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Abstract 

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterized by a broad range of symptoms. The etiol-
ogy of ASD is thought to involve complex gene–environment interactions, which are crucial to understanding its various causes and 
symptoms. DNA methylation is an epigenetic mechanism that potentially links genetic predispositions to environmental factors in 
the development of ASD. This review provides a global perspective on ASD, focusing on how DNA methylation studies may reveal 
gene–environment interactions characteristic of specific geographical regions. It delves into the role of DNA methylation in influencing 
the causes and prevalence of ASD in regions where environmental influences vary significantly. We also address potential explana-
tions for the high ASD prevalence in North America, considering lifestyle factors, environmental toxins, and diagnostic considerations. 
Asian and European studies offer insights into endocrine-disrupting compounds, persistent organic pollutants, maternal smoking, and 
their associations with DNA methylation alterations in ASD. In areas with limited data on DNA methylation and ASD, such as Africa, 
Oceania, and South America, we discuss prevalent environmental factors based on epidemiological studies. Additionally, the review 
integrates global and country-specific prevalence data from various studies, providing a comprehensive picture of the variables influ-
encing ASD diagnoses over region and year of assessment. This prevalence data, coupled with regional environmental variables and 
DNA methylation studies, provides a perspective on the complexities of ASD research. Integrating global prevalence data, we under-
score the need for a comprehensive global understanding of ASD’s complex etiology. Expanded research into epigenetic mechanisms 
of ASD is needed, particularly in underrepresented populations and locations, to enhance biomarker development for diagnosis and 
intervention strategies for ASD that reflect the varied environmental and genetic landscapes worldwide.

Keywords: autism spectrum disorders; DNA methylation; environmental factors; prevalence

Introduction

Autism spectrum disorder (ASD) is a category of neurodevelop-
mental disorders defined by deficits in both social communication 
and language, combined with repetitive and restrictive behav-
iors. A significant challenge in studying the etiology of ASD is 
the change in diagnostic criteria over time, making it difficult to 
determine whether there is an actual increase in the incidence 
of ASD versus improved diagnosis [1]. While a diagnosis of ASD 
has become more standardized in recent years, there are still sig-
nificant disparities that exist by child gender, access to health 
care, and parental education within countries such as the USA 
[2, 3]. Globally, disparities in ASD diagnosis are even more appar-
ent, making it currently unfeasible to come up with an accurate 
estimate of ASD prevalence worldwide [4].

The lack of reliable ASD diagnosis also limits the inclusion of 
diverse populations in genetic and environmental studies. The 

etiology of ASD is complex, involving both genetic and environ-
mental contributors to risk. While there has been much success 
in identifying rare genetic causes of ASD, any single gene can only 
explain <1% of total ASD cases individually and only <10% collec-
tively [5, 6]. While ASD is considered one of the most heritable 
neuropsychiatric disorders based on monozygotic versus dizy-
gotic twin studies, the heritability estimates have varied widely 
by size and year of the study, as well as geographic and demo-
graphic differences [7–10]. Familial risk for ASD appears to be 
more consistent across “baby sib” studies, where the risk of having 
a second child with ASD is 15–17 times higher than the gen-
eral population [11–13]. Common genetic studies for ASD have 
been mostly limited to US and European researchers studying pre-
dominantly white ASD cases from highly educated parents. For 
example, the largest ASD genome-wide association study (GWAS) 
identified only five loci at genome-wide significance [14]. There 
was a strong overlap with GWAS of educational attainment and a 
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Figure 1. This review summarizes molecular studies investigating the possible relationship between environmental factors and ASD, with DNA 
methylation as a direct association. For continents with an underrepresentation of DNA methylation studies, we also include epidemiological studies 
that directly examined associations between environmental factors and ASD. We have also included ASD prevalence estimates for the countries 
covered in the review. Figure made using Biorender.

positive correlation with cognitive tests [15], despite the opposite 
being expected based on cognitive tests in ASD cases [16]. Poly-
genic risk scores also have limited effect sizes that are generally 
below those for the more common medical and environmental 
risk factors for ASD, including maternal obesity, preterm birth, 
or valproate use [17, 18]. However, it is important to note that 
as GWAS sample sizes increase and include more diverse partic-
ipants, polygenic risk scores for ASD will likely improve, poten-
tially explaining a more significant proportion of variance in ASD
phenotypes.

