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Abstract

Intracellular transport in eukaryotic cells is a process in which cargo, carrying various
materials and attached to molecular motors, moves around the cell. The cargos’ trans-
port consists of phases of passive, diffusion-based transport in the bulk cytoplasm and
active, motor-driven transport along filaments that make up the cell’s cytoskeleton.
Because of it’s role in the active phase of transport, the cytoskeletal geometry is an
important factor. In this dissertation, we consider network parameters such as fila-
ment length, number, polarization direction, and location and examine their effect on
the transport process. This can be achieved by computationally determining cargo
transport through simulation and numerical analysis techniques.

We present this research by first demonstrating an approach that evolves a distri-
bution of cargos in time using numerical integration. To do this, we use two coupled
differential equations that enforce the distribution movement on and off filaments.
An interesting finding here is that the distribution can become “trapped” at what we
consider intermediate filament lengths.

Although we mostly use a simplified model where normal diffusion governs the
passive phase of transport, we also consider the effects of incorporating anomalous
subdiffusion in the bulk. This means that the entire transport process can be de-
scribed as anomalously diffusive, with the active transport phase being superdiffusive
and the passive transport phase being subdiffusive. One thing we found by taking
this approach is that filament length, rather than filament number, has a greater in-
fluence on the domination of overall superdiffusive transport at relatively early times
compared to the domination of subdiffusive transport at later times. We were able to
extend this observation to model the biphasic release of insulin out of cells in which
there is a large spike in insulin release, followed by a slower, more sustained release.

In the final chapter, we consider the possibility of cargos capable of switching to
different filaments. If multiple motors are attached to a cargo, it can switch from one
filament to another, provided one is nearby. In this phase of our research, we took
real images of networks of microtubule bundles and extracted network parameters
from them in order to run our simulations. We compared our simulation data, where
cargos had different switching probabilities, with experimental data, where cargos
had different numbers of motors, and were able to draw a correlation between cargo
switching probability and motor number. The network images and the experimental
data were provided by our collaborator, Professor Jennifer Ross at UMass, Amherst.
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Chapter 1

Introduction

1.1 Background

The problem of transport has become widely studied at multiple length scales in bi-
ological systems. Many of these transport processes are stochastic, being represented
as the time evolution of the probability that the system is in a certain state. This
is especially the case for intracellular transport which occurs in nearly all eukaryotic
cells.

In this environment multiple materials, including proteins, carbohydrates, nucleic
acids, and lipids are tranported around the cell, to targets like the cell membrane, the
nucleus, and the various organelles [1]. Because the transported material is sufficiently
large (>nm) and transport distance is relatively far (>10 µm in eukaryotic cells
compared to < 1 µm in prokaryotic cells where there is no active transport), reliance
on diffusion alone to facilitate transport is not enough. These “large” materials,
then, require some sort of active transport to aid their movement [2, 3]. As a result,
intracellular transport is a combination of passive (diffusive) and active transport and
is important in maintaining proper cellular function. Some examples of materials
that rely on intracellular transport and, by extension, active transport, are vesicles
containing proteins like insulin [4] and organelles like mitochondria [5].

In the cellular environment, active transport is accomplished through ATP-powered,
molecular motor-driven transport along a complex cytoskeletal network consisting of
polymers such as actin filaments and mircotubules [6]. Primarily, there are three
kinds of molecular motors (myosin, kinesin, dynein) that transport cargos, with each
using ATP to walk in a hand-over-hand type of motion upon their respective filament
types [6]. Each motor is categorized by the type of filament on which they move,
and the way in which they move upon them. Myosins tend to move toward what
is considered the positive (+), polarized, end of actin filaments, which tend to form
random networks within the cytoplasm [7, 8]. Kinesins and dyneins transport cargo
along microtubules, which typically span across the cyoplasm from the nucleus to the
cell membrane, with kinesins moving toward the (+) end, away from the nucleus. In
contrast, dyneins move toward the (-) end of the microtubules [9,10]. Fig. 1.1a shows
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an artist’s depiction of kinesin motors walking on a cytoskeletal network composed
of microtubules.

Figure 1.1: (a) Kinesin motors walking along a microtubule [11]. (b) An image of a
microtubule network within an embryonic mouse cell [12].

The filaments form a network “mesh”, consisting of microtubules providing trans-
port tracks along long distances (can be greater than 25 µm in some neurons) and
actin filaments providing transport over shorter distances (typically less than 1 µm).
Cargos usually have multiple motor-binding sites providing for switching between
filaments in the network [10]. Shown in Fig. 1.1b is a visual representation of a
cytoskeletal network in an embryonic mouse cell.

The process of intracellular transport can then be thought of as occurring in
two phases. Cargo alternates between motor-facilitated transport along a complex,
dynamic cytoskeletal network consisting of mainly actin filaments and microtubules,
and diffusive transport through the noisy, crowded environment that is the cytoplasm.
Cargos, and the motors they’re attached to, thus alternately bind and unbind from
the filaments they walk on until they fall off, forcing the cargo to rely on diffusive
transport for some time before attaching to another filament. This process continues
until the cargo reaches its destination.

The process of cargo transport has been studied extensively from multiple per-
spectives including that of the molecular motors and their co-ordination [13–19] and
features of the individual filaments they walk along [20–24]. More recently, there
has been a lot of work, especially theoretical, focusing on the larger scales aspects
of transport including the coupling of active and passive motion [4, 25–28], the role
of geometric confinement [29, 30] and the geometry of the cytoskeletal network it-
self [24, 31–34].

The understanding of intracellular transport has important biological implica-
tions. For example, the breakdown of intracellular transport in neurons can lead to
neurodegenerative diseases like Alzheimer’s [35]. It is also the case that in the dia-
betic state, insulin granules’ ability to be transported out of the cell is hindered, for
reasons that are not fully understood [4]. The breakdown of the cytoskeletal network
itself has been linked to various neurological diseases, immunodeficiency diseases, and
development defects [36]. Studying intracellular transport from the perspective of the
cytoskeletal network is also important because it is unique. Other transport models
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have been attempted but have fallen short in giving a good description of intracellular
transport processes. For example, in virtual network models, it is assumed that cargo
randomly binds and unbinds from filaments, switching between phases of diffusion
and ballistic motion of constant velocity [8,37]. One issue with this model is that the
random binding and unbinding could happen anywhere within the system, as there
is no explicit filament network considered in the model, meaning that homogeneity
is assumed [32, 38]. This is in contrast to the systems we use in our analyses where
we use an explicit, heterogenious cytoskeletal network. Previous work in our group
has found that trapping within certain regions of the cytoplasm can occur and that
transport is quicker and more predictable when the filaments are placed closer to the
starting position of cargos, polarity of the filaments points towards the target desti-
nation, there are more filaments with shorter lengths (as opposed to fewer filaments
of greater length), and when binding and unbinding rates are optimized [31]. Due
to findings like these, we believe that using a system that implements real, explicit
filaments is vital to building up a good predictive model.

1.2 Overview

The results discussed here can be broken down into three parts. In general, we wish
to characterize transport by evaluating first-passage time distributions (FPTDs) and
mean first-passage times (MFPTs) as a function of the morphology of the cytoskeletal
network. In this dissertation, we focus on developing new techniques to incorporate
explicit filaments into numerical schemes and also to explore features of transport
incorporating aspects that have not been accounted for before such as anomlous
subdiffusion in the bulk cytoplasm and switching at filament intersections. Much of
what is written here, particularly in chapters three and four, are parts of papers that
are either in preparation or have been submitted.

1.2.1 Numerical Integration Techniques

We present a method to evolve a probability distribution of cargos in time. By doing
this, we eliminate the noise inherent in the simulation of cargo movement and can
examine broad cargo behavior at any instance in time. To use this method, we solve
a set of coupled differential equations [3] that describe the time evolution of a cargo
distrubution that is able to move on and off a filament network. We are able to see
that for a sufficiently high fraction of filaments pointing towards the center of the
cell, transport outward is slowed down and the distribution may become “trapped”
in certain regions. One significant finding is that maximal trapping can be seen at
intermediate filament lenghts. We explore these results more closely in chapter three.
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1.2.2 Cargo Simulations Incorporating Anomalous Diffusion

Although most of the time, we simplify our model by considering normal diffusion
within the bulk cytoplasm, technically, the entire intracellular transport process can
be described by anomalous diffusion. The active transport phase can be considered
superdiffusive and the passive transport phase within the bulk cytoplasm can be char-
acterized as subdiffusive which has been shown experimentally [3, 39]. We evaluate
the inter-play between superdiffusion and subdiffusion as characterized here. Ulti-
mately, longer filaments help facilitate more superdiffusive transport. Superdiffusive
transport turns out to dominate at earlier times. Another thing we were able to
capture with our methodology here is the biphasic nature of insulin release out of the
cell which is characterized by an initial spike in release, followed by one that is slow
and sustained [4]. We explore this topic further in chapter four.

1.2.3 Cargo Simulations Using Networks Extracted from Im-
ages

We were able to extract networks from images of networks of microtuble bundles
which were used in experiments that tracked cargo directly from our collaborator,
Professor Jenny Ross. After running simulations using the extracted networks, we
were able to compare simulation data with experimental data and draw a correlation
between number of motors attached to individual cargos and the probability that a
cargo will switch to another filament when it is near a filament intersection. We were
able to find some correspondence of a switching probability of 0 with a one-motor
cargo and a switching probability of 0.6 with a ten-motor cargo. One thing that is
significant about what we have done here is that we have presented a way to take
an image of a filament network and extract the explicit filaments that may be used
in simulations or numerical integrations. This work is discussed in more detail in
chapter five.



Chapter 2

Methods

In most of our analyses, we typically model a cargo moving within a eukaryotic cell
as a random walker. Determining the time it takes for a random walker to reach its
target destination, the first-passage time, provides a fundamental understanding of
the particular random walker [37]. For multiple random walkers (the cargos in our
model), the first-passage times we calculate can be used to construct a FPTD. The
average of all of the first-passage times is MFPT. In our model, we will obtain FPTDs
and MFPTs for cargos starting on the boundary of the nucleus (near the center of
the cell) with their target destination being the cellular membrane (the cell’s “outer
boundary”). Both the MFPT and the FPTD can be used to quantify the effect the
cell’s cytoskeleton has on transport.

2.1 The system

In determining the MFPT and the FPTD, we will model both the explicit simulation
of multiple cargos, and the integration of the time-evolution differential equations for a
distribution of cargos. Simulations are easier to implement but numerical integrations
give us more accurate answers for averaged quantities without requiring a lot of
statistics. However, simulations of individual cargos can give us insight into the
variance for a finite number of cargos and allow us to easily measure features of single
trajectories for comparison with appropriate experiments. Thus, both have their
advantages depending on the questions asked and the available data.

In our simulations, we use a model where we consider a simple eukaryotic cell
containing a nucleus and a cell membrane. We also include a cytoskeletal network
made up of a number of actin filaments of a given length and random orientations (Fig.
2.1) and sometimes include microtubules which usually span the entire cytoplasm of
the cell, being typically much longer than the actin filaments [10]. the individual
cargos (seen as red dots) start near the nucleus and then begin phases of passive and
active transport, the latter of which being facilitated by molecular motors that walk
along filaments, until they reach the outer cellular membrane. For now at least, we
consider previously used parameters (cell radius of 10 µm, nuclear radius of 5 µm,
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cargo radius of 100 nm, and motor speed of 1 µm/s) that are close to their real,
physical quantities [31].

Figure 2.1: Our physical network system. Cargo (shown as red dots) starts on the
nucleus then begins phases of passive and active transport until it reaches the outer
cell membrane (the paths taken are shown as red lines)

2.2 Random walkers: explicit cargo simulations

In our simulations, we model individual cargos diffusing in the cytoplasm as random
walkers. For a typical random walker, its net displacement is [40]:

~r(n) =
n∑
i=1

(a)êi (2.1)

where êi is a unit vector pointing in a direction that the random walker may move
to at the next step. The next position that the walker might occupy is a distance a
away.

After n time steps, a time t has passed where t = nτ and τ is the amount of time
in one time step. The mean squared displacement as a function of the time t that
has passed is then:

〈r2(t)〉 =
(a)2t

τ
(2.2)

We can write this in terms of what is known as the diffusion constant, D =
(a)2/(2d)τ [40]

〈r2(n)〉 = (2d)Dt (2.3)

where d is the dimension of the lattice and, in our model, D = 0.051 µm/s2 which
is representative of a real cytoplasmic environment [31]. Eq. 2.3 means that the
random walker undergoes Brownian motion, a diffusive process. Our result,

〈r2(t)〉 ∼ t (2.4)
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is a characteristic of diffusion.
We then model the passive transport of our cargo as undergoing diffusion within

the cytoplasm of the cell, provided the cargo is currently not traveling on the cy-
toskeletal network.

Every cargo starts near the surface of the nucleus within the cell model we con-
struct (Fig. 2.1). The cargo begins diffusing (passive transport phase) from its
starting position, by picking a random direction (specified by angle φ in Fig. 2.2)
and then moving in that direction a distance a during a time interval τ (Fig. 2.2).
This process continues until either the cargo reaches the cell membrane or nears a
filament. Cargos are not permitted to enter the nucleus.

Figure 2.2: A cargo modelled as a random walker. From a starting position, the cargo
chooses a random direction (given as an angle φ) and then moves a distance a which
in our case is equal to crad, the cargo’s radius. During each step, a time τ passes,
which is determined by the diffusion constant.

2.2.1 Movement along a filament

When a cargo moves along the cytoskeletal network, it moves in a straight line,
at a constant speed while attached to whatever filament it binds to. As the cargo
approaches a filament while diffusing within the cytoplasm, if the filament is within
one cargo radius of the cargo’s center, the the cargo has a probability of konτ of
binding to the filament (Fig. 2.3). τ is the time step in seconds and kon is the rate
at which cargos bind to filaments, per second. If the cargo binds to the filament, it
will then move along the filament in the (+) direction (the direction of polarization)
at a constant speed.

The distance the cargo moves in one timestep is then:

a = vτ (2.5)
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Figure 2.3: A cargo moving along a filament. If the distance between the center of
the cargo and a filament is less than crad, the cargo has a chance of binding to the
filament with probability konτ . When the cargo is bound to the filament, every time
step, it still moves a distance a. Now however, along the filament, the cargo moves
in one direction with a constant speed of v. Then for every step a, a time τ = a/v
passes. After each new time step, the cargo has a chance of falling off the filament
with probability koffτ

Where v is the speed that the cargo moves along the filament. In our simulations,
since the distance step, a, stays the same every time the cargo moves, the time step
is now:

τ = a/v (2.6)

As the cargo moves along the filament, it has a probability of koffτ of falling off.
Here, τ is now the time step per length moved along the filament and koff is the rate
at which cargos unbinds from the filament per second (Fig. 2.3). A cargo can also
detach from a filament if it walks off of its end. One thing to note here is that, in
general, a cargo might switch to another filament near intersections but we are not
considering that yet.

In summary, in our simulations cargos begin near the nucleus and start diffus-
ing. Near filaments, cargos have a chance to bind to a filament and move along the
direction of the filament’s polarity. As the cargo moves along the filament, it has a
chance of falling off during its movement and a certainty of falling off when it reaches
the filament’s end, after which, it will undergo diffusion again. The cargo alternates
between diffusion and straight-line motion along filaments until it reaches the cell
membrane. Cargos cannot pass through the nuclear membrane. When the cargo
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reaches the cell membrane, its target destination, the amount of time that has passed
since the cargo started moving is the first-passage time. For multiple cargos, we can
get obtain the first-passage time distribution (FPTD) and the mean first-passage time
(MFPT). These are quantities we can use to characterize the network. Fig. 2.4 shows
some results obtained after simulating 10000 cargos. We see the FPTD as a function
of time displayed. The y-axis represents the number of cargos that have escaped at
each time.

Figure 2.4: FPTD as a function of time obtained by simulating the transport of
10000 cargos over a network composed of 150 filaments with each having a length of
3 µm.

2.2.2 Random walker-Brownian motion/diffusion in detail

How far does a random walker travel after n steps?
The net displacement of the walker is [40]:

~r(n) =
n∑
i=1

aêi (2.7)

where êi is a unit vector pointing to the nearest-neighbor lattice site at the ith

step of the walk and a is the distance separation between nearest-neighbor lattice sites
Since we want to quantify the behavior of multiple random-walkers, we are interested
in the average, or expected value of the displacement for any particular walker:

〈~r(n)〉 = 〈
n∑
i=1

aêi〉 (2.8)

= a〈ê1〉+ a〈ê2〉+ . . .+ a〈ên〉 (2.9)

= 0 (2.10)

Where the last equality is due to the fact that at any particular lattice site,
〈êi〉 = 0. This result isn’t very helpful. What is more helpful is determining the mean
squared displacement:
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〈r2(n)〉 = 〈(
n∑
i=1

aêi)
2〉 (2.11)

= 〈(aê1 + . . .+ aên)〉 · 〈(aê1 + . . .+ aên)〉 (2.12)

= 〈a2

n∑
(êi · êi) + 2a

n∑
(êi · êj)〉 (2.13)

= a2

n∑
〈êi · êi〉+ 2a

n∑
〈êi · êj〉 (2.14)

= na2 (2.15)

We arrive at the last equality because 〈êi · êj〉 = δij. After n time steps, a time t
has passed where t = nτ and τ is the amount of time in one time step. Then:

〈r2(t)〉 =
a2t

τ
(2.16)

We can write this in terms of the diffusion constant, D = a2/(2d)τ

〈r2(n)〉 = (2d)Dt (2.17)

where d is the dimension of the lattice. The random walker undergoes Brownian
motion, which is a diffusive process. Our result,

〈r2(t)〉 ∼ t (2.18)

is a characteristic of diffusion.

2.3 Anomalous diffusion overview

The analysis of a particularly special case of diffusion, anomalous subdiffusion, is of
interest to us because it is considered to be a characteristic of the passive transport
phase within the cytoplasm [39]. This could possibly be the result of cargo interacting
with other material within the cytoplasm and/or the binding and unbinding from
the molecular motors that carry the cargo along the filaments of the cytoskeletal
network [4]. Recall from before, that a characteristic of diffusion is that the mean
squared displacement of the random walker as a funtion of time varies with time
linearly

〈r2(t)〉 ∼ t (2.19)

However for anomalous diffusion, the mean squared displacement varies with t
as [40]:
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〈r2(t)〉 ∼ tα (2.20)

Anomalous diffusion with 0 < α < 1 is considered subdiffusion. We can get this
result if the wait times for the random walk are taken from a power-law distribution
at each time step. The model that we use is a continuous time random walk (CTRW)
which is also consistent with experimental observations [41]. With our continuous-
time random walk (CTRW) model we can attempt to determine the the reason for the
apparent anomalous diffusive behavior of cargo observed in vivo within the cytoplasm.
Our CTRW model is a random walk model with a constant distance step size and a
time step size chosen from a distribution of waiting times:

ψ(t) =

{
0 if t < 1,

αt−α−1 if t ≥ 1.
(2.21)

Where 0 < α < 1. We can show that this distibtion of waiting times results in a
mean squared displacement with a sub-linear dependence on time:

〈r2(t)〉 ∼ tα (2.22)

With this result, our interest will be the effect of the subdiffusive character of the
motion of cargos on the FPTD and the MFPT taken over multiple cargo simulations.



Chapter 3

Numerical Analysis

3.1 Introduction

From the perspective of the cytoskeletal network geometry, filament length, number,
placement, and orientation have been shown to greatly affect transport first-passage
times. For example, localizing the filament mass can optimize search and exit times
[31, 33, 34], trapping regions can arise in random networks and greatly increase exit
times, and orienting a small fraction of the filaments inward, towards the center
of the cell can dramatically increase the mean first-passage time (MFPT) for cargo
exit [31]. If trapping regions occur naturally in random network geometries, it raises
the question as to how much control the cell must exert over the geometry to avoid
traps or even tunably create them if cargo sequestering is desirable. In this chapter,
using a numerical simulation approach, we explore how the existence of trapping
regions depend on the interplay of parameters governing the cytoskeletal network
geometry, in particular filament lengths and orientation.

There has been much computational work done through the use of simulations and
numerical analysis in order to understand the intracellular transport process better.
There are two broad classes of computational approach - (i) explicitly simulating the
dynamics of a single cargo and (ii) time evolution of differential equations describing
the spatial distribution of an ensemble of cargo. Explicit simulations of cargo move-
ment typically rely on a coarse grained description of filament effects. One type of
simulation, for example, involves the use of random velocity models [42] to account
for ballistic transport along filaments and use this to model the spatial inhomogeneity
of physical cytoskeletal networks [43]. Still, other methods focus on drawing cargo
binding rates and movement information from distribution functions [44]. However,
the presence of explicit filaments in models makes a qualitative difference allowing
for the possibility of trapping regions, memory effects due to filament rebinding and
significant changes in mean transport times [31].

A different approach is to consider the evolution of the probability distribution
of a cargo ensemble. Systems of differential equations can model the time evolution
of cargo spatial distributions. These tend to require the coupling of both the passive
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diffusion and active transport [25] phases. A particularly simple and interesting limit
of this problem occurs when filaments are aligned and motor-diven transport in the
active phase facilitates advective transport in the “passive” phase [26]. In such meth-
ods, as compared to simulations of individual cargo dynamics, there is a trade-off of
not requiring extensive sampling for noise reduction at the cost of precision in numer-
ical integration upto late times. Such an approach allows for the accurate evaluation
of mean first passage times but on the other hand cannot be used to evaluate stochas-
tic variations in cargo first passage times. As is the case with most cargo dynamics
simulation methods, these models do not use explicit filaments in their calculations,
which produces qualitative differences as pointed out above.

Here we combine the probability distribution approach with an explicitly repre-
sented inhomogeneous cytoskeletal network whose filaments are randomly oriented in
two dimensions. In our model, we will capture both the active and passive of trans-
port through numerical integration by treating individual cargos as random walkers in
the continuum limit [40] and incorporating switching between the active and passive
phases by solving coupled differential equations [3] that describe the time evolution
of spatial cargo distribution both on and off the explicit cytoskeletal networks. These
networks are generated by placing filaments, represented by straight lines, at random
locations and orientations within the cytoplasm. We will proceed in our methodology
while keeping in mind the effects of filament polarization on first passage times, with
the end goal of further expanding on the results of [31], which show that having a
significant fraction of filaments polarized towards the center of the cell greatly slows
down cargo transport.

3.2 Transition to Cargo Distributions and Elimi-

nation of Random Noise

In our work, we use the same model as that which was used to examine the cytoskeletal
network topology effects on cargo first-passage times, with one major exception. We
still consider the biologically relevant parameters of a circular cell with a radius of 10
µm and an inner nuclear boundary at a radius of 5 µm [31]. Within the cytoplasm, we
place a randomized network of explicit cytoskeletal filaments, from which cargos can
bind and unbind at rates of kon = 5s−1 and koff = 1s−1, respectively. Cargos, each
with a radius of crad = 0.1µm, move while on filaments with a speed of v = 1µm/s,
and move while off filaments according to a diffusion constant of D = 0.051µm2/s.
Filaments are straight lines with random locations and orientations (see [31] and
Supplementary Information for more details on network generation)

Now, the discrete space that the cell occupies is a 2D lattice with lattice site
locations (x, y) 0.1µm apart. The cargo distribution can exist at any (x, y) location
within the cell. The filament endpoints are now placed randomly throughout the cell
and the filament itself is made to be 0.2µm thick to account for the cargo radius,
within which, the distribution has a chance of attaching to a filament Lattice points
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within the distance of the line joining filament endpoints are treated as parts of the
filament. Thus, we keep track of lattice points that are occupied by filaments.

During the diffusive transport phase, we model individual cargos as random walk-
ers. For a distribution of cargos, we can then model its time evolution as [40]

∂P (x, y, t)

∂t
= D∇2P (x, y, t). (3.1)

P (x, y, t) is the distribution of cargos as a function of position and time and D is
the diffusion constant. Because the distribution must move via diffusion off filaments,
and ballistic motion while on filaments, we can model the transport dynamics as
a combination of diffusion and constant drift [3], roughly through the differential
equation

∂P

∂t
= −(∇ · ~v)P +D∇2P, (3.2)

where ~v would be the velocity of cargos during ballistic motion.
The “on” and “off” phases of motion are distinct and well-defined. Given this,

we break up (3.2) into two equations, one corresponding to an on distribution (Pon)
and one corresponding to an off distribution (Poff ). The active and passive phases
of transport can then, respectively, be represented by

∂Pon

∂t
= −(∇ · ~v)Pon (3.3)

and

∂Poff

∂t
= D∇2Poff (3.4)

where, at all times, the following condition must be satisfied,

∂P

∂t
=
∂Pon

∂t
+
∂Poff

∂t
. (3.5)

We also have switching between these two phases of motion. For a distribution
that switches between these two states [3], we can write

∂Pon

∂t
= −(∇ · ~v)Pon − koffPon + konPoff, (3.6)

∂Poff

∂t
= D∇2Poff + koffPoff − konPoff, (3.7)

and again, a condition to be satisfied,

P = Pon + Poff. (3.8)

Note that kon and koff are the cargo attachment and detachment rates, respec-
tively, which couple the two differential equations.
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In our numerical integrations, we find an approximate solution to (3.5) – (3.8) at
each successive point in time as we let the distribution evolve. We begin implementing
our integration by approximating, to first-order, the differential equations as

P n+1
on,i,j − P n

on,i,j

∆t
≈− vx

2∆x
(P n

on,i+1,j − P n
on,i−1,j)−

vy
2∆y

(P n
on,i,j+1 − P n

on,i,j−1)

+ (konP
n
off,i,j − koffP n

on,i,j) (3.9)

and

P n+1
off,i,j − P n

off,i,j

∆t
≈+

D

∆x2 (P n
off,i+1,j + P n

off,i−1,j − 2P n
off,i,j)

+
D

∆y2 (P n
off,i,j+1 + P n

off,i,j−1 − 2P n
off,i,j)

− (konP
n
off,i,j − koffP n

on,i,j). (3.10)

Here, P n
i,j is the distribution at position (i, j) in space, at time step n. P n+1

i,j

will then be the distribution at the next time step (n + 1). ∆x and ∆y are the
distances between points in space and ∆t is the size of the time step. vx and vy are
the velocity components representing the speed at which the distribution moves while
on a filament.

To implement our integration, we will, at each point in space (for each time step
in the integration), update the probability distribution. To do this, we will first allow
the distribution to either “attach” or “detach from the network. This will give us
updated values for Poff and Pon:

P n+1
off,i,j = P n

off,i,j + ∆t · (−konP n
off,i,j + koffP

n
on,i,j),

P n+1
on,i,j = P n

on,i,j + ∆t · (konP n
off,i,j − koffP n

on,i,j). (3.11)

We now would (roughly) allow movement off and on filaments as,

P n+1
off,i,j =P n+1

off,i,j + ∆t · (

+
D

∆x2 (P n
off,i+1,j + P n

off,i−1,j − 2P n
off,i,j)

+
D

∆y2 (P n
off,i,j+1 + P n

off,i,j−1 − 2P n
off,i,j)), (3.12)

and
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P n+1
on,i,j =P n+1

on,i,j + ∆t · (

− vx
2∆x

(P n
on,i+1,j − P n

on,i−1,j)

− vy
2∆y

(P n
on,i,j+1 − P n

on,i,j−1)). (3.13)

The first equation, (3.12), is fine written just as it is. The implementation of
movement on the network is not as simple as it is presented in (3.13), however. As
it’s written, there is the implication that the “on” distribution can move anywhere
throughout the cell. This is not the case though, as Pon can only be nonzero where
a filament exists at (i, j). We take this into account and also assume that the distri-
bution “walks” off the ends of filaments. Refer to the Supplementary Information in
order to see our refined, complete versions of Poff and Pon.

After properly updating Poff and Pon, we can calculate the total probability dis-
tribution at each point in space for each time step n,

P n
off,i,j = P n+1

off,i,j

P n
on,i,j = P n+1

on,i,j

P n
i,j = P n

off,i,j + P n
on,i,j. (3.14)

If we integrate through enough time steps, we can obtain first-passage time in-
formation. At every instance in time, we can determine the probability that the
distribution has stayed within the cell, the survival probability, S(t) by integrating
P over its domain (the interior of the cell). The rate that the survival probability
changes in time gives us the first-passage time distribution (FPTD) (F (t) below):

S(t) =

ˆ
domain

P (x, y, t)dxdy, (3.15)

F (t) = −∂S(t)

∂t
. (3.16)

By averaging over the FPTD, we get the MFPT,

MFPT =

ˆ ∞
0

tF (t)dt. (3.17)

In practice, we only integrate to the time where the probability distribution is no
longer leaving the cell. We can compare the FPTDs and MFPTs obtained through
integration with those which are obtained through the simulation of the transport of
multiple cargos. Fig. 3.1 provides a comparison.

Fig. 3.1a shows a FPTD obtained through the simulation of the movement of
10000 cargos. It can clearly be seen that there is some noise inherent in the simulation
itself. This is different from what can be seen in Fig. 3.1b, where the FPTD shown
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Figure 3.1: A comparison of FPTD achieved via (a) simulation of 10000 cargos
and (b) numerical integration. Notice that the MFPTs are comparable and that the
FPTD in (b) is smoother.

was obtained through an integration as outlined above. All noise is gone from the
FPTD, which indicates the advantage of accuracy of the numerical integration method
over the simulation method.

3.3 Distribution Evolution on Networks of Differ-

ent Polarization Biases

Before completing the calculations of (3.15), (3.16), and (3.17), we examine the state
of the distribution at an intermediate time step, for networks of different polarization
biases to get a sense of the distribution evolution process. We define the network
polarization bias as the probability that each filament in the network has of being
polarized outward, towards the cell membrabe, away from the nucleus. For example,
a network with a polarization bias of 0.1 will have 10% of its filaments polarized
toward the cell membrane (i.e., having a polarization of +1), and 90% of its filaments
polarized towards the nucleus (having a polarization of -1). Fig. 3.2 shows four
different networks with four different polarization biases. Each network containes
150 filaments, each with length of 5 µm.

It is apparent in Fig. 3.2a, that all filaments (colored red) have a polarization
of -1. Thus, the polarization bias for the network is 0.0. In Fig. 3.2b, some of
the filaments have a polarization of +1 (they are colored blue). As the network is
generated randomly, and each filament is placed down, each has a 10% chance of
obtaining a polarization of +1. This is why the polarization bias for this network
is 0.1. The networks in Figs. 3.2c and 3.2d are generated similarly, with Fig. 3.2c
showing a network with approximately 70% of its filaments having a polarization of
+1, and Fig. 3.2d showing a network with 100% of its filaments having a polarization
of +1.

Similar to how the positions of cargos are initialized in [31], the cargo distribution
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Figure 3.2: Different polarization biases for 150 filaments, each with a length of 5
µm. The polarization biases are (a) 0.0 (0 % of filaments pointing outward), (b) 0.3
(approximately 30 % of filaments pointing outward), (c) 0.7, and (d) 1.0.

begins as an annulus of width 0.2 µm near the surface of the nucleus, off all filaments.
We then allow the distribution to evolve in time. In Fig 3.3 we see the state of
the distribution after it is able to evolve over four different networks for 100 s. The
distribution evolves over the networks shown in Fig. 3.2.

Note, as one would expect, that an increasing polarization bias enhances the
distribution’s ability to reach the cell membrane. Especially, consider the case of Fig.
3.3a, where the polarization bias is 0.0. Much of the distribution is still near the
nucleus, which likely indicates that the MFPT for cargo distribution on this network
will be very high.

3.4 Survival Probability Analysis for Different Fil-

ament Lengths and Polarizations

After sufficient lengths of time, the distribution is able to leave the cell. To determine
the effect that filament length and network polarization bias has on the ability of
the distribution to leave the cell, we allow the the initial probability disribution to
evolve for 1000 s over networks of different combinations of filament lenghts and
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Figure 3.3: State of the cargo distribution after moving (for 100 s) on and off a
cytoskeletal network comprised of 150, 5 µm filaments for polarization biases of (a)
0.0, (b) 0.3, (c) 0.7, and (d) 1.0. The distribution is evolved over the networks in Fig.
3.2

polarization biases. We keep the number of filaments constant at 150. Before doing
any first-passage time analysis, it is important to determine that a sufficient amount
of the distribution has left the cell (i.e., the survival probabiilty is low and the FPTD
is near zero), by the time the integration is stopped, in order for any calculated
MFPT to have any meaning. We can see in Fig. 3.4a that for filament lenghts of 1,
2, 3, 4, and 5 µm, and for network polarization biases of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5,
and 0.6, the survival probability is mostly nonzero and even approaches 1.0 for low
polarization biases.

Beyond a polarization bias of 0.7 and for all filament lengths, the survival proba-
bility is 0.0, meaning that MFPT calculations have obvious meaning. The MFPT is
plotted in Fig. 3.4b for these polarization biases. The results indicate what one would
expect. As the filament length and/or the polarization bias for the network increases,
the MFPTs decrease in value. Because MFPT calculations only have meaning at
sufficiently high polarization biases, we choose to analyze the survival probability for
different network realizations at low polarzation biases. One thing to note in Fig.
3.4a that we will come back to in the analyses to come, is the clear transition from
high to low survival probability as the polarization bias is increased while the filament
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Figure 3.4: (a) Survival probability at 1000 s as a function of filament length and
polarization bias. At a polarization bias of approximately 0.7, the entire distribution
has left the cell at this point in time. (b) The MFPT for different filament lengths
and polarization biases in the regime where the survival probability is zero. As one
would expect, MFPT decreases with increasing filament length and polarization bias

length is held constant.

3.5 Intermediate Filament Lengths Enhance Sur-

vival Probability

In order to make sure that the polarization bias effect that we referred to in the
previous paragraph is not just a network-dependent effect, we calculate the survival
probability for the probability distrubution at 1000 s on five different networks at
each filament length, polarization bias combination (filament lengths of 1, 2, 3, 4,
and 5 µm, and polarization biases of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
and 1.0) and average the results. We can see in Fig. 3.5a that the transition of the
survival probability from high to low values is still present, and it is in fact delayed
at intermediate filament lengths (particularly at a filament length of 3 µm).

Near this transition, it can be seen in Fig. 3.5b that the network to network sur-
vival probability standard deviation possesses its highest values. To further demon-
strate this point, we make a 2D plot displaying the average survival probability as a
function of network polarization bias for different filament lengths. Note in particular
that at a filament length of 3 µm and a polarization bias of 0.2, the survival proba-
bility is greater than for any other filament length at this polarization bias, and that
the standard deviation (given by the size of the error bars) is relatively large as well.

These results are consistent with the findings of [31], where, as filament polariza-
tions were changed from +1 to -1 when the filaments were 3 µm in length, significant
increases in MFPT were found. Here, we witness this transition in the form of the
survival probability which, as we can see from (3.36), (3.37), and (3.38), is directly
related to the MFPT.
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Figure 3.5: The survival probability was calculated for five different networks at
each filament length, polarization bias. (a) Shows the average survival probability
for different filament lengths and polarization biases. For low polarization biases,
the survival probability decreases sharply at all filament lengths. At intermediate
filament lengths, the survival probability maintains a relatively high value at higher
polarization biases than it does for shorter and longer filaments. (b) The network
to network standard deviation of the survival probability. It can be seen that the
variance is highest near the transition from high to low survival probability.

3.6 Intermediate Filament Lenghts Facilitate Dis-

tribution Trapping in the Bulk

To further explore the effects seen in the previous section, we evaluate the behavior
of the probability distribution moving across single networks at nine different points
in the filament length and polarization bias phase space. The points in phase space
at which we will be examing the probability distribution more closely are indicated
by the white dots in Figs. 3.7a and 3.7b. These nine points are the (polarization
bias, filament length) values of (0.1, 5.0 µm), (0.3, 5.0 µm), (0.5, 5.0 µm), (0.1, 3.0
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Figure 3.6: The average survival probability, as in Fig. 3.5a, but for different filament
lengths, as a function of polarization bias. The error bars are the standard deviations
calculated for Fig. 3.5b.

Figure 3.7: (a) The survival probability for different filament lengths and polarization
biases for one network per length-bias combination. (b) The location-based standard
deviation of the remaining probability distribution after 1000 s. We will be able to
see the significance of these two figures by examining the remaining distribution for
nine different filament lengths and polarization biases (indicated by the white dots).
It will be particularly useful to compare the distributions at the same polarization
bias, but different filament lenghts (see the white lines connecting the dots).

µm), (0.3, 3.0 µm), (0.5, 3.0 µm), (0.1, 1.0 µm), (0.3, 1.0 µm), and (0.5, 1.0 µm).
In Fig. 3.7, we plot the survival probability (Fig. 3.7a) next to the location-based

standard deviation of the probability distribution after evolving in time for 1000 s
(Fig. 3.7b). We see that the distribution standard deviation is highest when the
filament length is high and the polarization bias is low. In order to understand why
this is, we must examine the actual distribution at this point in time more closely.

Fig. 3.8 shows the state of the probability distribution after evolving in time
for 1000 s at the nine points in phase space. Most of our analysis can be done by
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paying attention to the distribution as it moves across networks containing filaments
of lengths 5 µm and 3 µm. In Fig. 3.8a, where the polarization bias is 0.1 and the
filament length is 5 µm, much of the distrubution is still near the nucleus. When the
filaments are 5 µm long, the distribution can only be in a “trapped” state near the
nucleus. If any part of the distribution makes it to the middle of the bulk, it will
likely either be directed out the cell, or right back to the nucleus. The latter situation
is more likely to happen when the polarization bias is low.

The radial position of the distribution in Fig. 3.8a is in contrast to where the
distribution appears in Fig. 3.8c. In this situation, the filament lengths are 3 µm even
though the polarization bias is still 0.1. Here, the distribution can be seen gathering
at bright spots in the figure even near the middle of the bulk. At these filament
lengths, trapping regions can occur more uniformly throughout the cell. This helps
to offer an explanation to what can be seen in Fig. 3.7, where although the survival
probability is relatively high at a polarization bias of 0.1 for filament lengths of 5
µm and 3 µm, the distribution standard deviation is much lower when the filament
length is 3 µm.
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Figure 3.8: The remaining cargo distribution after 1000 s when the filament length is
5 µm and the polariztion biases are (a) 0.1, (b) 0.3, and (c) 0.5, the filament length is
3µm and the polarization biases are (d) 0.1, (e) 0.3, and (f) 0.5, and when the filament
length is 1 µm and the polarization biases are (g) 0.1, (h) 0.3, and (i) 0.5. (a) shows
that much of the distribution is still contained in traps near the nucleus, as this is
the only area traps can occur when the filament length is 5.0 µm. Compare this with
(d), where the filament length is 3.0 µm and distribution traps are more spread out
within the bulk cytoplasm. This helps explain the results seen in Fig. 3.7, where at a
polarization bias of 0.1, the survival probability is relatively high at filament lengths
of 5.0 µm and 3.0 µm (shown in Fig. 3.7a), but the standard deviation is much lower
at a filament length of 3.0 µm than it is at 5.0 µm, as can be seen by examining
Fig. 3.7b. In comparing (b), (e), and (h), it can be seen that greatest amount of
distribution is remaining at a filament length of 3.0 µm when the polarization bias
is 0.3. This reflects the larger survival probability at intermediate filament lengths
when the polarization bias is this high. In looking at (c), (f), and (i), it can be seen
that most of the distribution has left the cell by this time.

The results depicted in Figs. 3.8b and 3.8e reflect the delayed transition of the
survival probability from high to low values at intermediate filament lengths. In Fig.
3.8b, we can see that most of the distribution has left the cell and whatever remains
is still near the nucleus. In Fig. 3.8e, much of the distribution is still in the cell,
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sometimes gathered in regions indicative of the presence of filaments smaller than
5 µm. These figures make even more sense if they are compared to Fig. 3.7a. In
following the center white line in this figure (drawn at a polarization bias of 0.3),
it can be seen, when starting at the top of the plot, the survival probability starts
low (when the filament length is 5 µm), then increases in value (when the filament
length is decreased to 3 µm), and then drops in value again (at a filament length of 1
µm). These results show that having a network comprised of filaments of intermediate
lengths helps to facilitate both the maintenance of a high survival probability, and a
large probability distribution standard deviation.

3.7 Conclusion and Future Directions

We have shown that it is possible to create a model that involves integrating a prob-
ability distribution of cargos, with respect to time, as the distribution moves both
on and off an explicit cytoskeletal network. The ability to numerically integrate a
distribution of cargos, rather than just having to rely on individual cargo simulations,
allows for the extraction of more accurate cargo survival probability, and thus, first-
passage time information. This is most apparent when comparing FPTDs obtained
through the simulation of cargo transport with those obtained through integrating
distributions of cargos.

