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Abstract 

The feature model of immediate memory (Nairne, 1990) is 
applied to an experiment testing individual differences in 
phonological confusions amongst a group (N=100) of 
participants performing a verbal memory test. By simulating the 
performance of an equivalent number of “pseudo-participants” 
the model fits both the mean performance and the variability 
within the group. Experimental data show that high-performing 
individuals are significantly more likely to demonstrate 
phonological confusions than low performance individuals and 
this is also true of the model, despite the model’s lack of either 
an explicit phonological store or a performance-linked strategy 
shift away from phonological storage. It is concluded that a 
dedicated phonological store is not necessary to explain the 
basic phonological confusion effect, and the reduction in such 
an effect can also be explained without requiring a change in 
encoding or rehearsal strategy or the deployment of a different 
storage buffer. 

Keywords: Short-term memory; Cognitive modeling; 
Individual differences. 
 

Individual Differences in Immediate Memory 
Research into immediate verbal memory is now sufficiently 
well-advanced that a number of phenomena are taken to 
typify the functioning of immediate memory. In particular, 
the phonological similarity effect (PSE), the simple empirical 
observation that verbal items, whether visually or auditorily 
presented, are more likely to become confused on immediate 
recall tests if they sound alike (Conrad, 1964), is taken as 
prima facie evidence for the existence and utilization of a 
short-term phonological store (Baddeley, 1986, 2003). By 
extension, the lack of a phonological similarity effect is 
frequently interpreted as the absence of a phonological store, 
for example in neuropsychological case studies of brain-
damaged individuals (Della Sala & Logie, 1997; Vallar & 
Baddeley, 1984; Vallar & Shallice, 1990). In less severe cases 
the appearance of a reduced PSE is interpreted as the failure 
to make use of the store, for example in developmental 

studies of young children’s memory, (Hitch & Halliday, 
1983; Hulme, Thomson, Muir & Lawrence, 1984), or in 
recall of supra-span lists which might be interpreted as 
requiring longer-term memory storage (Baddeley, 2000a) or 
implicating the existence of an alternative form of episodic 
short-term storage (Baddeley, 2000b). However, as noted by 
Logie and colleagues (Della Sala & Logie, 1997; Logie, Della 
Sala, Laiacona, Chalmers & Wynn, 1996) although the effect 
is robust at the group-level of analysis, it is routinely absent 
from the recall protocols of a minority of normally-
functioning individuals. The current study aims to examine 
whether a particular model of immediate memory, the feature 
model of Nairne (1990) can account for variation in 
immediate memory performance and in the appearance of the 
PSE. 

The feature model was chosen for this study for a number of 
reasons: Firstly, it is an extant model of immediate memory 
that has not previously been applied to individual differences 
data. In this it is not unique. To our knowledge, only the 
ACT-R list memory simulation (Anderson, Reader & 
Lebiere, 1996) has been applied to model individual data, 
although models have been applied to neuropsychological 
data (e.g., Brown, Della Sala, Foster & Vousden, in press). 
Secondly, the feature model, unlike other models eschews a 
dedicated phonological store and instead represents 
information in terms of abstract “features” including, but not 
restricted to, phonological features. Thirdly, the model has no 
strategic rehearsal mechanism. Any individual differences 
predicted by the model must therefore be a straightforward 
effect of mnemonic efficiency, rather than a by-product of the 
efficacy of one particular rehearsal or other maintenance 
strategy. Fourthly, the predictions of the model are based 
upon running multiple trials (typically 2-5000) and reporting 
the average performance as “the” prediction of the model. 
Like many models in which performance is simulated rather 
than calculated, the ontological status of individual trials or 
runs of the model has always been ambiguous. Here we 
suggest that individual simulation runs can be examined as if 
they were individual experimental trials. Averaging over a 
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series of such runs will provide data representing the 
performance of a “pseudo-participant” in a computational 
experiment (cf., Cooper, Yule & Fox, 2003; Hintzman, 1986). 