Therefore, ASD is currently lacking reliable molecular tests and 
biomarkers that can assess the risk for ASD diagnosis, which is 
usually between the ages of 3 and 5 years worldwide [19]. Some 
studies have demonstrated the effectiveness of early behavioral 
interventions that can improve the developmental trajectory of 
toddlers showing early signs of ASD [20, 21]. DNA methylation 
is an epigenetic modification throughout the genome that can 
vary according to genetic, environmental, and gene × environ-
mental (G×E) factors [22, 23]. Unlike transcription, DNA methy-
lation patterns are “metastable,” meaning they can be stable 
for long periods across the lifespan and changeable under the 
right conditions. DNA methylation “signatures” of ASD refer to 
combined groups of DNA methylation changes that have been 
identified in the brain as well as a variety of surrogate tissues col-
lected both before (placenta, cord blood, newborn blood) or after 

(blood, saliva, buccal) diagnosis of ASD [24]. DNA methylation 
patterns are at the interface of genetic and environmental inter-
actions. This was well demonstrated in a study by Czamara et al., 
which found that among various neuropsychiatric conditions, 
ASD showed the greatest enrichment of genetic loci identified 
through GWAS, which were also associated with DNA methylation 
changes [23]. These changes were best explained by a G×E model, 
highlighting the significant role that both genetic predisposition 
and environmental factors play in ASD.

The main objective of this review is to take a global perspec-
tive on ASD and consider the importance of early detection and 
intervention, with the goal that every child may reach their full 
potential. Globally, populations differ by genetics and environ-
mental exposures, so it is essential not to assume that results from 
research performed in North America or Europe will apply to other 
geographic locations. We, therefore, will discuss research stud-
ies investigating the connections between ASD and environmental 
exposures, as well as those using DNA methylation signatures or 
candidate biomarkers as direct associations (Fig. 1). Table 1 lists 
and summarizes these studies, ordered by continents, with the 
most studies investigating DNA methylation and environmental 
exposures in ASD. For continents with fewer DNA methylation 
studies, we include those investigating only environmental associ-
ations with ASD or neurodevelopmental disorders more generally. 
We will further attempt to summarize ASD prevalence data for 
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the continents and countries where these data have been pub-
lished. Table 2 provides a comprehensive summary of the studies 
included in the prevalence section. Figure 2 shows the geograph-
ical distribution of countries included in the study for their con-
tributions to ASD research based on published studies of either 
molecular or epidemiological research.

Methodology
A comprehensive search was conducted using electronic
databases, including PubMed, Scopus, and Google Scholar, to 
gather relevant literature for this review. The search terms
included “Autism Spectrum Disorder,” “Autistic Disorder,” “ASD,”
“Asperger’s Syndrome,” “Pervasive Developmental Disorder,”
“Child Disintegrative Disorder,” “neurodevelopmental disorder,”
“DNA methylation,” “environmental factors,” “prevalence,” and 
“epigenetics.” Studies were selected based on their relevance to 
the intersections of environmental factors, DNA methylation, and 
ASD. Articles were included if they were peer-reviewed, written 
in English, and provided data on human subjects. We focused on 
including studies from all continents to ensure a global perspec-
tive. Additionally, references from selected articles were reviewed 
to identify further relevant studies. The final selection included 
studies that provided insights into the environmental and epige-
netic aspects of ASD, with a specific focus on DNA methylation 
patterns as potential biomarkers. Our aim in this section was to 
include studies encompassing all three components: ASD, envi-
ronmental factors, and DNA methylation, but exceptions were 
made to include those with two components if they were from 
regions outside of North America or Europe.

Lastly, to highlight the heterogeneity of ASD diagnosis, we also 
examined prevalence estimates from different geographic regions 
worldwide. We will initially discuss the prevalence, followed by the 
environmental factors from the different regions.

Prevalence of ASD: a comparative analysis across 
continents
According to the Centers for Disease Control and Prevention, the 
prevalence of ASD in children in the USA was 1 in 150 in 2000 to 
1 in 36 in 2020, with higher rates in males [3, 25]. In Canada, ASD 
prevalence was 1 in 70 between 2003 and 2010 [26]. However, the 
National Autism Spectrum Disorder Surveillance System reported 
that 1 in 66 children were affected in 2015, with males affected 
more [27].