What we were able to show with this model is the sensitivity of distribution
survival probability to the lengths of the filaments that make up the cytoskeletal
network, as well as the network polarization bias. The most interesting results are
seen when the filament lengths are near 3 µm and the polarization bias of the network
is near 0.3. With this combination of network parameters, a high survival probability
is maintained and the distribution can be in a so-called trapped state nearly uniformly
throughout the cell. Although we were able to achieve these results with this model, it
still has room to expand. For example, it is possible to set up particular cytoskeletal
network geometries rather than just placing filaments randomly. We can model the
network to more closely follow the more realistic biological setup where microtubules
are oriented radially outward and a relatively thin layer of actin filaments lies near
the cell membrane. This provides us the opportunity to compare to simulations that
have made use of this geometry [42].

One thing we have neglected to take into account is the effect of multiple-filament
intersections on the transport of cargos. These intesections can cause increased molec-
ular motor-based tug-of-war when multiple motors are present on a single cargo [17,45]
as well as the formation of cargo vortices and cycling behavior [27]. These effects,
along with the fact the the interior of the cell is actually dense creating crowding
effects [46], imply that normal diffusion is not necessarily a sufficient explanation for
the passive transport phase. A way to incorporate anomalous diffusion into the model
may, therefore, be needed.

Also complicating matters are the effects that the filament endpoints have on cargo
binding and unbinding rates. There is even the issue of whether or not the cargos will
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walk off at all when they reach filament endpoints, which may actually depend on the
motor type and the filament polymerization rate [47]. Additionally, the possibilty of
cargo crowding near endpoints may even help facilitate molecular motor dissociation,
meaning that as cargos approach filament ends, they unbind higher rates [48]. These
physical findings mean that our model has room to be refined and improved upon in
the future.
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3.8 Supplementary Information

3.8.1 Continuum Limit - Numerical integration of a distri-
bution of cargos

3.8.2 Diffusion

We examine the random walker in the continuum limit to determine the behavior
of the initial distribution of walkers [40]. By integrating these distributions over
time, we can get more accurate answers for the FPTD and the MFPT than we do
in our simulations because we are able to eliminate random noise. The behavior of a
distribution of random walkers as a function of time obeys the following differential
equation

∂P (x, y, t)

∂t
= D∇2P (x, y, t) (3.18)

Where D is again the diffusion constant. In this situation, D is constant and
diffusion is normal. We derive (3.18) as follows.

3.8.3 Random walker-Brownian motion/diffusion: Contin-
uum limit

We examine the random walker in the continuum limit to determine the behavior of
a distribution of walkers. Consider a walker on a two-dimensional lattice. A walker
at lattice site (i, j), arriving at time step n + 1 came from one of four places, with
equal probability:

Pn+1(i, j) =
1

4
(Pn(i− 1, j) + Pn(i+ 1, j) + Pn(i, j − 1) + Pn(i, j + 1)) (3.19)

Pn+1(i, j) is the probability that a walker exists at (i, j) at time step n + 1. The
equality comes from the fact that probability is conserved. If we consider the lattice
on an xy plane, again with nearest-neighbor lattice separation being a,

Pn+1(x, y) =
1

4
(Pn(x− a, y) + Pn(x+ a, y) + Pn(x, y − a) + Pn(x, y + a)) (3.20)

If we subtract Pn(x, y) from both sides, we can make some approximations

Pn+1(x, y)− Pn(x, y) =
1

4
Pn(x− a, y) +

1

4
Pn(x+ a, y) (3.21)

+
1

4
Pn(x, y − a) +

1

4
Pn(x, y + a) (3.22)

−Pn(x, y) (3.23)
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Again, assume that at the nth time step, time t has passed. Each time step occurs
over a duration of time τ . Now, notice that, to first-order,

∂P (x, y, t)

∂t
≈ P (x, y, t+ τ)− P (x, y, t)

τ
(3.24)

We also have the approximations:

∂2P (x, y, t)

∂x2
≈ P (x+ a, y, t) + P (x− a, y, t)− 2P (x, y, t)

a2
(3.25)

∂2P (x, y, t)

∂y2
≈ P (x, y + a, t) + P (x, y − a, t)− 2P (x, y, t)

a2
(3.26)

After some algebra, we then have:

∂P (x, y, t)

∂t
=
a2

4τ
(
∂2P (x, y, t)

∂x2
+
∂2P (x, y, t)

∂y2
) (3.27)

Notice that a2/4τ is just the diffusion constant, D in two dimensions. This gives
us the result:

∂P (x, y, t)

∂t
= D∇2P (x, y, t) (3.28)

This is the diffusion equation for a distribution of random walkers.

3.8.4 Movement along a filament

For the distribution of cargos within the cell, which can involve transport both on and
off filaments, we can model the dynamics as a combination of diffusion and constant
drift [3].

∂P

∂t
= −(∇ · ~v)P +D∇2P (3.29)

Because there are are two distinct types of motion (motion on and motion off of the
filaments), we can break up the differential equation here into two, one correspondng
to an on and one corresponding to an off distribution.

The motion of the phases of passive and active transport can then be represented
by:

∂Pon

∂t
= −(∇ · ~v)Pon (3.30)

∂Poff

∂t
= D∇2Poff (3.31)

Where

∂P

∂t
=
∂Pon

∂t
+
∂Poff

∂t
(3.32)
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3.8.5 Bringing it all together

We also have switching between these two phases of motion. For a distribution that
switches between these two states [3],

∂Pon

∂t
= −(∇ · ~v)Pon − koffPon + konPoff (3.33)

∂Poff

∂t
= D∇2Poff + koffPoff − konPoff (3.34)

Where, at all times,

P = Pon + Poff (3.35)

We integrate these two differential equations to get the FPTD and the MFPT for
our distribution of cargos that begins near the surface of the nucleus.

At every instance in time, we can determine the probability that the distribution
has stayed within the cell, the survival probability, S(t) by integrating P over its
domain (the interior of the cell). The rate that the survival probability changes in
time gives us the FPTD (F (t) below):

S(t) =

ˆ
domain

P (x, y, t)dxdy, (3.36)

F (t) = −∂S(t)

∂t
. (3.37)

By averaging over the FPTD, we get the MFPT,

MFPT =

ˆ ∞
0

tF (t)dt. (3.38)

3.8.6 Selecting an appropriate timestep: von Neumann Sta-
bility Analysis

We wish to select a timestep for approximating the solutions to the differential equa-
tions such that the resulting probability distribution does not diverge. To achieve
this, our time step must be sufficiently small. We can determine an appropriate
timestep by performing a “rough” von Neumann Stability Analysis for our system of
equations.

The equations are

∂Pon

∂t
= −(∇ · ~v)Pon − koffPon + konPoff, (3.39)

∂Poff

∂t
= D∇2Poff + koffPoff − konPoff (3.40)
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where, at all times,

P = Pon + Poff. (3.41)

To first order, the above differential equations (in 2D) approximate to

P n+1
on,i,j − P n

on,i,j

∆t
≈− vx

2∆x
(P n

on,i+1,j − P n
on,i−1,j)−

vy
2∆y

(P n
on,i,j+1 − P n

on,i,j−1)

+ (konP
n
off,i,j − koffP n

on,i,j) (3.42)

and

P n+1
off,i,j − P n

off,i,j

∆t
≈+

D

∆x2 (P n
off,i+1,j + P n

off,i−1,j − 2P n
off,i,j)

+
D

∆y2 (P n
off,i,j+1 + P n

off,i,j−1 − 2P n
off,i,j)

− (konP
n
off,i,j − koffP n

on,i,j). (3.43)

In our computations, we wish to select a ∆t so that iterations of P n do not diverge.
We can begin this process by assuming solutions of the form

P n
on,l,m = P̃ n

one
i(kxl∆x+kym∆y) (3.44)

and

P n
off,l,m = P̃ n

offe
i(kxl∆x+kym∆y). (3.45)

Then, after some algebra and substituting these solutions into the equations above,
as well as making use of the fact that

cos(x) =
eix + e−ix

2
, (3.46)

sin(x) =
eix − e−ix

2i
, (3.47)

and

sin2(x) =
1− cos(2x)

2
, (3.48)

we get

P̃ n+1
on =− ivx∆tP̃

n
on

2∆x
sin(kx∆x)− ivy∆tP̃

n
on

2∆y
sin(ky∆y)

+ (konP̃
n
off − koff P̃ n

on) + P̃ n
on (3.49)
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and

P̃ n+1
off =−

4D∆tP̃ n
off

∆x2 sin2(
kx∆x

2
)−

4D∆tP̃ n
off

∆y2 sin2(
ky∆y

2
)

− (konP̃
n
off − koff P̃ n

on) + P̃ n
off . (3.50)

We add these two equations together to get

P̃ n+1 =− ivx∆tP̃
n
on

2∆x
sin(kx∆x)− ivy∆tP̃

n
on

2∆y
sin(ky∆y)

−
4D∆tP̃ n

off

∆x2 sin2(
kx∆x

2
)−

4D∆tP̃ n
off

∆y2 sin2(
ky∆y

2
)

+ P̃ n. (3.51)

After subtracting P̃ n from both sides, then dividing it and rearranging terms we
get

1− P̃ n+1

P̃ n
= +

ivx∆tP̃
n
on

2∆xP̃ n
sin(kx∆x) +

ivy∆tP̃
n
on

2∆yP̃ n
sin(ky∆y)

+
4D∆tP̃ n

off

∆x2P̃ n
sin2(

kx∆x

2
) +

4D∆tP̃ n
off

∆y2P̃ n
sin2(

ky∆y

2
). (3.52)

To ensure that each forward iteration of P̃ n does not lead to divergence, we must
always have

1− | P̃
n+1

P̃ n
| < 1. (3.53)

We can be sure of this if we notice that the right side of (3.52) is a complex
number of the form

z = a+ ib, (3.54)

|z| =
√
a2 + b2, (3.55)

and then have

|z| =
√
a2 + b2 < 1. (3.56)

To enforce this, we choose to have

a, b <

√
2

2
. (3.57)
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Now, let

a =
4D∆tP̃ n

off

∆x2P̃ n
sin2(

kx∆x

2
) +

4D∆tP̃ n
off

∆y2P̃ n
sin2(

ky∆y

2
) <

√
2

2
. (3.58)

Given that

max(
P̃ n
off

P̃ n
sin2θ) = 1, (3.59)

we must select a ∆t such that

4D∆t

∆x2 +
4D∆t

∆y2 <

√
2

2
. (3.60)

Solving for ∆t we get

∆t <
∆x2∆y2

√
2

8D(∆x2 + ∆y2)
. (3.61)

Now for b,

b =
vx∆tP̃

n
on

2∆xP̃ n
sin(kx∆x) +

vy∆tP̃
n
on

2∆yP̃ n
sin(ky∆y) <

√
2

2
. (3.62)

Similar to the case with a,

max(
P̃ n
on

P̃ n
sinθ) = 1, (3.63)

which means we must have a ∆t such that

vx∆t

2∆x
+
vy∆t

2∆y
<

√
2

2
. (3.64)

In other terms,

∆t <
∆x∆y

√
2

2(vy∆x+ vx∆y)
. (3.65)

We can then be sure that the ∆t we use in our computations is small enough if
we select the minimum of (3.61) and (3.65):

∆tchosen = min(
∆x2∆y2

√
2

8D(∆x2 + ∆y2)
,

∆x∆y
√

2

2(vy∆x+ vx∆y)
) (3.66)

In our system, in keeping consistent with the parameter values chosen for our sim-
ulations, we have ∆x = ∆y = 0.1µm, D = 0.051µm2/s, and max(vx) = max(vy) =
1µm/s. We then have.
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∆tchosen = min(0.017s, 0.035s) (3.67)

In our numerical integration, we end up choosing ∆tchosen = 0.01s. With this
selection, we do in fact get that the probability distribution is conserved after each
time iteration and that it does not diverge, meaning that ∆tchosen is small enough.

Now that we have all of the parameter values we need, we can determine how to
carry out the integration.

3.8.7 Integrating the differential equations in our system

We can use the first-order approximations given by (3.42) and (3.43) to get us started
in determining an adequate integration methodology. What we will do, is at each
point in space (i, j) (for each time step in the integration, n), update the probability
distribution. To do this, we will first allow the distribution to either “attach” or
“detach from the network. This will give us updated values for Poff and Pon:

P n+1
off,i,j = P n

off,i,j + ∆t · (−konP n
off,i,j + koffP

n
on,i,j),

P n+1
on,i,j = P n

on,i,j + ∆t · (konP n
off,i,j − koffP n

on,i,j). (3.68)

We now would (roughly) allow movement off and on filaments as,

P n+1
off,i,j =P n+1

off,i,j + ∆t · (

+
D

∆x2 (P n
off,i+1,j + P n

off,i−1,j − 2P n
off,i,j)

+
D

∆y2 (P n
off,i,j+1 + P n

off,i,j−1 − 2P n
off,i,j)), (3.69)

and

P n+1
on,i,j =P n+1

on,i,j + ∆t · (

− vx
2∆x

(P n
on,i+1,j − P n

on,i−1,j)

− vy
2∆y

(P n
on,i,j+1 − P n

on,i,j−1)). (3.70)

The first equation, (3.69), is fine written just as it is. The implementation of
movement on the network, is not as simple as it is presented in (3.70), however. As
it’s written, there is the implication that the “on” distribution can move anywhere
throughout the cell. This is not the case though, as Pon can only be nonzero where
a filament exists at (i, j). To take this into account, let δfil,i,j = 1 where a filament
exists. At these positions, vx,i,j and vy,i,j will also be nonzero (corresponding to cargo
x and y velocity components along filaments). (3.70) then becomes,
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P n+1
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where δcell,i,j = 1 outside the reflecting inner boundary of the cell. Missing in (3.71)
is what happens at filament endpoints. Similar to what we did in our simulations, we
assume cargos walk off the end of filements. This action causes both Poff and Pon to
change. We define a filament endpoint as the end that cargos walk towards. We will
have δend,i,j = 1 where a filament end exists. Given this, Poff and Pon are updated
even further through

P n+1
off,i,j =P n+1
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P n
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) · (δend,i,j−1)
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1
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∆y
) · (δend,i,j+1)) (3.72)

and
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If we apply, in the following order, (3.68), (3.69), (3.71), (3.72), and (3.73) to
the probability distribution, we are able to update it in one time step. Now, we can
calculate the total probability distribution at each point in space for each time step,

P n
off,i,j = P n+1

off,i,j

P n
on,i,j = P n+1

on,i,j

P n
i,j = P n

off,i,j + P n
on,i,j. (3.74)

With the total probability calculated we can apply (3.36), (3.37), and (3.38) to
calculate the survival probability, the FPTD and the MFPT, respectively.



Chapter 4

Anomalous Diffusion

4.1 Introduction

Although we have established the importance of network architecture in transport,
it is worth noting that the overall transport process is dependent on diffusion in the
passive phase as well. While previous studies [31] assumed that the passive diffu-
sive was characterized by normal Brownian diffusion, in the context of the crowded
cytoplasm [46], diffusion is known to be anomalous [39]. Experiments involving mea-
surements of diffusion of cargo after filament depolymerization in both extracts [39]
and in cells [4] have shown anomalously subdiffusive behavior. In fact, anomalous
diffusion can be used to describe the entire intracellular transport process. The active
transport phase is super diffusive while anomalous sub-diffusion is considered to be a
characteristic of the passive transport phase within the bulk cytoplasm [3].

In this chapter, we explore how the interplay between super-diffusive transport,
provided by explicitly modeled cytoskeletal filaments, and the anomalous nature of
sub-diffusion in the bulk, can lead to novel effects in transport behavior at the cel-
lular scale. In particular, we are interested in how the geometric properties of the
cytoskeletal network dictated by the lengths and density of the constituent filaments
influence transport in the presence of anomalous sub-diffusive transport in the bulk
cytoplasm, and especially whether they can be tuned to access different transport
phases. Anomalous diffusion can generally be described by two prevailing models,
Fractional Brownian Motion (FBM) [49], which is an ergodic process and Continuous
Time Random Walk (CTRW) [50], which is not. In the context of intracellular trans-
port, CTRW has been shown to describe bulk diffusion when filaments are shortened
in vivo [4,39,41] as well as in the presence of cargo interactions with filaments [41] and
vortices and cycling behavior near actin filament intersections in the case of multiple
molecular motors [27]. It has also been observed that diffusive cytosolic transport is
best explained by a CTRW, while filament transport is best represented by FBM [39].
While different mechanisms have been proposed in these papers, their relative con-
tributions to the observed CTRW behavior is not clear yet and is beyond the scope
of this manuscript. The goal of our paper is to show how the observed CTRW for

36
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passive cargo diffusion in conjunction with active transport on cytoskeleton structures
influence the overall transport properties. Since we use explicit filament networks, we
only need to account for anomalous sub-diffusion in the bulk in our model, which we
therefore do, using CTRW.

Given our focus on understanding the basic physics of the interplay between su-
perdiffusive network transport subdiffusive cytoplasmic transport, we choose to only
consider the simplest geometries for the cytoplasmic boundaries and cytoskeletal net-
works. Our model, introduced in section 2, consists of a circular cell with a concentric
circular nucleus and a randomly oriented filament network between the nuclear and
cellular membranes (see Fig.1). In this case, the geometric properties of the cytoskele-
tal network are dictated by the lengths and density of the constituent filaments. We
simulate the transport of cargos, starting at the nucleus, in the center of the cell, and
alternating between ballistic transport along the filaments and sub-diffusive transport
in the bulk, till they reach their target destination - the outer cell membrane. For the
sake of simplicity, and, in order to focus only on relevant parameters such as filament
length, concentration and dwell time statistics of anomalous diffusion, we neglect the
elasticity of the filaments [51], viscoelastic interactions between cargos, motors, and
the network [52], confinement effects [29, 30] and scenarios involving cargos carried
by multiple motors [16] (we consider only single-motor active transport). As the sim-
ulation unfolds, we measure mean squared displacements (MSDs) as a function of
time and the distributions of first-passage times (FPTDs) to get to the destination
for cargos over multiple filament networks for varying network parameters (filament
length and concentration). Because we explicitly model the filament geometry, we
are also able to compute the variance in these measurements across multiple network
realizations with the same parameters. We should emphasize here that we focus on
quantities like the MSD, the time averaged MSD and first passage time distributions
because they give us physiologically relevant information like overall transit times
and also because they are readily and typically measured quantities in microscopy
experiments. Therefore this approach allows us to reveal the signatures of underly-
ing anomalous processes in macroscopic and averaged observables that are readily
experimentally accessible.

To begin with, we consider the case of pure cytosplasmic subdiffusion in the ab-
sence of filaments. We verify that our implementation of CTRW produces the desired
behavior for both ensemble averaged and time averaged MSDs. We then add filaments
to the system. We show, over a physiologically relevant range of filament lengths and
numbers, that the network introduces a superdiffusive phase at early times which
crosses over to a phase where the CTRW is dominant and produces subdiffusion at
late times. We also show that the superdiffusive phase is most sensitive to filament
length. Finally, we apply our simulation approach to the problem of insulin secretion
from pancreatic cells, which is characterized, in healthy cells, by a quick release of a
large fraction of granules followed by a low but sustained rate of release at late times
after glucose stimulation [53]. We show that the superdiffusive phase introduced by
the filament network manifests as a peak in the secretion at early times followed
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by an extended sustained release phase that is dominated by the CTRW process at
late times. Our results are consistent with in vivo observations of insulin transport
and shed light on the potential for the cell to tune transport phases by altering its
cytoskeletal network.

4.2 Methods

Figure 4.1: (a) The initial state of the system. Cargos (red symbols) start near
the nucleus. Randomly placed filaments (black lines) model the cytoskeleton. Each
filament has a fixed polarization. (b) The final state of the simulation. Cargos
alternate between passive and active phases of transport until they reach the outer cell
membrane. Individual trajectories are denoted by light red curves. (c) The ensemble-
average MSD for a system of 1000 cargos, with no filaments present (CTRW only)-
green curve. The dark blue line is a power-law fit with an exponent α = 0.8. (d) TA-
MSD for the same system for a constant measuring time, t, as a function of a sliding
time window ∆. Inset, upper-left shows the TA-MSD for constant time windows,
as a function of measuring time. Inset, lower-right shows the Ergodicity-Breaking
parameter plotted as EB/∆ as a function of ∆ (dashed line shows 1/∆).

We build on previous work [31] in which simulations of cargos alternate between
phases of ballistic motion along filaments (corresponding to active transport) and
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random walk phases resulting in Brownian motion/normal diffusion in the bulk (cor-
responding to passive transport). For our simulations, we consider a model eukaryotic
cell consisting of a nucleus, cell membrane and filaments that make up the cytoskele-
ton. We use biologically realistic parameters for the various processes involved [31]
(see Supplementary Information Table 1) and implement all of our simulations in 2D,
in order to better compare our results with experiments, where processes are typically
observed in a 2D plane. The cell, then, is represented by a 2D disk with a radius of 10
µm, while the nucleus has a radius of 5 µm. Filaments are straight lines with random
locations and orientations (see [31] and Supplementary Information for more details
on network generation). Cargos have a radius of 100 nm and bind to filaments with
a rate of kon = 5s−1, and unbind from filaments at a rate koff = 1s−1. The cargo
radius only influences the diffusion constant and the range of interaction of cargos.
Cargos begin near the nucleus (Fig. 4.6a) and undergo transport until they reach the
cell membrane (Fig. 4.6b) while alternating between phases on and off the filament
network. Off the network, the diffusion constant (in the case of normal diffusion)
is D = 0.051µm2/s and while traveling on the network, cargos move at a speed of
v = 1µm/s.

In this work, we extend the previous model [31] by accounting for the fact that
cargos can undergo anomalous subdiffusion instead of regular diffusion during the
passive phase. A signature of anomalous diffusion is that the cargos have a mean
squared displacement (MSD) that scales as

〈r2(t)〉 ∼ tα (4.1)

with 0 < α < 1 indicating subdiffusion. In order to incorporate anomalous diffu-
sion in our simulations, we have cargos perform a CTRW during the passive transport
phase. To implement this, we select a waiting or dwell time between successive ran-
dom walk steps, from the distribution

ψ(t) =

{
0 if t < 1,

αt−α−1 if t ≥ 1.
(4.2)

with 0 < α < 1, which we will show leads to the anomalous diffusion signature of
(4.1) in the supplementary section of this chapter. After waiting for the selected time,
the cargo moves a distance of 0.1 µm, with the maximum cargo movement speed being
set by the diffusion constant. Experiments with cargo in cell extracts [39] have shown
that, in the presence of microtubules, cargos move with a measured α of about 1.4-
1.5, but when the filaments are depolymerized, α values between 0.65 and 0.98 were
observed. These results seem to indicate that diffusion in the absence of any filaments,
due to the bulk alone, is subdiffusive with an exponent of about 0.8. This value is also
consistent with the subdiffusive exponent observed for insulin granules in pancreatic
cells that had been treated by vinblastine to depolymerize filaments [4]. Based on
these and other [41] similar results, we use α = 0.8 in most of our simulations, unless
otherwise specified.
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4.3 Validating MSD scaling and aging due to CTRW

We begin our simulations with a test of our system in the absence of any filaments.
Here, cargos begin near the nucleus and undergo purely passive transport (CTRW
only) until they reach the outer membrane. For purely CTRW transport with a
distribution of wait times defined by Eq. 4.2, we expect the MSD to scale according
to Eq. 4.1. Fig. 4.6c shows the ensemble averaged MSD from our simulations, which
agrees very well with the expected power law scaling with an exponent of 0.8.

Since CTRW is a non-ergodic process, we also analyze time-average mean squared
displacement (TA-MSD) data. By definition, this value is given by [54]:

δ2(∆, t) =

´ t−∆

0
[x(t′ + ∆)− x(t′)]2dt′

t−∆
(4.3)

where ∆ is the sliding time window (time between measurements) and t is the
total measuring time. In the limit where ∆ << t, averaging over many cargos yields

〈δ2〉 ∼ ∆

t1−α
(4.4)

From Fig. 4.6d (main), we see that the measured TA-MSD increases linearly
with ∆, as expected. In Fig. 4.6d (upper-left inset), we plot scaling of the TA-MSD
from simulations with measuring time t for different values of ∆ = 1s, 2s, 3s. We
again recover the expected scaling behavior, t1−α . Finally, we also plot the measured
ergodicity breaking (EB) parameter,

EB =
〈(δ2)2〉 − 〈δ2〉2

〈δ2〉2
(4.5)

in 4.6d (lower-right inset) as EB/∆, which scales as ∼ 1/∆ as expected for
CTRW [4], signifying convergence of EB to a nonzero constant value, another char-
acteristic feature of CTRW. Taken together, these results indicate that our CTRW
model implementation is effective in producing anomalous subdiffusion with the de-
sired exponent.

4.4 Adding filaments introduces a superdiffusive

phase

Having validated and created a baseline for the MSD scaling in the subdiffusive passive
phase, we now consider the addition of filaments, creating a cytoskeletal network. We
add to the network 100, 200, 300, 400, and 500 filaments, with lengths of 1, 2, 3, 4, and
5 µm (details of network generation in [31] and Supplementary Information; the range
of filament numbers and lengths are consistent with reasonable in vivo values [31]).
The most notable difference is observed in the ensemble-average MSD. We can see in
Fig. 4.2a that, in contrast to the case with no filaments present (data in blue), the
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Figure 4.2: (a) A log-log plot of an ensemble-average MSD in the presence of filaments
(red data, 1500 filaments, 5 µm each) compared to MSD for CTRW only (below, blue
data). Dashed lines show fits to different power law behaviors for short and long
times for the MSD data with filaments and over the entire time range for the control
CTRW only case. The measured long (b) and short-time (c) power-law exponents
as a function of filament length and number. In (c), lines of constant mass are in
white. (d) MSD short-time exponents as a function of filament length for different
total filament masses. Averaging is over N=10000 cargo in all cases. Error in the
measured exponents due to fitting is less than 6% over the parameter range explored.

MSD in the presence of filaments (data shown in red) shows different scaling behaviors
in different time regimes. Fitting the MSD in the two time regimes, we can see that
the short-time slope (dashed blue line) is larger than 1 (indicating superdiffusion with
an MSD scaling exponent larger than 1) and is distinctly larger than the long-time
slope (dashed green line) which is below 1 (indicating subdiffusion). Thus at early
times, it appears that the MSD is dominated by movement along the filaments, giving
rise to superdiffusion. At later times, past some transition time set by the typical
timescale for which a cargo walks on a filament before detaching (between 1s and 10s),
we can see a crossover to CTRW dominated behavior, as suggested by comparing the
slope of this second regime with the slope of the CTRW only data. To understand how
these different exponents depend on the network parameters, we plot the MSD scaling
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Figure 4.3: (a) Ensemble-average MSD as a function of time for different values of α.
(N=100 cargo) (b) MSD as a function of time for 100 cargos over 5 different networks
at fixed α = 0.8. Normalized standard deviation of MSD (averaged over 100 cargo
and 100 different networks) at 10 s (c) and 100 s (d) as a function of filament length
and number.

exponents in the long-time (Fig. 4.2b) and the short-time (Fig. 4.2c) regimes as a
function of number and lengths of the filaments. Consistent with the picture that the
long time dynamics are controlled by CTRW, the long time exponents are all close to
0.8 and fairly insensitive to filament density and number, except at the very highest
network masses, where the signature of the short time superdiffusive phase begins
to show. Note that the exponent appears to go below 0.8 at low densities because
of confinement effects from the boundary and, as expected, this effect diminishes
with increasing cell radius (see Supplementary Information). Not surprisingly, the
network parameters have the greatest effect on the MSD at shorter times, where the
slope is greatest. The short time exponent changes all the way from 1 (or diffusive)
at the lowest network masses to almost ballistic (∼ 1.8) at high network masses. To
examine the relative importance of filament length and density, we consider curves
of constant mass (white lines in Fig. 4.2c), where filament mass is defined as the
number of filaments multiplied by the length of each filament. In Fig. 4.2d, we plot
the short-time MSD exponent as a function of filament length for different network
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masses (corresponding to the lines in Fig. 4.2c). We see from the rough collapse of
the curves that the short-time exponent shows very modest increases with greater
mass at fixed filament length but is much more sensitive to the filament length for
constant mass. This indicates that it is the filament length, not the total mass of the
filaments, that is an important factor in driving the MSD at short times.

We now look more closely at the long time behavior to understand how it is
controlled by the CTRW. Fig. 4.3a plots the MSD for values of α from 0.2 to 1 in
the presence of 1500 filaments of length 5 µm. We can see the effect of the dwell
time distribution on the MSD in the long-time regime (Fig. 4.3a). Whereas the
MSD is controlled by the filament network at early times and is insensitive to α,
decreasing α leads to a decrease in the MSD at late times. Because we are interested
in how the geometry of the network itself affects MSD, we next consider how the
MSD varies across different network realizations. Fig. 4.3b plots the MSD for five
different networks, each with 300 filaments of length, 5 µm. We immediately see that
any difference between them is within the intrinsic variance on each network due to
the CTRW, suggesting that the variance due to the dwell time distribution dominates
over network geometry effects. To quantify this further, we simulate the transport
of 100 cargos over 100 networks and calculate the MSD at 10s and 100s and track
its variance at those times. Figs. 4.3c and 4.3d show the standard deviations of the
MSD at 10s and 100s (normalized by the mean MSD at those times), respectively, for
different filament lengths and numbers. The normalized standard deviation increases
with increasing filament length and decreasing numbers of filaments, with the effect
being much more pronounced at early times when the network geometry is influential.

4.5 Tuning transport phases using network param-

eters

Of particular interest due to its relevance to real biological processes such a secretion
and exocytosis is the time taken to transport cargo to the peripheral cell membrane.
We can quantify this transport by measuring the time that it takes for cargo to first
reach the outer membrane and constructing a first passage time distribution (FPTD)
from these times. Such FPTDs can have distinctive features that arise from the un-
derlying transport processes. For example, it has been shown that insulin secretion
in healthy pancreatic cells, where insulin containing vesicles are transported to the
membrane and secreted outside of the cell [4], is characterized by a distinctly “bipha-
sic” FPTD, consisting of an initial spike, followed by a long, sustained release of
insulin [53]. In a recent model [4] used to explain this process, insulin granules move
throughout the cell through a combination of FBM and CTRW until they reach some
distance a from a fast-releasing hot spot on the cell membrane, where the particles
move only via FBM [53,55]. As the parameter a is increased, there is an initial peak
of insulin flux followed by a more stable phase, giving the biphasic behavior seen in
experimental observations. While the distance a is meant to model a region with no
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Figure 4.4: (a) FPTDs for networks comprised of 300 filaments, with varying lengths.
(b) The second phase of the FPTD for different values of α. (c) Strength of FPTD
decay as a function of filament length and number. Lines of constant mass are in
white. (d) FPTD decay exponent as a function of filament length for different filament
masses. FPTDs are for 100 cargo over 100 different networks. Error in measured
exponents due to fitting is less than 6% over the parameter range explored.

trapping, it is not clear what the physical cytoskeletal architecture would be corre-
sponding to this parameter. While the insulin secretion process as a whole is complex
involving many signals, regulatory proteins, fusion proteins and motor proteins such
as myosins and kinesins [53], in vivo observations suggest that the cytoskeletal network
has an important part to play in this process and, in particular, that depolymeriza-
tion and rearrangement of actin filaments seen during glucose stimulation is one of
the key regulators [53,56,57]. Here, we consider the network filaments explicitly and
are therefore able to directly examine the result of filament depolymerization in iso-
lation. The exact features of the secretion profile depend on the parameters and also
assumptions about the initial distribution of insulin granules. Rather than trying to
replicate that, we focus on two main features observed in the biphasic secretion - fast
secretion upon stimulation and sustained slow secretion, at later times. We use pure
CTRW to represent anomalous diffusion in the bulk and, instead of the parameter a,
we vary, as in the case of our MSD analysis, explicit filament length and number. We
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Figure 4.5: (a) MFPT as a function of filament length and number with lines of con-
stant mass in white. (b) MFPT as a function of filament length for different filament
masses. Network averaged MFPT standard deviation (c) and normalized average
standard deviation (d) as a function of filament length and number. Averaging is
over 400 cargo and 100 different networks.

monitor insulin flux out of the cell by making first-passage time distribution (FPTD)
measurements for different network parameters.

Fig. 4.4a shows FPTDs as a function of time for different filament lengths with
a constant filament number of 300. It should be noted that we calculated the FPTD
by binning the first passage times of cargo (starting from a random position with a
linearly decreasing probability with distance from the center) when they reached the
membrane into 1s time intervals bins. Our simulations have 100 cargos across 100
networks, which makes a total of 104 cargos. While the bins go out to 106 seconds, in
Fig.4.4a the FPTD plots are cut off at 1000 seconds. We notice that at the shortest
filament lengths, the FPTD appears to have no peak. The first phase, the initial
spike, is only apparent at a filament length of 3 µm and beyond. Thus the filament
length clearly tunes this phase that occurs at early times. This is also consistent with
our picture, from the previous section, that the early time dynamics are controlled by
filament length. Interestingly, it appears that all curves also show a sustained release
at late times signified by the long tail. Our results from the previous section suggest
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that this second phase at late times is likely a power law decay determined by the
value of α. To examine this possibility, we focus on the FPTD behavior at late times.
Fig. 4.4b displays a log-log plot of FPTD as a function of time for a network with
300 filaments with a length of 5 µm each, but for different values of α. The larger the
value of α, the steeper the decay, until in the case of α = 1, the decay is qualitatively
different and, becomes exponential. To test whether this second phase can be tuned
by the network geometry, we examine, in Fig. 4.4c, the FPTD power law exponent
in the second, decaying, transport phase as a function of the filament length and
number. We see that the exponent increases with network mass with a more sensitive
dependence on filament length. The increase in the exponent is quite significant, from
0.2 to 1.2 in the range of filament parameters studied, indicating that, even though
we are looking at relatively late times, the filament network can be used to tune the
behavior in that phase too. To analyze this further, we plot, in Fig. 4.4d, the FPTD
decay exponent as a function of filament length for several different total filament
masses. We see a separation between different mass curves indicating a dependence
on the total mass as well as the filament length, with increases in both leading to a
larger exponent indicating a steeper decay i.e. a curtailment of the sustained release
phase.

Finally, we note that prior work on transport over explicit filament networks in
a normally diffusive bulk produced trapping regions that significantly impacted the
mean first passage times (MFPT) [31] and also produced a significant variance in
MFPT from network to network. To examine whether a similar effect occurs in
the presence of cytoplasmic subdiffusion, we measured the MFPT from the FPTDs
generated. Fig. 4.5a shows the MFPT (µ) as a function of filament number and
length, while fig. 4.5b shows the dependence on filament length for fixed filament
mass. Here, µ denotes the average MFPT over all of the network configurations,
as each network has its own associated MFPT. As expected, the MFPT decreases
with increasing filament mass and filament length, indicating that filaments provide
a super-diffusive boost to transport. To examine the effects of filament geometry
on transport, we calculate how the MFPT varies across multiple networks. We first
calculated the standard deviation for 400 cargo first-passage times on one network
and then averaged them across 100 different networks to obtain the network averaged
standard deviation, µσ. Fig. 4.5c shows µσ as a function of filament length and num-
ber. We notice that the variance decreases with increasing filament mass indicating
that the superdiffusive phase introduced by the filaments works to counteract the
variance from the CTRW in the bulk. Also of interest are the rather large values of
the normalized average standard deviation (Fig. 4.5d), which is the network averaged
standard deviation divided by the MFPT obtained at each particular set of filament
parameters. This means that any MFPT variation across networks is dominated by
the randomness of the CTRW which overcomes any variations caused by trapping
regions due to changes in filament orientation. It is the variance µσ that gives rise
to the sustained release phase and thus, we see again that a decrease in the filament
network mass results in increasing µσ and hence an increased sustained release.
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4.6 Discussion and Conclusion

In our studies, we have shown that motor-driven transport along filaments is most
dominant at early times, as we find in our MSD calculations, where it is apparent
that cargos move via superdiffusion. As we change network parameters, namely the
filament length and filament number, we can tune this superdiffusive behavior. In-
creasing the net filament mass, increases the superdiffusive exponent speeding up the
transport process and for networks with the same mass, those with longer filaments
facilitate even faster transport. The superdiffusion we see in the presence of filaments
and the subdiffusion that begins to manifest as filament mass is decreased is consis-
tent with the results found in [39], where α was measured to be about 1.5 in extract,
but when the filaments are depolymerized, α decreased to between 0.65 and 0.98. In
our simulations, we achieve (Fig. 4.2c) an α value of around 1.5 at a filament length
between 2 µm to 3 µm. As we shorten our filaments, the short time exponent drops
and transport turns over to the late time regime where CTRW dominates with an
α of about 0.8 in the absence of filaments. It is to be noted that this value of α
is also consistent with the results from insulin granule subdiffusion in cells treated
with vinblastine (a microtubule depolymerizing agent) [4]. There they found that
the correlated component of the walk (FBM), was limited to very early times (.10s)
and that the process was mostly dominated by CTRW with an α = 0.8. It is also
interesting to note that their measurements of the TA-MSD exponent overall (in the
absence of vinblastine) had a wide spread from subdiffusive to superdiffusive. Our re-
sults suggest that, in any such experiment, one could potentially observe a transition
from a superdiffusive to a subdiffusive phase as a function of time, or even spatial
location, if the network structure is heterogeneous. Thus our simulations of transport
over explicit networks coupled to subdiffusion (CTRW) in the bulk highlight regimes
where one or the other phase is dominant and quantitatively explains experimentally
observed features.

While the role of the cytoskeleton in insulin secretion has not yet been fully un-
derstood [53], it is clear that both the cortical actin and microtubule networks are
important for the process. It is also clear that there is certainly a reorganization of
F-actin upon glucose stimulation that plays a key role. There has been debate about
whether the reorganization acts as a removal of a barrier for the granules or a release
of trapped granules and how that fits in with results that indicate myosin-powered
motility of the granules along F-actin is also important. In our examination of insulin
transport, we found that filament length has an important effect on both the early
“spike” phase and the second, power-law decay phase in the “biphasic” FPTD. Of
particular interest here is that, for networks with shorter filaments, the power-law tail
of the distribution is wider, meaning the second phase is maintained for longer. Thus
a filament network can contribute to both the early time fast release and upon subse-
quent shortening also allow the CTRW process to provide a sustained release phase.
It is worth noting here that short actin fragments may indeed contribute significantly
to the trapping and hence complete depolymerization (i.e. conversion to G-actin) can
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have the effect of abolishing CTRW resulting in a comparatively fast release that is
not sustained. This is consistent with the fact that glucose stimulation does not alter
the F-actin to G-actin ratio and only results in shortening and reorganization [53].

Finally, we showed that, in the presence of a anomalously subdiffusive bulk phase,
network to network variation in transport times is less significant than cargo to cargo
transport variation over a single network. This suggests that fine-tuned control of
the network geometry (to avoid particularly poorly oriented networks) may not be as
important in the presence of anomalous subdiffusion in the bulk. While transport as
a whole is slower with a higher variance (which can be functional, as in a sustained
release), it may be advantageous for the cell in that it may be easier to control quan-
tities such as the filament length and number using regulatory proteins [58,59] than it
would be to control filament network arrangements in geometries that limit variation
in cargo transport. Taken together, our results suggest that the coupling between
superdiffusive and subdiffusive transport modes allow for filament morphology to be
used as a control knob to tune transport dynamics in vivo.
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4.7 Supplementary Information

4.7.1 Anomalous diffusion: Continuous-Time Random Walk
(CTRW) in detail

A CTRW is a random walk where steps are taken at random times [40]. However, in
our case the step distance is fixed. We choose this particular model of a random walk
in order to represent anomalous diffusion. Recall from before, that a characteristic of
diffusion is that the mean squared displacement of the random walker as a funtion of
time varies with time linearly

〈r2(t)〉 ∼ t (4.6)

However for anomalous diffusion, the mean squared displacement varies with t as:

〈r2(t)〉 ∼ tα (4.7)

Anomalous diffusion with 0 < α < 1 is considered subdiffusion. Passive transport
within the cytoplasm is thought to be a subdiffusive process.