Backgound to the feature model. 
The basic idea behind the feature model is that recall is 
guided by a set of “Primary Memory” (PM) cues of varying 
effectiveness in identifying the target item from a search set 
defined within “Secondary Memory” (SM), or memory 
proper. The major function of PM is to hold a variety of cues 
indicating which items were recently presented. Cues do not 
decay but are subject to a process of interference that renders 
the cues less accurate and comprises the basic mechanism for 
memory limitations. Formally, items in PM and SM comprise 
sets of internally-generated modality-independent (MI) and 
externally generated modality-dependent (MD) features 
organized as row vectors. For simulation purposes, feature 
values are randomly generated. The main source of forgetting 
in the model is retroactive interference: If feature x of item 
n+1 is identical to feature x of item n, then the value 
representing feature x of item n is lost and cannot be used as a 
recall cue. A simplifying assumption is that only immediately 
adjacent items interfere. 

In the feature model, order information is represented as a 
point in multidimensional space and this point can perturb (or 
drift) along the relevant dimension as described by Estes 
(1972). The probability that a cue’s encoded representation 
will perturb along the position dimension during a particular 
time interval is given by the parameter θ, which is held 
constant at .05. The probability that an item, i, will occupy a 
particular position p during the next time interval is therefore 
given by the probability that no perturbation occurred (1- θ) 
and the item was already in position p plus the probability 
that a perturbation occurred and the item was one position 
away from position p. Recall begins by determining, for each 
cue in primary memory, which was most likely to occupy 
position 1 originally. To recall the second item, the cue that 
was most likely in position 2 is used, and so on (see Neath, 
1999a for a full explanation). The relative number of features 
available to cue the item in SM then dictates recall 
performance. The probability that a particular SM trace SMj 
will be retrieved for a particular PM cue PMi is calculated 
according to Equation 1. The value Mk is equal to 1 if the 
feature at position k of PM cue i does not match the feature at 
the corresponding position of SM representation j, and is 0 
otherwise. The number of feature mismatches (the numerator 
of Equation 1) is divided by the value N (the number of 
features in each of the vectors) and the results summed. The 
parameter a is a scaling parameter representing overall level 
of attention. 
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Next, the difference between the PM and SM items is 
transformed to provide a similarity metric (Equation 2). 

ijdejis −=),(    (2) 
Equation 2’s similarity metric is used to calculate the 

probability that a particular secondary memory trace SMj will 
be “sampled” given a particular primary memory cue PMi. 
The probability of sampling a particular item is given by a 
similarity-based choice rule (Equation 3). 
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Next, the probability of recovering a sampled item is given 
by Equation 4, where c is a constant and r is the number of 
times the sampled item has already been recalled on this trial. 
This equation, and the r parameter, are used to reduce the 
likelihood of recalling the same item on multiple occasions, 
which avoid doing even when the same item is repeated 
within the to-be-recalled list (the “Ranschberg effect”, 
Jahnke, 1969). If two attempts at recovery are unsuccessful, 
an omission error is recorded. 

 
Pr=e-cr  (4) 

 

Calculating the PSE 
The PSE is a difference score between recall levels for 
phonologically dissimilar items and recall levels for 
phonologically similar items, calculated (following Logie et 
al., 1996 and Neath et al., 2003) as a proportion of the mean 
performance in the dissimilar condition according to the 
following equation: 

PSE = (D-S) / D  (5) 
Where D is the mean performance in the dissimilar condition 
and S is the mean performance in the similar condition. 
Performance of the model will be compared to experimental 
data using this metric. 

Experiment 
Experimental data were obtained from an undergraduate 
sample asked to reconstruct the serial order in which 
sequences of phonologically dissimilar, or similar, items were 
presented. Phonological similarity is implemented in the 
model by varying the number of modality-independent 
features with common values for each of the list items and 
keeping all other parameters constant. 

Method. 
 
Participants. One hundred undergraduates of Purdue 
University participated in exchange for course credit. All 
were native US English speakers. For the modeling analog of 
this sample, results were generated for one hundred pseudo-
participants, using the parameter values given in the 
Appendix. 
 
