannot preclude the positive impact of not having N,N-dimethyl-p-toluidine (DmpT)
in the PMMA-TBB material. DmpT is a remnant chemical in the polymerized bone cement and is
eluted to the surrounding tissue, causing various cellular damages [41,47,51,52]. The PMMA-TBB used
in the present study was successfully polymerized without DmpT.

The experiment with NAC further confirmed the adverse effects of free radicals. NAC is known
as an effective radical scavenger and mitigated the toxicity of PMMA-BPO cements considerably.
Notably, PMMA-BPO cements with NAC turned out to be as biocompatible as the PMMA-TBB.
These results re-affirmed that these radicals are the major source of toxicity in PMMA-BPO materials
and that a significant control in radical production in the PMMA-TBB material is the reason for its
minimum toxicity.

The mechanisms behind radical production are distinctive between BPO and TBB. BPO is highly
reactive and degrades readily. In the bone cement products, BPO and DmpT react, cleaving the oxygen
single bond (O–O), and form two different radicals (toluidine free radical and benzoyloxy free radical).
These two radicals then merge to form a phenyl radical that works as an activated initiator. In contrast,
TBB possesses two active boron-carbon bonds, each of which produces radicals by reacting with
oxygen, without the aid of DmpT [48,49,53].

We found that other physicochemical properties were significantly different between the
PMMA-TBB and PMMA-BPO materials. The exothermic reaction was well controlled in the PMMA-TBB
material. The present result was consistent with a previous study reporting that the activation energy
(Ea) for BPO (15 to 33 kcal/mol) was significantly higher than that for TBB (3.8 to 5.5 kcal/mol) [54].
The experimental conditions, such as measuring temperature in water and using a smaller material
volume than the product size, may have caused a lower temperature reading than the actual ones.
However, we believe that the difference of the peak temperature between 29 ◦C for the PMMA-TBB
and 36 ◦C for the PMMA-BPO is worth the attention. We interpret that the use of TBB as an initiator
dissipates thermal energy and enables wide-spread polymerization kinetics, thereby preventing a spike
of temperature increase. Traumatic changes of bone tissue occur when they come into contact with
bone cement reaching 50 ◦C for 1 min [55,56]. There is a certain temperature range required to trigger
thermal injury and the critical thermo-tolerance temperature may be 43 ◦C at the cellular level [57].
When thermal injury occurs on osteogenic cells, it induces apoptosis and initiates the bone remodeling
cascade [58]. It will be of great importance to determine whether the PMMA-TBB material can
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avoid in vivo pathologic changes by its polymerization temperature in a future study. In particular,
antibiotics containing bone cements have become common recently, and their effectiveness is known to
be susceptible to the temperature of the bone cement [2,59].

The PMMA-TBB material may have another impact. Another notable change found on the
PMMA-TBB was its hydrophilicity. The effect of hydrophilicity or hydrophobicity on cellular attachment
was extensively studied on titanium [60–64]. In general, hydrophilic titanium attracts more osteoblasts
than hydrophobic titanium. However, no definitive correlation was found between the degree of
hydrophilicity and the number of cells. To the best of our knowledge, the effect of hydrophilicity
has rarely been studied on bone cement materials [27]. Making hydrophilic PMMA-based materials
is challenging in the first place. Now that the use of TBB can potentially make the PMMA surface
hydrophilic, further studies will be necessary to pursue its role.

As summarized in Figure 8, a newly tested PMMA-TBB material, compared with the PMMA-BPO
material, was characterized by a hydrophilic surface, controlled increase in the surface temperature,
and reduced free radical production. Although the detailed link of these likely advantages to its
biological potential remains to be confirmed, PMMA-TBB materials may warrant further in vivo
studies as well as their mechanical characterization, in pursuit of their application to orthopedic
bone cements. The pursuit may extend the acrylic bone cement per se. We believe the fundamental
principles and biological advantages of TBB found in the present study can be applied to various
PMMA-based materials loaded with other ingredients. Specifically, the effect of the use of TBB on
antibiotic-impregnated bone cements [1,65–67] and calcium phosphate/hydroxyapatite and PMMA
composites [68–71] should be examined. Further, comparisons between PMMA-TBB materials and
currently used calcium phosphate bone cements and ceramic-based materials will be of great interest.
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and subsequent osteogenic function.