In our CTRW model, we consider a power-law distribution of wait times. We will
use the distribution

ψ(t) =

{
0 if t < 1,

αt−α−1 if t ≥ 1.
(4.8)

where t is the wait time (time step). The probability that the waiting time between
steps is greater than t is

Ψ(t) =

ˆ ∞
t

ψ(t′)dt′ (4.9)

Additionally, define ψn(t) as the probability density that the nth jump occurs at
time t. This means that ψ1(t) = ψ(t) and, because the waiting time between steps is
independent

ψ2(t) =

ˆ t

0

ψ1(t′)ψ(t− t′)dt′ (4.10)

Which leads to the general relation

ψn+1(t) =

ˆ t

0

ψn(t′)ψ(t− t′)dt′ (4.11)

We want to show that our distribution of choice results in subdiffusive behavior.
To ensure this recall that we must establish a certian mean squared displacement
dependency on t, particularly,

〈r2(t)〉 ∼ tα (4.12)
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In terms of the probability of being at position ~r at time t, this quantity can be
determined by

〈r2(t)〉 =

ˆ ∞
0

r2P (~r, t)d~r (4.13)

We can break up P (~r, t) as follows:

P (~r, t) = P (~r) × (probability of remaining at ~r until time t)

Where P (~r) is the probability of being at position ~r regardless of t and

P (~r) =
∞∑
n=0

Pn(~r) (4.14)

With Pn(~r) being the probability of being at position ~r at the nth step. Then for
P (~r, t),

P (~r, t) =
∞∑
n=0

Pn(~r)

ˆ t

0

ψn(t′)Ψ(t− t′)dt′ (4.15)

We can simplify this expression by first taking the laplace transform:

P (~r, t) =
∞∑
n=0

Pn(~r)

ˆ ∞
0

(

ˆ t

0

ψn(t′)Ψ(t− t′)dt′)e−stdt (4.16)

Using a look-up table, we arrive at the following result

P (~r, s) =
∞∑
n=0

Pn(~r)ψ̂n(s)Ψ(s) (4.17)

where ψ̂n(s) and Ψ(s) are the Laplace transforms of ψn(t) and Ψ(t) respectively.
We can determine these values in terms of the Laplace transform of our original
wait time distribution, ψ(t). Investigating separately, making use of our previous
definitions of ψn(t) and Ψ(t),

ψ̂n(s) =

ˆ ∞
0

(

ˆ t

0

ψn−1(t)ψ(t− t′)dt′)e−stdt (4.18)

= ψ̂n−1(s)ψ̂(s) (4.19)

Recursively solving the problem of ψ̂n−i(s)ψ̂(s) from i = 1 to i = n− 1,

ψ̂n(s) = ψ̂(s)n (4.20)

For Ψ(t), the Laplace transform is
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Ψ̂(s) =

ˆ ∞
0

Ψ(t)e−stdt (4.21)

=

ˆ ∞
0

(

ˆ ∞
t

ψ(t′)dt′)e−stdt (4.22)

=

ˆ ∞
0

(1−
ˆ t

0

ψ(t′)dt′)e−stdt (4.23)

=
1− ψ̂(s)

s
(4.24)

We then have

P̂ (~r, s) =
∞∑
n=0

Pn(~r)ψ̂(s)n
1− ψ̂(s)

s
(4.25)

We can begin to eliminate the infinite sum by taking the Fourier transform

P̂ (~k, s) =
∞∑
n=0

(

ˆ ∞
−∞

e−i
~k·~rPn(~r)d~r)ψ̂(s)n

1− ψ̂(s)

s
(4.26)

Where we have, similar to the case for ψn+1(t),

Pn(~r) =

ˆ
Pn−1(~r′)P (~r − ~r′)d~r′ (4.27)

We then have the Fourier transform:

P̂n(~k) =

ˆ ∞
−∞

e−i
~k·~rPn(~r)d~r (4.28)

=

ˆ
Pn−1(~r′)d~r′

ˆ ∞
−∞

P (~r − ~r′)e−i~k·~rd~r (4.29)

=

ˆ
Pn−1(~r′)P̂ (~k)e−i

~k·~r′d~r′ (4.30)

= P̂n−1(~k)P̂ (~k) (4.31)

where P̂ (~k) is the Fourier transform of P (~r). Similar to before, by solving the
above problem recursively,

P̂n(~k) = P̂ (~k)n (4.32)

Then,

P̂ (~k, s) =
1− ψ̂(s)

s

∞∑
n=0

P̂ (~k)nψ̂(s)n (4.33)
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Assuming P̂ (~k) and ψ̂(s) are normalized, then for any ~k and s,

|P̂ (~k)ψ̂(s)| ≤ 1. Meaning that the infinite series converges. We the have

P̂ (~k, s) =
1− ψ̂(s)

s

1

1− ψ̂(s)P̂ (~k)
(4.34)

In moving towards our goal of determining subdiffusive behavior, we need to
determine

〈r2〉 =

ˆ ∞
−∞

r2P (~r)d~r (4.35)

Then as a function of s, we have

〈r2(s)〉 = ψ̂(s)n
1− ψ̂(s)

s

ˆ ∞
−∞

r2Pn(~r)d~r (4.36)

Which, based on our previous calculations, means that

〈r2(s)〉 = − ∂2

∂~k2
P̂ (~k, s)|~k=0 (4.37)

Performing the differentiation:

∂2

∂~k2
P̂ (~k, s)|~k=0 =

(1− ψ̂(s))ψ̂(s)

s(1− ψ̂(s)P̂ (~k))2

d2P̂ (~k)

d~k2
|~k=0 (4.38)

+
(−2)(−ψ̂(s)2(1− ψ̂(s)))

s(1− ψ̂(s)P̂ (~k))3
(
dP̂ (~k)

d~k
)2|~k=0 (4.39)

Recall that P̂ (~k) is the Fourier transform of the probability distribution of step
sizes. So,

P̂ (~k)|~k=0 =

ˆ ∞
−∞

P (~r′)d~r′ = 1 (4.40)

dP̂ (~k)

d~k
|~k=0 = −i

ˆ ∞
−∞

~r′P (~r′)d~r′ = −i〈~r′〉 (4.41)

d2P̂ (~k)

d~k2
|~k=0 = −

ˆ ∞
−∞

(~r′)2P (~r′)d~r′ = −〈(~r′)2〉 (4.42)

For a fixed step size, let ~r′ = δ~r. Then, because the step can be in any direction,

〈δ~r〉 = 0 (4.43)

And we have that
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〈r2(s)〉 =
ψ̂(s)

s(1− ψ̂(s))
(δ~r)2 (4.44)

We can then determine the dependence of 〈r2(s)〉 if we can get the Laplace trans-
form of ψ(t), our original wait time distribution.

Recall that we had

ψ(t) =

{
0 if t < 1,

αt−α−1 if t ≥ 1.
(4.45)

The Laplace transform of this is then

ψ̂(s) =

ˆ ∞
1

estαt−α−1dt (4.46)

Performing an integration by parts:

ˆ ∞
1

estαt−α−1dt = −e−stt−α|∞1 − s
ˆ ∞

1

e−stt−αdt (4.47)

Breaking up the integral on the far right into a difference of two integrals:

ˆ ∞
1

e−stt−αdt =

ˆ ∞
0

e−stt−αdt−
ˆ 1

0

e−stt−αdt (4.48)

The first term on the right-hand side is a Laplace transform with the following
solution:

ˆ ∞
0

e−stt−αdt =
Γ(−α + 1)

s−α+1
(4.49)

We now have

ψ̂(s) = −e−stt−α|∞1 + s

ˆ 1

0

e−stt−αdt− Γ(−α + 1)sα (4.50)

For large t, s→ 0. So now, keeping leading order terms:

ψ̂(s) ≈ 1− Γ(−α + 1)sα (4.51)

Which means that
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〈r2(s)〉 =
ψ̂(s)

s(1− ψ̂(s))
(δ~r)2 (4.52)

≈ 1− Γ(−α + 1)sα

s(1− (1− Γ(−α + 1)sα))
(4.53)

=
1− Γ(−α + 1)sα

Γ(−α + 1)sα+1
(4.54)

(4.55)

The behavior if this expression roughly depends on its leading-order term:

〈r2(s)〉 ≈ 1

Γ(−α + 1)sα+1
(4.56)

To get the dependence on t, we take the inverse Laplace transform of this which
results in:

〈r2(t)〉 ≈ 1

Γ(−α + 1)Γ(α + 1)
tα (4.57)

Which means we have the dependence:

〈r2(t)〉 ∼ tα (4.58)

This result means that our CTRW model results in anomalous subdiffusion.

4.7.2 MSD calculations at a smaller cell radius (10 µm)

In our preliminary MSD calculations, we maintained a cell radius of 10 µm. A con-
sequence of this is that we see greater effects of the confinement on the subdiffusive
behavior at later times rather just the effects of the CTRW. This is a primary reason
why we see α < 0.8 at relatively later times and why we move the cell radius out to
20 µm. This is demonstrated in Fig. 4.6

4.7.3 System parameters

Shown in Table 4.1 are the common parameter values for our system. We have used
most of them in previous work [31]. The subdiffusive exponent that we use (α = 0.8)
is close to physical [39,41].
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Figure 4.6: (a) MSD as a function of time for transport of cargos over 300 filaments,
each with a length of 5 µm. Each cargo begins near the nucleus of a cell with a radius
of 10 µm. (b) Due to greater confinement than in the case of a 20 µm cell, the “long-
time” exponents reach smaller values (0.5 < 0.8). (c) In the short time, with α > 1.0,
we still see an indication of superdiffusion (at least for filaments greater than 2 µm).
(d) As one would expect, given that the cargo attachment and detachment rates
stay constant during all simulations, the fraction of the time spent on the network
increases with aggregate filament length (Numberoffilaments× FilamentLength).

Table 4.1: Table of System Parameters and Values

Parameter Value (and source of that value)
Cell Radius 10 µm [31]
Nuclear Radius 5 µm [31]
Cargo Radius 100 nm [31]
Cargo Attachment Rate (kon) 5 s−1 [31]
Cargo Detachment Rate (koff ) 1 s−1 [31]
Diffusion Constant (D) 0.051 µm2/s [31]
Cargo Movement Speed on Filaments 1 µm/s [31]
CTRW Exponent (α) 0.8 [39, 41]



Chapter 5

Real Network Simulations

5.1 Introduction

When cargos have multiple motors attached to them, cargos are able to switch on
to different filaments while in the active phase of motion when they approach an
intersection of multiple filaments [6, 15,60].

To study the effect of motor number on how often cargos switch to different
filaments at filament intersections, we simulate the movement of cargos on networks
of filaments using a methodology similar to what we’ve done previously [31]. To
help in understanding how the cargo switching probability relates to the number of
motors attached to each cargo, we compare our simulation results with cargos whose
movement was tracked experimentally as each cargo was carried by kinesin motors
along bundles of microtubules. There are two sets of experimental data that we
compare our results to. The positions of cargos with one kinesin motor attached to
them were tracked as well as those with ten kinesin motors attached to them. To run
our simulations and make a comparison with this data set, we use filaments obtained
from an image of one of these networks of microtubule bundles that were used to
provide for the cargos’ movement. From here, we attempt to better understand the
relationship between the number of motors attached to a cargo and that cargo’s
probability of switching on to another filament when it is at a filament intersection
in order to provide a foundation to develop further theoretical models for how cargos
move along real filament networks. All experimental data is provided by the J. L.
Ross lab at the University of Massachusetts, Amherst.

5.2 Implementing the FIRE algorithm and deter-

mining run lengths of different cargo detach-

ment rates

Before running cargo simulations, we need to extract a filament network from an
image. The FIbeR Extraction (FIRE) algorithm [61] takes care of this. Its input is

56



CHAPTER 5. REAL NETWORK SIMULATIONS 57

an image of an actual network of filaments. The image we use is an image consisting
of a network of microtubule bundles. We will consider each bundle that the FIRE
algorithm picks up to be one filament. The FIRE algorithm assigns a number to each
filament, as well as each so-called vertex that makes up a filament. That is, Each
filament is made up of numerous line segments whose endpoints are called vertices. So
the FIRE algorithm outputs the filament numbers, the vertex numbers that belong to
each filamant, and also the x and y positions of each vertex in terms of pixel number.

With this information, we make calculations to gain additional information for
our own purposes. Firstly, we convert each x and y value corresponding to a vertex
position from a pixel number to a µm value. This way, we can use our standard values
of a diffusion constant of D = 0.051µm2/s and cargo movement speed of v = 1µm/s
to govern cargo movement. The resolution of the image we use is 0.0675µm/pixel.
We also keep track of which vertices are a part of multiple filaments. This gives us
the positions of filament intersections which is important in getting information about
how often cargos switch to different filaments.

Once we all of the network information we need, we can begin running simulations
of cargos. Cargos begin diffusing off filaments until they approach within 100 nm of
one. When they are within range of a filament, cargos bind with a rate of kon. For
our purposes, we have cargos immediately bind to filaments once they are near one.
Cargos move along filaments until they fall off. The rate at which cargos detach
from filaments, koff corresponds to the number of motors that would be attached to
the cargo. The more motors there are attached to the cargo, the less likely it would
detach completely from the filament it is walking on.

With the network information we have about the image in Fig. 5.1a, whose fil-
aments obtained from the FIRE algorithm are colored in Fig. 5.1b, we are able to
simulate the movement cargos. As each cargo attaches to a filament, moves along it,
then falls off, we keep track of each cargo’s run length. The run length is inversely
proportional to the cargo off rate. Our goal here is to compare run length distributions
obtained through simulations with those that were obtained experimentally. In Fig.
5.1c, we show CDF curves for cargo run lengths obtained from cargos whose move-
ments were tracked experimentally. Two sets of cargos were tracked experimentally:
those with one kinesin motor attached to them, and those with ten kinesin motors
attached them. We fit each of the one- and ten-motor cargos’ run length CDFs to
exponential functions. In Fig. 5.1d, we show the CDFs and their fits for two sets
of 1000 cargos’ simulated trajectories and give the exponential functions that were
used to fit these two sets of data. We attempt to match the fits of the CDFs for the
experimental data. We were able to match the one-motor experimental fit using an
off rate of koff = 0.1s−1 and we were able to match the ten-motor experimental fit
by using an off rate of koff = 0.01s−1. This gives us an estimate for the off rates of
one- and ten-motor cargos, respectively. When computing the cargo trajectories and
run lengths, we imposed a cargo switching probabilty of 0.0. That is, if a cargo, while
moving along a filament, reaches a known filament intersection, there is a 0% chance
that it will switch to another filament.
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Figure 5.1: (a) Original image of the microtubule network. (b) The extracted network
after implementing the FIRE algorithm. Each filament is colored differently. (c) Run
length CDFs for cargos tracked experimentally. The two different CDFs correspond
to the run lengths obtained from trajectories from cargos attached to one kinesin
motor and cargos attached to ten kinesin motors. The rates that the CDF curves
increase relate to the rate at which motors detach the microtubules. (d) Run length
CDFs obtained from simulations of cargos moving on the networks extraced from the
FIRE algorithm. Off rates are tuned until the CDF fits approach the obtained from
fitting the experimental data in (b). The off rate associated with one motor cargos
is approximately koff = 0.1s−1 and the off rate associated with ten motor cargos is
approximately koff = 0.01s−1. This is the off rate we use when making the rest of
our calculations.

5.3 Calculating cargo trajectories and ensemble av-

erage MSDs

Cargos begin moving, via diffusion, off of filaments. When a cargo gets within 100
nm of a filament, it attaches to it. Once attached, the cargo will move either back-
ward or forward along the filament with equal probability. The forward direction of
movement is defined by the list of vertices that make up each filament as determined
by implementing the FIRE algorithm. For example, if the cargo attaches to filament
number 7, which is made up of the given vertices 2, 3, 4, 10, 14, and 15, in that order,
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the forward direction will then be the path of motion moving towards the vertices 2,
then 3, then 4, and so on up to vertex 15. If the cargo reaches the end of the filament
(the last vertex in the list of vertices that make up the filament) without detaching or
switching to another filament, the cargo will “walk” off the end of the filament. If the
cargo reaches within 100 nm of a filament intersection, which would be a vertex that is
shared by more than one filament, the cargo will switch to the other filament(s) with
a given switching probability and then begin to move forward or backward along that
filament. When a cargo detaches or walks off the end of a filament, the simulation of
its movement ends. As each cargo moves along the filament network, its position is
tracked so its trajectory is traced out.

Fig. 5.2 shows four sets of 1000 cargo trajectories for different switch probability
values. The path that each cargo moves is initially traced out in blue. The tortuosity
(τ) of a path is defined as the ratio of the length of a path (L) to the distance between
bath endpoints (D),

τ =
L

D
. (5.1)

For cargo paths in Fig. 5.2 that have τ > 2, their path is colored yellow. Notice
that cargos are more likely to travel paths with higher tortuosity values if there is
greater probability that they will switch to other filaments at filament intersections.
However, even if a cargo never switches to other filaments, the tortuosity of its path
will likely be greater than one because the filaments that are extracted using the
FIRE algorithm are usually not perfectly straight.

To test how well our simulations match up with the movement of actual cargos
with either one motor attached to them or ten motors attached to them, it is useful
to calculate the ensemble average MSD for cargos at different switching probability
values and compare them the the MSDs for the one- and ten- motor cargos that were
tracked experimentally. To extract necessary information from the MSD plot, we
must use a proper fit, and extract useful parameters. The fit we use was developed
in [62], where bacteria are treated as random walkers that move at contant velocity
v before turning at one of two preferred angles, ∆φ1 or ∆φ2 at a “tumbling rate” λ.
The MSD is determined to be

〈[~r(t)− ~r(0)]2〉 =
v2

λ2(1− αβ)2
[(1− αβ)(2 + α + β)λt− 2(1 + α)(1 + β)

+ e−λt{α + β + αβ(4 + α + β)√
αβ

sinh(
√
αβλt)

+ 2(1 + α)(1 + β)cosh(
√
αβλt)}] (5.2)

where,

α = 〈cos∆φ1〉, (5.3)

β = 〈cos∆φ2〉. (5.4)
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Figure 5.2: (a) trajectories of cargos traveling on the FIRE network. The probability
of switching to another filament at filament intersections is 0.0. The cargo paths
are colored blue. The paths with a tortuosity greater than two are colored yellow.
(b) cargo trajectory paths when the switching probability is 0.3. (c) trajectories of
cargos that have a switching probability of 0.7. (d) trajectories of cargos that have a
switching probability of 1.0.

For our purposes, in order to properly fit this to our data and extract the param-
eters we want, we assume cargos turn at an average angle of pπ/2, so that,

α = β = cos(pπ/2), (5.5)

and we define the quantity d, where

λ =
v

d
, (5.6)

and in our simulations, v = 1µm/s.
So when we extract parameters from this fit, for our simulations, we extract the

“effective” distance between filament intersections, d, and “effective” cargo switching
probability, p.

We apply the fit for the MSD to the calculated ensemble average MSD for 1000
cargos at different switching probabilities in Fig. 5.3a. For each of these fits, we
extract the parameters d and p and plot them as a function of the simulation-imposed
switching probability in Fig. 5.3b. Because the fit can be applied at all timescales, we
focus on the short timescales (up to ten seconds) because cargos have not yet begun
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Figure 5.3: (a) ensemble average MSDs for 1000 cargos for different switching prob-
abilities. The average MSD increases faster for smaller switching probability values.
(b) parameters, d (“effective” distance between filament intersections) and p (“ef-
fective” switching probability) extracted from the MSD fits, plotted as a function
of the switching probability used in the simulations. There is what we call an “ef-
fective” switching probability and distance between filament intersections because
the filaments used in the simulations are not perfectly straight. For higher imposed
switching probabilities, it is as if the cargos are switching more often and in shorter
distance increments. (c) ensemble average MSDs plotted for the one- and ten-motor
cargo trajectories obtained experimentally. The curve fits are plotted as straight lines.
With these fits, we extract the parameters v = 0.17µm/s, d = 4.72µm, and p = 0.99
for the one-motor cargos, and v = 0.27µm/s, d = 2.09µm, and p = 0.99 for the
ten-motor cargos.

to more “regularly” detach from and walk off of filaments, meaning we can get better
averaging at short times.

Fig. 5.3c shows the MSD fit applied to the calculated ensemble average MSD
for the experimentally-tracked one-motor cargos and ten-motor cargos. These cargos
actually travelled, on average, slower than the cargos in our simulations, but in ex-
tracting the parameter d from these fits, we actually see that the “effective” distance
between filament intersections is d = 4.72 µm for the one-motor cargos and d = 2.09
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µm for the ten-motor cargos. From this perspective, one-motor cargos travel twice as
far as the ten-motor cargos before “switching” to another filament. One thing that is
interesting to note is that for the extracted network, upon learning the locations of
filament intersections, we were able to calculate an average distance between filament
intersections of 2.413 µm, which is near the approximate value of d for the one-motor
cargos and the imposed probability of 0.0 used in the simulations (near 2 µm).

Figure 5.4: (a) Tortuosity of each of the one-motor cargo’s experimental trajectory.
The standard deviation of these tortuosities is 3.036. To cut the outliers we elimi-
nating the tortuosities above one standard deviation. After doing this, the average
tortuosity is 1.186. (b) Tortuosity of each of the ten-motor cargo’s experimental tra-
jectory. The tortuosity standard deviation is 7.964. After cutting values above one
standard deviation, the average tortuosity is 2.161. (c) The average tortuosity of
the cargo trajectories obtained through simulations, plotted as a function of imposed
cargo switching probability. The circled values are the ones which are closest to the
average one- and ten-motor cargo trajectory tortuosities. A switching probability of
0.0 corresponds to the average tortuosity of one-motor cargos while a switching prob-
ability of 0.6 corresponds to the average tortuosity of ten-motor cargos. These values
help quantify how often cargos switch to different filaments at filament intersections
depending on how many motors are attached to the cargo.
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5.4 Comparing average tortuosities for cargo tra-

jectories obtained from experiments and from

simulations

Another way we try to correlate the switching probabilities used in our simulations
with the number of motors on cargos that are tracked experimentally, is to compare
the average tortuosity of the paths of the tracked one-motor cargos and the paths of
the tracked ten-motor cargos with the average tortuosity of the paths of the cargos
whose movement is simulated, for different switching probabilities.

Fig. 5.4a shows the tortuosity of each of the experimental one-motor cargo’s path.
There are some tortuosity values that are likely too large, with values up to just above
25. These are likely outliers due to errors in hand-tracking. What we do then, is cut
out the values above one standard deviation from the average tortuosity of all cargos
and then calculate a new average. This new average is 1.186 for the experimentally-
tracked one-motor cargos. Fig. 5.4b shows the tortuosities for all of the ten-motor
cargos. Following the same procedure that we did for the one-motor cargos, the new
average tortuosity ends up being 2.161. In Fig. 5.4c, we plot the average tortuosity for
1000 cargos whose movement was simulated, for different switching probabilities. In
the plot, we circle two average tortuosity values. One at a switching probability of 0.0
and another at a switching probability of 0.6. These are the average tortuosities that
are closest in value to the average tortuosities that were calculated from experimental
data. A switching probability of 0.0 will then correspong to cargos with one motor
attached and a switching probability of 0.6 will correspond to cargos with ten motors
attached. A switching probability of 0.0 for one-motor cargos makes sense because
these cargos should not, generally, switch to different filamants, and a switching
probability of 0.6 for ten-motor cargos makes some sense, especially when comparing
to [60].

5.5 Conclusion and future directions

In comparing the data achieved from our simulations for different imposed cargo
switching probabilities at filament intersections with the experimental data set where
the movement of one- and ten-motor was tracked, we have established reasonable
correlations between cargo switching probabilities and the number of motors attached
to the cargo. However, there are opportunities to expand on these results.

One approach that may be taken is calculate the force from each motor on the
cargo due to the presence of nearby filaments [15]. The direction the cargo moves
and, therefore, the filament it eventually attaches to and moves along, can then be
determined by the number of motors attached to it as well as the geometry of the
filament intersection. From this perspective, the cargo switching probability will not
necessarily be fixed for every filament intersection.
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Our particular model can be refined by considering different filament and mo-
tor types. Different switching probabilities have been calculated for microtubule-
microtubule, microtubule-actin, and actin-actin intersections [6]. We can take these
into account by running simulations on networks consisting of both microtubules and
actin filmanets where cargos that may contain kinesin, dynein, or myosin motors are
able to move.
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Final Discussion

6.1 Conclusions

We have extended our group’s work in [31] in three primary directions. By estab-
lishing a methodology for integrating cargo distributions, We are able to eliminate
the random noise inherent in conducting simulation in our calculations. The survival
probability of the distribution is sensitive to the lengths of the filaments that make
up the cytoskeletal network as well as each filament’s polarization bias. Interestingly,
we see that at a filament length of 3 µm and a polarization bias of 0.3, parts of the
distribution can become “trapped” in that the orientation of filaments at random
locations throughout the cell hinders escape from the outer membrane.

When incorporating anomalous diffusion in the bulk, we see an interplay between
superdiffusive and subdiffusive transport. Superdiffusive transport correlates to the
active transport phase, when cargos are moving along filaments. Because superdif-
fusive transport is much faster than subdiffusive transport, Most of the transport at
relatively early times is governed by superdiffusion. The resulting coupling between
superdiffusive and subdiffusive transport allows the primay filament network param-
eters such as filament length, filament number, and filament polarization direction to
highly tune transport dynamics without too much network-to-network variation.

We were also able to achieve some comparison of our simulation data with exper-
imental data. We took images of actual networks of microtubule bundles, which were
used to track movement of cargos, and extracted network information to use in our
simulation. With this capability, we were able to obtain a theoretical model for an
MSD fit as a function of time for cargos moving along the extracted network, and
compare our simulation data with experimental data. In this model, we incorporated
cargos with multiple motors attach by imposing a probability of a cargo to switch to
another filament at filament intersections in our simulations. Through this mecha-
nism, we found a correlation between switching probabilities used in the simulations
with the number of motors attached to cargos in the experiments.

65
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6.2 Future Possibilities

With the work we’ve done, there is a lot of room for expansion. For example, we
don’t necessarily have to place filaments randomly. Instead, we can consider a more
biologically realistic network where microtubules are oriented radially outward and
a relatively thin layer of actin filaments lies near the cell membrane. We can then
compare our results, especially our numerical results, with some simulations that have
also considered this geometry [42].

Something else to consider is that usually at filament endpoints, cargos have dif-
ferent binding and unbinding rates. Also, cargos may or may not just walk off the
end of filaments. Whether or not this happens can depend on the motor type and
the filament polarization rate [47]. Another thing to consider is that there may be
cargo-crowding at filament endpoints, meaning that in this situation, cargos unbind
at higher rates [48].

We can also expand on our attempt at understanding the link between the switch-
ing probability of cargos at filament intersections and the number of motors attached
to each cargo. One thing we might attempt is to calculate the force from each motor on
the cargo when motors are attached to nearby filaments [15]. The direction of cargos
movement and the resulting filament it moves along, can then be determined by the
number of motors attached to it as well as the geometry of the filament intersection.
From this perspective, the cargo switching probability will not necessarily be fixed
for every filament intersection. We can also consider different switching probabilities
for different motor types and filament intersections. There are different switching
probabilities for microtubule-microtubule, microtubule-actin, and actin-actin inter-
sections [6]. We can consider these different probabilities by running simulations on
networks consisting of both microtubules and actin filaments where cargos may be
attached to kinesin, dynein, or myosin motors.

Another thing to take into consideration is the dimension and shape of the cell.
Actual eukaryotic cells are three-dimensional, whereas we primarily consider two-
dimensional cells where approximate spherical symmetry is assumed. This means we
can further extend our model to a three-dimensional system. Another direction we
can go is the consideration of a different cell structure (like an elongated, elliptically
shaped cell) and different target destinations for cargos (these might be locations in
the cell where varias organelles may reside). Furthermore, filament defects have been
observed to affect motor movement, giving us another possibility to consider [21].

Finally, one thing to note is that actual cytoskelatal networks are highly dynamic.
The processes of transport itself and the the changing cytoskeletal network occur over
similar timescales, taking seconds to minutes [58, 59, 63, 64]. Within the cytoskele-
ton, both the actin filaments and the microtubules change. To implement this, we
can allow each filament in the network to change according to how they have been
observed to: each filament will be allowed to polymerize, depolymerize, branch, be-
come capped, and get severed according to the concentrations of actin and regulatory
proteins responsible for the changing filaments [58]. If we implement microtubules
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into our networks, their dynamics will be similar [63]. Some things that we anticipate
happening is the possibility that highly dynamic cells make the active transport phase
approach a diffusive process, and the possibility that a changing network could help
“untrap” cargos stuck in the trapping regions we had oberved previously in both our
simulations and numerical integrations [31]. With the directions we can take with
this research, we have not only developed a new theoretical model for intracellular
tranport, but have also provided multiple ways to expand on it.
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Appendix: Computer Programs
Used

7.1 Introduction

In this work, all simulations and numerical calculations were executed using C or
C++ and all resulting data was analyzed using Python. Here, we show the programs
used to conduct the different research projects.

7.2 Numerical Calculation Programs

7.2.1 transNetNum.c

This program computes the time evolution of a distribution of cargos until the dis-
tribution leaves an area designated as the system’s cell.

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#ifndef M_PI

#define M_PI 3.14159265358979323846

#endif

#define N 100000 // number of time steps

#define NX 210 // number of x coordinates

#define NY 210 // number of y coordinates

// global variables

// sets resolution and distance step size and max x and y

values

68
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double dx = 0.1, dy = 0.1, xmax , ymax , xc , yc , dx2 , dy2;

// arrays to be used in integration of advection diffusion

equation

// total probability distribution , "off" distribution , "on"

distribution

double p[NX][NY], pOff[NX][NY], pOn[NX][NY];

double pOnNew[NX][NY], pOffNew[NX][NY];

// "off" and "on" switching rates

double kOff[NX][NY], kOn[NX][NY];

// diffusion constant

double D[NX][NY];

// velocity field arrays

double vx[NX][NY], vx2[NX][NY], vy[NX][NY], vy2[NX][NY];

// indicator for outside inner radius and inside outer radius

double C[NX][NY];

// array that indicates where the filaments are located

double filNet[NX][NY];

// array that indicates where filament endpoints are located

double filEnds[NX][NY];

// array of filament polarities

double pols[NX][NY];

// survival probability

double S[N];

// first passage time distribution

double F[N];

// mean first passage time

// initialize to 0.0

double mfpt = 0.0;

// number of filaments and filament length

int numFil = 150;

double l = 3.0;

// size of time step
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double dt = 0.01;

// how much time has passed

double t;

// radius of inner and outer boundaries

double outer = 10.0, inner = 5.0, outer2 , inner2;

// initial (radial) width of the probability distribution

double width = 0.4;

// filament on and off rates and velocity along filaments

double Koff = 0.8, Kon = 4.0, vTot = 1.0;

// bulk diffusion constant

double Db = 0.051;

int main()

{

// position (i, j) and time indices (m) for arrays

int i, j, m;

// total time elapsed , time spend off filaments , time spent

on filaments

double t, tOff , tOn;

// "hypotenuse" step size

double dr, dr2;

// setting initial global variable values

// max x and y coordinates

xmax = NX * dx;

ymax = NY * dy;

// (x, y) coordinates of the cell ’s center

xc = xmax / 2;

yc = ymax / 2;

dx2 = dx * dx;

dy2 = dy * dy;

dr2 = dx2 + dy2;

dr = sqrt(dr2);
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// squares of the inner and outer radii

inner2 = inner * inner;

outer2 = outer * outer;

// probability distribution normalization constant

double norm = 0.0;

// set up diffusion and initial probability distribution

arrays

for (i = 0; i < NX; i++) {

for (j = 0; j < NY; j++) {

// diffusion constant is the same everywhere

D[i][j] = Db;

// probability distribution begins in a "ring", off all

filaments

if (pow((i*dx -xc), 2) + pow((j*dy -yc), 2) > inner2 &&

pow((i*dx -xc), 2) + pow((j*dy -yc), 2) < pow(( inner+

width), 2)) {

pOff[i][j] = 1.0;

}

// keep track of normalization constant

norm = norm + pOff[i][j]*dx*dy;

// inner cell boundary is reflecting

// only allow transport outside of inner boundary

if (pow((i*dx -xc), 2) + pow((j*dy -yc), 2) > inner2) {

C[i][j] = 1.0;

}

}// end loop through y values

}// end loop through x values

// end set up diffusion and initial probability distribution

arrays

// normalize the probability distribution

for (i = 0; i < NX; i++) {

for (j = 0; j < NY; j++) {

pOff[i][j] = pOff[i][j] / norm;

}

}

// start creating filaments that will make up the network

// "filament length" depends on physical filament lengths

// and the system ’s spatial resolution

int filArrayLength;
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filArrayLength = (int)(l/dx);

// filament number index

int q = 0;

// position along filament index

int k;

// indices indicating where new piece of filament will be

placed

int r, s;

// used in establishing filament locations

double radPos , angPos , theta , xPos , yPos;

double radPos2 , xPos2 , yPos2 , diff;

// used to indicate filament polarity

double pol;

// indicate where filament "grows", once piece at a time

double xNew , yNew;

srand (( unsigned)time(NULL));

// start setting up the filament network

while(q < numFil) {

// initial radial postion of filament (inner endpoint)

radPos = outer - (inner) * (( double)rand()/( double)RAND_MAX)

;

// initial angular position of filament

angPos = (( double)rand()/( double)RAND_MAX) * (2 * M_PI);

// angle filament makes with respect to "radially outward"

theta = (-M_PI) * (( double)rand()/( double)RAND_MAX) + (M_PI

/2);

// random polarity for the current filament

// outward (1) or inward (-1)

pol = (-2) * (( double)rand()/( double)RAND_MAX) + 1;

pol = pol / fabs(pol);

// positions of filament endpoints

xPos = xc + radPos * cos(angPos);

yPos = yc + radPos * sin(angPos);

xPos2 = xPos + l * cos(angPos + theta);

yPos2 = yPos + l * sin(angPos + theta);

// radial position of outer endpoint
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radPos2 = sqrt(pow(( xPos2 - xc), 2) + pow(( yPos2 - yc), 2));

// shift filaments in or out if any part of them is outside

the cell

// transport area

if(radPos < (inner + 0.2)){

diff = (inner + 0.2) - radPos;

radPos = radPos + diff;

radPos2 = radPos2 + diff;

}

if(radPos2 > outer){

diff = radPos2 - outer;

radPos = radPos - diff;

radPos2 = radPos2 - diff;

}

// if the filament was moved , change the endpoint positions

xPos = xc + radPos * cos(angPos);

yPos = yc + radPos * sin(angPos);

xPos2 = xPos + l * cos(angPos + theta);

yPos2 = yPos + l * sin(angPos + theta);

// "grow" the filament

for(k = 0; k < filArrayLength + 1; k++){

// new piece of the filament

xNew = xPos + k * dx * cos(angPos + theta);

yNew = yPos + k * dy * sin(angPos + theta);

// convert to indices

r = (int)(xNew/dx);

s = (int)(yNew/dy);

// start storing filament information into arrays

// filaments will be "two indices" wide

for(i = 0; i < 2; i++){

for(j = 0; j < 2; j++){

// make sure filament is "grown" inside the cell

if(pow (((r+i)*dx -xc) ,2) + pow (((s+j)*dy -yc) ,2) < outer2){

// indicate where the piece of the filament will be

located

filNet[r+i][s+j] = 1.0;

// velocity along the filament

vx[r+i][s+j] = vTot * pol * cos(angPos + theta);

vy[r+i][s+j] = vTot * pol * sin(angPos + theta);

pols[r+i][s+j] = pol;
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// set the filament attachment

// and detachment rate

kOn[r+i][s+j] = Kon;

kOff[r+i][s+j] = Koff;

// if pol = -1 set inner end as "endpoint"

if(pol == -1.0 && k == 0){

filEnds[r+i][s+j] = 1.0;

}

// if pol = 1 set outer end as "endpoint"

if(pol == 1.0 && k == (filArrayLength)){

filEnds[r+i][s+j] = 1.0;

}

}

}

}

}// end growing a filament

// get ready to lay down the next filament

q++;

}// end laying down filament network

// evolve the probability distribution for "N" time steps

for (m = 0; m < N; m++) {

// update distribution

for (i = 1; i < NX - 1; i++) {

for (j = 1; j < NY - 1; j++) {

// allow on and off switching where a filament exists

// before the distribution moves

pOnNew[i][j] = dt * (kOn[i][j]*pOff[i][j] - kOff[i][j]*pOn

[i][j]);

pOffNew[i][j] = dt * (kOff[i][j]*pOn[i][j] - kOn[i][j]*

pOff[i][j]);

// diffusion off filaments

// allow "off" distribution to move first

pOffNew[i][j] = pOffNew[i][j] + dt*(

D[i][j]*C[i][j]*(C[i+1][j]*( pOff[i+1][j]-pOff[i][j]) + C

[i-1][j]*( pOff[i-1][j]-pOff[i][j]))/dx2

+D[i][j]*C[i][j]*(C[i][j+1]*( pOff[i][j+1]-

pOff[i][j]) + C[i][j -1]*( pOff[i][j-1]-

pOff[i][j]))/dy2);



CHAPTER 7. APPENDIX: COMPUTER PROGRAMS USED 75

// movement along filaments

pOnNew[i][j] = pOnNew[i][j] + dt * C[i][j] * (

(0.5*( vx[i][j]+fabs(vx[i][j])))*(-pOn[i][j

])/(dx)*(C[i+1][j])*filNet[i+1][j]

+(0.5*( vx[i-1][j]+fabs(vx[i-1][j])))*(pOn[i

-1][j])/(dx)*(C[i][j])*filNet[i][j]

+(0.5*( vx[i][j]-fabs(vx[i][j])))*(pOn[i][j])

/(dx)*(C[i-1][j])*filNet[i-1][j]

+(0.5*( vx[i+1][j]-fabs(vx[i+1][j])))*(-pOn[i

+1][j])/(dx)*(C[i][j])*filNet[i][j]

+(0.5*( vy[i][j]+fabs(vy[i][j])))*(-pOn[i][j

])/(dy)*(C[i][j+1])*filNet[i][j+1]

+(0.5*( vy[i][j-1]+ fabs(vy[i][j-1])))*(pOn[i][j

-1])/(dy)*(C[i][j])*filNet[i][j]

+(0.5*( vy[i][j]-fabs(vy[i][j])))*(pOn[i][j])

/(dy)*(C[i][j-1])*filNet[i][j-1]

+(0.5*( vy[i][j+1]-fabs(vy[i][j+1])))*(-pOn[i][

j+1])/(dy)*(C[i][j])*filNet[i][j]);

// falling off a filament endpoint

pOffNew[i][j] = pOffNew[i][j] + dt * C[i][j] * (

(0.5*( vx[i-1][j]+fabs(vx[i-1][j])))*(pOn[i

-1][j])/(dx)*(C[i][j])*filEnds[i-1][j]

+(0.5*( vx[i+1][j]-fabs(vx[i+1][j])))*(-pOn[i+1][j

])/(dx)*(C[i][j])*filEnds[i+1][j]

+(0.5*( vy[i][j-1]+ fabs(vy[i][j-1])))*(pOn[i][j-1])

/(dy)*(C[i][j])*filEnds[i][j-1]

+(0.5*( vy[i][j+1]-fabs(vy[i][j+1])))*(-pOn[i][j

+1])/(dy)*(C[i][j])*filEnds[i][j+1]);

// leaving a filament endpoint

pOnNew[i][j] = pOnNew[i][j] + dt * C[i][j] * (

(0.5*( vx[i][j]+fabs(vx[i][j])))*(-pOn[i][j

])/(dx)*(C[i+1][j])*filEnds[i][j]

+(0.5*( vx[i][j]-fabs(vx[i][j])))*(pOn[i][j])

/(dx)*(C[i-1][j])*filEnds[i][j]

+(0.5*( vy[i][j]+fabs(vy[i][j])))*(-pOn[i][j

])/(dy)*(C[i][j+1])*filEnds[i][j]

+(0.5*( vy[i][j]-fabs(vy[i][j])))*(pOn[i][j])

/(dy)*(C[i][j-1])*filEnds[i][j]);
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}// end looping through "y" indices

}// end looping through "x" indices

// final updates

for (i = 1; i < NX - 1; i++) {

for (j = 1; j < NY - 1; j++) {

// apply changes to the off and on distributions that

// were calculated above

pOff[i][j] += pOffNew[i][j];

pOn[i][j] += pOnNew[i][j];

p[i][j] = pOff[i][j] + pOn[i][j];

// if the distribution leaves the cell , eliminate it

if(pow((i*dx-xc), 2) + pow((j*dy -yc), 2) > outer2){

p[i][j] = 0.0;

}

// calculate the survival probability at the current time

step

S[m] += p[i][j] * dx * dy;

}

}

// check survival probability

// printf (" Survival probability: %lf\n", S[m]);

}// end evolving distribution

// calculate fptd and mfpt

for (m = 0; m < N; m++){

t = m * dt;

if(m == N - 1){

F[m] = fabs(-(S[m] - S[m - 1]) / dt);