The average prevalence of ASD in Europe is currently around 
1% [28]. However, there is variability in the prevalence due to 
different study groups utilizing different diagnostic tools, age 
groups, sample sizes, and an underestimation of female preva-
lence. Prevalence estimates from the ASD in the European Union 
project ranged from 0.48% to 2.68%, while Spain ranged from 
1.00% to 1.55% [29–34]. Countries in Europe benefit from well-
established national ASD registries.

According to a meta-analysis by Qiu et al., the prevalence of 
ASD in Asia was 0.36% [35]. Compared to West Asia (0.35%) and 
South Asia (0.31%), the prevalence of ASD in East Asia was the 
highest (0.51%). In China, between 2014 and 2016, the prevalence 
was 0.29% [36].

The Australian Bureau of Statistics reported that the number 
of ASD cases increased to 290 900 in 2022 from 205 200 in 2018, 
with males being affected more. This was a 41.8% increase [37]. 
In New Zealand, a prevalence estimate of 1 in 102 was found
in 2020 [38].

Latin America and Africa face significant challenges due to a 
lack of extensive research on ASD. Prevalence data are limited 
and often derived from localized studies, as there are no com-
prehensive national ASD registries in these regions. This results 
in fragmented and regional estimates rather than a complete pic-
ture of the disorder’s impact on a national scale. In Latin America, 
the prevalence ranged from 0.27% to 0.87% prevalence [39–44]. In 
Africa, the prevalence ranged from 0.08% to 33.6% [45–50]. High 
consanguinity rates in some regions may increase genetic risk, but 
cultural stigma and limited healthcare access hinder diagnostic 
accuracy [4, 51].

The prevalence of ASD varies widely across different geo-
graphic regions and changes over time, reflecting the influence of 
diverse environmental, genetic, and social factors. This variabil-
ity underscores the need for further investigation into how DNA 
methylation studies may help to provide insights into the molec-
ular mechanisms of diverse genetic and environmental factors 
contributing to ASD prevalence across time and place. 

Environmental factors associated with ASD and 
DNA methylation by continent
North America
North American research on the intersection between environ-
mental factors and ASD is concentrated in the USA and Canada. 
The brain is the ideal tissue for research on ASD since it is a 
neurodevelopmental disorder. Numerous studies identified DNA 
methylation changes in brain tissue from ASD patients [52–62]. 
However, these studies were inherently limited in sample size and 
because of the difficulties in establishing connections with envi-
ronmental factors. For this reason, studies performed on perinatal 
and peripheral tissues as surrogates for the brain are appropri-
ate as these tissues are more accessible, and connections with 
environmental factors and DNA methylation can be analyzed. In 
the USA, two prospective ASD enriched-risk studies have been 
important. Markers of Autism Risk in Babies-Learning Early Signs 
(MARBLES) is a longitudinal birth cohort at an enriched risk for 
ASD because of recruitment from mothers with at least one child 
diagnosed with ASD [63]. The Early Autism Longitudinal Investi-
gation (EARLI) is a similar cohort study that tracks pregnancies at 
high risk for ASD. Both studies seek to identify early environmental 
and genetic risk factors associated with ASD.

The placenta is an appropriate tissue for studying the impact 
of environmental variables on neurodevelopment because of its 
crucial function in regulating maternal–fetal interactions and its 
role as a biological repository of prenatal environmental expo-
sures [64–70]. An early MARBLES placental DNA methylation study 
found that self-reported exposure to professionally applied pesti-
cides during pregnancy was associated with changes in placental 
DNA methylation in children with ASD compared to those with 
typical development (TD) [68]. Specifically, it increased methyla-
tion in placental partially methylated domains (PMDs), suggesting 
a global impact on placental DNA methylation.