Stimuli. The to-be-remembered items were 64 one-syllable 
words previously employed in Surprenant, Neath & 
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LeCompte’s (1999) study of PSE. An example similar list is 
vote, boat, float, note, coat. An example dissimilar list is 
break, sick, vote, greet, rat, fun. All participants saw the same 
words in different random orders. 
 
Procedure. The to-be-remembered stimuli were shown, in 
20-point upper-case Helvetica, for 1.5 s each. Following the 
presentation of the final stimulus word, 6 response buttons 
became active, labeled with the 6 words in alphabetical order. 
Participants were asked to indicate the order in which the 
words had been presented by clicking on the appropriately 
labeled buttons using a mouse. Participants were presented 
with 20 lists, half with dissimilar items and half with similar 
items. The order of the dissimilar and similar items was 
separately and randomly determined per participant. 
Participants were tested individually and the experimenter 
remained within the room throughout. Pseudo-participant 
performance was based on 20 trials per pseudo-participant, 
half with similar and half with dissimilar items exactly as 
with the experimental participants. 

Results. 
 
Participants correctly recalled more dissimilar than similar 
items (F(1,99) = 101.89, MSE = 0.052, p < .05) and there was 
also a main effect of serial position (F(5,495) = 156.88, MSE 
= 0.015, p < .05) which interacted with similarity, (F(5,495) = 
5.94, MSE = 0.014, p < .05). A basic fit to the data was also 
obtained by running 100 pseudo-participants and calculating 
the results for this group in the same manner as for the 
experimental participants. Figure 1 shows the serial position 
curves obtained for participants (upper panel) and pseudo-
participants (lower panel). 
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Figure 1: Proportion correct per serial position  (averaged 

over participants or pseudo-participants) for data and model 

Distributions of effect sizes for the PSE were also 
calculated. The mean PSE was 0.173 (lower quartile = 0.091; 
median = 0.198; upper quartile = 0.262; S.D. =0.128; range = 
-0.143 to 0.442) and the distribution did not differ from 
normal (Kolmogorov-Smirnov Z = 0.813, n.s.). However, in 
this basic fit, only 3 pseudo-participants showed greater recall 
for similar than dissimilar words, fewer than in the human 
sample (Figure 2). 
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Figure 2: Distribution of effect sizes for the experimental 
sample and for a randomly generated sample of pseudo-

participants. 
 

For the basic fit shown in Figures 1 and 2, no parameters 
were varied between pseudo-participants. These Figures 
indicate that chance, rather than strategy, variation may be 
sufficient to account for the individual differences in 
displaying the effect. Figure 3 shows the results of a more 
principled approach to modeling the distribution within the 
experimental sample. Whereas Figures 1 and 2 show how 
random variation within the pseudo-participant sample affects 
the serial position function (Figure 1) and the distribution of 
effect sizes (Figure 2), Figure 3 shows fits of the model to the 
mean and variance of the experimental sample, again 
employing a sample of pseudo-participants but this time 
randomly varying the attentional scaling parameter, a, across 
pseudo-participants. For each pseudo-participant, a was 
increased (or decreased) from its standard setting by sampling 
randomly from a normal distribution with mean 0 and s.d. 4. 
This parameter was varied as is the only parameter (not 
linked to stimulus characteristics) that affects overall 
performance levels (Beaman, Neath & Surprenant, 2007). As 
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the figure demonstrates, attempts to fit either mean or 
variance for a PSE experiment produce a more accurate 
estimate of the number of reversals in the sample 
(phonologically similar lists recalled better than dissimilar 
lists) but have little effect on other features of the data. The 
upper panel of Figure 3 shows a fit to the mean values from 
the experimental data, the lower panel represents the values 
obtained when the simulation run represents a fit to the 
variances from the same data-set. 
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Figure 3: Fits of the model to means (upper panel) and 

variances (lower panel). Values on the y-axes represent the 
proportion correct for dissimilar and similar lists, the 

proportion value of the PSE calculated according to equation 
5 and the proportion of the sample showing “reversals”; 

superior performance on phonologically similar lists. Error 
bars are standard error. 