} else if(m == 0){

F[m] = fabs(-(S[m + 1] - S[m]) / dt);

} else {

F[m] = fabs(-(S[m + 1] - S[m - 1]) / (2 * dt));

}

mfpt += t * F[m] * dt;

// check fptd

// printf ("FPTD: %lf\n", F[m]);

}

// check mfpt
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// printf ("MFPT: %lf\n", mfpt);

// output desired quantities to txt files

FILE *outpProbs;

FILE *outpPols;

FILE *outpSurvival;

FILE *outpFPTD;

FILE *outpMFPT;

outpProbs = fopen(" probs.txt", "w");

outpPols = fopen ("pols.txt", "w");

outpSurvival = fopen(" survival.txt", "w");

outpFPTD = fopen ("fptd.txt", "w");

outpMFPT = fopen ("mfpt.txt", "w");

for (i = 0; i < NX; i++) {

for (j = 0; j < NY; j++) {

fprintf(outpProbs , "%lf ", p[i][j]);

fprintf(outpPols , "%lf ", pols[i][j]);

}

fprintf(outpProbs , "\n");

fprintf(outpPols , "\n");

}

for (m = 0; m < N; m++){

fprintf(outpSurvival , "%lf\n", S[m]);

fprintf(outpFPTD , "%lf\n", F[m]);

}

fprintf(outpMFPT , "%lf\n", mfpt);

fclose(outpProbs);

fclose(outpPols);

fclose(outpSurvival);

fclose(outpFPTD);

fclose(outpMFPT);

return (0);

}

7.2.2 transNetNumVaryKs.c

Computes the time evolution of a cargo distribution for different values of kon and
koff .
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#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#ifndef M_PI

#define M_PI 3.14159265358979323846

#endif

#define N 10 // number of time steps

#define NX 210 // number of x coordinates

#define NY 210 // number of y coordinates

// global variables

// sets resolution and distance step size and max x and y

values

double dx = 0.1, dy = 0.1, xmax , ymax , xc , yc , dx2 , dy2;

// arrays to be used in integration of advection diffusion

equation

// total probability distribution , "off" distribution , "on"

distribution

double p[NX][NY], pOff[NX][NY], pOn[NX][NY];

double pOnNew[NX][NY], pOffNew[NX][NY];

// "off" and "on" switching rates

double kOff[NX][NY], kOn[NX][NY];

// diffusion constant

double D[NX][NY];

// velocity field arrays

double vx[NX][NY], vx2[NX][NY], vy[NX][NY], vy2[NX][NY];

// indicator for outside inner radius and inside outer radius

double C[NX][NY];

// array that indicates where the filaments are located

double filNet[NX][NY];

// array that indicates where filament endpoints are located

double filEnds[NX][NY];

// array of filament polarities
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double pols[NX][NY];

// survival probability

double S[N];

// first passage time distribution

double F[N];

// mean first passage time

// initialize to 0.0

// double mfpt;

// number of filaments and filament length

int numFil = 150;

double l = 3.0;

// number of networks to integrate over

int numNets = 5;

// current network index

int netNum;

// size of time step

double dt = 0.01;

// how much time has passed

double t;

// radius of inner and outer boundaries

double outer = 10.0, inner = 5.0, outer2 , inner2;

// initial (radial) width of the probability distribution

double width = 0.2;

// starting filament on and off rates and velocity along

filaments

double Koff = 0.0, Kon = 0.0, vTot = 1.0;

// amount on and off rates change for each distribution

evolution

double dKoff = 0.4, dKon = 4.0;

// max on and off rates reached in each distribution evolution

double KoffMax = 1.6, KonMax = 20.0;

// number of Koff and Kon values
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int nKoff , nKon;

// Koff and Kon indices

int nOff , nOn;

// bulk diffusion constant

double Db = 0.051;

// strings used in file names

char sProbs [50];

char sPols [50];

char sSurvival [50];

char sFPTD [50];

char sMFPT [50];

char sEnd [50];

char sEnd2 [50];

// output data to txt files

FILE *outpProbs;

FILE *outpPols;

FILE *outpSurvival;

FILE *outpFPTD;

FILE *outpMFPT;

FILE *outpKoff;

FILE *outpKon;

int main()

{

// position (i, j) and time indices (m) for arrays

int i, j, m;

// total time elapsed , time spend off filaments , time spent

on filaments

double t, tOff , tOn;

// "hypotenuse" step size

double dr, dr2;

// probability distribution normalization constant

double norm;

// setting initial global variable values
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// max (x, y) coordinates

xmax = NX * dx;

ymax = NY * dy;

// (x, y) coordinates of the cell ’s center

xc = xmax / 2;

yc = ymax / 2;

dx2 = dx * dx;

dy2 = dy * dy;

dr2 = dx2 + dy2;

dr = sqrt(dr2);

// squares of the inner and outer radii

inner2 = inner * inner;

outer2 = outer * outer;

// number of Koff and Kon values

nKoff = (int)(KoffMax / dKoff) + 1;

nKon = (int)(KonMax / dKon) + 1;

// array of mfpts (one for each koff/kon pair)

double mfpt[nKoff ][nKon];

// seed random number

srand (( unsigned)time(NULL));

// integrate over multiple networks

for(netNum = 0; netNum < numNets; netNum ++){

// start creating filaments that will make up the network

// "filament length" depends on physical filament lengths

// and the system ’s spatial resolution

int filArrayLength;

filArrayLength = (int)(l/dx);

// filament number index

int q = 0;

// position along filament index

int k;

// indices indicating where new piece of filament will be

placed
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int r, s;

// used in establishing filament locations

double radPos , angPos , theta , xPos , yPos;

double radPos2 , xPos2 , yPos2 , diff;

// used to indicate filament polarity

// radially outward (+1) or inward (-1)

double pol;

// indicate where filament "grows", once piece at a time

double xNew , yNew;

// clear the network arrays

for(i = 0; i < NX; i++){

for(j = 0; j < NY; j++){

vx[i][j] = 0.0;

vy[i][j] = 0.0;

kOn[i][j] = 0.0;

kOff[i][j] = 0.0;

filNet[i][j] = 0.0;

filEnds[i][j] = 0.0;

pols[i][j] = 0.0;

}

}

// start setting up the filament network

while(q < numFil) {

// initial radial postion of filament (inner endpoint)

radPos = outer - (inner) * (( double)rand()/( double)RAND_MAX)

;

// initial angular position of filament

angPos = (( double)rand()/( double)RAND_MAX) * (2 * M_PI);

// angle filament makes with respect to "radially outward"

theta = (-M_PI) * (( double)rand()/( double)RAND_MAX) + (M_PI

/2);

// random polarity for the current filament

// outward (+1) or inward (-1)

pol = (-2) * (( double)rand()/( double)RAND_MAX) + 1;

pol = pol / fabs(pol);

// positions of filament endpoints

// inner endpoint



CHAPTER 7. APPENDIX: COMPUTER PROGRAMS USED 83

xPos = xc + radPos * cos(angPos);

yPos = yc + radPos * sin(angPos);

// outer endpoint

xPos2 = xPos + l * cos(angPos + theta);

yPos2 = yPos + l * sin(angPos + theta);

// radial position of outer endpoint

radPos2 = sqrt(pow(( xPos2 - xc), 2) + pow(( yPos2 - yc), 2));

// shift filaments in or out if any part of them is outside

the cell

// transport area

if(radPos < (inner + 0.2)){

diff = (inner + 0.2) - radPos;

radPos = radPos + diff;

radPos2 = radPos2 + diff;

}

if(radPos2 > outer){

diff = radPos2 - outer;

radPos = radPos - diff;

radPos2 = radPos2 - diff;

}

// if the filament was moved , change the endpoint positions

xPos = xc + radPos * cos(angPos);

yPos = yc + radPos * sin(angPos);

xPos2 = xPos + l * cos(angPos + theta);

yPos2 = yPos + l * sin(angPos + theta);

// "grow" the filament

for(k = 0; k < filArrayLength + 1; k++){

// new piece of the filament

xNew = xPos + k * dx * cos(angPos + theta);

yNew = yPos + k * dy * sin(angPos + theta);

// convert to indices

r = (int)(xNew/dx);

s = (int)(yNew/dy);

// start storing filament information into arrays

// filaments will be "two indices" wide

for(i = 0; i < 2; i++){

for(j = 0; j < 2; j++){

// make sure filament is "grown" inside the cell
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if(pow (((r+i)*dx -xc) ,2) + pow (((s+j)*dy -yc) ,2) < outer2){

// indicate where the piece of the filament will be

located

filNet[r+i][s+j] = 1.0;

// velocity along the filament

vx[r+i][s+j] = vTot * pol * cos(angPos + theta);

vy[r+i][s+j] = vTot * pol * sin(angPos + theta);

pols[r+i][s+j] = pol;

// if pol = -1 set inner end as "filamnt end"

if(pol == -1.0 && k == 0){

filEnds[r+i][s+j] = 1.0;

}

// if pol = 1 set outer end as "filament end"

if(pol == 1.0 && k == (filArrayLength)){

filEnds[r+i][s+j] = 1.0;

}

}

}

}

}// end growing a filament

// get ready to lay down the next filament

q++;

}// end laying down filament network

// start looping through different off and on rates

for(nOff = 0; nOff < nKoff; nOff ++){

Koff = nOff * dKoff;

for(nOn = 0; nOn < nKon; nOn++){

Kon = nOn * dKon;

// probability distribution normalization factor

// initialize to 0.0

norm = 0.0;

// set up diffusion and initial probability distribution

arrays

// also set the filament attachment and detachment rates

for (i = 0; i < NX; i++) {

for (j = 0; j < NY; j++) {

// diffusion constant is the same everywhere
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D[i][j] = Db;

// probability distribution begins in a "ring", off all

filaments

if (pow((i*dx -xc), 2) + pow((j*dy -yc), 2) > inner2 &&

pow((i*dx -xc), 2) + pow((j*dy -yc), 2) < pow(( inner+

width), 2)) {

pOff[i][j] = 1.0;

} else {

pOff[i][j] = 0.0;

}

pOn[i][j] = 0.0;

p[i][j] = 0.0;

// keep track of normalization factor

norm = norm + pOff[i][j]*dx*dy;

// inner cell boundary is reflecting

// only allow transport outside of inner boundary

if (pow((i*dx -xc), 2) + pow((j*dy -yc), 2) > inner2) {

C[i][j] = 1.0;

} else {

C[i][j] = 0.0;

}

// if a filament exists , set the attachment and detachment

rate

if (filNet[i][j] == 1.0) {

kOff[i][j] = Koff;

kOn[i][j] = Kon;

} else {

kOff[i][j] = 0.0;

kOn[i][j] = 0.0;

}

}// end loop through y values

}// end loop through x values

// end set up diffusion and initial probability distribution

arrays

// normalize the probability distribution

for (i = 0; i < NX; i++) {

for (j = 0; j < NY; j++) {

pOff[i][j] = pOff[i][j] / norm;

}

}

// intialize fpt variables and arrays

mfpt[nOff][nOn] = 0.0;
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for (m = 0; m < N; m++){

S[m] = 0.0;

F[m] = 0.0;

}

// check Koff and Kon values

// printf ("kOff: %lf\tkOn: %lf\n", Koff , Kon);

// evolve the probability distribution for "N" time steps

for (m = 0; m < N; m++) {

// update distribution

for (i = 1; i < NX - 1; i++) {

for (j = 1; j < NY - 1; j++) {

// allow on and off switching where a filament exists

// before the distribution moves

pOnNew[i][j] = dt * (kOn[i][j]*pOff[i][j] - kOff[i][j]*pOn

[i][j]);

pOffNew[i][j] = dt * (kOff[i][j]*pOn[i][j] - kOn[i][j]*

pOff[i][j]);

// diffusion off filaments

// allow "off" distribution to move first

pOffNew[i][j] = pOffNew[i][j] + dt*(

D[i][j]*C[i][j]*(C[i+1][j]*( pOff[i+1][j]-pOff[i

][j]) + C[i-1][j]*( pOff[i-1][j]-pOff[i][j]))/

dx2

+D[i][j]*C[i][j]*(C[i][j+1]*( pOff[i][j+1]-

pOff[i][j]) + C[i][j -1]*( pOff[i][j-1]-

pOff[i][j]))/dy2);

// movement along filaments

pOnNew[i][j] = pOnNew[i][j] + dt * C[i][j] * (

(0.5*( vx[i][j]+fabs(vx[i][j])))*(-pOn[i][j

])/(dx)*(C[i+1][j])*filNet[i+1][j]

+(0.5*( vx[i-1][j]+fabs(vx[i-1][j])))*(pOn[i

-1][j])/(dx)*(C[i][j])*filNet[i][j]

+(0.5*( vx[i][j]-fabs(vx[i][j])))*(pOn[i][j])

/(dx)*(C[i-1][j])*filNet[i-1][j]

+(0.5*( vx[i+1][j]-fabs(vx[i+1][j])))*(-pOn[i

+1][j])/(dx)*(C[i][j])*filNet[i][j]

+(0.5*( vy[i][j]+fabs(vy[i][j])))*(-pOn[i][j

])/(dy)*(C[i][j+1])*filNet[i][j+1]

+(0.5*( vy[i][j-1]+ fabs(vy[i][j-1])))*(pOn[i][j

-1])/(dy)*(C[i][j])*filNet[i][j]
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+(0.5*( vy[i][j]-fabs(vy[i][j])))*(pOn[i][j])

/(dy)*(C[i][j-1])*filNet[i][j-1]

+(0.5*( vy[i][j+1]-fabs(vy[i][j+1])))*(-pOn[i][

j+1])/(dy)*(C[i][j])*filNet[i][j]);

// falling off a filament endpoint (movement to "off" from

"on")

pOffNew[i][j] = pOffNew[i][j] + dt * C[i][j] * (

(0.5*( vx[i-1][j]+fabs(vx[i-1][j])))*(pOn[i

-1][j])/(dx)*(C[i][j])*filEnds[i-1][j]

+(0.5*( vx[i+1][j]-fabs(vx[i+1][j])))*(-pOn[i

+1][j])/(dx)*(C[i][j])*filEnds[i+1][j]

+(0.5*( vy[i][j-1]+ fabs(vy[i][j-1])))*(pOn[i][j

-1])/(dy)*(C[i][j])*filEnds[i][j-1]

+(0.5*( vy[i][j+1]-fabs(vy[i][j+1])))*(-pOn[i][

j+1])/(dy)*(C[i][j])*filEnds[i][j+1]);

// leaving a filament endpoint (movement from "on" to "off

")

pOnNew[i][j] = pOnNew[i][j] + dt * C[i][j] * (

(0.5*( vx[i][j]+fabs(vx[i][j])))*(-pOn[i][j

])/(dx)*(C[i+1][j])*filEnds[i][j]

+(0.5*( vx[i][j]-fabs(vx[i][j])))*(pOn[i][j])

/(dx)*(C[i-1][j])*filEnds[i][j]

+(0.5*( vy[i][j]+fabs(vy[i][j])))*(-pOn[i][j

])/(dy)*(C[i][j+1])*filEnds[i][j]

+(0.5*( vy[i][j]-fabs(vy[i][j])))*(pOn[i][j])

/(dy)*(C[i][j-1])*filEnds[i][j]);

}// end looping through "y" indices

}// end looping through "x" indices

// final probability updates

for (i = 1; i < NX - 1; i++) {

for (j = 1; j < NY - 1; j++) {

// apply changes to the off and on distributions that

// were calculated above

pOff[i][j] += pOffNew[i][j];

pOn[i][j] += pOnNew[i][j];

// calculate total probability distribution

p[i][j] = pOff[i][j] + pOn[i][j];

// if the distribution leaves the cell , eliminate it

if(pow((i*dx-xc), 2) + pow((j*dy -yc), 2) > outer2){

p[i][j] = 0.0;

pOff[i][j] = 0.0;
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pOn[i][j] = 0.0;

}

// calculate the survival probability at the current time

step

S[m] += p[i][j] * dx * dy;

}

}// end probability updates

// check survival probability

// printf (" Survival probability: %lf\n", S[m]);

}// end evolving distribution

// calculate fptd and mfpt

for (m = 0; m < N; m++){

t = m * dt;

if(m == N - 1){

F[m] = fabs(-(S[m] - S[m - 1]) / dt);

} else if(m == 0){

F[m] = fabs(-(S[m + 1] - S[m]) / dt);

} else {

F[m] = fabs(-(S[m + 1] - S[m - 1]) / (2 * dt));

}

mfpt[nOff][nOn] += t * F[m] * dt;

// check fptd

// printf ("FPTD: %lf\n", F[m]);

}

// check mfpt

// printf ("MFPT: %lf\n", mfpt);

// start outputting data to files

sprintf(sProbs , "probs");

sprintf(sSurvival , "survival ");

sprintf(sFPTD , "fptd");

// end of each file name

// depends on the current network number and the

// current off and on rate

sprintf(sEnd , "netNum%dkOff %.2 fkOn %.2f.txt", netNum , Koff ,

Kon);
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outpProbs = fopen(strcat(sProbs ,sEnd), "w");

outpSurvival = fopen(strcat(sSurvival ,sEnd), "w");

outpFPTD = fopen(strcat(sFPTD ,sEnd), "w");

// output remaining probability distribution

// for this koff/kon pair to a file

for (i = 0; i < NX; i++) {

for (j = 0; j < NY; j++) {

fprintf(outpProbs , "%lf ", p[i][j]);

}

fprintf(outpProbs , "\n");

}

// output survival probability and fptd

// for this koff/kon pair to a file

for (m = 0; m < N; m++){

fprintf(outpSurvival , "%lf\n", S[m]);

fprintf(outpFPTD , "%lf\n", F[m]);

}

// close files that have already been written to

fclose(outpProbs);

fclose(outpSurvival);

fclose(outpFPTD);

}// end looping through Kon values

}// end looping through Koff values

// prepare to output filament polarity

// and mfpt for each koff/kon pair

// for the current network number

sprintf(sPols , "polsVaryK ");

sprintf(sMFPT , "mfptVaryK ");

sprintf(sEnd2 , "netNum%d.txt", netNum);

outpPols = fopen(strcat(sPols ,sEnd2), "w");

outpMFPT = fopen(strcat(sMFPT ,sEnd2), "w");

outpKoff = fopen ("kOffs.txt", "w");

outpKon = fopen("kOns.txt", "w");
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// output mfpt , koff , and kon values to files

for (nOff = 0; nOff < nKoff; nOff ++){

Koff = nOff * dKoff;

for (nOn = 0; nOn < nKon; nOn ++){

Kon = nOn * dKon;

fprintf(outpMFPT , "%lf ", mfpt[nOff][nOn]);

fprintf(outpKoff , "%lf ", Koff);

fprintf(outpKon , "%lf ", Kon);

}

fprintf(outpMFPT , "\n");

fprintf(outpKoff , "\n");

fprintf(outpKon , "\n");

}

// output filament polarities to a file

for (i = 0; i < NX; i++){

for (j = 0; j < NY; j++){

fprintf(outpPols , "%lf ", pols[i][j]);

}

fprintf(outpPols , "\n");

}

// close remaining output files

fclose(outpMFPT);

fclose(outpPols);

fclose(outpKoff);

fclose(outpKon);

}// end calculations for this network

return (0);

}

7.2.3 transNetNumVaryPols.c

Computes the time evolution of a cargo distribution for different filament outward
polarization probabilities.

#include <stdio.h>

#include <math.h>
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#include <stdlib.h>

#include <time.h>

#ifndef M_PI

#define M_PI 3.14159265358979323846

#endif

#define N 10 // number of time steps

#define NX 210 // number of x coordinates

#define NY 210 // number of y coordinates

// global variables

// sets resolution and distance step size and max x and y

values

double dx = 0.1, dy = 0.1, xmax , ymax , xc , yc , dx2 , dy2;

// arrays to be used in integration of advection diffusion

equation

// total probability distribution , "off" distribution , "on"

distribution

double p[NX][NY], pOff[NX][NY], pOn[NX][NY];

double pOnNew[NX][NY], pOffNew[NX][NY];

// "off" and "on" switching rates

double kOff[NX][NY], kOn[NX][NY];

// diffusion constant

double D[NX][NY];

// velocity field arrays

double vx[NX][NY], vx2[NX][NY], vy[NX][NY], vy2[NX][NY];

// indicator for outside inner radius and inside outer radius

double C[NX][NY];

// array that indicates where the filaments are located

double filNet[NX][NY];

// array that indicates where filament endpoints are located

double filEnds[NX][NY];

// array of filament polarities

double pols[NX][NY];
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// survival probability

double S[N];

// first passage time distribution

double F[N];

// mean first passage time

// initialize to 0.0

double mfpt;

// outward polarization bias

double polBias = 0.0;

double polBiasMax = 1.0;

double dP = 0.1;

// number of polarization biases used

int numPols;

// plolarization bias index

int nP;

// number of filaments and filament length

int numFil = 150;

double l = 1.0;

double lMax = 5.0;

double dL = 1.0;

// number of filament lengths used

int numLengths;

// filament length index

int nL;

// number of networks

int numNets = 5;

// network number index

int netNum;

// size of time step

double dt = 0.01;

// how much time has passed

double t;

// radius of inner and outer boundaries
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double outer = 10.0, inner = 5.0, outer2 , inner2;

// initial (radial) width of the probability distribution

double width = 0.2;

// starting filament on and off rates and velocity along

filaments

double Koff = 1.0, Kon = 5.0, vTot = 1.0;

// bulk diffusion constant

double Db = 0.051;

// strings used in file names

char sProbs [50];

char sPols [50];

char sSurvival [50];

char sFPTD [50];

char sMFPT [50];

char sEnd [50];

char sEnd2 [50];

// output data to txt files

FILE *outpProbs;

FILE *outpPols;

FILE *outpSurvival;

FILE *outpFPTD;

FILE *outpMFPT;

FILE *outpPB;

FILE *outpFL;

int main()

{

// position (i, j) and time indices (m) for arrays

int i, j, m;

// total time elapsed , time spend off filaments , time spent

on filaments

double t, tOff , tOn;

// "hypotenuse" step size

double dr, dr2;

// probability distribution normalization constant

double norm;
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// setting initial global variable values

// max (x, y) coordinates

xmax = NX * dx;

ymax = NY * dy;

// (x, y) coordinates of the cell ’s center

xc = xmax / 2;

yc = ymax / 2;

dx2 = dx * dx;

dy2 = dy * dy;

dr2 = dx2 + dy2;

dr = sqrt(dr2);

// squares of the inner and outer radii

inner2 = inner * inner;

outer2 = outer * outer;

// number of Koff and Kon values

numPols = (int)(polBiasMax / dP) + 1;

numLengths = (int)(lMax / dL) + 1;

// array of mfpts (one for length/polarization bias pair)

double mfpt[numPols ][ numLengths ];

// filament length by number of indices

int filArrayLength;

// filament number index

int q;

// position along filament index

int k;

// indices indicating where new piece of filament will be

placed

int r, s;

// used in establishing filament locations

double radPos , angPos , theta , xPos , yPos;

double radPos2 , xPos2 , yPos2 , diff;
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// used to indicate filament polarity

// radially outward (+1) or inward (-1)

double pol;

// indicate where filament "grows", once piece at a time

double xNew , yNew;

// seed random number

srand (( unsigned)time(NULL));

// loop over different network realizations

for(netNum = 0; netNum < numNets; netNum ++){

// start looping through different plolarization biases

// and different filament lengths

for(nP = 0; nP < numPols; nP++){

polBias = nP * dP;

for(nL = 1; nL < numLengths; nL++){

l = nL * dL;

// initialize filament network arrays

for (i = 0; i < NX; i++) {

for (j = 0; j < NY; j++) {

filNet[i][j] = 0.0;

filEnds[i][j] = 0.0;

pols[i][j] = 0.0;

vx[i][j] = 0.0;

vy[i][j] = 0.0;

}

}

// start creating filaments that will make up the network

// "filament length" depends on physical filament lengths

// and the system ’s spatial resolution

filArrayLength = (int)(l/dx);

q = 0;

// start setting up the filament network

while(q < numFil) {

// initial radial postion of filament (inner endpoint)

radPos = outer - (inner) * (( double)rand()/( double)RAND_MAX)

;
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// initial angular position of filament

angPos = (( double)rand()/( double)RAND_MAX) * (2 * M_PI);

// angle filament makes with respect to "radially outward"

theta = (-M_PI) * (( double)rand()/( double)RAND_MAX) + (M_PI

/2);

// random polarity for the current filament

// outward (+1) or inward (-1)

pol = (-1) * (( double)rand()/( double)RAND_MAX) + polBias *

1;

pol = pol / fabs(pol);

// positions of filament endpoints

// inner endpoint

xPos = xc + radPos * cos(angPos);

yPos = yc + radPos * sin(angPos);

// outer endpoint

xPos2 = xPos + l * cos(angPos + theta);

yPos2 = yPos + l * sin(angPos + theta);

// radial position of outer endpoint

radPos2 = sqrt(pow(( xPos2 - xc), 2) + pow(( yPos2 - yc), 2));

// shift filaments in or out if any part of them is outside

the cell

// transport area

if(radPos < (inner + 0.2)){

diff = (inner + 0.2) - radPos;

radPos = radPos + diff;

radPos2 = radPos2 + diff;

}

if(radPos2 > outer){

diff = radPos2 - outer;

radPos = radPos - diff;

radPos2 = radPos2 - diff;

}

// if the filament was moved , change the endpoint positions

xPos = xc + radPos * cos(angPos);

yPos = yc + radPos * sin(angPos);

xPos2 = xPos + l * cos(angPos + theta);

yPos2 = yPos + l * sin(angPos + theta);
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// "grow" the filament

for(k = 0; k < filArrayLength + 1; k++){

// new piece of the filament

xNew = xPos + k * dx * cos(angPos + theta);

yNew = yPos + k * dy * sin(angPos + theta);

// convert to indices

r = (int)(xNew/dx);

s = (int)(yNew/dy);

// start storing filament information into arrays

// filaments will be "two indices" wide

for(i = 0; i < 2; i++){

for(j = 0; j < 2; j++){

// make sure filament is "grown" inside the cell

if(pow (((r+i)*dx -xc) ,2) + pow (((s+j)*dy -yc) ,2) < outer2){

// indicate where the piece of the filament will be

located

filNet[r+i][s+j] = 1.0;

// velocity along the filament

vx[r+i][s+j] = vTot * pol * cos(angPos + theta);

vy[r+i][s+j] = vTot * pol * sin(angPos + theta);

pols[r+i][s+j] = pol;

// if pol = -1 set inner end as "filamnt end"

if(pol == -1.0 && k == 0){

filEnds[r+i][s+j] = 1.0;

}

// if pol = 1 set outer end as "filament end"

if(pol == 1.0 && k == (filArrayLength)){

filEnds[r+i][s+j] = 1.0;

}

}

}

}

}// end growing a filament

// get ready to lay down the next filament

q++;

}// end laying down filament network

// probability distribution normalization factor
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// initialize to 0.0

norm = 0.0;

// set up diffusion and initial probability distribution

arrays

// also set the filament attachment and detachment rates

for (i = 0; i < NX; i++) {

for (j = 0; j < NY; j++) {

// diffusion constant is the same everywhere

D[i][j] = Db;

// probability distribution begins in a "ring", off all

filaments

if (pow((i*dx -xc), 2) + pow((j*dy -yc), 2) > inner2 &&

pow((i*dx -xc), 2) + pow((j*dy -yc), 2) < pow(( inner+

width), 2)) {

pOff[i][j] = 1.0;

} else {

pOff[i][j] = 0.0;

}

pOn[i][j] = 0.0;

p[i][j] = 0.0;

// keep track of normalization factor

norm = norm + pOff[i][j]*dx*dy;

// inner cell boundary is reflecting

// only allow transport outside of inner boundary

if (pow((i*dx -xc), 2) + pow((j*dy -yc), 2) > inner2) {

C[i][j] = 1.0;

} else {

C[i][j] = 0.0;

}

// if a filament exists , set the attachment and detachment

rate

if (filNet[i][j] == 1.0) {

kOff[i][j] = Koff;

kOn[i][j] = Kon;

} else {

kOff[i][j] = 0.0;

kOn[i][j] = 0.0;

}

}// end loop through y values

}// end loop through x values

// end set up diffusion and initial probability distribution

arrays

// normalize the probability distribution
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for (i = 0; i < NX; i++) {

for (j = 0; j < NY; j++) {

pOff[i][j] = pOff[i][j] / norm;

}

}

// intialize fpt variables and arrays

mfpt[nP][nL] = 0.0;

for (m = 0; m < N; m++){

S[m] = 0.0;

F[m] = 0.0;

}

// check Koff and Kon values

// printf ("kOff: %lf\tkOn: %lf\n", Koff , Kon);

// evolve the probability distribution for "N" time steps

for (m = 0; m < N; m++) {

// update distribution

for (i = 1; i < NX - 1; i++) {

for (j = 1; j < NY - 1; j++) {

// allow on and off switching where a filament exists

// before the distribution moves

pOnNew[i][j] = dt * (kOn[i][j]*pOff[i][j] - kOff[i][j]*pOn

[i][j]);

pOffNew[i][j] = dt * (kOff[i][j]*pOn[i][j] - kOn[i][j]*

pOff[i][j]);

// diffusion off filaments

// allow "off" distribution to move first

pOffNew[i][j] = pOffNew[i][j] + dt*(

D[i][j]*C[i][j]*(C[i+1][j]*( pOff[i+1][j]-pOff[i

][j]) + C[i-1][j]*( pOff[i-1][j]-pOff[i][j]))/

dx2

+D[i][j]*C[i][j]*(C[i][j+1]*( pOff[i][j+1]-

pOff[i][j]) + C[i][j -1]*( pOff[i][j-1]-

pOff[i][j]))/dy2);

// movement along filaments

pOnNew[i][j] = pOnNew[i][j] + dt * C[i][j] * (

(0.5*( vx[i][j]+fabs(vx[i][j])))*(-pOn[i][j

])/(dx)*(C[i+1][j])*filNet[i+1][j]
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+(0.5*( vx[i-1][j]+fabs(vx[i-1][j])))*(pOn[i

-1][j])/(dx)*(C[i][j])*filNet[i][j]

+(0.5*( vx[i][j]-fabs(vx[i][j])))*(pOn[i][j])

/(dx)*(C[i-1][j])*filNet[i-1][j]

+(0.5*( vx[i+1][j]-fabs(vx[i+1][j])))*(-pOn[i

+1][j])/(dx)*(C[i][j])*filNet[i][j]

+(0.5*( vy[i][j]+fabs(vy[i][j])))*(-pOn[i][j

])/(dy)*(C[i][j+1])*filNet[i][j+1]

+(0.5*( vy[i][j-1]+ fabs(vy[i][j-1])))*(pOn[i][j

-1])/(dy)*(C[i][j])*filNet[i][j]

+(0.5*( vy[i][j]-fabs(vy[i][j])))*(pOn[i][j])

/(dy)*(C[i][j-1])*filNet[i][j-1]

+(0.5*( vy[i][j+1]-fabs(vy[i][j+1])))*(-pOn[i][

j+1])/(dy)*(C[i][j])*filNet[i][j]);

// falling off a filament endpoint (movement to "off" from

"on")

pOffNew[i][j] = pOffNew[i][j] + dt * C[i][j] * (

(0.5*( vx[i-1][j]+fabs(vx[i-1][j])))*(pOn[i

-1][j])/(dx)*(C[i][j])*filEnds[i-1][j]

+(0.5*( vx[i+1][j]-fabs(vx[i+1][j])))*(-pOn[i

+1][j])/(dx)*(C[i][j])*filEnds[i+1][j]

+(0.5*( vy[i][j-1]+ fabs(vy[i][j-1])))*(pOn[i][j

-1])/(dy)*(C[i][j])*filEnds[i][j-1]

+(0.5*( vy[i][j+1]-fabs(vy[i][j+1])))*(-pOn[i][

j+1])/(dy)*(C[i][j])*filEnds[i][j+1]);

// leaving a filament endpoint (movement from "on" to "off

")

pOnNew[i][j] = pOnNew[i][j] + dt * C[i][j] * (

(0.5*( vx[i][j]+fabs(vx[i][j])))*(-pOn[i][j

])/(dx)*(C[i+1][j])*filEnds[i][j]

+(0.5*( vx[i][j]-fabs(vx[i][j])))*(pOn[i][j])

/(dx)*(C[i-1][j])*filEnds[i][j]

+(0.5*( vy[i][j]+fabs(vy[i][j])))*(-pOn[i][j

])/(dy)*(C[i][j+1])*filEnds[i][j]

+(0.5*( vy[i][j]-fabs(vy[i][j])))*(pOn[i][j])

/(dy)*(C[i][j-1])*filEnds[i][j]);

}// end looping through "y" indices

}// end looping through "x" indices

// final probability updates

for (i = 1; i < NX - 1; i++) {

for (j = 1; j < NY - 1; j++) {
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// apply changes to the off and on distributions that

// were calculated above

pOff[i][j] += pOffNew[i][j];

pOn[i][j] += pOnNew[i][j];

// calculate total probability distribution

p[i][j] = pOff[i][j] + pOn[i][j];

// if the distribution leaves the cell , eliminate it

if(pow((i*dx-xc), 2) + pow((j*dy -yc), 2) > outer2){

p[i][j] = 0.0;

pOff[i][j] = 0.0;

pOn[i][j] = 0.0;

}

// calculate the survival probability at the current time

step

S[m] += p[i][j] * dx * dy;

}

}// end probability updates

// check survival probability

// printf (" Survival probability: %lf\n", S[m]);

}// end evolving distribution

// calculate fptd and mfpt

for (m = 0; m < N; m++){

t = m * dt;

if(m == N - 1){

F[m] = fabs(-(S[m] - S[m - 1]) / dt);

} else if(m == 0){

F[m] = fabs(-(S[m + 1] - S[m]) / dt);

} else {

F[m] = fabs(-(S[m + 1] - S[m - 1]) / (2 * dt));

}

mfpt[nP][nL] += t * F[m] * dt;

// check fptd

// printf ("FPTD: %lf\n", F[m]);

}

// check mfpt

// printf ("MFPT: %lf\n", mfpt);

// start outputting data to files
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sprintf(sProbs , "probs");

sprintf(sSurvival , "survival ");

sprintf(sFPTD , "fptd");

// prepare to output filament polarities

sprintf(sPols , "pols");

// end of each file name

// depends on current polarization bias

// and filament length

sprintf(sEnd , "netNum%dPB %.2 fFL %.2f.txt", netNum , polBias , l)

;

outpProbs = fopen(strcat(sProbs ,sEnd), "w");

outpPols = fopen(strcat(sPols ,sEnd), "w");

outpSurvival = fopen(strcat(sSurvival ,sEnd), "w");

outpFPTD = fopen(strcat(sFPTD ,sEnd), "w");

// output remaining probability distribution

// and filament polarities

// for this polarization bias/filament length pair to a file

for (i = 0; i < NX; i++) {

for (j = 0; j < NY; j++) {

fprintf(outpProbs , "%lf ", p[i][j]);

fprintf(outpPols , "%lf ", pols[i][j]);

}

fprintf(outpProbs , "\n");

fprintf(outpPols , "\n");

}

// output survival probability and fptd

// for this polarization bias/filament length pair to a file

for (m = 0; m < N; m++){

fprintf(outpSurvival , "%lf\n", S[m]);

fprintf(outpFPTD , "%lf\n", F[m]);

}

// close files that have already been written to

fclose(outpProbs);

fclose(outpPols);

fclose(outpSurvival);

fclose(outpFPTD);
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}// end looping through filament lengths

}// end looping through polarization biases

// prepare to output mfpt for each polarization bias/filament

length pair

sprintf(sMFPT , "mfpt");

sprintf(sEnd2 , "netNum%d.txt", netNum);

outpMFPT = fopen(strcat(sMFPT ,sEnd2), "w");

outpPB = fopen (" polBiases.txt", "w");

outpFL = fopen (" filLengths.txt", "w");

// output mfpt , polarization biases , and filament lengths

values to files

for (nP = 0; nP < numPols; nP++){

polBias = nP * dP;

for (nL = 1; nL < numLengths; nL++){

l = nL * dL;

fprintf(outpMFPT , "%lf ", mfpt[nP][nL]);

fprintf(outpPB , "%lf ", polBias);

fprintf(outpFL , "%lf ", l);

}

fprintf(outpMFPT , "\n");

fprintf(outpPB , "\n");

fprintf(outpFL , "\n");

}

// close remaining output files

fclose(outpMFPT);

fclose(outpPB);

fclose(outpFL);

}// end integrating over different network realizations

return (0);

}

7.2.4 plotNums.py

Plots different filament configurations and states of the cargo distributions on the
filament networks.
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#import scipy as sp

import matplotlib.pyplot as plt

import matplotlib

#import math

# open file and return the contents

def openFile(fileName):

with open(fileName) as file:

result = [[float(digit) for digit in line.split()] for

line in file]

return result

def main():

xmax = 21.0

ymax = 21.0

probDist1 = openFile(’probsnetNum1kOff0 .00 kOn8 .00.txt ’)

pols1 = openFile(’polsnetNum1.txt ’)

probDist2 = openFile(’probsnetNum2kOff0 .00 kOn8 .00.txt ’)

pols2 = openFile(’polsnetNum2.txt ’)

#survival = openFile(’survivalPB0 .00FL5 .00.txt ’)

#fptd = openFile(’fptdPB0 .00FL5 .00.txt ’)

# plot the contents of the file results

fig = plt.figure (4)

img1 = plt.subplot2grid ((2 ,2) ,(0,0))

im1 = img1.imshow(probDist1 , cmap = matplotlib.cm.hot ,

origin = ’lower ’,\

extent = [0.0, xmax , 0.0, ymax], vmax =

0.01)

img1.set_xlabel(’x ($\mu$m)’)

img1.set_ylabel(’y ($\mu$m)’)

fig.colorbar(im1 ,ax=img1).set_label(’$P = P_{on} + P_{off}

$’)

img2 = plt.subplot2grid ((2 ,2) ,(0,1))

im2 = img2.imshow(pols1 , cmap = matplotlib.cm.seismic ,

origin = ’lower ’,\

extent = [0.0, xmax , 0.0, ymax])

img2.set_xlabel(’x ($\mu$m)’)
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img2.set_ylabel(’y ($\mu$m)’)

fig.colorbar(im2 ,ax=img2).set_label(’Filament Polarization

(in or out)’)

img1 = plt.subplot2grid ((2 ,2) ,(1,0))

im1 = img1.imshow(probDist2 , cmap = matplotlib.cm.hot ,

origin = ’lower ’,\

extent = [0.0, xmax , 0.0, ymax], vmax =

0.01)

img1.set_xlabel(’x ($\mu$m)’)

img1.set_ylabel(’y ($\mu$m)’)

fig.colorbar(im1 ,ax=img1).set_label(’$P = P_{on} + P_{off}

$’)

img2 = plt.subplot2grid ((2 ,2) ,(1,1))

im2 = img2.imshow(pols2 , cmap = matplotlib.cm.seismic ,

origin = ’lower ’,\

extent = [0.0, xmax , 0.0, ymax])

img2.set_xlabel(’x ($\mu$m)’)

img2.set_ylabel(’y ($\mu$m)’)

fig.colorbar(im2 ,ax=img2).set_label(’Filament Polarization

(in or out)’)

#plt.subplot2grid ((2,2) ,(1,0))

#plt.plot(survival)

#plt.xlabel(’time steps (0.01 s each) ’)

#plt.ylabel(’Survival probability ’)

#plt.subplot2grid ((2,2) ,(1,1))

#plt.plot(fptd)

#plt.ylim (0 ,0.01)

#plt.xlabel(’time steps (0.01 s each) ’)

#plt.ylabel(’FPTD ’)

plt.tight_layout ()

plt.show()
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main()

7.2.5 randNumTester.py

Confirms the Python random number generator.

import random

import matplotlib.pyplot as plt

def main():

randList = []

randCounts = {’negative ’: 0, ’positive ’: 0}

probPositive = 0.8

for i in range (100):

newRand = -1 * random.random () + probPositive

newRand = newRand / abs(newRand)

randList.append(newRand)

for i in range(len(randList)):

if randList[i] == -1.0:

randCounts[’negative ’] += 1

if randList[i] == 1.0:

randCounts[’positive ’] += 1

print randCounts

#plt.plot(randCounts)

#plt.ylim (0 ,100)

#plt.show()

main()

7.2.6 plotSurvivalProbs.py

Determines survival probabilities for different networks.