Cord blood is also an accessible and valuable perinatal tissue 
because it directly represents the infant’s prenatal environment 
and can offer insights into early developmental changes influ-
enced by environmental factors. Another study examined the link 
between air pollution and placenta and cord blood in mothers 
of infants with ASD [69]. The study revealed four differentially 
methylated regions (DMRs) in cord blood at the genes RNF39, 
CYP2E1, and PM20DI, and five DMRs in the placenta at the genes 
ZNF442, PTPRH, SLC25A44, F11R, and STK38. Additionally, they dis-
covered female-specific changes in cord blood methylation at the 
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Figure 2. This map shows the countries included (red) or excluded (blue) in the literature review based on available published studies. The countries 
included in the study were Australia, Bangladesh, Brazil, Canada, Chile, China, Colombia, Denmark, Ecuador, Egypt, England, Finland, France, 
Germany, Greece, Iceland, India, Israel, Italy, Japan, Lebanon, Libya, Mali, Mexico, Nepal, New Zealand, Nigeria, Norway, Oman, Poland, Portugal, Qatar, 
Saudi Arabia, South Africa, South Korea, Spain, Sweden, Taiwan, Tunisia, Uganda, USA, Venezuela, and Vietnam.

CYP2E1 gene that were explicitly related to NO2 exposure. Fur-
thermore, they found male-specific changes in methylation at the 
RNF39 gene locus in response to O3 exposure in cord blood, while 
females only showed female-specific modifications at the PM20D1
gene locus. They also discovered a substantial shift in methy-
lation at the F11R gene locus in the placenta of male offspring 
alone, which was linked to NO2 exposure. Previous studies have 
shown that some of these genes have a role in immunological 
and inflammatory processes in biology [71, 72], and CYP2E1 was 
also identified as differentially methylated in ASD placenta from 
a different cohort [65].

Aung et al. investigated potential associations between mater-
nal blood metal concentration and whole blood methylation using 
a subsample from this cohort [73]. Significant hypermethyla-
tion was detected at 11 DNA methylation loci close to the genes 
CYP24A1, ASCL2, FAT1, SNX31, NKX6-2, LRC4C, BMP7, HOXC11, 
PCDH7, ZSCAN18, and VIPR2, which were all associated with lead 
exposure. These genes were enriched for biological pathways such 
as cell adhesion, nervous system development, and calcium ion 
binding. Four DNA methylation loci were also discovered to be 
associated with manganese hypermethylation and were enriched 
for cellular metabolic pathways. These pathways play critical roles 
in neurodevelopment and functioning, which are often disrupted 
in ASD. Cell adhesion is essential for forming and maintaining 
neural connections, while nervous system development and cel-
lular metabolism are required for neurons’ proper growth and 
maturation. Calcium ion binding is crucial for neurotransmission 
and intracellular signaling. Dysregulation in these pathways can 
lead to impaired neural connectivity and communication, which 
are hallmark features of ASD.

Persistent organic pollutants (POPs) like polychlorinated 
biphenyl (PCBs) and polybrominated diphenyl ethers (PBDEs) are 
suspected contributors to neurodevelopmental disorders because 

they can disrupt endocrine and neurological functions, leading 
to developmental delays and cognitive impairments. Their abil-
ity to accumulate in the environment and human tissues poses 
a significant risk to fetal brain development [56, 70, 74]. A study 
of MARBLES placental methylation used correlated methylation 
modules and found two modules linked to maternal PCB levels 
and child neurodevelopment [70, 74]. These modules matched to 
genes AUTS2 and CSMD1, previously linked to ASD [75, 76] and PCB 
exposure [74]. According to their results, the mother’s age, the year 
the sample was collected, her pre-pregnancy BMI, and her levels 
of polyunsaturated fatty acids were the best indicators of PCB lev-
els. Mitchell et al. investigated the levels of seven polybrominated 
diphenyl ethers (PBDEs) and eight PCBs [56]. The researchers used 
postmortem brain tissues from a variety of subjects, including 43 
neurotypical controls, 32 individuals with known genetic causes 
of neurodevelopmental disorders (such as Down syndrome, Rett 
syndrome, Prader-Willi, Angelman, and 15q11-q13 duplication 
syndromes), and 32 individuals with idiopathic autism. Compared 
to neurotypical controls, those with 15q11-q13 duplication syn-
drome had much higher levels of PCB 95, whereas those with 
idiopathic ASD did not.