4. Materials and Methods

4.1. Material Preparation and Characterization

PMMA-BPO1 bone cement was prepared by mixing the powder and liquid in the recommended
ratio (powder (wt):liquid (wt) ratio = 40:18.88; Endurance, DePuy Orthopaedics, Warsaw, Indiana)
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and placed in a well of a 12-well cell culture plate. PMMA-BPO2 bone cement was also prepared by
mixing powder and liquid in the recommended ratio (powder (wt):liquid (vol) ratio = 40:20; Surgical
Simplex P, Stryker, Kalamazoo, Michigan). For PMMA-TBB resin, TBB initiator was added to the MMA
monomer in a ratio of 9% to make a liquid mix. Then, the PMMA powder and liquid were mixed in
the ratio (wt/wt) 40:18.8. The MMA, PMMA, and TBB materials were manufactured and provided by
Mitsui Chemical Inc. (Tokyo, Japan). Ingredients for the power and liquid for each material are listed
in Table 1. Three bone cement specimens were prepared for each assay per cement type.

Table 1. Bone cement materials compared in the present study.

Bone Cement Type Ingredients

PMMA-BPO1(Endurance MV, DePuy Orthopaedics)

Powder:
Polymethyl methacrylate (PMMA) (67.05%)

Methyl methacrylate/styrene copolymer (21.10%)
Benzoyl peroxide (BPO) initiator (1.85%)

Barium sulphate (10.00%)
Liquid:

Methyl methacrylate (MMA) (98.00%)
N,N-dimethyl-p-toluidine (DmpT)(<2.00%)

Hydroquinone (HQ) (75 ppm)

PMMA-BPO2(Surgical Simplex P, Stryker)

Powder:
Polymethyl methacrylate (PMMA) (15.00%)

Methyl methacrylate-styrene copolymer (73.70%)
Benzoyl Peroxide (BPO) initiator (1.30%)

Barium sulfate (10.00%)
Liquid:

Methyl methacrylate (MMA) (97.40%)
N,N-dimethyl p-toluidine (DmpT) (2.60%)

Hydroquinone (HQ) (75 ppm)

PMMA-TBB(Experimental)

Powder:
Polymethyl methacrylate (PMMA) (90.00%)

Barium sulfate (10.00%)
Liquid:

Methyl methacrylate (MMA) (91.00%)
tri-n-butyl borane (TBB) initiator (9.00%)

Hydroquinone (HQ) (50 ppm)

To determine the role of free radical production on the biocompatibility of the PMMA materials,
we prepared the experimental PMMA materials supplemented with N-acetyl-cysteine (NAC). NAC
is a cysteine derivative and is known to be an antioxidant amino acid by directly scavenging free
radicals [7,17,22,23,72]. NAC was prepared as a 1M stock solution in HEPES buffer whose pH was
adjusted to 7.2. For each material, the NAC solution was mixed with MMA liquid before mixing with
the PMMA powder to make a final concentration of 5 mM NAC.

Potential temperature increase of the materials was evaluated by measuring the temperature
during polymerization. Each cement was mixed and placed in a well of a 12-well plate submerged in
500 µL PBS pre-warmed to 37 ◦C. The measurement was conducted every minute until a peak-out.
The hydrophobic/hydrophilic property of the material surfaces was examined by measuring the contact
angle of 10 µL ddH2O placed on the materials. The measurement was performed on a material surface
spread flat after passing their doughy stage.

The production of free radicals during polymerization was assessed using electron spin resonance
spectroscopy (ESR), which has been validated and developed for various in vitro biomedical
applications [73–75]. Cement specimens were examined using a JES-RE 3X, X-band spectrometer
(JEOL, Tokyo, Japan) connected to a WIN-RAD ESR Analyzer (Radical Research, Tokyo, Japan) at the
following settings: modulation amplitude, 0.063 mT; sweep width, 5 mT; sweep time, 1 min; time
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constant, 0.03 sec; microwave power, 8 mW; and magnetic field, 335.5 mT. The component signals in the
spectra were identified and quantified as reported previously [73]. The measurement was conducted
1 h after mixing.

4.2. Osteoblastic Cell Culture

Bone marrow cells isolated from the spines of 8-week-old male Sprague-Dawley rats were placed
in alpha-modified Eagle’s medium supplemented with 15% fetal bovine serum, 50 µg/mL ascorbic
acid, 10−8 M dexamethasone, 10 mM Na-ß-glycerophosphate, and antibiotic-antimycotic solution
containing 10,000 units/mL penicillin G sodium, 10,000 mg/mL streptomycin sulfate and 25 mg/mL
amphotericin B. Cells were incubated in a humidified atmosphere of 5% CO2 at 37 ◦C. At 80% confluency,
the cells were detached using 0.25% trypsin-1 mM EDTA-4Na and seeded onto either PMMA-BPO
or PMMA-TBB material at a density of 6 × 104 cells/cm2. The culture medium was renewed every
3 days. All experiments were performed following protocols approved by The Chancellor’s Animal
Research Committee at the University of California at Los Angeles (ARC #2005-175-41E, approved on
30 January 2018), the PHS Policy for the Humane Care and Use of Laboratory Animals, and the UCLA
Animal Care and Use Training Manual guidelines.