import matplotlib.pyplot as plt

import matplotlib

import numpy as np
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# open file and return the contents

def openFile(fileName):

with open(fileName) as file:

result = [[float(digit) for digit in line.split()] for

line in file]

return result

def main():

pb = 0.0

fl = 1.0

survival = []

pbs = []

fls = []

i = 0

while pb <= 1.0:

survival.append ([])

pbs.append ([])

fls.append ([])

fl = 1.0

while fl <= 5.0:

survivalTemp = np.array(openFile(’survivalPB ’+str(

pb)+’0’+’FL ’+str(fl)+’0’+’.txt ’))

survivalTemp2 = survivalTemp[len(survivalTemp)

-1,0]

survival[i]. append(survivalTemp2)

pbs[i]. append(pb)

fls[i]. append(fl)

fl += 1.0

#print kOff , kOn

i += 1

pb += 0.1

survival = np.array(survival).transpose ()

mfpt = np.array(openFile(’mfpt.txt ’)).transpose ()

fls = np.array(fls).transpose ()

pbs = np.array(pbs).transpose ()
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#print survival2

# plot the contents of the file results

fig = plt.figure (1)

#img = plt.subplot2grid ((1,1) ,(0,0))

#im = img.imshow(mfpt [:,7:], origin = ’lower ’,cmap = ’jet

’,\

# extent = [0.7, 1.0, 1.0, 5.0], aspect =

0.1, interpolation = ’bilinear ’)

#img.set_xlabel(’Polarization bias ’)

#img.set_ylabel(’Filament length ($\mu$m) ’)

#fig.colorbar(im ,ax=img).set_label(’MFPT (s) ’)

# plot different 1d curves

polBiases = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1.0]

plt.subplot2grid ((1,1) ,(0,0))

plt.plot(polBiases [:6], survival [0,:6], marker=’o’,label=’

Filament length = 1 $\mu$m ’)

plt.plot(polBiases [:6], survival [1,:6], marker=’o’,label=’

Filament length = 2 $\mu$m ’)

plt.plot(polBiases [:6], survival [2,:6], marker=’o’,label=’

Filament length = 3 $\mu$m ’)

plt.plot(polBiases [:6], survival [3,:6], marker=’o’,label=’

Filament length = 4 $\mu$m ’)

plt.plot(polBiases [:6], survival [4,:6], marker=’o’,label=’

Filament length = 5 $\mu$m ’)

plt.legend(loc=’upper right ’)

plt.ylabel(’Survival probability ’)

plt.xlabel(’Polarization bias ’)

plt.tight_layout ()

plt.show()

main()
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7.2.7 plotProbVariance.py

Calculates variation in survival probabilities over different networks.

import matplotlib.pyplot as plt

import matplotlib

import numpy as np

import math

# open file and return the contents

def openFile(fileName):

with open(fileName) as file:

result = [[float(digit) for digit in line.split()] for

line in file]

return result

def main():

kOffs = []

kOns = []

probAvgs = []

probStdevs = []

kOff = 0.0

kOn = 0.0

k = 0

pb = 0.0

fl = 1.0

while pb <= 1.0:

kOffs.append ([])

kOns.append ([])

# prepare a new empty list to hold different

distribution data

probAvgs.append ([])

probStdevs.append ([])

kOn = 0.0

fl = 1.0

while fl <= 5.0:

kOffs[k]. append(kOff)

kOns[k]. append(kOn)



CHAPTER 7. APPENDIX: COMPUTER PROGRAMS USED 110

# read the probability distribution data at the

final time step

probDistTemp = openFile(’probsPB ’+str(pb)+’0’+’FL

’+str(fl)+’0’+’.txt ’)

count = 0

probSum = 0.0

var = 0.0

for i in range(len(probDistTemp)):

for j in range(len(probDistTemp[i])):

probSum += probDistTemp[i][j]

count += 1

# end summing distribution values

# calculate the mean distribution

mean = probSum / count

probAvgs[k]. append(mean)

for i in range(len(probDistTemp)):

for j in range(len(probDistTemp[i])):

var += (( probDistTemp[i][j] - mean)*(

probDistTemp[i][j] - mean)) / count

# end calculating distribution variance

# calculate the distribution standard deviation

stdev = math.sqrt(var)

probStdevs[k]. append(stdev)

kOn += 4.0

fl += 1.0

# end while kOn

k += 1

kOff += 0.4

pb += 0.1

# end while kOff

kOffs = np.array(kOffs).transpose ()

kOns = np.array(kOns).transpose ()

probAvgs = np.array(probAvgs).transpose ()

probStdevs = np.array(probStdevs).transpose ()

# plot the contents of the file results

fig = plt.figure (1)
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#img = plt.subplot2grid ((1,1) ,(0,0))

#im = img.imshow(probStdevs [:,:6], origin = ’lower ’,cmap =

’jet ’,\

# extent = [0.0, 0.6, 1.0, 5.0], aspect =

0.1, interpolation = ’bilinear ’)

#img.set_xlabel(’Polarization bias ’)

#img.set_ylabel(’Filament length ($\mu$m) ’)

#fig.colorbar(im ,ax=img).set_label(’Distribution standard

deviation ’)

polBiases = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

0.9, 1.0]

plt.subplot2grid ((1,1) ,(0,0))

plt.plot(polBiases [:6], probStdevs [0,:6], marker=’o’,label

=’Filament length = 1 $\mu$m ’)

plt.plot(polBiases [:6], probStdevs [1,:6], marker=’o’,label

=’Filament length = 2 $\mu$m ’)

plt.plot(polBiases [:6], probStdevs [2,:6], marker=’o’,label

=’Filament length = 3 $\mu$m ’)

plt.plot(polBiases [:6], probStdevs [3,:6], marker=’o’,label

=’Filament length = 4 $\mu$m ’)

plt.plot(polBiases [:6], probStdevs [4,:6], marker=’o’,label

=’Filament length = 5 $\mu$m ’)

plt.legend(loc=’upper right ’)

plt.ylabel(’Distribution standart deviation ’)

plt.xlabel(’Polarization bias ’)

plt.tight_layout ()

plt.show()

main()

7.2.8 plotMFPT.py

Plots the MFPTs for different network configurations.

import matplotlib.pyplot as plt
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import matplotlib

import numpy as np

# open file and return the contents

def openFile(fileName):

with open(fileName) as file:

result = [[float(digit) for digit in line.split()] for

line in file]

return result

def main():

mfpt0 = np.array(openFile(’mfptVaryKnetNum0.txt ’))

pols0 = np.array(openFile(’polsVaryKnetNum0.txt ’))

mfpt1 = np.array(openFile(’mfptVaryKnetNum1.txt ’))

pols1 = np.array(openFile(’polsVaryKnetNum1.txt ’))

mfpt2 = np.array(openFile(’mfptVaryKnetNum2.txt ’))

pols2 = np.array(openFile(’polsVaryKnetNum2.txt ’))

mfpt3 = np.array(openFile(’mfptVaryKnetNum3.txt ’))

pols3 = np.array(openFile(’polsVaryKnetNum3.txt ’))

mfpt4 = np.array(openFile(’mfptVaryKnetNum4.txt ’))

pols4 = np.array(openFile(’polsVaryKnetNum4.txt ’))

mfpt0 = mfpt0.transpose ()

#pols0 = pols0.transpose ()

mfpt1 = mfpt1.transpose ()

#pols1 = pols1.transpose ()

mfpt2 = mfpt2.transpose ()

#pols2 = pols2.transpose ()

mfpt3 = mfpt3.transpose ()

#pols3 = pols3.transpose ()

mfpt4 = mfpt4.transpose ()

#pols4 = pols4.transpose ()

#print mfpt2

# plot the contents of the file results

fig = plt.figure (1)

#img1 = plt.subplot2grid ((1,1) ,(0,0))

#im1 = img1.imshow(mfpt4 [1:,:], origin = ’lower ’,cmap = ’

jet ’,\

# extent = [0.0, 1.6, 4.0, 20.0] , aspect

= 0.1, interpolation = ’bilinear ’)
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#img1.set_xlabel(’Off rate ($s^{-1}$) ’)

#img1.set_ylabel(’On rate ($s^{-1}$) ’)

#fig.colorbar(im1 ,ax=img1 ,fraction =0.046).set_label(’MFPT

(s) ’)

img2 = plt.subplot2grid ((1 ,1) ,(0,0))

im2 = img2.imshow(pols1 , origin = ’lower ’,cmap =

matplotlib.cm.seismic ,\

extent = [0.0, 21.0, 0.0, 21.0])

img2.set_xlabel(’x ($\mu$m)’)

img2.set_ylabel(’y ($\mu$m)’)

fig.colorbar(im2 ,ax=img2 ,fraction =0.046).set_label(’

Filament Polarization (in or out) ’)

plt.tight_layout ()

plt.show()

main()

7.3 Anomalous Transport Programs

7.3.1 simTransMainMSD.c

This program is used to simulate anomalous transport and get data to perform MSD
analysis.

#include <stdio.h>

#include <math.h>

#include <time.h>

#include <stdlib.h>

#include <string.h>

#define M_PI 3.14159265358979323846

int main()

{

//cell radius

double outer = 20.0, outer2;

outer2 = pow(outer ,2);
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// radius of the nucleus

double inner = 5.0, inner2;

inner2 = pow(inner ,2);

//max x and y values

//same coordinate system as probability evolution system

double xmax = (outer * 2) + 1, ymax = (outer * 2) + 1;

// center of cell

double xCellCent = xmax / 2, yCellCent = ymax / 2;

// cargo radius

double cRad = 0.1;

//size of time step (seconds)

double dt;

//time passed in seconds

double t, tOn , tOff;

// other parameters (distances in micrometers)

double D = 0.051;

// choose either regular or anomalous diffusion

int ANOM = 1, REG = 0;

// choose whether or not to model insulin

int INS = 0;

//add a filament switching probability

//0.0 means no switching will occur

double switchProb = 0.0;

double probOn , probOff;

// speed along filaments

double v = 1.0;

// distance step size (will vary)

double distStep = 0.1, distStep2;

distStep2 = pow(distStep ,2);

//time step during normal diffusion

double dtReg;

dtReg = (distStep2) / (4 * D);

//loop indices

int i, j, k, m, currentm;

//on network , off network , stop the simulation

int ON , OFF , STOP , SWITCHED;

//seed rand()

srand(time(NULL));
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double randNum;

//set current number of filaments and filament length

int minFils = 1500;

double minLength = 5.0;

int numFils = minFils;

double filLength = minLength;

//max number of filaments and max filament length

int maxFils = 1500;

double maxLength = 5.0;

int dFils = 500;

double dLength = 1.0;

// number of cargos and number of networks

int numCargs = 10000 , numNets = 1;

double minx1x2 , maxx1x2 , miny1y2 , maxy1y2;

double rc, theta , xc, yc, d1 , d2 , d;

double initial_x , initial_y , initial_t;

double r1, r2, alpha , p, x1 , x2 , y1 , y2 , diff;

double phi , beta;

double xcNew , ycNew , rcNew;

//on and off rates (constant for now)

double kOn = 5.0, kOff = 1.0;

double psi , a, b, gamma;

//if normal diffusion , gamma = 1

if (REG == 1){

gamma = 1;

}

else{

gamma = 0.8;

}

//used in calculating MSD

int timeInt , timeIntMax = 20000;

double sd;

double msdArray[timeIntMax ][3];

//used to calculate variations in MSD at 10s and 100s
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double msdCurrent10 , msdCurrent100;

double msd10[numNets], msd100[numNets ];

double msdSum10 , msdSum100;

double av10 , av100 , var10 , var100;

double stdev10 , stdev100;

//used for calculating average time spent on the network

double fracTimeOn[numCargs*numNets ];

int currentCargo = 0;

char sEnd1 [500];

// start looping over different filament lengths and numbers

while(filLength <= maxLength){

numFils = minFils;

while(numFils <= maxFils){

// redeclare filament network arrays

double filNet[numFils ][4];

double filEnds[numFils ][4];

for(i = 0; i < timeIntMax; i++){

msdArray[i][0] = 0.0;

msdArray[i][1] = 0.0;

msdArray[i][2] = 0.0;

}

// initialize fracTimeOn back to 0.0

for(i = 0; i < numCargs*numNets; i++){

fracTimeOn[i] = 0.0;

}

currentCargo = 0;

//for keeping track of msd variation at 10s and 100s

for(i = 0; i < numNets; i++){

msd10[i] = 0.0;

msd100[i] = 0.0;

}

//set up end of file name
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sprintf(sEnd1 ,"kOn %.2 fkOff %.2 fnumFil%dfilLen %.2 fnumNets%

dnumCargs%dgamma %.2 fINS%d.txt",kOn ,kOff ,numFils ,filLength ,

numNets ,numCargs ,gamma ,INS);

// start laying down different networks

for(int currentNet = 0; currentNet < numNets; currentNet +=

1){

//set up the current network

for(j = 0; j < numFils; j += 1){

// random radial starting position

r1 = outer - (outer - inner)* (double)rand() / RAND_MAX;

// random angular starting position

theta = (2* M_PI) * (double)rand()/RAND_MAX;

// alpha between -pi/2 and +pi/2

alpha = -(M_PI) * (double)rand()/RAND_MAX + (M_PI /2);

// random filament polarity

// positive is "out" negative is "in"

p = (-2) * (double)rand()/RAND_MAX + 1;

//p is +1 or -1

p = p / fabs(p);

//x and y values of filament endpoints

x1 = xCellCent + r1 * cos(theta); y1 = yCellCent + r1 * sin(

theta);

x2 = x1 + filLength*cos(theta+alpha); y2 = y1 + filLength*

sin(theta+alpha);

//" outer" end of filament

r2 = sqrt(pow((x2 -xCellCent) ,2)+pow((y2 -yCellCent) ,2));

//make sure filament ends are within desired region

// shift filament out

if(r1 < (inner + 0.2)){

diff = (inner +0.2) -r1;

r1 = r1 + diff;

r2 = r2 + diff;

}

// shift filament in

if(r2 > outer){

diff = r2 - outer;

r1 = r1 - diff;

r2 = r2 - diff;

}

//x and y values of filament endpoints

x1 = xCellCent + r1 * cos(theta); y1 = yCellCent + r1 * sin(

theta);

x2 = x1 + filLength*cos(theta+alpha); y2 = y1 + filLength*

sin(theta+alpha);



CHAPTER 7. APPENDIX: COMPUTER PROGRAMS USED 118

//" outer" end of filament

r2 = sqrt(pow((x2 -xCellCent) ,2)+pow((y2 -yCellCent) ,2));

// store filament endpoints

filEnds[j][0] = x1; filEnds[j][1] = x2; filEnds[j][2] = y1;

filEnds[j][3] = y2;

// store values in filament array

filNet[j][0] = r1; filNet[j][1] = theta; filNet[j][2] =

alpha; filNet[j][3] = p;

}// end set up the network

for(int currentCarg = 0; currentCarg < numCargs; currentCarg

+= 1){

//set time to zero

t = 0.0;

tOn = 0.0;

tOff = 0.0;

if (INS == 0){

// starting radial position of cargo

rc = (inner + 0.2) - (0.2) *(( double)rand())/RAND_MAX;

}

//if we ’re modling insuling , cargos have a different

starting distribution

if (INS == 1){

//this is assumin outer = 10.0 and inner = 5.0

rc = 10 - 5 * sqrt(4 - (( double)rand()/RAND_MAX + 3));

}

// starting angular position of cargo

beta = (2* M_PI)*(( double)rand())/RAND_MAX;

// starting x, y values of cargo

xc = xCellCent + rc * cos(beta);

yc = yCellCent + rc * sin(beta);

//keep track of starting x, y values

initial_x = xc;

initial_y = yc;

initial_t = t;

// cargo start s off the network

OFF = 1;

ON = 0;

//the simulation has not stopped yet
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STOP = 0;

// start letting cargo "walk"

while(STOP == 0){

//allow on/off switching if possible

if(OFF == 1 && ON == 0){

if (REG == 1){

// normal diffusion

dt = dtReg;

}

if (ANOM == 1){

// anomalous diffusion

randNum = (double)rand()/RAND_MAX;

dt = pow((-randNum +1) ,(-1/gamma))/(1/ dtReg);

}

//check for nearby filaments and

// filament endpoints. must be within

//cargo radius

m = 0;

while (m < numFils && ON != 1){

d = fabs(( filEnds[m][3]- filEnds[m][2])*xc -( filEnds[m][1]-

filEnds[m][0])*yc

+filEnds[m][1]* filEnds[m][2]- filEnds[m][3]* filEnds[m

][0])/

sqrt(pow(( filEnds[m][3]- filEnds[m][2]) ,2)+pow((

filEnds[m][1]- filEnds[m][0]) ,2));

d1 = sqrt(pow((xc -filEnds[m][0]) ,2)+pow((yc -filEnds[m

][2]) ,2));

d2 = sqrt(pow((xc -filEnds[m][1]) ,2)+pow((yc -filEnds[m

][3]) ,2));

minx1x2 = 0.5* fabs(filEnds[m][0]+ filEnds[m][1]) -0.5* fabs(

filEnds[m][0]- filEnds[m][1]);

maxx1x2 = 0.5* fabs(filEnds[m][0]+ filEnds[m][1]) +0.5* fabs(

filEnds[m][0]- filEnds[m][1]);

miny1y2 = 0.5* fabs(filEnds[m][2]+ filEnds[m][3]) -0.5* fabs(

filEnds[m][2]- filEnds[m][3]);

maxy1y2 = 0.5* fabs(filEnds[m][2]+ filEnds[m][3]) +0.5* fabs(

filEnds[m][2]- filEnds[m][3]);

// cargo is near a filament

if(d1 < cRad || d2 < cRad ||
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(xc > minx1x2 && xc < maxx1x2 && yc > miny1y2 && yc <

maxy1y2 &&

d < cRad)){

// probability of switching on the network

probOn = (double)rand()/RAND_MAX;

if(probOn <= (kOn*dt)){

ON = 1;

theta = filNet[m][1];

alpha = filNet[m][2];

p = filNet[m][3];

x1 = filEnds[m][0];

x2 = filEnds[m][1];

y1 = filEnds[m][2];

y2 = filEnds[m][3];

// current filament number

currentm = m;

}

}

m += 1;

}

}

//if on, allow possibility of falling off or switching to a

// nearby filament

if(ON == 1 && OFF == 0){

dt = distStep / v;

probOff = (double)rand()/RAND_MAX;

minx1x2 = 0.5 * fabs(x1+x2) - 0.5 * fabs(x1 -x2);

maxx1x2 = 0.5 * fabs(x1+x2) + 0.5 * fabs(x1 -x2);

miny1y2 = 0.5 * fabs(y1+y2) - 0.5 * fabs(y1 -y2);

maxy1y2 = 0.5 * fabs(y1+y2) + 0.5 * fabs(y1 -y2);

//cargo will fall of the current filament

if(probOff <= (kOff*dt) ||

(xc<minx1x2 || xc>maxx1x2 || yc<miny1y2 || yc>maxy1y2)){

// cargo has fallen off the network

ON = 0;

OFF = 1;

if (REG == 1){

// normal diffusion

dt = dtReg;

}

if (ANOM == 1){

// anomalous diffusion

randNum = (double)rand()/RAND_MAX;
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dt = pow((-randNum +1) ,(-1/gamma))/(1/ dtReg);

}

}//end check if cargo has fallen off

//cargo still on. Check for nearby filaments

if (ON == 1 && OFF == 0){

// cycle through filament number (m)

m = 0;

// cargo has not switched yet

SWITCHED = 0;

//if there is a filament nearby , allow switching

while (m < numFils && SWITCHED != 1){

d = fabs(( filEnds[m][3]- filEnds[m][2])*xc -( filEnds[m

][1]- filEnds[m][0])*yc

+filEnds[m][1]* filEnds[m][2]- filEnds[m][3]* filEnds[m

][0])/

sqrt(pow(( filEnds[m][3]- filEnds[m][2]) ,2)+pow((

filEnds[m][1]- filEnds[m][0]) ,2));

d1 = sqrt(pow((xc -filEnds[m][0]) ,2)+pow((yc -filEnds[m

][2]) ,2));

d2 = sqrt(pow((xc -filEnds[m][1]) ,2)+pow((yc -filEnds[m

][3]) ,2));

minx1x2 = 0.5* fabs(filEnds[m][0]+ filEnds[m][1]) -0.5* fabs

(filEnds[m][0]- filEnds[m][1]);

maxx1x2 = 0.5* fabs(filEnds[m][0]+ filEnds[m][1]) +0.5* fabs

(filEnds[m][0]- filEnds[m][1]);

miny1y2 = 0.5* fabs(filEnds[m][2]+ filEnds[m][3]) -0.5* fabs

(filEnds[m][2]- filEnds[m][3]);

maxy1y2 = 0.5* fabs(filEnds[m][2]+ filEnds[m][3]) +0.5* fabs

(filEnds[m][2]- filEnds[m][3]);

if((d1 < cRad || d2 < cRad ||

(xc > minx1x2 && xc < maxx1x2 && yc > miny1y2 && yc <

maxy1y2 &&

d < cRad)) && (

currentm != m)

){

// probability of switching to another filament

probOn = (double)rand()/RAND_MAX;

if(probOn <= (switchProb)){

// cargo switches over to another filament

SWITCHED = 1;

theta = filNet[m][1];
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alpha = filNet[m][2];

p = filNet[m][3];

x1 = filEnds[m][0];

x2 = filEnds[m][1];

y1 = filEnds[m][2];

y2 = filEnds[m][3];

// update current filamnet number (m)

currentm = m;

}

}

m += 1;

}

}

}

//now that the cargo is either on or off ,

//allow movement

//make sure that cargo is indeed on a filament

if(ON == 1 && OFF == 1){

ON = 1;

OFF = 0;

dt = distStep / v;

}

// random walk off filament

if(OFF == 1){

//pick a random direction

phi = (2* M_PI)*( double)rand()/RAND_MAX;

//move in that directino

xcNew = xc + (distStep) * cos(phi);

ycNew = yc + (distStep) * sin(phi);

tOff = tOff + dt;

}

// ballistic motion on filament

if(ON == 1){

//move along filament

xcNew = xc + p * distStep * cos(theta + alpha);

ycNew = yc + p * distStep * sin(theta + alpha);

tOn = tOn + dt;

}

//new radial position of cargo

rcNew = sqrt(pow((xcNew -xCellCent) ,2)+pow((ycNew -yCellCent)

,2));

//new angular position of cargo

beta = atan((ycNew -yCellCent)/(xcNew -xCellCent));

//check to see if cargo is inside nucleus

if(rcNew < inner){
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//if cargo is inside the nucleus , move it back out

//to original position

xcNew = xc;

ycNew = yc;

}

//check to see if the cargo has left the cell

if(rcNew > outer){

//for msd calculations , two reflecting

// boundaries

xcNew = xc;

ycNew = yc;

}

// update positions and times appropriately

xc = xcNew;

yc = ycNew;

rc = sqrt(pow((xc -xCellCent) ,2)+pow((yc -yCellCent) ,2));

beta = atan((yc-yCellCent)/(xc -xCellCent));

t = t + dt;

//used in calculating msd

sd = pow((xc - initial_x) ,2) + pow((yc - initial_y) ,2);

if((int)t == 10){

msdCurrent10 = sd;

}

if((int)t == 100){

msdCurrent100 = sd;

}

if((t / dtReg) < (double)timeIntMax){

timeInt = (int)(t / dtReg);

msdArray[timeInt ][0] += sd;

msdArray[timeInt ][1] += 1.0;

msdArray[timeInt ][2] = (double)timeInt;

}

if((t / dtReg) > (double)timeIntMax){

STOP = 1;

}

}// end movement of current cargo
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fracTimeOn[currentCargo] = tOn / t;

currentCargo += 1;

msd10[currentNet] += msdCurrent10;

msd100[currentNet] += msdCurrent100;

}// end movement of ALL cargos

//msd for all cargos at 10s and 100s

msd10[currentNet] = msd10[currentNet] / numCargs;

msd100[currentNet] = msd100[currentNet] / numCargs;

}// end laying down all networks

msdSum10 = 0.0; msdSum100 = 0.0;

var10 = 0.0; var100 = 0.0;

for(i = 0; i < numNets; i++){

msdSum10 += msd10[i];

msdSum100 += msd100[i];

}

av10 = msdSum10 / numNets; av100 = msdSum100/ numNets;

for(i = 0; i < numNets; i++){

var10 += pow((msd10[i] - av10), 2) / numNets;

var100 += pow(( msd100[i] - av100), 2) / numNets;

}

stdev10 = sqrt(var10);

stdev100 = sqrt(var100);

FILE *outp10;

FILE *outp100;

char sBeg10 [500] = "msdSTDEV10 ";

char sBeg100 [500] = "msdSTDEV100 ";

outp10 = fopen(strcat(sBeg10 ,sEnd1),"w");

outp100 = fopen(strcat(sBeg100 ,sEnd1),"w");

fprintf(outp10 ,"%lf\n",stdev10);

fprintf(outp100 ,"%lf\n",stdev100);
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fclose(outp10);

fclose(outp100);

FILE *outp;

char sBeg [500] = "MSD";

outp = fopen(strcat(sBeg ,sEnd1),"w");

for(int i = 0; i < timeIntMax; i++){

fprintf(outp ,"%lf\t%lf\t%lf\n",msdArray[i][0], msdArray[i

][1], msdArray[i][2]);

}

fclose(outp);

FILE *outpFracs;

char sBegFracs [500] = "fracTimeOnMSD ";

outpFracs = fopen(strcat(sBegFracs ,sEnd1) ,"w");

for(i = 0; i < numCargs*numNets; i++){

fprintf(outpFracs ,"%lf\n",fracTimeOn[i]);

}

fclose(outpFracs);

// increase number of filaments

numFils += dFils;

}//end looping through number of filaments

// increase filament length

filLength += dLength;

}// end looping through filament lengths

return 0;

}//end main

7.3.2 simTransMainTAMSD.c

This program is used to simulate anomalous transport and get data to perform TA-
MSD analysis.

#include <stdio.h>

#include <math.h>

#include <time.h>

#include <stdlib.h>

#include <string.h>

#define M_PI 3.14159265358979323846
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int main()

{

//cell radius

double outer = 10.0, outer2;

outer2 = pow(outer ,2);

// radius of the nucleus

double inner = 5.0, inner2;

inner2 = pow(inner ,2);

//max x and y values

//same coordinate system as probability evolution system

double xmax = (outer * 2) + 1, ymax = (outer * 2) + 1;

// center of cell

double xCellCent = xmax / 2, yCellCent = ymax / 2;

// cargo radius

double cRad = 0.1;

//size of time step (seconds)

double dt;

//time passed in seconds

double t, tOn , tOff;

// other parameters (distances in micrometers)

double D = 0.051;

// choose either regular or anomalous diffusion

int ANOM = 1, REG = 0;

// choose whether or not to model insulin

int INS = 0;

//add a filament switching probability

//0.0 means no switching will occur

double switchProb = 0.0;

double probOn , probOff;

// speed along filaments

double v = 1.0;

// distance step size (will vary)

double distStep = 0.1, distStep2;

distStep2 = pow(distStep ,2);

//time step during normal diffusion

double dtReg;

dtReg = (distStep2) / (4 * D);
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//loop indices

int i, j, k, m, currentm;

//on network , off network , stop the simulation

int ON , OFF , STOP , SWITCHED;

//seed rand()

srand(time(NULL));

double randNum;

//set current number of filaments and filament length

int minFils = 500;

double minLength = 5.0;

int numFils = minFils;

double filLength = minLength;

//max number of filaments and max filament length

int maxFils = 500;

double maxLength = 5.0;

int dFils = 500;

double dLength = 1.0;

// number of cargos and number of networks

int numCargs = 2, numNets = 2;

double minx1x2 , maxx1x2 , miny1y2 , maxy1y2;

double rc, theta , xc, yc, d1 , d2 , d;

double initial_x , initial_y , initial_t;

double r1, r2, alpha , p, x1 , x2 , y1 , y2 , diff;

double phi , beta;

double xcNew , ycNew , rcNew;

//on and off rates (constant for now)

double kOn = 5.0, kOff = 1.0;

double psi , a, b, gamma;

//if normal diffusion , gamma = 1

if (REG == 1){

gamma = 1;

}

else{

gamma = 0.8;

}
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//used to calculate TA iMSD

int timeInt , timeIntMax = 20000;

int maxTime = timeIntMax * dtReg;

double xytArray[maxTime ][3];

double timeAvgMsdArray[maxTime ][ numCargs*numNets ];

double timeAvgMsdFixedS1[maxTime ][ numCargs*numNets ];

double timeAvgMsdFixedS2[maxTime ][ numCargs*numNets ];

double timeAvgMsdFixedS3[maxTime ][ numCargs*numNets ];

int currentCargo = 0;

int passNum , counts;

double dis2tot , dis2 , dx, dy;

//used to calculate average time spent on the network

double fracTimeOn[numCargs*numNets ];

char sEnd1 [500];

// start looping over different filament lengths and numbers

while(filLength <= maxLength){

numFils = minFils;

while(numFils <= maxFils){

// redeclare filament network arrays

double filNet[numFils ][4];

double filEnds[numFils ][4];

// initialize fracTimeOn back to 0.0

for(i = 0; i < numCargs*numNets; i++){

fracTimeOn[i] = 0.0;

}

// initializations for TA MSD calculation

currentCargo = 0;

//set up end of file name

sprintf(sEnd1 ,"kOn %.2 fkOff %.2 fnumFil%dfilLen %.2 fnumNets%

dnumCargs%dgamma %.2 fINS%d.txt",kOn ,kOff ,numFils ,filLength ,

numNets ,numCargs ,gamma ,INS);

// start laying down different networks

for(int currentNet = 0; currentNet < numNets; currentNet +=

1){
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//set up the current network

for(j = 0; j < numFils; j += 1){

// random radial starting position

r1 = outer - (outer - inner)* (double)rand() / RAND_MAX;

// random angular starting position

theta = (2* M_PI) * (double)rand()/RAND_MAX;

// alpha between -pi/2 and +pi/2

alpha = -(M_PI) * (double)rand()/RAND_MAX + (M_PI /2);

// random filament polarity

// positive is "out" negative is "in"

p = (-2) * (double)rand()/RAND_MAX + 1;

//p is +1 or -1

p = p / fabs(p);

//x and y values of filament endpoints

x1 = xCellCent + r1 * cos(theta); y1 = yCellCent + r1 * sin(

theta);

x2 = x1 + filLength*cos(theta+alpha); y2 = y1 + filLength*

sin(theta+alpha);

//" outer" end of filament

r2 = sqrt(pow((x2 -xCellCent) ,2)+pow((y2 -yCellCent) ,2));

//make sure filament ends are within desired region

// shift filament out

if(r1 < (inner + 0.2)){

diff = (inner +0.2) -r1;

r1 = r1 + diff;

r2 = r2 + diff;

}

// shift filament in

if(r2 > outer){

diff = r2 - outer;

r1 = r1 - diff;

r2 = r2 - diff;

}

//x and y values of filament endpoints

x1 = xCellCent + r1 * cos(theta); y1 = yCellCent + r1 * sin(

theta);

x2 = x1 + filLength*cos(theta+alpha); y2 = y1 + filLength*

sin(theta+alpha);

//" outer" end of filament

r2 = sqrt(pow((x2 -xCellCent) ,2)+pow((y2 -yCellCent) ,2));

// store filament endpoints

filEnds[j][0] = x1; filEnds[j][1] = x2; filEnds[j][2] = y1;

filEnds[j][3] = y2;

// store values in filament array

filNet[j][0] = r1; filNet[j][1] = theta; filNet[j][2] =

alpha; filNet[j][3] = p;
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}// end set up the network

for(int currentCarg = 0; currentCarg < numCargs; currentCarg

+= 1){

//set time to zero

t = 0.0;

tOn = 0.0;

tOff = 0.0;

if (INS == 0){

// starting radial position of cargo

rc = (inner + 0.2) - (0.2) *(( double)rand())/RAND_MAX;

}

//if we ’re modling insuling , cargos have a different

starting distribution

if (INS == 1){

//this is assumin outer = 10.0 and inner = 5.0

rc = 10 - 5 * sqrt(4 - (( double)rand()/RAND_MAX + 3));

}

// starting angular position of cargo

beta = (2* M_PI)*(( double)rand())/RAND_MAX;

// starting x, y values of cargo

xc = xCellCent + rc * cos(beta);

yc = yCellCent + rc * sin(beta);

//keep track of starting x, y values

initial_x = xc;

initial_y = yc;

initial_t = t;

// initialize xyt array

for(int temp_int = 0; temp_int < maxTime; temp_int += 1){

xytArray[temp_int ][0] = 0.0;

xytArray[temp_int ][1] = 0.0;

xytArray[temp_int ][2] = 0.0;

}

// initialize first xyt values

xytArray [0][0] = initial_x;

xytArray [0][1] = initial_y;

xytArray [0][2] = initial_t;
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// cargo start s off the network

OFF = 1;

ON = 0;

//the simulation has not stopped yet

STOP = 0;

// start letting cargo "walk"

while(STOP == 0){

//allow on/off switching if possible

if(OFF == 1 && ON == 0){

if (REG == 1){

// normal diffusion

dt = dtReg;

}

if (ANOM == 1){

// anomalous diffusion

randNum = (double)rand()/RAND_MAX;

dt = pow((-randNum +1) ,(-1/gamma))/(1/ dtReg);

}

//check for nearby filaments and

// filament endpoints. must be within

//cargo radius

m = 0;

while (m < numFils && ON != 1){

d = fabs(( filEnds[m][3]- filEnds[m][2])*xc -( filEnds[m][1]-

filEnds[m][0])*yc

+filEnds[m][1]* filEnds[m][2]- filEnds[m][3]* filEnds[m

][0])/

sqrt(pow(( filEnds[m][3]- filEnds[m][2]) ,2)+pow((

filEnds[m][1]- filEnds[m][0]) ,2));

d1 = sqrt(pow((xc -filEnds[m][0]) ,2)+pow((yc -filEnds[m

][2]) ,2));

d2 = sqrt(pow((xc -filEnds[m][1]) ,2)+pow((yc -filEnds[m

][3]) ,2));

minx1x2 = 0.5* fabs(filEnds[m][0]+ filEnds[m][1]) -0.5* fabs(

filEnds[m][0]- filEnds[m][1]);

maxx1x2 = 0.5* fabs(filEnds[m][0]+ filEnds[m][1]) +0.5* fabs(

filEnds[m][0]- filEnds[m][1]);

miny1y2 = 0.5* fabs(filEnds[m][2]+ filEnds[m][3]) -0.5* fabs(

filEnds[m][2]- filEnds[m][3]);
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maxy1y2 = 0.5* fabs(filEnds[m][2]+ filEnds[m][3]) +0.5* fabs(

filEnds[m][2]- filEnds[m][3]);

// cargo is near a filament

if(d1 < cRad || d2 < cRad ||

(xc > minx1x2 && xc < maxx1x2 && yc > miny1y2 && yc <

maxy1y2 &&

d < cRad)){

// probability of switching on the network

probOn = (double)rand()/RAND_MAX;

if(probOn <= (kOn*dt)){

ON = 1;

theta = filNet[m][1];

alpha = filNet[m][2];

p = filNet[m][3];

x1 = filEnds[m][0];

x2 = filEnds[m][1];

y1 = filEnds[m][2];

y2 = filEnds[m][3];

// current filament number

currentm = m;

}

}

m += 1;

}

}

//if on, allow possibility of falling off or switching to a

// nearby filament

if(ON == 1 && OFF == 0){

dt = distStep / v;

probOff = (double)rand()/RAND_MAX;

minx1x2 = 0.5 * fabs(x1+x2) - 0.5 * fabs(x1 -x2);

maxx1x2 = 0.5 * fabs(x1+x2) + 0.5 * fabs(x1 -x2);

miny1y2 = 0.5 * fabs(y1+y2) - 0.5 * fabs(y1 -y2);

maxy1y2 = 0.5 * fabs(y1+y2) + 0.5 * fabs(y1 -y2);

//cargo will fall of the current filament

if(probOff <= (kOff*dt) ||

(xc<minx1x2 || xc>maxx1x2 || yc<miny1y2 || yc>maxy1y2)){

// cargo has fallen off the network

ON = 0;

OFF = 1;

if (REG == 1){

// normal diffusion

dt = dtReg;
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}

if (ANOM == 1){

// anomalous diffusion

randNum = (double)rand()/RAND_MAX;

dt = pow((-randNum +1) ,(-1/gamma))/(1/ dtReg);

}

}//end check if cargo has fallen off

//cargo still on. Check for nearby filaments

if (ON == 1 && OFF == 0){

// cycle through filament number (m)

m = 0;

// cargo has not switched yet

SWITCHED = 0;

//if there is a filament nearby , allow switching

while (m < numFils && SWITCHED != 1){

d = fabs(( filEnds[m][3]- filEnds[m][2])*xc -( filEnds[m

][1]- filEnds[m][0])*yc

+filEnds[m][1]* filEnds[m][2]- filEnds[m][3]* filEnds[m

][0])/

sqrt(pow(( filEnds[m][3]- filEnds[m][2]) ,2)+pow((

filEnds[m][1]- filEnds[m][0]) ,2));

d1 = sqrt(pow((xc -filEnds[m][0]) ,2)+pow((yc -filEnds[m

][2]) ,2));

d2 = sqrt(pow((xc -filEnds[m][1]) ,2)+pow((yc -filEnds[m

][3]) ,2));

minx1x2 = 0.5* fabs(filEnds[m][0]+ filEnds[m][1]) -0.5* fabs

(filEnds[m][0]- filEnds[m][1]);

maxx1x2 = 0.5* fabs(filEnds[m][0]+ filEnds[m][1]) +0.5* fabs

(filEnds[m][0]- filEnds[m][1]);

miny1y2 = 0.5* fabs(filEnds[m][2]+ filEnds[m][3]) -0.5* fabs

(filEnds[m][2]- filEnds[m][3]);

maxy1y2 = 0.5* fabs(filEnds[m][2]+ filEnds[m][3]) +0.5* fabs

(filEnds[m][2]- filEnds[m][3]);

if((d1 < cRad || d2 < cRad ||

(xc > minx1x2 && xc < maxx1x2 && yc > miny1y2 && yc <

maxy1y2 &&

d < cRad)) && (

currentm != m)

){

// probability of switching to another filament
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probOn = (double)rand()/RAND_MAX;

if(probOn <= (switchProb)){

// cargo switches over to another filament

SWITCHED = 1;

theta = filNet[m][1];

alpha = filNet[m][2];

p = filNet[m][3];

x1 = filEnds[m][0];

x2 = filEnds[m][1];

y1 = filEnds[m][2];

y2 = filEnds[m][3];

// update current filamnet number (m)

currentm = m;

}

}

m += 1;

}

}

}

//now that the cargo is either on or off ,

//allow movement

//make sure that cargo is indeed on a filament

if(ON == 1 && OFF == 1){

ON = 1;

OFF = 0;

dt = distStep / v;

}

// random walk off filament

if(OFF == 1){

//pick a random direction

phi = (2* M_PI)*( double)rand()/RAND_MAX;

//move in that directino

xcNew = xc + (distStep) * cos(phi);

ycNew = yc + (distStep) * sin(phi);

tOff = tOff + dt;

}

// ballistic motion on filament

if(ON == 1){

//move along filament

xcNew = xc + p * distStep * cos(theta + alpha);

ycNew = yc + p * distStep * sin(theta + alpha);

tOn = tOn + dt;

}

//new radial position of cargo
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rcNew = sqrt(pow((xcNew -xCellCent) ,2)+pow((ycNew -yCellCent)

,2));

//new angular position of cargo

beta = atan((ycNew -yCellCent)/(xcNew -xCellCent));

//check to see if cargo is inside nucleus

if(rcNew < inner){

//if cargo is inside the nucleus , move it back out

//to original position

xcNew = xc;

ycNew = yc;

}

//check to see if the cargo has left the cell

if(rcNew > outer){

//for msd calculations , two reflecting

// boundaries

xcNew = xc;

ycNew = yc;

}

// update positions and times appropriately

xc = xcNew;

yc = ycNew;

rc = sqrt(pow((xc -xCellCent) ,2)+pow((yc -yCellCent) ,2));

beta = atan((yc-yCellCent)/(xc -xCellCent));

t = t + dt;

if((t / dtReg) > (double)timeIntMax){

STOP = 1;

}

if((int)t < maxTime && xytArray [(int)t][0] == 0.0){

xytArray [(int)t][0] = xc;

xytArray [(int)t][1] = yc;

xytArray [(int)t][2] = t;

}

}// end movement of current cargo

fracTimeOn[currentCargo] = tOn / t;

// testing xyt values

//if cargo doesn ’t move after a certain amount of time

//it stays where it is.
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for(int temp_int = 0; temp_int < maxTime; temp_int += 1){

if(xytArray[temp_int ][0] == 0.0){

xytArray[temp_int ][0] = xytArray[temp_int -1][0];

xytArray[temp_int ][1] = xytArray[temp_int -1][1];

xytArray[temp_int ][2] = xytArray[temp_int -1][2]+1;

}

}

// calculate TA MSD of a single trajectory and store it in an

array for

//all cargos (for all networks)

passNum = 1;

while(passNum < maxTime){

dis2tot = 0.0;

counts = 0;

i = passNum;

while(i < maxTime){

dx = xytArray[i][0] - xytArray[i-passNum ][0];

dy = xytArray[i][1] - xytArray[i-passNum ][1];

dis2 = dx*dx + dy*dy;

dis2tot = dis2tot + dis2;

counts += 1;

i += 1;

}// end incrementing i

timeAvgMsdArray[passNum ][ currentCargo] = dis2tot / counts;

passNum += 1;

}// end incrementing passNum

// calculation for TA MSD (fixed s)

//s = 1

passNum = 1;

while(passNum < maxTime){

dis2tot = 0.0;

counts = 0;

i = 0;

while(i < passNum){

dx = xytArray[i+1][0] - xytArray[i][0];

dy = xytArray[i+1][1] - xytArray[i][1];

dis2 = dx*dx + dy*dy;

dis2tot = dis2tot + dis2;

counts += 1;

i += 1;

}// end incrementing i

timeAvgMsdFixedS1[passNum ][ currentCargo] = dis2tot / counts;

passNum += 1;

}// end incrementing passNum
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//s=2

passNum = 2;

while(passNum < maxTime){

dis2tot = 0.0;

counts = 0;

i = 0;

while(i < passNum -1){

dx = xytArray[i+2][0] - xytArray[i][0];

dy = xytArray[i+2][1] - xytArray[i][1];

dis2 = dx*dx + dy*dy;

dis2tot = dis2tot + dis2;

counts += 1;

i += 1;

}// end incrementing i

timeAvgMsdFixedS2[passNum ][ currentCargo] = dis2tot / counts;

passNum += 1;

}// end incrementing passNumi

//s=3

passNum = 3;

while(passNum < maxTime){

dis2tot = 0.0;

counts = 0;

i = 0;

while(i < passNum -2){

dx = xytArray[i+3][0] - xytArray[i][0];

dy = xytArray[i+3][1] - xytArray[i][1];

dis2 = dx*dx + dy*dy;

dis2tot = dis2tot + dis2;

counts += 1;

i += 1;

}// end incrementing i

timeAvgMsdFixedS3[passNum ][ currentCargo] = dis2tot / counts;

passNum += 1;

}// end incrementing passNum

currentCargo += 1;

}// end movement of ALL cargos

}// end laying down all networks

// outputting TA MSDs to files

FILE *outp , *outp1 , *outp2 , *outp3;

char sBeg [500] = "TAMSD";
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char sBeg1 [500] = "TAMSDs1 ";

char sBeg2 [500] = "TAMSDs2 ";

char sBeg3 [500] = "TAMSDs3 ";

outp = fopen(strcat(sBeg ,sEnd1),"w");

outp1 = fopen(strcat(sBeg1 ,sEnd1) ,"w");

outp2 = fopen(strcat(sBeg2 ,sEnd1) ,"w");

outp3 = fopen(strcat(sBeg3 ,sEnd1) ,"w");

for(i = 0; i < maxTime; i++){

for(k = 0; k < numCargs*numNets; k++){

fprintf(outp ,"%lf\t",timeAvgMsdArray[i][k]);

fprintf(outp1 ,"%lf\t",timeAvgMsdFixedS1[i][k]);

fprintf(outp2 ,"%lf\t",timeAvgMsdFixedS2[i][k]);

fprintf(outp3 ,"%lf\t",timeAvgMsdFixedS3[i][k]);

}

fprintf(outp ,"\n");

fprintf(outp1 ,"\n");

fprintf(outp2 ,"\n");

fprintf(outp3 ,"\n");

}

fclose(outp);

fclose(outp1);

fclose(outp2);

fclose(outp3);

FILE *outpFracs;

char sBegFracs [500] = "fracTimeOnTAMSD ";

outpFracs = fopen(strcat(sBegFracs ,sEnd1) ,"w");

for(i = 0; i < numCargs*numNets; i++){

fprintf(outpFracs ,"%lf\n",fracTimeOn[i]);

}

fclose(outpFracs);

// increase number of filaments

numFils += dFils;

}//end looping through number of filaments

// increase filament length

filLength += dLength;

}// end looping through filament lengths

return 0;

}//end main
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7.3.3 simTransMainFPTD.c

This program is used to simulate anomalous transport and get data to perform FPTD
analysis.