Sperm tissue has also been used to study the paternal influence 
of genetics and environment on ASD prevalence [77–83]. Pater-
nal autistic traits and the sperm epigenome are connected to 
ASD because epigenetic modifications in sperm can influence gene 
expression in offspring, potentially contributing to ASD risk. The 
sperm epigenome is crucial as it carries heritable epigenetic marks 
that can affect children’s early developmental processes and neu-
rodevelopmental outcomes. An investigation explored the poten-
tial link between autistic traits in children as young as 36 months 
from the EARLI cohort, paternal autistic characteristics, and the 
sperm epigenome [80]. The study utilized the Social Responsive-
ness Scale (SRS), a 65-item questionnaire that measures social 
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communication deficits and autistic traits. It identified 14 paternal 
and 94 child SRS-associated DMRs. Many child-associated DMRs 
were connected to genes essential for ASD and neurological devel-
opment. Additionally, five DMRs overlapped between children and 
their fathers, involving genes WWOX, SALL3, AJAP1, TGM3, and 
IRX4, which are significant in ASD research.

Schrott et al. performed several investigations to understand 
how cannabis affects DNA methylation. One study used a can-
didate gene approach based on sperm DLGAP2 DNA methyla-
tion previously associated with ASD [54, 82], confirming that 
sperm from cannabis users showed differential methylated CpG 
sites in DLGAP2 compared to controls [83]. Interestingly, DLGAP2
was associated with changes in DNA methylation in newborns 
due to maternal smoking in pregnancy in another study [84]. 
Bisulfite pyrosequencing on nine clustered CpG sites revealed 
hypomethylation linked to cannabis use. Cannabis was also asso-
ciated with changes in DNA methylation at autism candidate 
genes and maternally imprinted genes in spermatogenic stem 
cells [81]. In spermatogenic stem cells, cannabis exposure signif-
icantly impacted the methylation of 2 out of 10 ASD candidate 
genes, NR4A2 and HCN1. In addition, spermatid-like cells showed 
considerably differential methylation of PEG3, and spermatogenic 
stem cells showed significantly altered methylation of maternally 
imprinted genes SGCE and GRB10.

Researchers in Canada looked for evidence of DMRs in ASD 
patients compared to controls using candidate gene approaches. 
Environmental influences were not examined. A study of neu-
rodevelopmental disorders and DNA methylation of the oxy-
tocin receptor was the subject of one research study [85]. The 
group they studied consisted of individuals with ASD, attention-
deficit/hyperactivity disorder (ADHD), and obsessive-compulsive 
disorder (OCD). Individuals with ASD, ADHD, or OCD showed dif-
ferential DNA methylation at specific locations in the first intron 
of OXTR in their blood or saliva.

Additionally, compared to those whose DNA methylation pat-
terns fell within the normal ranges for each respective neurode-
velopmental disorder group, people with ASD or ADHD showed 
the most extreme DNA methylation values at specific sites, which 
were also associated with higher scores on the Child Behav-
ior Checklist (CBCL) social problems subscale (ADHD) or lower 
IQs (ASD). Their findings demonstrated a complicated, measur-
able link between neurodevelopmental disorders and OXTR DNA 
methylation. Another study by Siu et al. aimed to identify DNA 
methylation signatures for ASD subgroup molecular classification 
[86]. They found that 16p11.2 and CHD8 subgroups had unique 
DNA methylation signatures that distinguished them from each 
other and idiopathic ASD and controls, providing a more precise 
classification and potential for developing diagnostic biomarkers 
for the subgroups.

This comprehensive overview of studies from the USA and 
Canada highlights the complex relationship between environmen-
tal factors, DNA methylation, and ASD, revealing the potential 
use of peripheral tissues like the placenta and sperm to provide 
insights into the early developmental basis of neurodevelopmen-
tal disorders.

Europe
Using organized cohorts, several studies looked at environmen-
tal risk factors that are thought to be linked to ASD. These 
included endocrine-disrupting compounds (EDCs), POPs, and 
maternal smoking. A study in the Faroe Islands, Denmark, per-
formed sperm methylome analysis on 52 samples and assessed 

the effects of exposure to 1,1-dichloro-2,2-bis(p-chlorophenyl) 
ethylene (DDE), a banned insecticide [79]. This is particularly 
interesting because the population in these regions is known to 
consume whale meat with high levels of POPs. Whole-genome 
bisulfite sequencing (WGBS) revealed that genes CSMD1, NRXN2, 
and RBFOX1 exhibit hypomethylation across individual samples 
[79]. Genes CSMD1 and NRXN2 are highly expressed in the brain 
and are associated with neuro-vertebrate development, which is 
linked with developmental delay phenotypes in ASD by the SFARI
database [76, 87].