 
In addition to fitting the means and distributions of the PSE 

it is also possible, using the pseudo-participant technique, to 
examine how the PSE varies as a function of overall 
performance. Figure 4 shows the means and incidence of PSE 
and “reversals” amongst the upper and lower quartiles of the 
human participants and a pseudo-participant sample. These 
values came from the same simulation run that resulted in the 
best match to the observed variance. As this figure 
demonstrates, participants scoring in the upper quartile, based 
upon their performance in the dissimilar condition, are also 
showing the greatest PSE in both the data and the model with 
very few reversals in the data and none in the simulation. 
Surprisingly, more reversals appear in the human data in the 

lower quartile of overall performance, and there is a lower 
mean PSE score although also more variability amongst this 
group. A Pearson’s correlation confirms a significant positive 
association between overall performance and size of the PSE, 
r = 0.259, N = 100, p = 0.01, consistent with Logie et al. 
(1996). It is also significant that both larger PSE amongst the 
upper quartile and more reversals amongst the lower quartile 
are predicted by the pseudo-participant simulation (as 
illustrated in Figure 4). The model also provides a significant 
positive association between overall performance and size of 
the PSE, r = .589, N = 100, p = .001. Both data and model 
also show the same patterns when the absolute size (D-S) of 
the PSE is calculated rather than a proportion (r = .360 and 
.648 respectively, N =100, p < .001 in both cases). 
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Figure 4: Sample performance divided into highest- and 

lowest-scoring quartiles on the dissimilar list condition for 
both participants and pseudo-participants. The values on the 
y-axis represent proportion correct for dissimilar and similar 

lists, proportion value of the PSE and proportion of the 
sample showing “reversals”. Error bars are standard error. 

 
Overall, the model slightly under-predicts performance 

amongst the most able human participants and slightly over-
predicts performance amongst the least able. It is noteworthy 
that neither the successful fit to PSE and reversals nor this 
potential failing of the model would be apparent from 
attempts to fit only mean performance data. 
 

Discussion. 
The experiment reported here confirms the general pattern of 
results reported by Logie et al. (1996). A sizeable minority of 
participants either failed to show a PSE (9% or the total 
sample) or showed a reverse PSE (7%). These zero and 
negative effects were replicated using a model designed to 
show detrimental effects of phonological similarity on 
average. Furthermore, the model successfully accounts for 
these data, and other measures of variability, without the need 
to implement any qualitative changes in its operation. 
Previously, it has been suggested that a diminished effect of 
phonological similarity might reflect a change in strategy or 
type of encoding, for example from shorter- to longer-term 
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memory (Baddeley, 2000a; Salamé & Baddeley, 1986) or to a 
different type of short-term memory (Baddeley, 2000b). The 
simulations reported here demonstrate that a merely 
quantitative change is sufficient to recreate such variation in 
effect sizes without the need to hypothesize alternative 
memory systems. The simulations also show that the feature 
model is capable of simulating group variation by means of 
computational experiments employing “pseudo-participants”. 
 
Post hoc fits versus theoretical predictions. The current 
study demonstrates that the phonological similarity effect, 
previously considered the empirical “signature” of the 
phonological store of working memory (Jones, Macken & 
Nicholls, 2004; Jones, Hughes & Macken, 2006) might be 
expected to vary as a function of quantitative changes in 
participants abilities regardless of their strategy choice. The 
question arises, however, whether the simulations reported 
here represent post-hoc fits between the model and the data or 
a genuine, and novel, prediction. The serial position functions 
and distributions reported in Figures 1 and 2 reflect neither a 
post-hoc parameter fitting exercise nor a theoretically 
motivated prediction as they act simply as an existence-proof 
that the model can, when sampled using a random selection 
of pseudo-participants, reproduce approximately the pattern 
of performance obtained when a group of experimental 
participants are likewise recruited using an opportunity-
sampling recruitment procedure.  In contrast, the fits to the 
mean and variance data shown in Figure 3 are the result of 
post-hoc parameter fitting as employed by numerous 
cognitive modeling studies and, although they again 
demonstrate the capability of the model to match the data, 
these post-hoc fits also lack something in the way of 
explanatory power. The subsequent splitting of the samples 
into high and low performance groups, however, was carried 
out after the parameters had been determined and thus 
comprises a novel and genuinely theory-driven prediction of 
how the data from the experimental participants should 
appear: a larger PSE amongst the higher-performing 
individuals is a necessary prediction of the model. 