#include <stdio.h>

#include <math.h>

#include <time.h>

#include <stdlib.h>

#define M_PI 3.14159265358979323846

#include <string.h>

int main()

{

//cell radius

double outer = 10.0, outer2;

outer2 = pow(outer ,2);

// radius of the nucleus

double inner = 5.0, inner2;

inner2 = pow(inner ,2);

//max x and y values

//same coordinate system as probability evolution system

double xmax = (outer * 2) + 1, ymax = (outer * 2) + 1;

// center of cell

double xCellCent = xmax / 2, yCellCent = ymax / 2;

// cargo radius

double cRad = 0.1;

//size of time step (seconds)

double dt;

//time passed in seconds

double t, tOn , tOff;

// other parameters (distances in micrometers)

double D = 0.051;

// choose either regular or anomalous diffusion

int ANOM = 1, REG = 0;

// choose whether or not to model insulin

int INS = 1;

//add a filament switching probability

//0.0 means no switching will occur

double switchProb = 0.0;

double probOn , probOff;
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// speed along filaments

double v = 1.0;

// distance step size (will vary)

double distStep = 0.1, distStep2;

distStep2 = pow(distStep ,2);

//time step during normal diffusion

double dtReg;

dtReg = (distStep2) / (4 * D);

//loop indices

int i, j, k, m, currentm , index;

//on network , off network , stop the simulation

int ON , OFF , STOP , SWITCHED;

//seed rand()

srand(time(NULL));

double randNum;

//set current number of filaments and filament length

int minFils = 100;

double minLength = 1.0;

int numFils = minFils;

double filLength = minLength;

//max number of filaments and max filament length

int maxFils = 500;

double maxLength = 5.0;

int dFils = 100;

double dLength = 1.0;

// number of cargos and number of networks

int numCargs = 400, numNets = 100;

double minx1x2 , maxx1x2 , miny1y2 , maxy1y2;

double rc, theta , xc, yc, d1 , d2 , d;

double initial_x , initial_y , initial_t;

double r1, r2, alpha , p, x1, x2 , y1 , y2 , diff;

double phi , beta;

double xcNew , ycNew , rcNew;
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//on and off rates (constant for now)

double kOn = 5.0, kOff = 1.0;

double psi , a, b, gamma;

//if normal diffusion , gamma = 1

if (REG == 1){

gamma = 1;

}

else{

gamma = 0.8;

}

//FOR CALCULATING FPTD

int maxSteps = 1000000 , binSize = 1;

double FPTD[maxSteps ];

int stepNum;

int count10 = 0, count100 = 0;

int fluxOut10[numNets], fluxOut100[numNets ];

double fluxSum10 = 0.0, fluxSum100 = 0.0;

double av10 , av100 , var10 = 0.0, var100 = 0.0, stdev10 ,

stdev100;

//used in MFPT calculations

double cargoFPTs[numCargs ];

double fptSum , fptVar;

double cargoMFPTs[numNets], cargoFPTstdev[numNets ];

double mfptSum , mfptVar , stdevSum;

double totMFPT , totStdev , avgStdev;

//for calculating fraction of the time spent on the network

double fracTimeOn[numCargs*numNets ];

int currentCargo = 0;

char sEnd1 [500];

// start looping over different filament lengths and numbers

while(filLength <= maxLength){

numFils = minFils;

while(numFils <= maxFils){

// redeclare filament network arrays

double filNet[numFils ][4];

double filEnds[numFils ][4];

// initialize FPTD back to 0.0
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for(int index = 0; index < maxSteps; index += 1){

FPTD[index] = 0.0;

}

// initialize fracTimeOn back to 0.0

for(int index = 0; index < numCargs*numNets; index += 1){

fracTimeOn[index] = 0.0;

}

currentCargo = 0;

for(i = 0; i < numNets; i++){

fluxOut10[i] = 0;

fluxOut100[i] = 0;

}

//set up end of file name

sprintf(sEnd1 ,"kOn %.2 fkOff %.2 fnumFil%dfilLen %.2 fnumNets%

dnumCargs%dgamma %.2 fINS%d.txt",kOn ,kOff ,numFils ,filLength ,

numNets ,numCargs ,gamma ,INS);

// start laying down different networks

for(int currentNet = 0; currentNet < numNets; currentNet +=

1){

count10 = 0;

count100 = 0;

//set up the current network

for(j = 0; j < numFils; j += 1){

// random radial starting position

r1 = outer - (outer - inner)* (double)rand() / RAND_MAX;

// random angular starting position

theta = (2* M_PI) * (double)rand()/RAND_MAX;

// alpha between -pi/2 and +pi/2

alpha = -(M_PI) * (double)rand()/RAND_MAX + (M_PI /2);

// random filament polarity

// positive is "out" negative is "in"

p = (-2) * (double)rand()/RAND_MAX + 1;

//p is +1 or -1

p = p / fabs(p);

//x and y values of filament endpoints

x1 = xCellCent + r1 * cos(theta); y1 = yCellCent + r1 * sin(

theta);

x2 = x1 + filLength*cos(theta+alpha); y2 = y1 + filLength*

sin(theta+alpha);
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//" outer" end of filament

r2 = sqrt(pow((x2 -xCellCent) ,2)+pow((y2 -yCellCent) ,2));

//make sure filament ends are within desired region

// shift filament out

if(r1 < (inner + 0.2)){

diff = (inner +0.2) -r1;

r1 = r1 + diff;

r2 = r2 + diff;

}

// shift filament in

if(r2 > outer){

diff = r2 - outer;

r1 = r1 - diff;

r2 = r2 - diff;

}

//x and y values of filament endpoints

x1 = xCellCent + r1 * cos(theta); y1 = yCellCent + r1 * sin(

theta);

x2 = x1 + filLength*cos(theta+alpha); y2 = y1 + filLength*

sin(theta+alpha);

//" outer" end of filament

r2 = sqrt(pow((x2 -xCellCent) ,2)+pow((y2 -yCellCent) ,2));

// store filament endpoints

filEnds[j][0] = x1; filEnds[j][1] = x2; filEnds[j][2] = y1;

filEnds[j][3] = y2;

// store values in filament array

filNet[j][0] = r1; filNet[j][1] = theta; filNet[j][2] =

alpha; filNet[j][3] = p;

}// end set up the network

// empty cargo fpt array

for(i = 0; i < numCargs; i++){

cargoFPTs[i] = 0.0;

}

for(int currentCarg = 0; currentCarg < numCargs; currentCarg

+= 1){

//set time to zero

stepNum = 0;

t = 0.0;

tOn = 0.0;

tOff = 0.0;
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if (INS == 0){

// starting radial position of cargo

rc = (inner + 0.2) - (0.2) *(( double)rand())/RAND_MAX;

}

//if we ’re modling insuling , cargos have a different

starting distribution

if (INS == 1){

//this is assumin outer = 10.0 and inner = 5.0

rc = 10 - 5 * sqrt(4 - (( double)rand()/RAND_MAX + 3));

}

// starting angular position of cargo

beta = (2* M_PI)*(( double)rand())/RAND_MAX;

// starting x, y values of cargo

xc = xCellCent + rc * cos(beta);

yc = yCellCent + rc * sin(beta);

//keep track of starting x, y values

initial_x = xc;

initial_y = yc;

initial_t = t;

// cargo start s off the network

OFF = 1;

ON = 0;

//the simulation has not stopped yet

STOP = 0;

// start letting cargo "walk"

while(STOP == 0){

//allow on/off switching if possible

if(OFF == 1 && ON == 0){

if (REG == 1){

// normal diffusion

dt = dtReg;

}

if (ANOM == 1){

// anomalous diffusion

randNum = (double)rand()/RAND_MAX;

dt = pow((-randNum +1) ,(-1/gamma))/(1/ dtReg);

}

//check for nearby filaments and
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// filament endpoints. must be within

//cargo radius

m = 0;

while (m < numFils && ON != 1){

d = fabs(( filEnds[m][3]- filEnds[m][2])*xc -( filEnds[m][1]-

filEnds[m][0])*yc

+filEnds[m][1]* filEnds[m][2]- filEnds[m][3]* filEnds[m

][0])/

sqrt(pow(( filEnds[m][3]- filEnds[m][2]) ,2)+pow((

filEnds[m][1]- filEnds[m][0]) ,2));

d1 = sqrt(pow((xc -filEnds[m][0]) ,2)+pow((yc -filEnds[m

][2]) ,2));

d2 = sqrt(pow((xc -filEnds[m][1]) ,2)+pow((yc -filEnds[m

][3]) ,2));

minx1x2 = 0.5* fabs(filEnds[m][0]+ filEnds[m][1]) -0.5* fabs(

filEnds[m][0]- filEnds[m][1]);

maxx1x2 = 0.5* fabs(filEnds[m][0]+ filEnds[m][1]) +0.5* fabs(

filEnds[m][0]- filEnds[m][1]);

miny1y2 = 0.5* fabs(filEnds[m][2]+ filEnds[m][3]) -0.5* fabs(

filEnds[m][2]- filEnds[m][3]);

maxy1y2 = 0.5* fabs(filEnds[m][2]+ filEnds[m][3]) +0.5* fabs(

filEnds[m][2]- filEnds[m][3]);

// cargo is near a filament

if(d1 < cRad || d2 < cRad ||

(xc > minx1x2 && xc < maxx1x2 && yc > miny1y2 && yc <

maxy1y2 &&

d < cRad)){

// probability of switching on the network

probOn = (double)rand()/RAND_MAX;

if(probOn <= (kOn*dt)){

ON = 1;

theta = filNet[m][1];

alpha = filNet[m][2];

p = filNet[m][3];

x1 = filEnds[m][0];

x2 = filEnds[m][1];

y1 = filEnds[m][2];

y2 = filEnds[m][3];

// current filament number

currentm = m;

}

}



CHAPTER 7. APPENDIX: COMPUTER PROGRAMS USED 146

m += 1;

}

}

//if on, allow possibility of falling off or switching to a

// nearby filament

if(ON == 1 && OFF == 0){

dt = distStep / v;

probOff = (double)rand()/RAND_MAX;

minx1x2 = 0.5 * fabs(x1+x2) - 0.5 * fabs(x1 -x2);

maxx1x2 = 0.5 * fabs(x1+x2) + 0.5 * fabs(x1 -x2);

miny1y2 = 0.5 * fabs(y1+y2) - 0.5 * fabs(y1 -y2);

maxy1y2 = 0.5 * fabs(y1+y2) + 0.5 * fabs(y1 -y2);

//cargo will fall of the current filament

if(probOff <= (kOff*dt) ||

(xc<minx1x2 || xc>maxx1x2 || yc<miny1y2 || yc>maxy1y2)){

// cargo has fallen off the network

ON = 0;

OFF = 1;

if (REG == 1){

// normal diffusion

dt = dtReg;

}

if (ANOM == 1){

// anomalous diffusion

randNum = (double)rand()/RAND_MAX;

dt = pow((-randNum +1) ,(-1/gamma))/(1/ dtReg);

}

}//end check if cargo has fallen off

//cargo still on. Check for nearby filaments

if (ON == 1 && OFF == 0){

// cycle through filament number (m)

m = 0;

// cargo has not switched yet

SWITCHED = 0;

//if there is a filament nearby , allow switching

while (m < numFils && SWITCHED != 1){

d = fabs(( filEnds[m][3]- filEnds[m][2])*xc -( filEnds[m

][1]- filEnds[m][0])*yc

+filEnds[m][1]* filEnds[m][2]- filEnds[m][3]* filEnds[m

][0])/

sqrt(pow(( filEnds[m][3]- filEnds[m][2]) ,2)+pow((

filEnds[m][1]- filEnds[m][0]) ,2));
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d1 = sqrt(pow((xc -filEnds[m][0]) ,2)+pow((yc -filEnds[m

][2]) ,2));

d2 = sqrt(pow((xc -filEnds[m][1]) ,2)+pow((yc -filEnds[m

][3]) ,2));

minx1x2 = 0.5* fabs(filEnds[m][0]+ filEnds[m][1]) -0.5* fabs

(filEnds[m][0]- filEnds[m][1]);

maxx1x2 = 0.5* fabs(filEnds[m][0]+ filEnds[m][1]) +0.5* fabs

(filEnds[m][0]- filEnds[m][1]);

miny1y2 = 0.5* fabs(filEnds[m][2]+ filEnds[m][3]) -0.5* fabs

(filEnds[m][2]- filEnds[m][3]);

maxy1y2 = 0.5* fabs(filEnds[m][2]+ filEnds[m][3]) +0.5* fabs

(filEnds[m][2]- filEnds[m][3]);

if((d1 < cRad || d2 < cRad ||

(xc > minx1x2 && xc < maxx1x2 && yc > miny1y2 && yc <

maxy1y2 &&

d < cRad)) && (

currentm != m)

){

// probability of switching to another filament

probOn = (double)rand()/RAND_MAX;

if(probOn <= (switchProb)){

// cargo switches over to another filament

SWITCHED = 1;

theta = filNet[m][1];

alpha = filNet[m][2];

p = filNet[m][3];

x1 = filEnds[m][0];

x2 = filEnds[m][1];

y1 = filEnds[m][2];

y2 = filEnds[m][3];

// update current filamnet number (m)

currentm = m;

}

}

m += 1;

}

}

}

//now that the cargo is either on or off ,

//allow movement

//make sure that cargo is indeed on a filament

if(ON == 1 && OFF == 1){
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ON = 1;

OFF = 0;

dt = distStep / v;

}

// random walk off filament

if(OFF == 1){

//pick a random direction

phi = (2* M_PI)*( double)rand()/RAND_MAX;

//move in that directino

xcNew = xc + (distStep) * cos(phi);

ycNew = yc + (distStep) * sin(phi);

tOff = tOff + dt;

}

// ballistic motion on filament

if(ON == 1){

//move along filament

xcNew = xc + p * distStep * cos(theta + alpha);

ycNew = yc + p * distStep * sin(theta + alpha);

tOn = tOn + dt;

}

//new radial position of cargo

rcNew = sqrt(pow((xcNew -xCellCent) ,2)+pow((ycNew -yCellCent)

,2));

//new angular position of cargo

beta = atan((ycNew -yCellCent)/(xcNew -xCellCent));

//check to see if cargo is inside nucleus

if(rcNew < inner){

//if cargo is inside the nucleus , move it back out

//to original position

xcNew = xc;

ycNew = yc;

}

//check to see if the cargo has left the cell

if(rcNew > outer){

//if cargo has left the cell , stop cargo movement

STOP = 1;

}

// update positions and times appropriately

xc = xcNew;

yc = ycNew;

rc = sqrt(pow((xc -xCellCent) ,2)+pow((yc -yCellCent) ,2));

beta = atan((yc-yCellCent)/(xc -xCellCent));

t = t + dt;
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}// end movement of current cargo

fracTimeOn[currentCargo] = tOn / t;

//add times to the last FPTD element if necessary

if (t >= maxSteps){

t = maxSteps - 1;

}

//a cargo escaped at time t

stepNum = (int) t / binSize;

FPTD[stepNum] = FPTD[stepNum] + 1;

if(t <= 10.0){

count10 ++;

}

if(t <= 100){

count100 ++;

}

currentCargo += 1;

// current time is a fpt

cargoFPTs[currentCarg] = t;

}// end movement of ALL cargos

fluxOut10[currentNet] = count10;

fluxOut100[currentNet] = count100;

// calculate MFPT for all cargos on this network

fptSum = 0.0;

for(i = 0; i < numCargs; i++){

fptSum += cargoFPTs[i];

}

//MFPT for this network

cargoMFPTs[currentNet] = fptSum / numCargs;

// calculate standard deviation of fpts

fptVar = 0.0;

for(i = 0; i < numCargs; i++){

fptVar += pow(( cargoFPTs[i] - cargoMFPTs[currentNet ]) ,2) /

numCargs;



CHAPTER 7. APPENDIX: COMPUTER PROGRAMS USED 150

}

// standard deviation of fpts for this network

cargoFPTstdev[currentNet] = sqrt(fptVar);

// printf ("flux out 10: %d flux out 100: %d\n",count10 ,

count100);

}// end laying down all networks

// calculate overall MFPT

mfptSum = 0.0;

for(i = 0; i < numNets; i++){

mfptSum += cargoMFPTs[i];

}

totMFPT = mfptSum / numNets;

// calculate standard deviation of MFPTs for each network

mfptVar = 0.0;

for(i = 0; i < numNets; i++){

mfptVar += pow(( cargoMFPTs[i] - totMFPT) ,2) / numNets;

}

totStdev = sqrt(mfptVar);

// calculate the average standard deviations for cargos on a

// single network

stdevSum = 0.0;

for(i = 0; i < numNets; i++){

stdevSum += cargoFPTstdev[i];

}

avgStdev = stdevSum / numNets;

fluxSum10 = 0.0; fluxSum100 = 0.0;

var10 = 0.0; var100 = 0.0;

for(index = 0; index < numNets; index ++){

fluxSum10 += fluxOut10[index ];

fluxSum100 += fluxOut100[index ];

}

av10 = fluxSum10 / numNets; av100 = fluxSum100 / numNets;

for(index = 0; index < numNets; index ++){
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var10 += pow(( fluxOut10[index] - av10) ,2) / numNets;

var100 += pow(( fluxOut100[index] - av100) ,2) / numNets;

}

stdev10 = sqrt(var10);

stdev100 = sqrt(var100);

// printf ("av10: %lf stdev10: %lf\n",av10 ,stdev10);

// printf (" av100: %lf stdev100: %lf\n",av100 ,stdev100);

// output overall MFPT , MFPT standard deviation , and average

standard

// deviation to a file

FILE *outpMFPT;

char sBegMFPT [500] = "infoMFPT ";

outpMFPT = fopen(strcat(sBegMFPT ,sEnd1) ,"w");

fprintf(outpMFPT ," Overall MFPT:\t%lf\nMFPT standard deviation

:\t%lf\nAverage standard deviation :\t%lf\n",totMFPT ,

totStdev ,avgStdev);

fclose(outpMFPT);

FILE *outp10;

FILE *outp100;

char sBeg10 [500] = "out10";

char sBeg100 [500] = "out100 ";

outp10 = fopen(strcat(sBeg10 ,sEnd1),"w");

outp100 = fopen(strcat(sBeg100 ,sEnd1),"w");

fprintf(outp10 , "%lf\t%lf\n", av10 , stdev10);

fprintf(outp100 , "%lf\t%lf\n", av100 , stdev100);

fclose(outp10);

fclose(outp100);

// output FPTD to a file

FILE *outp;

char sBeg [500] = "FPTD";

outp = fopen(strcat(sBeg ,sEnd1),"w");

for(i=0;i<maxSteps;i++){

fprintf(outp ,"%lf\n",FPTD[i]);

}

fclose(outp);
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FILE *outpFracs;

char sBegFracs [500] = "fracTimeOnFPTD ";

outpFracs = fopen(strcat(sBegFracs ,sEnd1) ,"w");

for(i = 0; i < numCargs*numNets; i++){

fprintf(outpFracs ,"%lf\n",fracTimeOn[i]);

}

fclose(outpFracs);

// increase number of filaments

numFils += dFils;

}//end looping through number of filaments

// increase filament length

filLength += dLength;

}// end looping through filament lengths

return 0;

}//end main

7.3.4 msdAnalysis.py

This program analyzes MSD data.

# -*- coding: utf -8 -*-

"""

Created on Mon Mar 06 15:15:28 2017

@author: GPLP

"""

import matplotlib.pyplot as plt

import matplotlib

import diffusion_analysis

import numpy as np

from scipy.optimize import curve_fit

def fitFunc(t,a,b):

return a*t**(b)

#def fitFunc2(t,a,b):

# return a*np.exp(b*t)

def main():
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#with open(’MSDkOn5 .00 kOff1 .00

numFil0filLen1numNets1numCargs10000gamma0 .80 INS0.txt ’)

as file:

#with open(’MSDkOn5 .00 kOff1 .00

numFil100filLen1numNets1numCargs10000gamma0 .80 INS0.txt

’) as file:

#with open(’MSDkOn5 .00 kOff1 .00

numFil300filLen1numNets1numCargs10000gamma0 .80 INS0.txt

’) as file:

#with open(’MSDkOn5 .00 kOff1 .00

numFil500filLen1numNets1numCargs10000gamma0 .80 INS0.txt

’) as file:

#with open(’MSDkOn5 .00 kOff1 .00

numFil100filLen3numNets1numCargs10000gamma0 .80 INS0.txt

’) as file:

#with open(’MSDkOn5 .00 kOff1 .00

numFil300filLen3numNets1numCargs10000gamma0 .80 INS0.txt

’) as file:

#with open(’MSDkOn5 .00 kOff1 .00

numFil500filLen3numNets1numCargs10000gamma0 .80 INS0.txt

’) as file:

#with open(’MSDkOn5 .00 kOff1 .00

numFil100filLen5numNets1numCargs10000gamma0 .80 INS0.txt

’) as file:

#with open(’MSDkOn5 .00 kOff1 .00

numFil300filLen5numNets1numCargs10000gamma0 .80 INS0.txt

’) as file:

#with open(’MSDkOn5 .00 kOff1 .00

numFil500filLen5numNets1numCargs10000gamma0 .80 INS0.txt

’) as file:

fracTimeOnTemp = []

with open(’fracTimeOnkOn5 .00 kOff1 .00

numFil500filLen1numNets1numCargs100gamma0 .80 INS0.txt ’)

as fp:

for line in fp:

fracTimeOnTemp.append ([ float(line)])

with open(’MSDkOn5 .00 kOff1 .00

numFil500filLen1numNets1numCargs10000gamma0 .80 INS0.txt

’) as file:

msdArray = [[float(digit) for digit in line.split ()]

for line in file]

msdList = []

msdList.append (0.0)

for i in range(len(msdArray)):
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if i != 0:

msdList.append(msdArray[i][0]/ msdArray[i][1])

msdSupers = [[0.8391 ,0.7561 ,1.0986 ,1.0975 ,1.1740] ,\

[1.3483 ,1.2523 ,1.4904 ,1.5763 ,1.6502] ,\

[1.5787 ,1.7582 ,1.7849 ,1.5310 ,1.8622] ,\

[1.8967 ,1.8230 ,1.9542 ,1.8414 ,1.8647] ,\

[1.8046 ,1.8134 ,1.7298 ,1.7581 ,1.7633]]

msdSubs = [[0.7402 ,0.7562 ,0.7294 ,0.8523 ,0.7636] ,\

[0.6929 ,0.7822 ,0.7932 ,0.7410 ,0.6467] ,\

[0.5220 ,0.6956 ,0.6575 ,0.7497 ,0.5722] ,\

[0.5410 ,0.5892 ,0.5389 ,0.5261 ,0.5206] ,\

[0.4834 ,0.4456 ,0.4290 ,0.4366 ,0.4109]]

fracTimeOn = [[0.0071 ,0.0097 ,0.0145 ,0.0177 ,0.0266] ,\

[0.0099 ,0.0178 ,0.0347 ,0.0482 ,0.0719] ,\

[0.0182 ,0.0397 ,0.0550 ,0.0593 ,0.1358] ,\

[0.0316 ,0.0891 ,0.0787 ,0.1143 ,0.1584] ,\

[0.0782 ,0.1739 ,0.2083 ,0.2666 ,0.3121]]

dtReg = (0.1*0.1) / (4*0.051)

time_values = np.arange (0 ,2000* dtReg ,dtReg)

msd_values = np.array(msdList)

t = np.linspace (0 ,100 ,100 -0)

divideTime = 1 / dtReg

fitParams ,other = curve_fit(fitFunc ,time_values [:

divideTime],msd_values [: divideTime ])

fitParams2 , other2 = curve_fit(fitFunc ,time_values[

divideTime :], msd_values[divideTime :])

print "superdiffusive exponent", fitParams [1]

print "subdiffusive exponent", fitParams2 [1]

#print 20/ dtReg

#plt.ylim (0,50)

#plt.xlim (0.1 ,100)

#plt.xlabel(’time (s) ’)

#plt.ylabel(’MSD ($\mu$m$ ^2$) ’)

plt.plot(time_values ,msd_values ,color=’red ’)

plt.plot(time_values ,fitFunc(time_values ,fitParams [0],

fitParams [1]))
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plt.plot(time_values ,fitFunc(time_values ,fitParams2 [0],

fitParams2 [1]))

plt.xscale(’log ’)

plt.yscale(’log ’)

#x = dtReg * np.arange(time_values)

#print dtReg

#print len(msdList)

#time_values = np.arange(len(msdList))

time_values = np.arange (0 ,2000* dtReg ,dtReg)

msd_values = np.array(msdList)

results = diffusion_analysis.fit_anomalous_diffusion_data(

time_values ,msd_values)

D,D_std ,alpha ,alpha_std=results [0:4]

x_vals ,y_vals=results [4:]

#plt.plot(time_values ,msd_values ,color=’green ’)

#plt.plot(x_vals ,y_vals ,color=’blue ’)

#print alpha , alpha_std

fracTimeOnList = []

for i in range(len(fracTimeOnTemp)):

fracTimeOnList.append(fracTimeOnTemp[i][0])

avgFracTimeOn = sum(fracTimeOnList) / len(fracTimeOnList)

print "average fraction of time on network: ",

avgFracTimeOn

#color maps

#fig = plt.figure ()

#im = plt.imshow(fracTimeOn , origin = ’lower ’,extent =

[100,500,1,5], aspect = 100)

#im = plt.imshow(msdSupers , origin = ’lower ’,extent =

[100,500,1,5], aspect = 100)

#im = plt.imshow(msdSubs , origin = ’lower ’,extent =

[100,500,1,5], aspect = 100)

#fig.colorbar(im)
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main()

7.3.5 msdAnalysis2.py

This program analyzes additional MSD data.

# -*- coding: utf -8 -*-

"""

Created on Mon Mar 06 15:15:28 2017

@author: GPLP

"""

import matplotlib.pyplot as plt

import matplotlib

import numpy as np

from scipy.optimize import curve_fit

def fitFunc(t,a,b):

return a*t**(b)

#def fitFunc2(t,a,b):

# return a*np.exp(b*t)

def toList(fileName):

with open(fileName) as file:

msdArray = [[float(digit) for digit in line.split ()]

for line in file]

fileList = []

fileList.append (0.0)

for i in range(1,len(msdArray)):

if msdArray[i][1] >0.0:

fileList.append(msdArray[i][0]/ msdArray[i][1])

else:

fileList.append (0.0)

return fileList

def main():

#fracTimeOnTemp = []

#with open(’fracTimeOnkOn5 .00 kOff1 .00

numFil500filLen1numNets1numCargs100gamma0 .80 INS0.txt ’)

as fp:
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# for line in fp:

# fracTimeOnTemp.append ([ float(line)])

msdList1 = toList(’MSDkOn5 .00 kOff1 .00 numFil1500filLen5 .00

numNets1numCargs10000gamma0 .20 INS0.txt ’)

msdList2 = toList(’MSDkOn5 .00 kOff1 .00 numFil1500filLen5 .00

numNets1numCargs10000gamma0 .40 INS0.txt ’)

msdList3 = toList(’MSDkOn5 .00 kOff1 .00 numFil1500filLen5 .00

numNets1numCargs10000gamma0 .60 INS0.txt ’)

msdList4 = toList(’MSDkOn5 .00 kOff1 .00 numFil1500filLen5 .00

numNets1numCargs10000gamma0 .80 INS0.txt ’)

msdList5 = toList(’MSDkOn5 .00 kOff1 .00 numFil1500filLen5 .00

numNets1numCargs10000gamma1 .00 INS0.txt ’)

msdListNone = toList(’MSDkOn5 .00 kOff1 .00

numFil0filLen1numNets1numCargs10000gamma0 .80 INS0.txt ’)

msdSupers = [[0.9373 ,1.1104 ,1.2366 ,1.3364 ,1.3601] ,\

[1.4047 ,1.6548 ,1.7047 ,1.7395 ,1.7574] ,\

[1.6555 ,1.9016 ,1.8807 ,1.8396 ,1.7955] ,\

[1.8357 ,1.9023 ,1.8193 ,1.8603 ,1.8777] ,\

[1.8958 ,1.9081 ,1.9093 ,1.8619 ,1.8513]]

msdSubs = [[0.7518 ,0.7245 ,0.7081 ,0.7528 ,0.7228] ,\

[0.7158 ,0.7067 ,0.7128 ,0.7972 ,0.7729] ,\

[0.7391 ,0.7736 ,0.7769 ,0.8151 ,0.8426] ,\

[0.7844 ,0.8100 ,0.8600 ,0.8637 ,0.9160] ,\

[0.7886 ,0.8475 ,0.9036 ,0.8879 ,0.8956]]

fracTimeOn = [[0.0071 ,0.0097 ,0.0145 ,0.0177 ,0.0266] ,\

[0.0099 ,0.0178 ,0.0347 ,0.0482 ,0.0719] ,\

[0.0182 ,0.0397 ,0.0550 ,0.0593 ,0.1358] ,\

[0.0316 ,0.0891 ,0.0787 ,0.1143 ,0.1584] ,\

[0.0782 ,0.1739 ,0.2083 ,0.2666 ,0.3121]]

dtReg = (0.1*0.1) / (4*0.051)

time_values = np.arange (0 ,20000* dtReg ,dtReg)

time_values2 = np.arange (0 ,2000* dtReg ,dtReg)

msd_values1 = np.array(msdList1)

msd_values2 = np.array(msdList2)

msd_values3 = np.array(msdList3)

msd_values4 = np.array(msdList4)

msd_values5 = np.array(msdList5)

msd_valuesNone = np.array(msdListNone)

t = np.linspace (0 ,1000 ,1000 -0)

divideTime = 3 / dtReg
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dTime = int(divideTime)

fitParams ,other = curve_fit(fitFunc ,time_values [: dTime],

msd_values4 [:dTime ])

fitParams2 , other2 = curve_fit(fitFunc ,time_values[dTime

:], msd_values4[dTime :])

fitParamsNone , otherNone = curve_fit(fitFunc ,time_values2 ,

msd_valuesNone)

#print "short -time exponent", fitParams [1]

#print "long -time exponent", fitParams2 [1]

#print 20/ dtReg

#plt.ylim (.001 ,1000)

plt.xlim (.1 ,1000)

plt.xlabel(’time (s)’)

plt.ylabel(’MSD ($\mu$m$^2$)’)

#plt.plot(time_values ,msd_values1 ,label=’$\\alpha = 0.2$’)

#plt.plot(time_values ,msd_values2 ,label=’$\\alpha = 0.4$’)

#plt.plot(time_values ,msd_values3 ,label=’$\\alpha = 0.6$’)

plt.scatter(time_values ,msd_values4 ,label=’$\\ alpha = 0.8$

’,color=’red ’,marker=’o’)

#plt.plot(time_values ,msd_values5 ,label=’$\\alpha = 1.0$’)

plt.scatter(time_values2 ,msd_valuesNone ,marker=’o’)

#plt.legend(loc=’upper left ’)

plt.plot(time_values ,fitFunc(time_values ,fitParams [0],

fitParams [1]),color=’blue ’,linestyle=’dashed ’)

plt.plot(time_values ,fitFunc(time_values ,fitParams2 [0],

fitParams2 [1]),color=’green ’,linestyle=’dashed ’)

plt.plot(time_values ,fitFunc(time_values ,fitParamsNone [0],

fitParamsNone [1]),linestyle=’dashed ’)

plt.xscale(’log ’)

plt.yscale(’log ’)

plt.show()

#x = dtReg * np.arange(time_values)

#print dtReg

#print len(msdList)
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#time_values = np.arange(len(msdList))

#fracTimeOnList = []

#for i in range(len(fracTimeOnTemp)):

# fracTimeOnList.append(fracTimeOnTemp[i][0])

#

#avgFracTimeOn = sum(fracTimeOnList) / len(fracTimeOnList)

#print "average fraction of time on network: ",

avgFracTimeOn

#color maps

#fig = plt.figure ()

#im = plt.imshow(fracTimeOn , origin = ’lower ’,extent =

[100,500,1,5], aspect = 100)

#im = plt.imshow(msdSupers , origin = ’lower ’, cmap = ’jet

’,extent = [500,2500 ,1 ,5] , aspect = 500, interpolation=’

bilinear ’)

#im = plt.imshow(msdSubs , origin = ’lower ’,cmap = ’jet ’,

extent = [500 ,2500,1,5], aspect = 500, interpolation=’

bilinear ’)

#fig.colorbar(im)

#plt.show()

main()

7.3.6 tamsdAnalysis.py

This program analyzes TA-MSD data.