Furthermore, SNORD115-30 and SNORD115-37, which are in an 
imprinted region, exhibit hypermethylation and were consistently 
observed to be hypermethylated from a previous study on paternal 
sperm samples within an enriched risk for ASD cohort [78, 79]. 
In another study, PTPRN2 showed hypomethylation in cord blood, 
which correlated with the levels of exposure to DDE [88]; however, 
in the study by Maggio et al., PTPRN2 transcript levels showed no 
correlation with levels of DDE, and samples showed both hyper 
and hypomethylated DDE DMRs, which signifies a potential role 
with DDE and epigenetic alterations linked to ASD.

Maternal smoking is another significant environmental risk 
factor explored in European studies. Two studies from Denmark 
performed an epigenome-wide association study (EWAS) focusing 
on gestational age, birth weight, and maternal smoking, iden-
tified altered differentially methylated positions (DMPs) in ASD 
children compared to non-ASD children [89, 90]. Specifically, 
they identified 4299 DMPs associated with gestational age, 18 
DMPs with birth weight, and 110 DMPs with maternal smoking 
[90]. Genes such as AHRR, GFI1, and EXOC2 methylation sites 
were associated with maternal smoking and birth weight [89, 
90]. These studies benefit from extensive and unbiased sample 
sizes through Denmark’s comprehensive neonatal screening pro-
gram. However, it is essential to note that the methylation studies 
used a small subset of participants, so they may not necessarily 
be nationally representative or have increased power over other
studies.

A candidate gene approach study examined paternal age’s 
impact on the BEGAIN gene’s methylation status in sperm samples 
[91]. They found that the ASD population showed hypomethy-
lation of BEGAIN compared to neurotypical controls. They also 
observed paternal age-associated BEGAIN methylation in male 
fetal cord blood but not in female fetal cord blood. This candidate 
gene is intriguing because BEGAIN is one of the few known autoso-
mal genes with sex specificity that contributes to dimorphic traits 
and disease susceptibility in ASD. While functional and mechan-
ical changes associated with the BEGAIN gene are unknown, it at 
least represents the elevated risk for ASD in children from older 
fathers.

The methylation status of important candidate genes, includ-
ing MECP2, OXTR, BDNF, RELN, BCL2, EN2, and HTR1A, was exam-
ined in young females with respect to various risk factors, such 
as maternal age, pre-pregnancy BMI, gestational age, and deliv-
ery methods [92, 93]. They found that high maternal gestational 
weight gain was significantly associated with hypermethylation 
of BDNF, and maternal folic acid supplementation correlated 
with hypomethylation in RELN. The application of artificial neu-
ral networks was used to predict Autism Diagnostic Observation 
Schedule—Second Edition (ADOS-2) scores relative to environ-
mental risk factors, such as high gestational weight, maternal 
age, preterm age, lack of folic acid intake, low birth weight, and 
living conditions, and showed that they are good predictors for 
ASD [94, 95]. In summary, investigating these environmental fac-
tors yielded crucial insights into epigenetic differences in genes, 
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offering better intervention measures and even individualized 
therapeutic approaches.

Asia
Several environmental factors have been identified on the Asian 
continent as associated with both DNA methylation and autism 
or only with autism. These studies were from China, Saudi Arabia, 
Japan, South Korea, India, Lebanon, and Taiwan.

Most studies from China used a candidate gene approach and 
compared differences in methylation levels between ASD and 
controls. When comparing ST8SIA2 gene methylation levels in 
children with ASD to those in controls, Yang et al. discovered that 
ASD children had greater methylation levels at Chr. 15: 92 984 625 
and Chr. 15: 92 998 561 [96]. There was also a negative correlation 
between ST8SIA2 expression levels and stereotypical behaviors in 
the ASD group and a positive correlation with daily life skills. Wang 
et al. focused on seeing differences in DNA methylation of CpG 
islands in the ESR2 gene between ASD and neurotypical males 
[97]. Their results showed minimal overall differences in methy-
lation between ASD and neurotypical males; however, they found 
that hypermethylation at eight specific CpG sites was linked to the 
severity of autism symptoms Hu et al. conducted an analysis of the 
promoter region of HTR4 to assess for differences in methylation. 
They found significant decreases in HTR4 methylation in males 
with ASD but no significant differences in females with ASD and 
no significant differences between neurotypical males and female 
subjects [98].