The reason for this observed pattern of performance, which 
was not obvious a priori, lies with the attention parameter. 
Aside from a few randomly varying features, which cannot 
plausibly account for the positive Pearson’s correlation 
between the appearance of the PSE and overall performance, 
the only parameter that varies between low and high 
performance pseudo-participants is the attention parameter. 
Close inspection suggests that it is the role of the attention 
parameter in magnifying the distance scores between 
mismatches and potential matches (Equation 1) that 
magnifies the appearance of the PSE in high-performance 
pseudo-participants relative to low-performance pseudo-
participants. Thus, a single, potentially quantifiable, resource, 
the value of which is represented in the feature model by the 
attentional parameter, necessarily alters the pattern of 
immediate memory effects observed. This has a number of 
consequences for within-participant experimental designs as 
well as for between-participant differences. For example, the 

diminishment of the PSE as memory-load increases might, 
contrary to previous suggestions (Baddeley, 2000a; Salamé & 
Baddeley, 1986) reflect a drop in attentional capability rather 
than a tendency to switch strategies as list length increases. 
Preliminary evidence already exists that the feature model is 
capable of accurately reproducing the effects of manipulating 
list-length (Beaman, 2006). 

 
Conclusions. Given that the attention parameter is the only 
parameter explicitly varied to obtain our variance fits, it also 
seems that this is sufficient to shift from a high-performing 
(pseudo-) participant showing phonological similarity a 
effects to a lower-ability participant for whom such effects 
are both smaller in size and more variable in appearance. This 
observation has a number of implications. 

Firstly, and most generally, it suggests that purely 
quantitative variations in a single performance factor could 
appear, within the experimental data, as qualitative shifts in 
performance characteristics. The example explored here is 
that of the phonological similarity effect, but there is no a 
priori reason why the same might not hold true for other well-
known immediate memory effects (e.g., word-length, 
concurrent articulation or irrelevant sound). This observation 
provides support for the claim that quantitative computational 
simulations are a productive method for testing (often 
implicit) theoretical assumptions that might otherwise go 
untested (Lewandowsky, 1993; Neath, 1999b). 

Secondly, more specifically, the results imply that the 
deployment of particular storage buffers (Baddeley, 2000a, 
b), is not necessary to explain reductions in phonological 
similarity effects amongst individuals undertaking immediate 
memory tasks. The feature model predicts this pattern of 
results using only a single primary memory “store” and no 
maintenance rehearsal. 

Thirdly, since the feature model is essentially a model of the 
recall process that views memory as a discrimination activity 
(e.g., Nairne, 2002), it is possible that individual variation 
amongst human participants might likewise be a consequence 
of variation in capability to discriminate at recall rather than a 
difference in either encoding strength or maintenance activity. 
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Appendix 
Table: Parameter values for reported simulations. Values are 
shown in the “Similar” column only when they differed from 

those for the “Dissimilar” condition. For the “variance” 
simulation, attention (a) was set to 13.5. 

 
 Dissimilar Similar 
MI Features   

Number 20  
Range 4  
No. guaranteed similar 0 8 

MD Features   
Number 2  
Range 4  
No. guaranteed similar 0 1 

Attention (a) 10  
No. of perturbation opportunities 5  
Recovery Constant (c) 2  
No. of recovery attempts (r) 2  
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