# -*- coding: utf -8 -*-

"""

Created on Mon Apr 03 13:35:50 2017

@author: GPLP

"""

import matplotlib.pyplot as plt



CHAPTER 7. APPENDIX: COMPUTER PROGRAMS USED 160

import numpy as np

from scipy.optimize import curve_fit

def fitFunc(t, a):

return a*t

def fitFuncPow(t,a,b):

return a*t**(b)

def main():

#with open(’TimeMSDkOn5 .00 kOff1 .00

numFil300filLen5numNets1numCargs100gamma0 .80 INS0.txt ’)

as file:

# ta_msdConstTArray = [[ float(digit) for digit in line.

split()] for line in file]

with open(’TAMSDkOn5 .00 kOff1 .00 numFil0filLen5 .00

numNets1numCargs1000gamma0 .80 INS0.txt ’) as file:

ta_msdConstTArray1 = [[float(digit) for digit in line.

split()] for line in file]

with open(’TAMSDs1kOn5 .00 kOff1 .00 numFil1500filLen5 .00

numNets10numCargs10gamma0 .80 INS0.txt ’) as file:

ta_msdConstTArray2 = [[float(digit) for digit in line.

split()] for line in file]

with open(’TAMSDs2kOn5 .00 kOff1 .00 numFil1500filLen5 .00

numNets10numCargs10gamma0 .80 INS0.txt ’) as file:

ta_msdConstTArray3 = [[float(digit) for digit in line.

split()] for line in file]

with open(’TAMSDs3kOn5 .00 kOff1 .00 numFil1500filLen5 .00

numNets10numCargs10gamma0 .80 INS0.txt ’) as file:

ta_msdConstTArray4 = [[float(digit) for digit in line.

split()] for line in file]

#with open(’WaitTimeMSDkOn5 .00 kOff1 .00

numFil1500filLen4numNets5numCargs100gamma0 .80 INS0.txt ’)

as file:

# ta_msdConstTArray5 = [[float(digit) for digit in line

.split ()] for line in file]

#fracTimeOnTemp = readlines (\

#’fracTimeOnkOn5 .00 kOff1 .00

numFil300filLen5numNets1numCargs100gamma0 .80 INS0.txt ’)

#fracTimeOnTemp = []
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#with open(’fracTimeOnkOn5 .00 kOff1 .00

numFil300filLen4numNets1numCargs100gamma0 .80 INS0.txt ’)

as fp:

# for line in fp:

# fracTimeOnTemp.append ([ float(line)])

#max eb parameter (at 2000 seconds)

taConstT = [[0.0228 ,0.0319 ,0.0282 ,0.0505 ,0.0483] ,\

[0.0354 ,0.0608 ,0.0511 ,0.1049 ,0.0751] ,\

[0.0928 ,0.0981 ,0.1120 ,0.1295 ,0.0846] ,\

[0.1519 ,0.0931 ,0.0967 ,0.1372 ,0.1337] ,\

[0.1105 ,0.1428 ,0.1116 ,0.1523 ,0.1354]]

#decay exponent of constant wait time tamsd (s = 1 second)

taConstS = [[0.2687 ,0.2489 ,0.1849 ,0.2205 ,0.2363] ,\

[0.2200 ,0.2193 ,0.2147 ,0.2513 ,0.1836] ,\

[0.2308 ,0.0769 ,0.2030 ,0.1768 ,0.2100] ,\

[0.2500 ,0.1993 ,0.1586 ,0.1786 ,0.0835] ,\

[0.1921 ,0.1743 ,0.1551 ,0.2284 ,0.0648]]

fracTimeOn = [[0.0073 ,0.0117 ,0.0159 ,0.0339 ,0.0277] ,\

[0.0108 ,0.0174 ,0.0536 ,0.0404 ,0.0502] ,\

[0.0117 ,0.0571 ,0.0785 ,0.0835 ,0.1099] ,\

[0.0241 ,0.0414 ,0.1101 ,0.1346 ,0.1905] ,\

[0.1190 ,0.1023 ,0.2126 ,0.3053 ,0.3011]]

#plot of all trajectories

for i in range(len(ta_msdConstTArray1 [0])):

tempList = []

for j in range(len(ta_msdConstTArray1)):

tempList.append(ta_msdConstTArray1[j][i])

#plt.plot(tempList)

#ta_msd2Array = np.zeros ([len(ta_msdConstTArray1),len(

ta_msdConstTArray1 [0])])

#for i in range(len(ta_msdConstTArray1)):

# print i

# for j in range(len(ta_msdConstTArray1 [0])):

# ta_msd2Array[i,j] = ta_msdConstTArray1[i][j] ** 2

ta_msd2Array = []

for i in range(len(ta_msdConstTArray1)):

ta_msd2Array.append ([])

for j in range(len(ta_msdConstTArray1[i])):
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ta_msd2Array[i]. append(ta_msdConstTArray1[i][j

]**2)

#print len(ta_msd2Array [1000])

#print len(ta_msdConstTArray1 [1000])

#plot of average of all trajectories

avgtempList1 = []

avgtempList2 = []

avgtempList3 = []

avgtempList4 = []

#avgtempList5 = []

avg2tempList1 = []

#standard deviation

stdDevList = []

for i in range(len(ta_msdConstTArray1)):

avg1 = sum(ta_msdConstTArray1[i])/len(

ta_msdConstTArray1[i])

#avg2 = sum(ta_msdConstTArray2[i])/len(

ta_msdConstTArray2[i])

#avg3 = sum(ta_msdConstTArray3[i])/len(

ta_msdConstTArray3[i])

#avg4 = sum(ta_msdConstTArray4[i])/len(

ta_msdConstTArray4[i])

#avg5 = sum(ta_msdConstTArray5[i])/len(

ta_msdConstTArray5[i])

avgSq = sum(ta_msd2Array[i])/len(ta_msdConstTArray1[i

])

avgtempList1.append(avg1)

#avgtempList2.append(avg2)

#avgtempList3.append(avg3)

#avgtempList4.append(avg4)

#avgtempList5.append(avg5)

avg2tempList1.append(avgSq)

tempSum = 0

for j in range(len(ta_msdConstTArray1[i])):

tempSum = tempSum + (ta_msdConstTArray1[i][j]-avg1

)**2.0

stdDev = (tempSum/len(ta_msdConstTArray1[i]))**(0.5)

stdDevList.append(stdDev)
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#plt.plot(avgtempList1)

#plt.plot(avgtempList2)

#plt.plot(avgtempList3)

#plt.plot(avgtempList4)

#plt.plot(avgtempList5)

#plt.plot(avg2tempList)

#plt.xscale(’log ’)

#plt.yscale(’log ’)

#ergodicity breaking

ebList = []

for i in range(1,len(avgtempList1)):

eb = (avg2tempList1[i] - (avgtempList1[i])**2) / ((

avgtempList1[i])**2)

ebList.append(eb)

for i in range(1,len(ebList)):

ebList[i] = ebList[i]/i

#print ebList[len(ebList) -1]

#no log

plt.xlabel(’$\Delta$ ’)

plt.ylabel(’EB/$\Delta$ ’)

#with log

#plt.xscale(’log ’)

#plt.yscale(’log ’)

plt.xlim (1,20)

#plt.xlabel(’log($\Delta$) ’)

#plt.ylabel(’log(EB/$\Delta}$) ’)

plt.plot(ebList ,’o’,label=’Data ’)

#plt.plot(ebList ,label=’Guideline ’)

t = np.arange(1,len(ebList)+1,1)

plt.plot(t,ebList [1]/t,’--’,label=str(round(ebList [1],2))

+’$\Delta ^{-1}$’)

taFitParams , taFitCovs = curve_fit(fitFuncPow ,t,ebList)

#print taFitParams

#plt.plot(t,taFitParams [0]*t**( taFitParams [1]),label=’fit:

’+str(round(taFitParams [0] ,2))+’$\Delta^{’+str(round(

taFitParams [1] ,2))+’}$’)
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plt.legend ()

#fit the data using scipy

#t = np.linspace(1,len(avgtempList2),len(avgtempList2))

#fitParams , fitCovariances = curve_fit(fitFunc ,t[1:],

avgtempList [1:])

#fitParams , fitCovariances = curve_fit(fitFuncPow ,t[100:] ,

avgtempList2 [100:])

#plt.plot(fitFunc(t,fitParams [0]))

#plt.plot(fitFuncPow(t,fitParams [0], fitParams [1]))

#plt.errorbar(t,avgtempList ,yerr=stdDevList)

#print fitParams [1]

#print fitCovariances

#plt.xscale(’log ’)

#plt.yscale(’log ’)

#fracTimeOnList = []

#for i in range(len(fracTimeOnTemp)):

# fracTimeOnList.append(fracTimeOnTemp[i][0])

#avgFracTimeOn = sum(fracTimeOnList) / len(fracTimeOnList)

#print "average fraction of time on network: ",

avgFracTimeOn

#color maps

#fig = plt.figure ()

#im = plt.imshow(fracTimeOn , origin = ’lower ’,extent =

[100,500,1,5], aspect = 100)

#im = plt.imshow(taConstS , origin = ’lower ’, cmap = ’jet ’,

extent = [100,500,1,5], aspect = 100)

#fig.colorbar(im)

plt.show()

main()
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7.3.7 fptdFigures.py

This program analyzes FPTD data.

# -*- coding: utf -8 -*-

"""

Created on Thu Mar 02 07:22:14 2017

@author: GPLP

"""

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

import numpy as np

from scipy.stats import chisquare

def fitFuncExp(t,a,b):

return a*np.exp(-b*t)

def fitFuncPow(t,a,b):

return a*t**(b)

def fitFuncPowCDF(t,a,b,c):

return (a + b*t**(c))

def readFile(aFile):

with open(aFile) as file:

fileList = [[float(digit) for digit in line.split ()]

for line in file]

return fileList

def main():

#fracTimeOnTemp = readFile (\

#’fracTimeOnkOn5 .00 kOff1 .00

numFil300filLen5numNets1numCargs10000gamma0 .80 INS1.txt

’)

fptdExpos = [[0.2324 ,0.3039 ,0.3103 ,0.3697 ,0.3948] ,\

[0.4374 ,0.5563 ,0.6428 ,0.6999 ,0.7255] ,\

[0.6408 ,0.7697 ,0.8684 ,0.9224 ,0.9193] ,\

[0.7934 ,0.9420 ,0.9788 ,1.0749 ,1.0507] ,\

[0.9216 ,1.0728 ,1.0947 ,1.1771 ,1.1668]]

#fracTimeOn = [[0.0045 ,0.0106 ,0.0150 ,0.0266 ,0.0439] ,\

# [0.0187 ,0.0472 ,0.1107 ,0.1088 ,0.1566] ,\

# [0.0736 ,0.1563 ,0.1902 ,0.2811 ,0.2260] ,\

# [0.0896 ,0.2162 ,0.2559 ,0.3526 ,0.3753] ,\
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# [0.1797 ,0.3239 ,0.3861 ,0.4755 ,0.4724]]

#fracTimeOnList = []

#for i in range(len(fracTimeOnTemp)):

# fracTimeOnList.append(fracTimeOnTemp[i][0])

#avgFracTimeOn = sum(fracTimeOnList) / len(fracTimeOnList)

#print "average fraction of time on network: ",

avgFracTimeOn

tempList1 = []

tempList2 = []

tempList3 = []

tempList4 = []

tempList5 = []

l1 = readFile(’FPTDkOn5 .00 kOff1 .00 numFil300filLen5 .00

numNets1numCargs10000gamma0 .20 INS1.txt ’)

l2 = readFile(’FPTDkOn5 .00 kOff1 .00 numFil300filLen5 .00

numNets1numCargs10000gamma0 .40 INS1.txt ’)

l3 = readFile(’FPTDkOn5 .00 kOff1 .00 numFil300filLen5 .00

numNets1numCargs10000gamma0 .60 INS1.txt ’)

l4 = readFile(’FPTDkOn5 .00 kOff1 .00 numFil300filLen5 .00

numNets100numCargs100gamma0 .80 INS1.txt ’)

l5 = readFile(’FPTDkOn5 .00 kOff1 .00 numFil300filLen5 .00

numNets1numCargs10000gamma1 .00 INS1.txt ’)

for i in range(len(l1)):

tempList1.append(l1[i][0])

tempList2.append(l2[i][0])

tempList3.append(l3[i][0])

tempList4.append(l4[i][0])

tempList5.append(l5[i][0])

lowerBound = 10

upperBound = 1000

#curve fitting

t = np.arange(lowerBound ,upperBound)

fitParams1 ,fitCovariances1 = curve_fit(fitFuncPow ,t,

tempList1[lowerBound:upperBound ])
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fitParams2 ,fitCovariances2 = curve_fit(fitFuncPow ,t,

tempList2[lowerBound:upperBound ])

fitParams3 ,fitCovariances3 = curve_fit(fitFuncPow ,t,

tempList3[lowerBound:upperBound ])

fitParams4 ,fitCovariances4 = curve_fit(fitFuncPow ,t,

tempList4[lowerBound:upperBound ])

#quality of the fits

#print chisquare(tempList [10:1000] ,[ fitFuncExp(i,fitParams

[0], fitParams [1]) for i in range (10 ,1000)])

#print chisquare(tempList [10:1000] ,[ fitFuncPow(i,

fitParams2 [0], fitParams2 [1]) for i in range (10 ,1000)])

#print "’decaying ’ exponent",fitParams1 [1]

#print "’decaying ’ exponent",fitParams2 [1]

#print "’decaying ’ exponent",fitParams3 [1]

print "’decaying ’ exponent",fitParams4 [1]

fitParams5 ,fitCovariances5 = curve_fit(fitFuncExp ,t,

tempList5[lowerBound:upperBound ])

# calculating cdf for alpha = 0.8 fptd

sumCdf = 0

cdf = []

for i in range(len(tempList4)):

tempList4[i] /= 10000

sumCdf += tempList4[i]

cdf.append(sumCdf)

plt.plot(t,cdf[lowerBound:upperBound ])

# fitting the cdf

fitParamsC ,fitCovariancesC = curve_fit(fitFuncPowCDF ,t,cdf

[lowerBound:upperBound],maxfev =100000)

# linear scatter plots

#plt.scatter(t,tempList1[lowerBound:upperBound],marker=’o

’)

#plt.scatter(t,tempList2[lowerBound:upperBound],marker=’o

’)

#plt.scatter(t,tempList3[lowerBound:upperBound],marker=’o

’)
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#plt.scatter(t,tempList4[lowerBound:upperBound],marker=’o

’)

#plt.scatter(t,tempList5[lowerBound:upperBound],marker=’o

’)

print "’decaying ’ exponent",fitParamsC [0], fitParamsC [1],

fitParamsC [2]

plt.plot(t,fitFuncPowCDF(t,fitParamsC [0], fitParamsC [1],

fitParamsC [2]),label=’$\\alpha = 0.8$’)

#plt.plot(t,fitFuncPow(t,fitParams1 [0], fitParams1 [1]),

label=’$\\alpha = 0.2$’)

#plt.plot(t,fitFuncPow(t,fitParams2 [0], fitParams2 [1]),

label=’$\\alpha = 0.4$’)

#plt.plot(t,fitFuncPow(t,fitParams3 [0], fitParams3 [1]),

label=’$\\alpha = 0.6$’)

#plt.plot(t,fitFuncPow(t,fitParams4 [0], fitParams4 [1]),

label=’$\\alpha = 0.8$’)

#plt.plot(t,fitFuncExp(t,fitParams5 [0], fitParams5 [1]),

label=’$\\alpha = 1.0$’)

plt.legend(loc=’upper right ’)

plt.ylabel(’FPTD (counts)’)

plt.xlabel(’time (s)’)

#plt.xlim (10 ,1000)

#plt.ylim (1 ,400)

#plt.legend ()

#plt.xscale(’log ’)

#plt.yscale(’log ’)

plt.show()

#colormaps

#fig = plt.figure ()

#im = plt.imshow(fracTimeOn , origin = ’lower ’,extent =

[100,500,1,5], aspect = 100)

#im = plt.imshow(fptdExpos , origin = ’lower ’,extent =

[100,500,1,5], aspect = 100)
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#fig.colorbar(im)

main()

7.3.8 colorMapGeneral3.py

This program constructs the color maps of the data analyzed previously. These are
the color maps that are found in the chapter on anomalous transport.

import matplotlib.pyplot as plt

#interpolation function

def bilinearInterpolation(x,y,vals2D):

xmax = 500.0

ymax = 5.0

xfact = 100.0

yfact = 1.0

x1 = x // 100 * 100.0

x2 = x1 + xfact

y1 = y // 1 * 1.0

y2 = y1 + yfact

i = int(y/yfact) - 1

j = int(x/xfact) - 1

fxy1 = (x2 -x)/(x2 -x1)*vals2D[i][j]+(x-x1)/(x2 -x1)*vals2D[i

][j+1]

fxy2 = (x2 -x)/(x2 -x1)*vals2D[i+1][j]+(x-x1)/(x2 -x1)*vals2D

[i+1][j+1]

fxy = (y2 -y)/(y2 -y1)*fxy1 + (y-y1)/(y2 -y1)*fxy2

return fxy

#interpolation function

#mass input

def bilinInterpMass(mass ,vals2D):

xfact = 100.0

yfact = 1.0

lengths = []

z = []

if (mass >= 500):

minLen = min(mass /499.0 , 4.9)

maxLen = 4.9

else:

minLen = mass/(mass -1)

maxLen = mass /101

x = mass / minLen
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y = minLen

dy = (maxLen - minLen) / 40

while(y <= maxLen):

x1 = x // 100 * 100.0

x2 = x1 + xfact

y1 = y // 1 * 1.0

y2 = y1 + yfact

i = int(y/yfact) - 1

j = int(x/xfact) - 1

fxy1 = (x2 -x)/(x2 -x1)*vals2D[i][j]+(x-x1)/(x2 -x1)*

vals2D[i][j+1]

fxy2 = (x2 -x)/(x2 -x1)*vals2D[i+1][j]+(x-x1)/(x2 -x1)*

vals2D[i+1][j+1]

fxy = (y2 -y)/(y2 -y1)*fxy1 + (y-y1)/(y2 -y1)*fxy2

z.append(fxy)

lengths.append(y)

y = y + dy

x = mass / y

return lengths , z

def main():

#average flux out by 10s

out10avg = [[0.570000 , 0.750000 , 1.030000 , 1.240000 ,

1.610000] ,

[2.220000 , 3.550000 , 4.880000 , 6.330000 ,

7.290000] ,

[4.860000 , 8.260000 , 11.010000 , 12.040000 ,

14.350000] ,

[8.970000 , 13.710000 , 17.190000 , 17.470000 ,

19.180000] ,

[14.110000 , 19.700000 , 22.640000 , 24.470000 ,

25.150000]]

#average flux out by 100s

out100avg = [[3.810000 , 4.880000 , 6.010000 , 7.270000 ,

8.930000] ,

[10.340000 , 16.120000 , 22.660000 , 28.290000 ,

34.490000] ,

[20.480000 , 32.050000 , 42.490000 , 47.760000 ,

54.260000] ,
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[33.460000 , 46.300000 , 53.610000 , 56.590000 ,

62.780000] ,

[49.250000 , 62.170000 , 69.600000 , 74.240000 ,

76.710000]]

#average flux out after 100s

out100avg2 = [[] ,[] ,[] ,[] ,[]]

for i in range(len(out100avg)):

for j in range(len(out100avg[i])):

out100avg2[i]. append (100- out100avg[i][j])

#MFPT data

#overall MFPT

mfpts = [[20901.496980 , 20912.001505 , 19604.040386 ,

17845.361140 , 20277.588450] ,

[15536.934338 , 12104.430417 , 8191.819561 ,

6472.469627 , 5488.723420] ,

[10198.689438 , 6028.738413 , 4113.791565 ,

2589.134276 , 2472.403544] ,

[5175.396216 , 2697.863910 , 1967.081567 ,

1553.866925 , 1375.408970] ,

[2689.650648 , 1147.063759 , 680.370400 ,

533.215085 , 473.183413]]

#MFPT standard deviation

mfptStdevs = [[5755.898657 , 9425.448567 , 9927.163744 ,

9350.076329 , 21568.708661] ,

[10288.034119 , 10280.942310 , 7523.041154 ,

5793.490683 , 5366.468494] ,

[9428.787124 , 4734.632566 , 5864.933007 ,

2974.841794 , 4428.577627] ,

[4848.489275 , 2286.449963 , 2466.075192 ,

1383.737160 , 1275.501484] ,

[2568.826398 , 1491.681241 , 724.067629 ,

732.567479 , 714.767678]]

#average of standard deviations

stdevAvg = [[82905.511837 , 84366.079882 , 79465.100796 ,

74826.966022 , 80603.735198] ,

[69016.131075 , 59398.646737 , 45309.271922 ,

42429.944821 , 36054.621695] ,

[52482.269621 , 38666.404843 , 29373.372678 ,

19616.937224 , 20491.743505] ,

[33619.798949 , 21004.022667 , 15637.889841 ,

14436.379428 , 14009.293537] ,
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[22740.830746 , 9632.788240 , 7654.654856 ,

6052.643270 , 5536.412024]]

#normalizing standard deviations

for i in range(len(mfpts)):

for j in range(len(mfpts[i])):

mfptStdevs[i][j] = mfptStdevs[i][j] / mfpts[i][j]

#stdevAvg[i][j] = stdevAvg[i][j] / mfpts[i][j]

#variation in flux out by 10s

out10stdev = [[0.710704 , 0.804674 , 1.108648 , 1.068831 ,

1.232031] ,

[1.285146 , 1.981792 , 2.141401 , 2.724170 ,

2.627908] ,

[2.015043 , 3.035194 , 3.477053 , 3.557865 ,

3.683409] ,

[3.247938 , 3.945364 , 3.786014 , 4.863034 ,

4.222274] ,

[3.652109 , 4.659399 , 5.231673 , 4.484317 ,

5.286540]]

#variation in flux out by 100s

out100stdev = [[1.863840 , 2.173845 , 2.643842 , 3.062205 ,

3.332432] ,

[3.782116 , 4.964434 , 5.625336 , 5.998825 ,

7.047688] ,

[6.004132 , 6.973342 , 7.381727 , 6.858746 ,

7.025126] ,

[7.003456 , 8.386298 , 7.123054 , 7.802685 ,

7.017948] ,

[8.157665 , 8.142549 , 8.238932 , 7.190438 ,

6.202088]]

#msd at 10s

msd10 = [[69.581944/1976 , 88.794141/2109 , 111.229480/2137 ,

123.316868/2195 , 135.102968/2325] ,

[73.430564/1932 , 93.515927/2033 , 109.623798/2104 ,

125.049170/2138 , 130.210496/2290] ,

[72.546248/1936 , 87.823341/2024 , 110.559687/2185 ,

114.582143/2144 , 137.155808/2300] ,

[70.694660/1908 , 92.282295/2019 , 106.792043/2145 ,

121.891740/2217 , 126.036580/2221] ,
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[73.714240/2041 , 86.075748/1981 , 104.372972/2137 ,

122.103398/2182 , 140.465580/2275]]

#msd at 100s

msd100 = [[294.258703/1101 , 540.157455/1193 ,

672.831761/1252 , 826.618722/1326 , 1052.494706/1437] ,

[722.093250/1126 , 1298.696021/1310 ,

1989.772316/1432 , 2461.064212/1550 ,

2660.435852/1603] ,

[1258.417762/1165 , 2127.599265/1335 ,

3141.687283/1521 , 3606.934766/1567 ,

4920.205895/1829] ,

[1544.690158/1182 , 2690.336980/1361 ,

3502.937448/1515 , 4397.074885/1616 ,

4865.776005/1682] ,

[1661.178566/1233 , 3128.072986/1422 ,

3928.799090/1506 , 4576.097542/1620 ,

5594.247695/1737]]

#variaton in msd at 10s

msd10stdev = [[0.177165 , 0.277559 , 0.316284 , 0.358758 ,

0.376862] ,

[0.420243 , 0.726115 , 0.676183 , 0.903460 ,

0.926523] ,

[0.775392 , 1.238581 , 1.319257 , 1.319592 ,

1.517769] ,

[1.146256 , 1.619773 , 1.738303 , 2.031710 ,

2.023696] ,

[1.506506 , 1.961689 , 2.099387 , 2.018767 ,

2.043376]]

#variation in msd at 100s

msd100stdev = [[0.898412 , 1.375464 , 1.773565 , 1.914777 ,

2.521721] ,

[2.732093 , 4.268729 , 5.154552 , 5.722110 ,

6.081641] ,

[4.935392 , 7.925013 , 10.237778 , 10.749308 ,

11.285958] ,

[7.107889 , 11.541396 , 12.936895 , 16.750645 ,

15.987546] ,

[12.073025 , 14.428583 , 16.574697 ,

17.149316 , 16.381906]]

#normalizing standard deviations
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for i in range(len(msd10)):

for j in range(len(msd10[i])):

msd10stdev[i][j] = msd10stdev[i][j] / msd10[i][j]

msd100stdev[i][j] = msd100stdev[i][j] / msd100[i][

j]

#fptd exponents

fptdExpos = [[0.2324 ,0.3039 ,0.3103 ,0.3697 ,0.3948] ,\

[0.4374 ,0.5563 ,0.6428 ,0.6999 ,0.7255] ,\

[0.6408 ,0.7697 ,0.8684 ,0.9224 ,0.9193] ,\

[0.7934 ,0.9420 ,0.9788 ,1.0749 ,1.0507] ,\

[0.9216 ,1.0728 ,1.0947 ,1.1771 ,1.1668]]

#msd exponents

msdSupers = [[0.9373 ,1.1104 ,1.2366 ,1.3364 ,1.3601] ,\

[1.4047 ,1.6548 ,1.7047 ,1.7395 ,1.7574] ,\

[1.6555 ,1.9016 ,1.8807 ,1.8396 ,1.7955] ,\

[1.8357 ,1.9023 ,1.8193 ,1.8603 ,1.8777] ,\

[1.8958 ,1.9081 ,1.9093 ,1.8619 ,1.8513]]

msdSubs = [[0.7518 ,0.7245 ,0.7081 ,0.7528 ,0.7228] ,\

[0.7158 ,0.7067 ,0.7128 ,0.7972 ,0.7729] ,\

[0.7391 ,0.7736 ,0.7769 ,0.8151 ,0.8426] ,\

[0.7844 ,0.8100 ,0.8600 ,0.8637 ,0.9160] ,\

[0.7886 ,0.8475 ,0.9036 ,0.8879 ,0.8956]]

#colormaps

fig = plt.figure ()

#fptd colormaps

im = plt.imshow(stdevAvg , origin = ’lower ’,cmap = ’jet ’,

extent = [100,500,1,5], aspect = 100, interpolation=’

bilinear ’)

#msd colormaps

#im = plt.imshow(msd100stdev , origin = ’lower ’,cmap = ’jet

’,extent = [500,2500 ,1 ,5] , aspect = 500, interpolation=’

bilinear ’)

clb = fig.colorbar(im)

#clb.ax.set_title(’$\sigma_{MSD}$(100s) / MSD (100s) ’)

plt.xlabel(’number of filaments ’)

plt.ylabel(’filament length ($\mu$m)’)

l1500 , vals1500 = bilinInterpMass (1500.0 , fptdExpos)

l1000 , vals1000 = bilinInterpMass (1000.0 , fptdExpos)

l800 , vals800 = bilinInterpMass (800.0 , fptdExpos)

l600 , vals600 = bilinInterpMass (600.0 , fptdExpos)

l500 , vals500 = bilinInterpMass (500.0 , fptdExpos)
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l400 , vals400 = bilinInterpMass (400.0 , fptdExpos)

l300 , vals300 = bilinInterpMass (300.0 , fptdExpos)

#interpolation attempt

#plotting constant mass interpolations

#plt.plot(l1500 ,vals1500 ,label=’Mass = 1500’, marker=’o’)

#plt.plot(l1000 ,vals1000 ,label=’Mass = 1000’, marker=’o’)

#plt.plot(l800 ,vals800 ,label=’Mass = 800’,marker=’o’)

#plt.plot(l600 ,vals600 ,label=’Mass = 600’,marker=’o’)

#plt.plot(l500 ,vals500 ,label=’Mass = 500’,marker=’o’)

#plt.plot(l400 ,vals400 ,label=’Mass = 400’,marker=’o’)

#plt.plot(l300 ,vals300 ,label=’Mass = 300’,marker=’o’)

#plt.legend(loc = ’lower right ’)

#plt.xlabel(’filament length ($\mu$m) ’)

#plt.ylabel(’FPTD exponents ’)

plt.show()

main()

7.4 Cargo Simulations On Real Networks Programs

7.4.1 realFils.py

Converts the FIRE algorithm output to a more useable txt file.

# this program makes the filaments more easily readable by a C

or C++ program

def main():

# open the file containing the filament vertex data

with open(’filaments.txt ’) as file:

filaments = [[int(number) for number in line.split ()]

for line in file]

# only select lines having a clear list of vertices for

each filament

filaments = [x for x in filaments if x]

# write the now more organized filament vertex data to a

new file

with open(’filamentsBetter.txt ’,’w’) as file:

for fil in filaments:
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file.write(" ".join(str(v) for v in fil) + ’\n’)

main()

7.4.2 simRealNetOnOnly.cpp

This program simulates the movement of cargos over a network obtained through
implementing the FIRE algorithm on a network image.

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include <time.h>

#include <string.h>

// to use c++ vectors

#include <vector >

#include <algorithm >

using namespace std;

#ifndef M_PI

#define M_PI 3.14159265358979323846

#endif

// global variables

// number of vertices in the network

int numVertices;

// for storing (x, y) vertex positions

vector <double > xVertexPositions;

vector <double > yVertexPositions;

// maximum x and y values for the

// transport region

double xMax , yMax;

// for storing filaments and their vertices

vector <vector <int > > filaments;

// for storing vertices and their filaments

vector <vector <int > > vertices;

// number of filaments in the network
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int numFilaments;

// number of cargos used in the simulation

int numCargos = 1000;

// cargo radius in micrometers (um)

double cRad = 0.1;

// cargo speed while on a filament (um / s)

double v = 1.0;

// cargo step size (um)

double dstep = 0.1;

// cargo (varying) time step

double dt;

// cargo timestep off the network (diffusion phase)

double dtOff;

// cargo timestep on the network (ballistic motion phase)

double dtOn;

// amount of time that has passed (s)

double t;

// maximum measuring time (s)

double tMax = 100.0;

// diffusion constant (um / s^2)

double D = 0.051;

// cargo attachment and detachment rates (s^-1)

double kOn = 10000.0 , kOff = 0.02;

// cargo switching rate

// double kSwitch = 5.0;

// cargo switching rate in terms of probability

double switchProb = 0.0;

// is the cargo off or on a filament?

int OFF , ON;

// used to output to different files

char sBeg [500];
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char sEnd [500];

int main(){

// read and store the vertex positions

FILE *inpVerts = fopen(" vertexPositions1to10.txt", "r");

// (x, y) coordinates of current vertex

double xVP , yVP;

// micrometers per pixel in the network images

double umPerPixel = 0.0675;

// vertex "0" is at position (0.0, 0.0)

xVertexPositions.push_back (0.0);

yVertexPositions.push_back (0.0);

// scan x and y positions of each vertex until the end of the

file is reached

// convert position indices (image pixels) to micrometers

while (fscanf(inpVerts , "%lf %lf", &xVP , &yVP) != EOF){

xVP *= umPerPixel;

yVP *= umPerPixel;

xVertexPositions.push_back(xVP);

yVertexPositions.push_back(yVP);

// fprintf(outp1 ,"%lf\t%lf\n", xVP , yVP);

}

// close the file from which vertex positions were received

fclose(inpVerts);

// get the number of vertices

numVertices = xVertexPositions.size();

// calculate the max x and y values

xMax = *max_element(xVertexPositions.begin(),

xVertexPositions.end());

yMax = *max_element(yVertexPositions.begin(),

yVertexPositions.end());

// each vertex belongs to a certain number of filaments

// vertices index "i" corresponds to vertex number "i"

vector <int > currentVertex;

// prepare the filament vector for each vertex

for (int i = 0; i < numVertices; i++){



CHAPTER 7. APPENDIX: COMPUTER PROGRAMS USED 179

vertices.push_back(currentVertex);

}

// read and store filaments and their vertices

FILE *inpFils = fopen(" filamentsBetter1to10.txt", "r");

// variables used in storing filament vertices

int valueInt;

char spaceChar;

vector <int > currentFilament;

// filament "0" contains only vertex "0"

currentFilament.push_back (0);

filaments.push_back(currentFilament);

currentFilament.clear ();

while(fscanf(inpFils , "%d%c", &valueInt , &spaceChar) != EOF){

// add the scanned number to the current filament vertex

vector

currentFilament.push_back(valueInt);

// new line

// end of the current filament has been reached

if(spaceChar == ’\n’){

// add the current filament to the vector of filaments

filaments.push_back(currentFilament);

// prepare to start reading the vertex numbers for the next

filament

currentFilament.clear ();

}

}

// close the file from which filament vertices were received

fclose(inpFils);

// calculate the number of filaments in the network

numFilaments = filaments.size();

// to calculate the number of vertices in the current

filament

int numFilVerts;

// add filaments to each vertex vector

// and calculate filament lengths

FILE *outpLengths = fopen(" filamentLengths.txt","w");



CHAPTER 7. APPENDIX: COMPUTER PROGRAMS USED 180

double currentFilLength;

for (int i = 0; i < numFilaments; i++){

currentFilLength = 0.0;

numFilVerts = filaments[i].size();

for (int j = 0; j < numFilVerts; j++){

vertices[filaments[i][j]]. push_back(i);

}

for (int j = 1; j < numFilVerts; j++){

currentFilLength += sqrt(pow(( xVertexPositions[filaments[i

][j]]- xVertexPositions[filaments[i][j -1]]) ,2) +

pow(( yVertexPositions[filaments[i][j]]-

yVertexPositions[filaments[i][j -1]]) ,2));

}

fprintf(outpLengths ,"%lf\n",currentFilLength);

}

fclose(outpLengths);

// network should be set up now

// testing

//for (int i = 0; i < numVertices; i++){

// fprintf(outp1 ,"%lf %lf\n", xVertexPositions[i] /

umPerPixel , yVertexPositions[i] / umPerPixel);

//}

//for (int i = 0; i < numFilaments; i++){

// numFilVerts = filaments[i].size();

// for (int j = 0; j < numFilVerts; j++){

// fprintf(outp1 ,"%d ", filaments[i][j]);

// }

// fprintf(outp1 ,"\n");

//}

// to calculate the number of filaments connected to the

current vertex

int numVertFils;

//for (int i = 0; i < numVertices; i++){

// numVertFils = vertices[i].size();

// for (int j = 0; j < numVertFils; j++){

// fprintf(outp1 ,"%d ", vertices[i][j]);

// }

// fprintf(outp1 ,"\n");

//}
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// time step while off the network

// calculate average distance between filament intersections

double avgIntSep = 0.0;

double intDistSum = 0.0;

int numIntCalcs = 0;

// create a vector of intersection vertices

vector <int > intersections;

for(int i = 0; i < numVertices; i++){

numVertFils = vertices[i].size();

if(numVertFils >= 2){

intersections.push_back(i);

// checking vertices

// printf (" vertex %d: ", i);

//for(int j = 0; j < numVertFils; j++){

// printf ("%d ", vertices[i][j]);

//}

// printf ("\n");

}

}

// check the vertices that are intersections

//for(int i = 0; i < intersections.size(); i++){

// printf ("%d\n", intersections[i]);

//}

FILE *outpDistances = fopen(" intersectionDistances.txt","w");

// go through each filament , vertex by vertex

for(int i = 0; i < numFilaments; i++){

numFilVerts = filaments[i].size();

int firstInt = 0, secondInt = 0;

for(int j = 0; j < numFilVerts; j++){

// if a vertex is an intersection , look for the next one in

the same filament

if(firstInt && !secondInt){

if(find(intersections.begin (), intersections.end(),

filaments[i][j]) != intersections.end()){

secondInt = filaments[i][j];

}
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}

// calculate distance between intersections and keep track

of the number of calculations

if(firstInt && secondInt){

// check the two current intersections (on the same

filament)

// printf (" firstInt: %d\tsecondInt: %d\n", firstInt ,

secondInt);

double intDist = sqrt(pow(( xVertexPositions[secondInt]-

xVertexPositions[firstInt ]) ,2) + pow(( yVertexPositions[

secondInt]-yVertexPositions[firstInt ]) ,2));

fprintf(outpDistances ,"%lf\n",intDist);

intDistSum += intDist;

numIntCalcs ++;

// reset , look for two more intersections on the same

filament

firstInt = 0;

secondInt = 0;

}

if(! firstInt){

if(find(intersections.begin (), intersections.end(),

filaments[i][j]) != intersections.end()){

firstInt = filaments[i][j];

}

}

}

}

fclose(outpDistances);

// calculate the average intersection separation distance

avgIntSep = intDistSum / numIntCalcs;

// printf ("%.3lf\n", avgIntSep);

// begin placing cargos randomly throughout the network and

let them start moving

srand (( unsigned)time(NULL));

// set time step sizes

dtOff = pow(dstep , 2) / (4 * D);

dtOn = dstep / v;

// cargo position
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double xc, yc;

// cargo direction of motion

double phi;

while(switchProb <= 1.0){

// for storing cargo data in a file

FILE *outp1;

sprintf(sBeg , "multipleCargoTrajectories ");

sprintf(sEnd , "NumCargos%dSwitchProb %.3 lfkOff %.3lf.txt",

numCargos , switchProb , kOff);

outp1 = fopen(strcat(sBeg ,sEnd), "w");

fprintf(outp1 , "x:\t\ty:\t\tt:\t\tdt:\t\tON?\ tFilament :\

tMoving backwards ?\ tToward vertex :\t\tCargo Number :\n");

// start randomly placing cargos and letting them move

for(int i = 0; i < numCargos; i++){

// fprintf(outp1 ,"A new cargo will start moving\n");

// cargo begins in a random position at t = 0.0

xc = xMax * (double)rand()/( RAND_MAX);

yc = yMax * (double)rand()/( RAND_MAX);

t = 0.0;

// each cargo begins in the "off" state

OFF = 1;

ON = 0;

dt = dtOff;

// for keeping track of what filament the cargo ends up

binding to

int currentFil;

int currentV1 , currentV2;

int vi;

// used in calculated the distance from the cargo to nearby

filaments

double d;

double minx1x2 , maxx1x2 , miny1y2 , maxy1y2;
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// by default cargo will move forward along a filament

int BACKWARD = 0;

while(xc < xMax && xc > 0.0 && yc < yMax && yc > 0.0 && t <

tMax){

// current filament segment vertices ’ positions

double x1 , y1 , x2 , y2;

if(OFF and !ON){

// start looking for filaments

int f = 1;

while (f < numFilaments && !ON && OFF){

// look for filament segments

int vert = 0;

// current filament segment vertices

int vert1 , vert2;

while (vert < filaments[f].size() - 1 && !ON && OFF){

// the vertices that make up the current segment

// (segment endpoints)

vert1 = filaments[f][vert];

vert2 = filaments[f][vert +1];

// the positions of the vertices of the current segment

// (endpoint positions)

x1 = xVertexPositions[vert1];

y1 = yVertexPositions[vert1];

x2 = xVertexPositions[vert2];

y2 = yVertexPositions[vert2];

// distance from the cargo to the filament segment

d = fabs((y2-y1)*xc -(x2-x1)*yc+x2*y1-y2*x1)/

sqrt(pow((y2-y1) ,2)+pow((x2 -x1) ,2));

// min and max coordinates

// (sets the filament segment "window" in 2D space)

minx1x2 = 0.5* fabs(x1+x2) -0.5* fabs(x1 -x2);

maxx1x2 = 0.5* fabs(x1+x2)+0.5* fabs(x1 -x2);
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miny1y2 = 0.5* fabs(y1+y2) -0.5* fabs(y1 -y2);

maxy1y2 = 0.5* fabs(y1+y2)+0.5* fabs(y1 -y2);

// if the cargo is close enough to the filament segment ,

// it has a chance of attaching

if(xc > minx1x2 && xc < maxx1x2 && yc > miny1y2 && yc <

maxy1y2 && d < cRad){

// probability of attaching to the network

if(( double)rand()/RAND_MAX <= (kOn*dt)){

ON = 1;

currentFil = f;

// determine if cargo will move backward along the

filament

BACKWARD = rand() % 2;

if(BACKWARD){

currentV1 = vert2;

currentV2 = vert1;

vi = vert;

// fprintf(outp1 ," Cargo will now move backwards\n");

} else {

currentV1 = vert1;

currentV2 = vert2;

vi = vert + 1;

// fprintf(outp1 ," Cargo will now move forwards\n");

}

// fprintf(outp1 ," Attached to filament %d, moving

towards vertex %d\n", f, currentV2);

// fprintf(outp1 ," Distance to vertex %d: %lf\n",

currentV2 , sqrt(pow(( yVertexPositions[currentV2]-yc

), 2) + pow(( xVertexPositions[currentV2]-xc), 2)));

// fprintf(outp1 ," filament number %d: %d --> %d ", f,

vert1 , vert2);

}

}

// fprintf(outp1 ,"%d --> %d ", vert1 , vert2);



CHAPTER 7. APPENDIX: COMPUTER PROGRAMS USED 186

// start checking proximity of next segment

vert ++;

}

// fprintf(outp1 ,"\n");

// start checking proximity of next filament

f++;

}

}

if(ON && !OFF){

// if cargo is close enough to a vertex , allow switching

if possible

if(cRad > sqrt(pow(( yVertexPositions[currentV2]-yc), 2) +

pow(( xVertexPositions[currentV2]-xc), 2))){

// fprintf(outp1 ,"Near vertex %d\n", currentV2);

// look for other filaments (if at a filament

intersection)

int fSwitch = 0;

int SWITCHED = 0;

while(fSwitch < vertices[currentV2 ].size() && !SWITCHED){

// check for any filaments except the one the cargo is

currently on

if(vertices[currentV2 ][ fSwitch] != currentFil){

// fprintf(outp1 ,"Also a part of filament %d\n",

vertices[currentV2 ][ fSwitch ]);

// cargo might switch to another filament

// fprintf(outp1 ,"Has a probability of switching to it

of %lf\n", switchProb);

if(( double)rand()/RAND_MAX <= (switchProb)){

// cargo has switched to another filament

SWITCHED = 1;

currentFil = vertices[currentV2 ][ fSwitch ];

// fprintf(outp1 ,"Cargo has switched to filament %d

which has vertices :\n", currentFil);

//for(int newVert = 0; newVert < filaments[currentFil

].size(); newVert ++){

// fprintf(outp1 ,"%d\n", filaments[currentFil ][ newVert

]);

//}

// cargo might move backward on the new filament

BACKWARD = rand() % 2;
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// need to get new vertex to move towards

for(int newVert = 0; newVert < filaments[currentFil ].

size(); newVert ++){

// found the current vertex

if(currentV2 == filaments[currentFil ][ newVert ]){

// cargo will move backward toward the previous

vertex

if(BACKWARD){

// if this is the first vertex in the filament

// fall off the filament

if(currentV2 == filaments[currentFil ][0]){

OFF = 1;

ON = 0;

dt = dtOff;

BACKWARD = 0;

// fprintf(outp1 ," Walked off filament %d at vertex

%d\n", currentFil , currentV2);

break;

} else {

currentV2 = filaments[currentFil ][newVert -1];

vi = newVert - 1;

break;

}

// cargo will move forwards toward the next vertex

} else {

// if this is the last vertex in the filament

// fall off the filament

if(currentV2 == filaments[currentFil ][ filaments[

currentFil ].size() -1]){

OFF = 1;

ON = 0;

dt = dtOff;

BACKWARD = 0;

// fprintf(outp1 ," Walked off filament %d at vertex

%d\n", currentFil , currentV2);

break;

} else {

currentV2 = filaments[currentFil ][ newVert +1];

vi = newVert + 1;

break;

}

}

}
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}

//if(BACKWARD){

// fprintf(outp1 ,"Will move backwards towards vertex %

d\n", currentV2);

//} else {

// fprintf(outp1 ,"Will move forwards towards vertex %d

\n", currentV2);

//}

}

}

fSwitch ++;

}

}

// cargo can walk off the filament

// if cargo is moving forward:

if(( currentV2 == filaments[currentFil ][ filaments[

currentFil ].size() -1]) && !BACKWARD){

if(cRad > sqrt(pow(( yVertexPositions[currentV2]-yc), 2) +

pow(( xVertexPositions[currentV2]-xc), 2))){

OFF = 1;

ON = 0;

dt = dtOff;

BACKWARD = 0;

// cargo fell off -- end the simulation

break;

// fprintf(outp1 ," Walked off filament %d at vertex %d\n",

currentFil , currentV2);

}

}

// if cargo is moving backward:

if(( currentV2 == filaments[currentFil ][0]) && BACKWARD){

if(cRad > sqrt(pow(( yVertexPositions[currentV2]-yc), 2) +

pow(( xVertexPositions[currentV2]-xc), 2))){

OFF = 1;

ON = 0;

dt = dtOff;

BACKWARD = 0;

// cargo fell off -- end the simulation

break;

// fprintf(outp1 ," Walked off filament %d at vertex %d\n",

currentFil , currentV2);

}

}
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// allow possibility of detaching from the filament

if(( double)rand()/RAND_MAX <= (kOff * dt)){

OFF = 1;

ON = 0;

dt = dtOff;

BACKWARD = 0;

break;

// fprintf(outp1 ," Detached from filament %d\n", currentFil

);

}

}

// make sure cargo is indeed on a filament

if(ON && OFF){

OFF = 0;

dt = dtOn;

}

// if off a filament , pick a random direction to travel in

if (OFF && !ON) {

currentV2 = 0;

currentFil = 0;

phi = (2* M_PI)*( double)rand()/RAND_MAX;

xc += dstep * cos(phi);

yc += dstep * sin(phi);

t += dt;

// fprintf(outp1 ,"x: %lf\ty: %lf\tdt:%lf (Off)\n", xc , yc ,

dt);

// fprintf(outp1 ,"Off the network\n");

}// end "off" movement

if (ON && !OFF){

// cargo has approached the next vertex

if(cRad > sqrt(pow(( yVertexPositions[currentV2]-yc), 2) +

pow(( xVertexPositions[currentV2]-xc), 2))){

// if at the last vertex in the filament

if(BACKWARD){

if(currentV2 == filaments[currentFil ][0]){

OFF = 1;

ON = 0;

dt = dtOff;

break;
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// fprintf(outp1 ," Walked off filament %d at vertex %d\n

", currentFil , currentV2);

} else {

vi --;

currentV2 = filaments[currentFil ][vi];

// fprintf(outp1 ," Changing direction. Now moving

towards vertex %d\n", currentV2);

}

} else {

if(currentV2 == filaments[currentFil ][ filaments[

currentFil ].size() -1]){

OFF = 1;

ON = 0;

dt = dtOff;

break;

// fprintf(outp1 ," Walked off filament %d at vertex %d\n

", currentFil , currentV2);

} else {

vi++;

currentV2 = filaments[currentFil ][vi];

// fprintf(outp1 ," Changing direction. Now moving

towards vertex %d\n", currentV2);

}

}

}

// cargo moves towards the next vertex

xc += dstep * cos(acos(( xVertexPositions[currentV2]-xc)/(

sqrt(pow(( yVertexPositions[currentV2]-yc), 2) + pow((

xVertexPositions[currentV2]-xc), 2)))));

yc += dstep * sin(asin(( yVertexPositions[currentV2]-yc)/(

sqrt(pow(( yVertexPositions[currentV2]-yc), 2) + pow((

xVertexPositions[currentV2]-xc), 2)))));

t += dt;

// fprintf(outp1 ,"x: %lf\ty: %lf\tdt:%lf (On)\n", xc , yc ,

dt);

// fprintf(outp1 ," Distance to vertex %d: %lf (current

filament: %d)\n", currentV2 , sqrt(pow(( yVertexPositions

[currentV2]-yc), 2) + pow(( xVertexPositions[currentV2]-

xc), 2)), currentFil);

}// end "on" movement
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// for storing cargo data in a file

if (ON){

fprintf(outp1 , "%.3lf\t\t%.3lf\t\t%.3lf\t\t%.3lf\t\t%d\t%d

\t\t%d\t\t\t%d\t\t\t%d\n", xc, yc, t, dt, ON,

currentFil , BACKWARD , currentV2 , i+1);

}

}// end movement of a single cargo

}// end movement of all cargos

fclose(outp1);

switchProb += 0.1;

}// end looping through switch probabilities

return 0;

}

7.4.3 intersectionDistances.py

Calculates the average distance between filament intersections as well as the standard
deviation of distances between filament intersections.