Additionally, other researchers investigated the potential con-
nection between ASD and APOE methylation [99]. The study dis-
covered that APOE methylation is considerably higher in pediatric 
patients with ASD than in controls, with a reference methylation 
percentage of 15.4% serving as the optimal predictor of ASD.

Zhao et al. investigated six apoptotic genes, TGFB1, BAX, IGFBP3, 
PRKCB, PSEN2, and CCL2, to determine whether any methyla-
tion changes were linked with ASD [100]. Hypomethylation of 
TGFB1 was seen in peripheral blood samples of children with ASD, 
and there was a positive correlation between the Autism Behav-
ior Checklist interaction ability score and TGFB1 methylation. 
In another investigation, DNA methylation differences between 
manually selected spermatozoa (MSS) and zona pellucida-bound 
spermatozoa (ZPBS) were identified, and their association with 
ASD was examined [101]. MSS are sperm chosen based on visual 
assessment, while ZPBS are those that naturally adhere to the 
egg’s outer layer (zona pellucida). The global DNA methylation 
levels were much lower in the ZPBS than in the MSS. In ZPBS, hypo-
methylation was detected in 52.3% of the 11 175 DMRs across 
the whole genome. These DMRs were associated with nearly half 
of the autism candidate genes. The authors concluded that the 
increased incidence of autism in offspring conceived with intra-
cytoplasmic sperm injection might be due to variations in methy-
lation levels between ZPBS and MSS. In a different study, Liang 
et al. used monozygotic twins to identify the role of DNA methyla-
tion in the development of ASD [102]. A total of 2397 differentially 
methylated genes in ASD blood were found by DNA methylation 
analysis. Differences in methylation of SH2B1 were further ver-
ified by bisulfite pyrosequencing in the monozygotic twins with 
ASD that were concordant versus discordant and in a group of 30 
pairs of sporadic ASD case-control. Compared to ASD-concordant 
monozygotic twins, those whose ASD was discordant had a more 
significant SH2B1 methylation difference.

Two studies from Saudi Arabia were relevant to this review. 
Alshamrani et al. found that global DNA hypomethylation in 
peripheral blood neutrophils of children with ASD was associated 

with increased inflammation, characterized by elevated levels 
of inflammatory mediators such as CCR2 and MCP-1, alongside 
reduced DNMT1 expression [103]. They hypothesized that the plas-
ticizer Di(2-ethylhexyl) phthalate, a chemical commonly used to 
increase the flexibility and durability of plastics, downregulates 
DNMT1 expression by inducing oxidative inflammation, contribut-
ing to the development of ASD. Using a candidate gene technique, 
Algothmi et al. assessed the level of DNA methylation at the tran-
scription factor (SP1) binding site in the ACSF3 promoter region 
[104]. The expression of ACSF3 and SP1 was correlated in patients 
with ASD despite the study’s inability to establish the significance 
of DNA methylation on the binding site of SP1 inside the ACSF3
promoter.

Japanese researchers used two machine-learning algorithms 
to identify a possible biomarker for adult high-functioning ASD 
[105]. The PPP2R2C gene, which has the methylation annotation 
cg20793532, was shown to be downregulated and hypermethy-
lated in the blood of ASD patients compared to the control group. 
The area under the curve (AUC) value was 0.79, and pyrosequenc-
ing was used for validation.

The other epidemiology studies were from India, Lebanon, 
China, South Korea, and Taiwan. Although these will not be 
described in detail, they found factors that were either associated 
with ASD or neurodevelopment, including CO, NO2, PM10 [106], 
SO2, Pb [107], older parent’s age, male sex, unhappy maternal 
feelings during pregnancy, living close to industrial regions, pre-
vious childhood infection [108], excessive fetal movement, mater-
nal respiratory infection, maternal vaginal infection, maternal 
hypothyroidism, and family history of neurodevelopmental dis-
orders [109]. This overview of the Asian region reveals a complex 
link between environmental factors, DNA methylation, and ASD. It 
suggests that DNA methylation patterns could serve as biomark-
ers for ASD diagnosis, highlighting the need for further research 
to understand the etiology of ASD.