4.3. Quantification of Cell Number

The number of cells attached to the bone cement materials was evaluated by measuring the number
of cells attached to the surfaces after 1 and 3 days of incubation. These measurements were performed
using a water-soluble tetrazolium salts (WST-1)-based colorimetric assay (WST-1; Roche Applied
Science, Mannheim, Germany). Each culture well was incubated at 37 ◦C for 30 min with 100 µL
WST-1 reagent. The amount of formazan produced was measured at 420 nm using an enzyme-linked
immunosorbent assay (ELISA) reader (Synergy HT, BioTek Instruments, Winooski, VT, USA). Three
bone cement specimens were prepared for each cement type at each time point.

4.4. Morphology and Spreading Behavior of Osteoblasts

The spreading behavior and cytoskeletal arrangement of osteoblasts seeded onto bone cement
materials were examined using fluorescence microscopy. At 3 days after seeding, cells were fixed in
10% formalin and dual stained with fluorescent dyes: 4′,6-Diamidino-2-phenylindole (DAPI, Vector,
CA, USA) for nuclei and rhodamine phalloidin for actin filaments (Molecular Probes, Eugene, OR,
USA). The area, perimeter, and Ferret’s diameter were quantified using an image analyzer (ImageJ,
NIH, Bethesda, MD, USA). Three bone cement specimens were prepared for each cement type.
Cytomorphometry was conducted in six cells randomly chosen from these specimens.

4.5. Alkaline Phosphatase (ALP) Activity

The ALP activity of osteoblasts was examined on day 7 using a colorimetry-based assay. The culture
was rinsed with double-distilled water (ddH2O) and treated with 250 µL p-nitrophenylphosphate
(LabAssay ALP, Wako Pure Chemicals, Richmond, VA, USA) and further incubated at 37 ◦C for 15 min.
ALP activity was evaluated as the amount of nitrophenol released through the enzymatic reaction and
measured at a wavelength of 405 nm using an ELISA plate reader. Three bone cement specimens were
prepared for each cement type.

4.6. Real-Time Quantitative Polymerase Chain Reaction (qPCR)

Gene expression was analyzed using qPCR on day 7. Total RNA was extracted from cells using
TRIzol (Invitrogen, Carlsbad, CA, USA) and a Direct-zol RNA MiniPrep kit (Zymo Research, Irvine,
CA, USA). Extracted RNA was reverse transcribed into first-strand cDNA using SuperScript III Reverse
Transcriptase (Invitrogen). Quantitative PCR was performed in a 20 µL volume containing 90 ng cDNA,
10 µL TaqMan Universal Master Mix II, and 1 µL TaqMan Gene Expression Assay using a QuantStudio
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3 Real-Time PCR System (Thermo Fisher Scientific, Canoga Park, CA, USA), to quantify the expression
of type I collagen and osteocalcin mRNA. Gapdh expression was used as the endogenous control. Three
bone cement specimens were prepared for each cement type.

4.7. Mineralizing Capability

The mineralization capability of cells was examined by visualizing mineralized nodule areas via
Alizarin red staining. On day 14 of culture, the culture was washed twice with 1× PBS at 37 ◦C and
stained for 15 min using 1% Alizarin red (pH 6.3–6.4). The culture wells were then rinsed twice with
ddH2O and air-dried. The area of mineralized nodules relative to the culture area was quantified using
an image analyzer. Three bone cement specimens were prepared for each cement type.

4.8. Statistical Analysis

ANOVA was used to determine differences between the three bone cement types, followed by
a Bonferroni post-hoc test. In addition, Welch’s t-test was used to compare the two groups; p < 0.05
was considered statistically significant.

5. Conclusions

The PMMA-TBB material allowed the attachment of a greater number of osteoblasts and more
advanced spread, proliferative activity, and differentiation of the cells than the PMMA-BPO bone
cements tested in this study. This highly improved biocompatibility of the PMMA-TBB was associated
with its distinct physicochemical properties, including a hydrophilic surface, controlled exothermal
polymerization, and minimal production of free radicals.
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