# intersectionDistances.py

# distance between intersections calculations

def main():

# keep a list of distances between intersections

intDists = []

# open the file containing ditances between intersections

with open(’intersectionDistances.txt ’) as file:

for line in file:

intDists.append(float(line))

# calculate the average distance between filament

intersections

avgIntDist = sum(intDists) / len(intDists)

# check average

print avgIntDist

# calculate the variance

intDistVar = 0.0

for i in range(len(intDists)):
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intDistVar += (intDists[i] - avgIntDist) ** 2

intDistVar /= len(intDists)

# calculate the standard deviation

intDistStdDev = (intDistVar) ** (0.5)

# check the standard deviation

print intDistStdDev

main()

7.4.4 analyzeDataRefined.py

Analyze the data after simulating the cargo movement.

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

from matplotlib.lines import Line2D

import numpy as np

def squareFit(t,a):

return a*t**(2.0)

def walkerMsdFit(t,a,b):

# a is "effective" distance between filament intersections

# b is "effetive" switching probability

# "gamma" = (v / a) = (1 / a)

# "alpha" = "beta" = cos(b*pi/2)

return (1/((1/a)**2.0) /((1 -(np.cos(b*np.pi/2))**2.0))

**2.0) * \

((1-(np.cos(b*np.pi/2))**2.0) *(2+2* np.cos(b*np.pi

/2))*((1/a)*t) - \

2*((1+ np.cos(b*np.pi/2))**2.0) + \

np.exp(-(1/a)*t)*\

(((2* np.cos(b*np.pi/2)+((np.cos(b*np.pi/2))**2.0)

*(4+2* np.cos(b*np.pi/2))) / \

(np.cos(b*np.pi/2)))* \

(np.sinh(np.cos(b*np.pi/2) *(1/a)*t))+ \

2*((1+ np.cos(b*np.pi/2))**2.0) *(np.cosh(np.cos(b*

np.pi/2) *(1/a)*t))))

def expFitPDF(t,a,b):

return a*np.exp(-b*t)
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def expFitCDF(t,a):

return (1 - np.exp(-a*t))

def openFile(fileName):

with open(fileName) as file:

trajTemp = [[value for value in line.split ()] for line

in file]

return trajTemp

def xytGet(trajTemp):

# create dictionaries for the trajectories

# keep track of x, y, and t values for each cargo number (

trajectory)

xTrajTemp = {}

yTrajTemp = {}

tTrajTemp = {}

i = 1

# check the trajectory file one line at a time

while i < len(trajTemp):

# the current cargo number (trajectory)

cargoNumber = trajTemp[i][8]

if cargoNumber in xTrajTemp:

# add the x, y, t values to their corresponding

key/list

xTrajTemp[cargoNumber ]. append(float(trajTemp[i

][0]))

yTrajTemp[cargoNumber ]. append(float(trajTemp[i

][1]))

tTrajTemp[cargoNumber ]. append(float(trajTemp[i

][2]))

else:

# a new cargo number was found

# create a new list

xTrajTemp[cargoNumber] = [float(trajTemp[i][0])]

yTrajTemp[cargoNumber] = [float(trajTemp[i][1])]

tTrajTemp[cargoNumber] = [float(trajTemp[i][2])]

# move to the next line in the file

i += 1
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return xTrajTemp ,yTrajTemp ,tTrajTemp

def tortsGet(xDict ,yDict ,tDict):

# find the tortuosity for each trajectory

tortsTemp = {}

tortCounts = 0.0

tortSum = 0.0

# go through each trajectory

for key in tDict:

x = xDict[key]

y = yDict[key]

i = 1

pathLength = 0

while i < len(tDict[key]):

dx = x[i] - x[i-1]

dy = y[i] - y[i-1]

dis2 = dx*dx + dy*dy

pathLength += (dis2)**(0.5)

i += 1

finalDis = ((x[len(xDict[key]) -1]-x[0]) **2.0 + (y[len(

yDict[key]) -1]-y[0]) **2.0) **(0.5)

tortsTemp[key] = [pathLength ,finalDis]

# check the tortuosity parameters and keep track of "large

" tortuosity

largesTemp = []

for key in tortsTemp:

if tortsTemp[key ][1] == 0.0:

tortsTemp[key] = 0

else:

tortsTemp[key] = tortsTemp[key ][0] / tortsTemp[key

][1]

tortCounts += 1.0

tortSum += tortsTemp[key]

# add cargo number to list of those with "large"

tortuosities

if tortsTemp[key] >= 2.0:

largesTemp.append(key)

avgTemp = tortSum / tortCounts
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return tortsTemp ,largesTemp ,avgTemp

def msdGet(xDict ,yDict ,tDict):

# dictionary of MSDs for all trajectories

# (will be a dictionary of lists)

allMsdsTemp = {}

# go through each trajectory

for key in tDict:

# x, y values for each cargo number (trajectory)

x = xDict[key]

y = yDict[key]

# list of MSDs for each trajectory

msdList = []

# the current size of the time step "window"

windowSize = 1

# calculate msd for each window size

while windowSize < len(tDict[key]):

dis2tot = 0

counts = 0

i = windowSize

# start moving the time step "window"

while i < len(tDict[key]):

dx = x[i] - x[i - windowSize]

dy = y[i] - y[i - windowSize]

dis2 = dx*dx + dy*dy

dis2tot += dis2

# how many times dis2 was calculated for this

# time "window"

counts += 1

# move the window to the next x, y values

i += 1

# msd for the current time step window

msd = dis2tot / counts

msdList.append(msd)

# increase the size of the "window" by one time

step

windowSize += 1

# add the current MSD list to the dictionary of all

MSDs

allMsdsTemp[key] = msdList

# calculate the ensemble average MSD
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msdListAvgTemp = []

for i in range (1000):

tot = 0

counts = 0

# go through each trajectory MSD

for key in allMsdsTemp:

if len(allMsdsTemp[key]) > i:

tot += allMsdsTemp[key][i]

# the number of trajectories that last up to

this time step

counts += 1

if counts != 0:

avg = float(tot)/counts

msdListAvgTemp.append(avg)

return allMsdsTemp ,msdListAvgTemp

def distributionsGet(xDict ,yDict):

# make a dictionary of run lengths , one for each cargo

runLengths = {}

maxRunLength = 0

# calculate run lengths for all cargos

for key in xDict:

xList = xDict[key]

yList = yDict[key]

i = 1

runLength = 0

while i < len(xList):

dx = xList[i] - xList[i-1]

dy = yList[i] - yList[i-1]

dis2 = dx*dx + dy*dy

runLength += (dis2) ** (0.5)

i += 1

runLengths[key] = runLength

if runLength > maxRunLength:

maxRunLength = int(runLength)

# calculating run length distribution for cargos

lengthDistTemp = {}

maxCount = 0

for key in runLengths:

lengthInt = int(runLengths[key])

if lengthInt > maxCount:

maxCount = lengthInt



CHAPTER 7. APPENDIX: COMPUTER PROGRAMS USED 197

if lengthInt not in lengthDistTemp:

lengthDistTemp[lengthInt] = 1

else:

lengthDistTemp[lengthInt] += 1

lengthDistListTemp = [0] * (maxCount + 1)

for i in range(len(lengthDistListTemp)):

if i in lengthDistTemp:

lengthDistListTemp[i] = lengthDistTemp[i]

# normalize run length distribution

totalCounts = 0

for i in range(len(lengthDistListTemp)):

totalCounts += lengthDistListTemp[i]

for i in range(len(lengthDistListTemp)):

lengthDistListTemp[i] /= float(totalCounts)

# run length values

runLengthValuesTemp = list(range(0, maxRunLength +1))

runLengthValuesTemp = np.array(runLengthValuesTemp)

# calculate run length distribution CDF

lengthDistCDFTemp = []

cdfCounter = 0

for i in range(len(lengthDistListTemp)):

lengthDistCDFTemp.append(cdfCounter)

cdfCounter += lengthDistListTemp[i]

# fit the PDF and CDF

fitParamsPDFTemp ,fitCovPDFTemp = curve_fit(expFitPDF ,

runLengthValuesTemp ,lengthDistListTemp)

fitParamsCDFTemp ,fitCovCDFTemp = curve_fit(expFitCDF ,

runLengthValuesTemp ,lengthDistCDFTemp)

return runLengthValuesTemp ,lengthDistListTemp ,

lengthDistCDFTemp ,fitParamsPDFTemp ,fitCovPDFTemp ,

fitParamsCDFTemp ,fitCovCDFTemp

# reads and analyzes data from the multiple trajectories text

file

def main():

# time values used in MSD plots (each time step lasts 0.1

s)
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times = list(range (0 ,1001))

for i in range(len(times)):

times[i] /= 10.0

times = np.array(times)

switchProbs =

[0.0 ,0.1 ,0.2 ,0.3 ,0.4 ,0.5 ,0.6 ,0.7 ,0.8 ,0.9 ,1.0]

#print switchProbs

# open all files

traj00 = openFile(’

multipleCargoTrajectoriesNumCargos1000SwitchProb0 .000

kOff0 .001.txt ’)

traj01 = openFile(’

multipleCargoTrajectoriesNumCargos1000SwitchProb0 .100

kOff0 .001.txt ’)

traj02 = openFile(’

multipleCargoTrajectoriesNumCargos1000SwitchProb0 .200

kOff0 .001.txt ’)

traj03 = openFile(’

multipleCargoTrajectoriesNumCargos1000SwitchProb0 .300

kOff0 .001.txt ’)

traj04 = openFile(’

multipleCargoTrajectoriesNumCargos1000SwitchProb0 .400

kOff0 .001.txt ’)

traj05 = openFile(’

multipleCargoTrajectoriesNumCargos1000SwitchProb0 .500

kOff0 .001.txt ’)

traj06 = openFile(’

multipleCargoTrajectoriesNumCargos1000SwitchProb0 .600

kOff0 .001.txt ’)

traj07 = openFile(’

multipleCargoTrajectoriesNumCargos1000SwitchProb0 .700

kOff0 .001.txt ’)

traj08 = openFile(’

multipleCargoTrajectoriesNumCargos1000SwitchProb0 .800

kOff0 .001.txt ’)

traj09 = openFile(’

multipleCargoTrajectoriesNumCargos1000SwitchProb0 .900

kOff0 .001.txt ’)

traj10 = openFile(’

multipleCargoTrajectoriesNumCargos1000SwitchProb1 .000

kOff0 .001.txt ’)
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# the above is in the form traj[row][ column]

# get x,y,t dictionaries

xTraj00 ,yTraj00 ,tTraj00 = xytGet(traj00)

xTraj01 ,yTraj01 ,tTraj01 = xytGet(traj01)

xTraj02 ,yTraj02 ,tTraj02 = xytGet(traj02)

xTraj03 ,yTraj03 ,tTraj03 = xytGet(traj03)

xTraj04 ,yTraj04 ,tTraj04 = xytGet(traj04)

xTraj05 ,yTraj05 ,tTraj05 = xytGet(traj05)

xTraj06 ,yTraj06 ,tTraj06 = xytGet(traj06)

xTraj07 ,yTraj07 ,tTraj07 = xytGet(traj07)

xTraj08 ,yTraj08 ,tTraj08 = xytGet(traj08)

xTraj09 ,yTraj09 ,tTraj09 = xytGet(traj09)

xTraj10 ,yTraj10 ,tTraj10 = xytGet(traj10)

# get all tortuosities and average tortuosity for each set

of data

torts00 ,larges00 ,avgTort00 = tortsGet(xTraj00 ,yTraj00 ,

tTraj00)

torts01 ,larges01 ,avgTort01 = tortsGet(xTraj01 ,yTraj01 ,

tTraj01)

torts02 ,larges02 ,avgTort02 = tortsGet(xTraj02 ,yTraj02 ,

tTraj02)

torts03 ,larges03 ,avgTort03 = tortsGet(xTraj03 ,yTraj03 ,

tTraj03)

torts04 ,larges04 ,avgTort04 = tortsGet(xTraj04 ,yTraj04 ,

tTraj04)

torts05 ,larges05 ,avgTort05 = tortsGet(xTraj05 ,yTraj05 ,

tTraj05)

torts06 ,larges06 ,avgTort06 = tortsGet(xTraj06 ,yTraj06 ,

tTraj06)

torts07 ,larges07 ,avgTort07 = tortsGet(xTraj07 ,yTraj07 ,

tTraj07)

torts08 ,larges08 ,avgTort08 = tortsGet(xTraj08 ,yTraj08 ,

tTraj08)

torts09 ,larges09 ,avgTort09 = tortsGet(xTraj09 ,yTraj09 ,

tTraj09)

torts10 ,larges10 ,avgTort10 = tortsGet(xTraj10 ,yTraj10 ,

tTraj10)

#print avgTort10

#tortMax = 0.0

#for key in torts10:
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#print torts10[key]

#plt.plot(key ,torts10[key],’o’)

#plt.show()

# plot average tortuosity as a function of switching

probability

#plt.scatter (0.0, avgTort00)

#plt.scatter (0.1, avgTort01)

#plt.scatter (0.2, avgTort02)

#plt.scatter (0.3, avgTort03)

#plt.scatter (0.4, avgTort04)

#plt.scatter (0.5, avgTort05)

#plt.scatter (0.6, avgTort06)

#plt.scatter (0.7, avgTort07)

#plt.scatter (0.8, avgTort08)

#plt.scatter (0.9, avgTort09)

#plt.scatter (1.0, avgTort10)

#plt.xlabel(’switching probability ’)

#plt.ylabel(’average tortuosity ’)

#plt.show()

#im = plt.imread(’s5part1__cmle001.png ’)

#implot = plt.imshow(im ,extent

=[0 ,512*0.0675 ,512*0.0675 ,0])

#implot = plt.imshow(im ,extent =[0 ,34.75 ,34.75 ,0])

#for key in tTraj00:

# if key in larges00:

# plt.plot(xTraj00[key],yTraj00[key],color=’yellow

’)

#plt.annotate(key ,xy=( xTraj00[key][0], yTraj00[key

][0]),color=’yellow ’,size =8)

# else:

# plt.plot(xTraj00[key],yTraj00[key],color=’blue ’)

#plt.annotate(key ,xy=( xTraj[key][0], yTraj[key ][0])

,color=’lime ’,size =8)

#plt.xlabel(’x ($\mu m$) ’)

#plt.ylabel(’y ($\mu m$) ’)

#plt.show()

# get all MSDs and the average MSD for each set of data

allMSDs00 ,msdListAvg00 = msdGet(xTraj00 ,yTraj00 ,tTraj00)
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allMSDs01 ,msdListAvg01 = msdGet(xTraj01 ,yTraj01 ,tTraj01)

allMSDs02 ,msdListAvg02 = msdGet(xTraj02 ,yTraj02 ,tTraj02)

allMSDs03 ,msdListAvg03 = msdGet(xTraj03 ,yTraj03 ,tTraj03)

allMSDs04 ,msdListAvg04 = msdGet(xTraj04 ,yTraj04 ,tTraj04)

allMSDs05 ,msdListAvg05 = msdGet(xTraj05 ,yTraj05 ,tTraj05)

allMSDs06 ,msdListAvg06 = msdGet(xTraj06 ,yTraj06 ,tTraj06)

allMSDs07 ,msdListAvg07 = msdGet(xTraj07 ,yTraj07 ,tTraj07)

allMSDs08 ,msdListAvg08 = msdGet(xTraj08 ,yTraj08 ,tTraj08)

allMSDs09 ,msdListAvg09 = msdGet(xTraj09 ,yTraj09 ,tTraj09)

allMSDs10 ,msdListAvg10 = msdGet(xTraj10 ,yTraj10 ,tTraj10)

distList = []

probList = []

# finding fit for average MSDs

fitList00 ,tempList00 = curve_fit(walkerMsdFit ,times [:100] ,

msdListAvg00 [:100] , bounds =(0 ,[20.0 ,1.0]))

distList.append(fitList00 [0])

probList.append(fitList00 [1])

fitList01 ,tempList01 = curve_fit(walkerMsdFit ,times [:100] ,

msdListAvg01 [:100] , bounds =(0 ,[20.0 ,1.0]))

distList.append(fitList01 [0])

probList.append(fitList01 [1])

fitList02 ,tempList02 = curve_fit(walkerMsdFit ,times [:100] ,

msdListAvg02 [:100] , bounds =(0 ,[20.0 ,1.0]))

distList.append(fitList02 [0])

probList.append(fitList02 [1])

fitList03 ,tempList03 = curve_fit(walkerMsdFit ,times [:100] ,

msdListAvg03 [:100] , bounds =(0 ,[20.0 ,1.0]))

distList.append(fitList03 [0])

probList.append(fitList03 [1])

fitList04 ,tempList04 = curve_fit(walkerMsdFit ,times [:100] ,

msdListAvg04 [:100] , bounds =(0 ,[20.0 ,1.0]))

distList.append(fitList04 [0])

probList.append(fitList04 [1])

fitList05 ,tempList05 = curve_fit(walkerMsdFit ,times [:100] ,

msdListAvg05 [:100] , bounds =(0 ,[20.0 ,1.0]))

distList.append(fitList05 [0])

probList.append(fitList05 [1])
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fitList06 ,tempList06 = curve_fit(walkerMsdFit ,times [:100] ,

msdListAvg06 [:100] , bounds =(0 ,[20.0 ,1.0]))

distList.append(fitList06 [0])

probList.append(fitList06 [1])

fitList07 ,tempList07 = curve_fit(walkerMsdFit ,times [:100] ,

msdListAvg07 [:100] , bounds =(0 ,[20.0 ,1.0]))

distList.append(fitList07 [0])

probList.append(fitList07 [1])

fitList08 ,tempList08 = curve_fit(walkerMsdFit ,times [:100] ,

msdListAvg08 [:100] , bounds =(0 ,[20.0 ,1.0]))

distList.append(fitList08 [0])

probList.append(fitList08 [1])

fitList09 ,tempList09 = curve_fit(walkerMsdFit ,times [:100] ,

msdListAvg09 [:100] , bounds =(0 ,[20.0 ,1.0]))

distList.append(fitList09 [0])

probList.append(fitList09 [1])

fitList10 ,tempList10 = curve_fit(walkerMsdFit ,times [:100] ,

msdListAvg10 [:100] , bounds =(0 ,[20.0 ,1.0]))

distList.append(fitList10 [0])

probList.append(fitList10 [1])

#print distList

#print probList

# plot distances between filament intersections and

switching probabilities

# plot them in the same figure but using two axes

#plt.plot(switchProbs ,distList ,’o’)

#plt.plot(switchProbs ,probList ,’o’)

#plt.xlabel(’switching probability (used in simulation) ’)

#plt.ylabel(’effective distance between filament

intersections ’)

#plt.ylabel(’effective switching probability ’)

#figShared , ax1 = plt.subplots ()

#ax2 = ax1.twinx()

#ax1.plot(switchProbs ,distList ,’o’,color=’blue ’)

#ax2.plot(switchProbs ,probList ,’o’,color=’green ’)

#ax1.set_xlabel(’switching probability (used in simulation

)’)

#ax1.set_ylabel(’effective distance between filament

intersections ’,color=’blue ’)
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#ax2.set_ylabel(’effective switching probability ’,color=’

green ’)

#plt.show()

# plotting all MSDs for each trajectory

#for key in allMSDs03:

# plt.scatter(times [:len(allMSDs03[key])],allMSDs03[key

])

# plot the ensemble average MSD

plt.plot(times [:100] ,np.array(msdListAvg00 [:100]) ,’o’)

plt.plot(times [:100] , walkerMsdFit(times [:100] , fitList00

[0], fitList00 [1]),label=’switch probability: 0.0’)

plt.plot(times [:100] ,np.array(msdListAvg01 [:100]) ,’o’)

plt.plot(times [:100] , walkerMsdFit(times [:100] , fitList01

[0], fitList01 [1]),label=’switch probability: 0.1’)

plt.plot(times [:100] ,np.array(msdListAvg02 [:100]) ,’o’)

plt.plot(times [:100] , walkerMsdFit(times [:100] , fitList02

[0], fitList02 [1]),label=’switch probability: 0.2’)

#plt.plot(times [:100] ,np.array(msdListAvg03 [:100]) ,’o’)

#plt.plot(times [:100] , walkerMsdFit(times [:100] , fitList03

[0], fitList03 [1]),label=’switch probability: 0.3’)

#plt.plot(times [:100] ,np.array(msdListAvg04 [:100]) ,’o’)

#plt.plot(times [:100] , walkerMsdFit(times [:100] , fitList04

[0], fitList04 [1]),label=’switch probability: 0.4’)

#plt.plot(times [:100] ,np.array(msdListAvg05 [:100]) ,’o’)

#plt.plot(times [:100] , walkerMsdFit(times [:100] , fitList05

[0], fitList05 [1]),label=’switch probability: 0.5’)

#plt.plot(times [:100] ,np.array(msdListAvg06 [:100]) ,’o’)

#plt.plot(times [:100] , walkerMsdFit(times [:100] , fitList06

[0], fitList06 [1]),label=’switch probability: 0.6’)

#plt.plot(times [:100] ,np.array(msdListAvg07 [:100]) ,’o’)

#plt.plot(times [:100] , walkerMsdFit(times [:100] , fitList07

[0], fitList07 [1]),label=’switch probability: 0.7’)
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#plt.plot(times [:100] ,np.array(msdListAvg08 [:100]) ,’o’)

#plt.plot(times [:100] , walkerMsdFit(times [:100] , fitList08

[0], fitList08 [1]),label=’switch probability: 0.8’)

#plt.plot(times [:100] ,np.array(msdListAvg09 [:100]) ,’o’)

#plt.plot(times [:100] , walkerMsdFit(times [:100] , fitList09

[0], fitList09 [1]),label=’switch probability: 0.9’)

#plt.plot(times [:100] ,np.array(msdListAvg10 [:100]) ,’o’)

#plt.plot(times [:100] , walkerMsdFit(times [:100] , fitList10

[0], fitList10 [1]),label=’switch probability: 1.0’)

plt.xlabel(’time (s)’)

plt.ylabel(’MSD $\mu m^2 / s$ ’)

plt.legend(loc=’upper left ’)

plt.show()

# get run length distribution information

runLengthValues00 ,lengthDistList00 ,lengthDistCDF00 ,

fitParamsPDF00 ,fitCovPDF00 ,fitParamsCDF00 ,fitCovCDF00 =

distributionsGet(xTraj00 ,yTraj00)

runLengthValues01 ,lengthDistList01 ,lengthDistCDF01 ,

fitParamsPDF01 ,fitCovPDF01 ,fitParamsCDF01 ,fitCovCDF01 =

distributionsGet(xTraj01 ,yTraj01)

runLengthValues02 ,lengthDistList02 ,lengthDistCDF02 ,

fitParamsPDF02 ,fitCovPDF02 ,fitParamsCDF02 ,fitCovCDF02 =

distributionsGet(xTraj02 ,yTraj02)

runLengthValues03 ,lengthDistList03 ,lengthDistCDF03 ,

fitParamsPDF03 ,fitCovPDF03 ,fitParamsCDF03 ,fitCovCDF03 =

distributionsGet(xTraj03 ,yTraj03)

runLengthValues04 ,lengthDistList04 ,lengthDistCDF04 ,

fitParamsPDF04 ,fitCovPDF04 ,fitParamsCDF04 ,fitCovCDF04 =

distributionsGet(xTraj04 ,yTraj04)

runLengthValues05 ,lengthDistList05 ,lengthDistCDF05 ,

fitParamsPDF05 ,fitCovPDF05 ,fitParamsCDF05 ,fitCovCDF05 =

distributionsGet(xTraj05 ,yTraj05)

runLengthValues06 ,lengthDistList06 ,lengthDistCDF06 ,

fitParamsPDF06 ,fitCovPDF06 ,fitParamsCDF06 ,fitCovCDF06 =

distributionsGet(xTraj06 ,yTraj06)

runLengthValues07 ,lengthDistList07 ,lengthDistCDF07 ,

fitParamsPDF07 ,fitCovPDF07 ,fitParamsCDF07 ,fitCovCDF07 =

distributionsGet(xTraj07 ,yTraj07)
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runLengthValues08 ,lengthDistList08 ,lengthDistCDF08 ,

fitParamsPDF08 ,fitCovPDF08 ,fitParamsCDF08 ,fitCovCDF08 =

distributionsGet(xTraj08 ,yTraj08)

runLengthValues09 ,lengthDistList09 ,lengthDistCDF09 ,

fitParamsPDF09 ,fitCovPDF09 ,fitParamsCDF09 ,fitCovCDF09 =

distributionsGet(xTraj09 ,yTraj09)

runLengthValues10 ,lengthDistList10 ,lengthDistCDF10 ,

fitParamsPDF10 ,fitCovPDF10 ,fitParamsCDF10 ,fitCovCDF10 =

distributionsGet(xTraj10 ,yTraj10)

# plot run length distribution

#plt.plot(runLengthValues ,lengthDistList ,’o’,label=’PDF ’)

#plt.plot(runLengthValues ,expFitPDF(runLengthValues ,

fitParamsPDF [0], fitParamsPDF [1]),label=’PDF fit ’)

#plt.plot(runLengthValues ,lengthDistCDF ,’o’,label=’CDF ’)

#plt.plot(runLengthValues ,expFitCDF(runLengthValues ,

fitParamsCDF [0]),label=’CDF fit ’)

#plt.xlabel(’run length ($\mu$m) ’)

#plt.ylabel(’probability values ’)

#plt.show()

main()

7.4.5 analyzeDataUMass2.py

Analyze the experimental data obtained through tracking the movement of cargos in
vitro on a network of microtubule bundels.

import openpyxl

import matplotlib.pyplot as plt

from scipy.optimize import curve_fit

import math

import numpy as np

import matplotlib

def expFitPDF(t,a,b):

return a*np.exp(-b*t)

def expFitCDF(t,a,b):

return (a/b)*(1 - np.exp(-b*t))

def main():

#open and read from the two files
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#1-motor tracks

wb1 = openpyxl.load_workbook(’QD_1to1_tracks_for_Ajay.xlsx

’)

#10-motor tracks

wb10 = openpyxl.load_workbook(’QD_1to10_tracks_for_Ajay.

xlsx ’)

#get necessary sheets

sheet1 = wb1.get_sheet_by_name(’Sheet1 ’)

sheet10 = wb10.get_sheet_by_name(’Sheet1 ’)

#keep a dictionary of TrackID keys

tracks1 = {}

tracks10 = {}

#building 1-motor track dictionary

for row in range(2,sheet1.max_row +1):

trackId = int(sheet1[’A’+str(row)]. value)

# convert x,y values to um

x = float(sheet1[’C’+str(row)].value)/1000

y = float(sheet1[’D’+str(row)].value)/1000

t = sheet1[’E’+str(row)]. value

#building a map to a list of lists

if trackId not in tracks1:

#if new trackId , start building lists

x1 = [x]

y1 = [y]

t1 = [t]

tracks1[trackId] = [x1 ,y1 ,t1]

else:

x1.append(x)

y1.append(y)

t1.append(t)

tracks1[trackId] = [x1 ,y1 ,t1]

#building 10-motor track dictionary

for row in range(2,sheet10.max_row +1):

trackId = int(sheet10[’A’+str(row)]. value)

# convert x,y values to um

x = float(sheet10[’C’+str(row)].value)/1000

y = float(sheet10[’D’+str(row)].value)/1000

t = sheet10[’E’+str(row)]. value

#building a map to a list of lists
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if trackId not in tracks10:

#if new trackId , start building lists

x10 = [x]

y10 = [y]

t10 = [t]

tracks10[trackId] = [x10 ,y10 ,t10]

else:

x10.append(x)

y10.append(y)

t10.append(t)

tracks10[trackId] = [x10 ,y10 ,t10]

# start making run length distribution calculations

# make a dictionary of run lengths , one for each track

runLengths1 = {}

runLengths10 = {}

# calculate run lengths for all one -motor tracks

for key in tracks1:

xList = tracks1[key ][0]

yList = tracks1[key ][1]

i = 1

runLength = 0

while i < len(xList):

dx = xList[i] - xList[i-1]

dy = yList[i] - yList[i-1]

dis2 = dx*dx + dy*dy

runLength += (dis2) ** (0.5)

i += 1

runLengths1[key] = runLength

# calculate run lengths for all ten -motor tracks

for key in tracks10:

xList = tracks10[key ][0]

yList = tracks10[key ][1]

i = 1

runLength = 0

while i < len(xList):

dx = xList[i] - xList[i-1]

dy = yList[i] - yList[i-1]

dis2 = dx*dx + dy*dy

runLength += (dis2) ** (0.5)

i += 1
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runLengths10[key] = runLength

# calculating run length distribution for one -motor tracks

lengthDist1 = {}

maxCount = 0

for key in runLengths1:

lengthInt = int(runLengths1[key])

if lengthInt > maxCount:

maxCount = lengthInt

if lengthInt not in lengthDist1:

lengthDist1[lengthInt] = 1

else:

lengthDist1[lengthInt] += 1

lengthDistList1 = [0] * (maxCount + 1)

for i in range(len(lengthDistList1)):

if i in lengthDist1:

lengthDistList1[i] = lengthDist1[i]

# calculating run length distribution for one -motor tracks

lengthDist10 = {}

maxCount = 0

for key in runLengths10:

lengthInt = int(runLengths10[key])

if lengthInt > maxCount:

maxCount = lengthInt

if lengthInt not in lengthDist10:

lengthDist10[lengthInt] = 1

else:

lengthDist10[lengthInt] += 1

lengthDistList10 = [0] * (maxCount + 1)

for i in range(len(lengthDistList10)):

if i in lengthDist10:

lengthDistList10[i] = lengthDist10[i]

# testing

#print lengthDist1

#print lengthDistList1

#print lengthDist10

#print lengthDistList10

# normalize run length distributions

# one -motor tracks

totalCounts = 0
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for i in range(len(lengthDistList1)):

totalCounts += lengthDistList1[i]

for i in range(len(lengthDistList1)):

lengthDistList1[i] /= float(totalCounts)

# ten -motor tracks

totalCounts = 0

for i in range(len(lengthDistList10)):

totalCounts += lengthDistList10[i]

for i in range(len(lengthDistList10)):

lengthDistList10[i] /= float(totalCounts)

# run length values

runLengthValues = list(range (0 ,36))

runLengthValues = np.array(runLengthValues)

#print runLengthValues

# calculate the run length distribution CDFs

# one -motor tracks

lengthDistCDF1 = []

cdfCounter = 0

for i in range(len(lengthDistList1)):

cdfCounter += lengthDistList1[i]

lengthDistCDF1.append(cdfCounter)

# ten -motor tracks

lengthDistCDF10 = []

cdfCounter = 0

for i in range(len(lengthDistList10)):

lengthDistCDF10.append(cdfCounter)

cdfCounter += lengthDistList10[i]

# fit the CDFs

fitParamsCDF1 ,fitCovCDF1 = curve_fit(expFitCDF ,

runLengthValues ,lengthDistCDF1 [:36])

fitParamsCDF10 ,fitCovCDF10 = curve_fit(expFitCDF ,

runLengthValues [:34] , lengthDistCDF10 [:34])

print fitParamsCDF1 , fitParamsCDF10

# plot run length distributions

#plt.plot(lengthDistList1 [:36])

#plt.plot(lengthDistList10 [:36])
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plt.plot(lengthDistCDF1 [:36],’o’,label=’one -motor tracks

CDF ’)

plt.plot(runLengthValues ,expFitCDF(runLengthValues ,

fitParamsCDF1 [0], fitParamsCDF1 [1]),label=’one -motor

tracks CDF fit ’)

plt.plot(lengthDistCDF10 [:36],’o’,label=’ten -motor tracks

CDF ’)

plt.plot(runLengthValues [:34] , expFitCDF(runLengthValues

[:34] , fitParamsCDF10 [0], fitParamsCDF10 [1]),label=’ten -

motor tracks CDF fit ’)

plt.xlabel(’run length ($\mu$m)’)

plt.ylabel(’CDF for run length distribution ’)

#plt.text(20,0.6,’one -motor CDF: $1 - e^{ -0.208x}$’)

#plt.text(20,0.5,’ten -motor CDF: $1 - e^{ -0.142x}$’)

plt.legend ()

plt.show()

# start making MSD calculations

#lists of MSDs

msdList1 = []

msdList10 = []

#extract a trajectory list from the dictionary

for key in tracks1:

xytv = tracks1[key]

#start making a list of mean squared displacements

passNum = 1

msdList = []

while passNum < len(xytv [2]):

dis2tot = 0

counts = 0

i = passNum

while i < len(xytv [2]):

dx = xytv [0][i] - xytv [0][i-passNum]

#print dx

dy = xytv [1][i] - xytv [1][i-passNum]

#print dy

dis2 = dx*dx + dy*dy

dis2tot = dis2tot + dis2

counts = counts + 1

i = i + 1
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msd = dis2tot / counts

msdList.append(msd)

passNum = passNum + 1

msdList1.append(msdList)

#extract a trajectory list from the dictionary

for key in tracks10:

xytv = tracks10[key]

#start making a list of mean squared displacements

passNum = 1

msdList = []

while passNum < len(xytv [2]):

dis2tot = 0

counts = 0

i = passNum

while i < len(xytv [2]):

dx = xytv [0][i] - xytv [0][i-passNum]

#print dx

dy = xytv [1][i] - xytv [1][i-passNum]

#print dy

dis2 = dx*dx + dy*dy

dis2tot = dis2tot + dis2

counts = counts + 1

i = i + 1

msd = dis2tot / counts

msdList.append(msd)

passNum = passNum + 1

msdList10.append(msdList)

#lists of average MSDs

msdList1Avg = []

msdList10Avg = []

#print msdList1 [1]

msd1Num = [0]*120

msd10Num = [0]*160
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# calculating MSD averages

for i in range (500):

tot = 0

counts = 0

for item in msdList1:

if len(item) > i:

tot = tot + item[i]

counts = counts + 1

msd1Num[i] += 1

if counts != 0:

avg = float(tot)/counts

msdList1Avg.append(avg)

for i in range (500):

tot = 0

counts = 0

for item in msdList10:

if len(item) > i:

tot = tot + item[i]

counts = counts + 1

msd10Num[i] += 1

if counts != 0:

avg = float(tot)/counts

msdList10Avg.append(avg)

# MSD plots

#fig = plt.figure ()

#ax1 = fig.add_subplot (111)

#line1 = ax1.plot(msdList1Avg ,label=’1 motor MSD average ’)

#line2 = ax1.plot(msdList10Avg ,label =’10 motor MSD average

’)

#ax1.set_xlabel(’Number of time steps ’)

#ax1.set_ylabel(’MSD $(nm^2)$’)

#ax1.legend ()

#ax2 = ax1.twinx ()

#line3 = ax2.plot(msd1Num ,’g’,label=’1-motor tracks ’)

#line4 = ax2.plot(msd10Num ,’r’,label=’10-motor tracks ’)

#ax2.set_ylabel(’Tracks remaining ’)

#ax2.legend(loc=’center right ’)

# image plots

#im = plt.imread(’QD_1to10_ch1005_mts.png ’)

#im = plt.imread(’QDlom_1to1_1to50MT_MT_001.png ’)
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#implot = plt.imshow(im ,extent

=[0 ,512*0.0675 ,512*0.0675 ,0])

#for key in tracks1:

# plt.plot(tracks1[key][0], tracks1[key][1], color=’blue

’)

# plt.annotate(key ,xy=(xTraj[key][0], yTraj[key ][0]) ,

color=’lime ’,size =8)

#plt.show()

main()
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[43] K. Schwarz, Y. Schröder, B. Qu, M. Hoth, and H. Rieger. Optimality of spatially
inhomogeneous search strategies. Physical Review Letters, 117(6):068101, 2016.

[44] K. Chen, B. Wang, and S. Granick. Memoryless self-reinforcing directionality in
endosomal active transport within living cells. Nature Materials, 14(6):589–593,
2015.

[45] A. G. Hendricks, E. Perlson, J. L. Ross, H. W. Schroeder III, M. Tokito, and
E. L. F. Holzbaur. Motor coordination via tug-of-war mechanism drives bidirec-
tional vesicle transport. Current Biology, 20(8):697–702, 2010.

[46] M. Weiss. Single-particle tracking data reveal anticorrelated fractional brownian
motion in crowded fluids. Physical Review E, 88(1):010101, 2013.

[47] D. Cai, D. P. McEwen, J. R. Martens, E. Mayhöfer, and K. J. Verhey. Sin-
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