Oceania
New Zealand and Australian investigators have conducted most 
of the ASD epidemiology and DNA methylation research in the 
Oceania region. A study conducted in New Zealand by Noble 
et al. examined the DNA methylation patterns in children who 
were exposed to maternal tobacco smoking during pregnancy 
[110]. The research aimed to determine the relationship between 
these methylation patterns and the development of conduct disor-
der characteristics. They discovered substantial differential DNA 
methylation of CpG sites in CYP1A1, ASH2L, and MEF2C in those 
with conduct problems who had been exposed to smoke in utero. 
Although these genes are not directly associated with vulnerabil-
ity to ASD, they are connected to neurodevelopment [111–113].

Further research, which comprised groups of individuals from 
New Zealand and the United Kingdom, examined the impact of 
exposure to cannabis during pregnancy on alterations in DNA 
methylation in genes related to neurodevelopment [114]. The 
research revealed significant differences in DNA methylation 
throughout the whole genome in people at ages 0, 7, 15–17, 
and 27, which were linked to exposure to cannabis during preg-
nancy, both on its own and in combination with tobacco. The 
genes LZTS2, NPSR1, NT5E, CRP2, DOCK8, COQ5, and LPAR5
contained CpG sites that were differentially methylated and 
were shown to be shared across several periods. These are also 
essential genes for neurodevelopment, which have implications
with ASD.

An epidemiological study from Australia that included 182 
infants revealed that several factors were linked to an increased 
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risk of ASD [115]. These factors included being male, being born 
preterm, having a mother aged 35 years or older, having a mother 
born outside Australia, and being part of multiple births. Some 
factors associated with ASD have been studied in different coun-
tries. Preterm birth was found to be associated with altered DNA 
methylation of HYMAI, PLAGL1, ZNF217, and OXTR implicated in 
neurodevelopment [116, 117]. This shows the necessity for further 
investigation in the field, as additional studies on DNA methyla-
tion can provide more insights into the regional environmental 
factors of this area.

Latin America and the Caribbean
The studies for environmental factors associated with ASD and 
DNA methylation from Latin America and the Caribbean that we 
gathered were from Brazil, Mexico, and Jamaica. The studies found 
in Mexico were both on DNA methylation and ASD. To discover 
ASD-associated alterations in DNA methylation, Aspra et al. car-
ried out an epigenome-wide study in the buccal epithelium [118]. 
They discovered ASD-associated hypomethylation of DMRs linked 
to the RASGRF2, GSTT1, FAIM, and SOX7 genes, as well as hyperme-
thylation of DMRs linked to the ZFP57, CPXM2, and NRIP2 genes. 
In the other research, 853 CpGs with differential methylation were 
found in individuals with ASD [119]. They also discovered 64 genes 
included in the SFARI gene database of ASD risk candidates. The 
genes ISM1, PTPRG, SLITRK4, CAP2, and CYP26C1 included the 
five most statistically significant differentially methylated CpGs 
in ASD.

The impact of environmental variables on the clinical hetero-
geneity of ASD was investigated in a Brazilian study using the 
epigenetic clock and vulnerability components at birth as indica-
tors [120]. The epigenetic clock, a biomarker of biological aging 
based on DNA methylation levels at specific CpG sites, allows 
researchers to estimate the biological age of tissues and cells. In 
this context, it was used to assess whether early-life environmen-
tal exposures could accelerate biological aging, thereby contribut-
ing to the observed clinical heterogeneity in ASD. Researchers dis-
covered a high concentration of differentially methylated probes 
in CpG sites within variably methylated regions, influenced by 
environmental and genetic factors. The hypermethylated sites 
were associated with functional single nucleotide polymorphisms 
within gene regulatory regions, suggesting potential G×E interac-
tions for common genetic variants in ASD.

Four epidemiological studies from Brazil examined the differ-
ent perinatal and maternal factors related to ASD [121–124]. ASD 
was found to be associated with the following outcomes and con-
ditions as reported by these studies: congenital malformation, 
neonatal jaundice, absence of crying at birth, childhood seizure 
episodes, gestational infection, gastrointestinal symptoms, obe-
sity, obesity-related complications, meconium-stained amniotic 
fluid, cesarean section delivery, two or more adverse peripartum 
events, prematurity, low birth weight, and perinatal asphyxia.

Three studies in Jamaica examined various environmental 
variables and their association with ASD [125–127]. Christian et al. 
discovered that maternal exposure to fever or illness, physical 
trauma, and oil-based paints were associated with ASD [125]. Fur-
thermore, the influence of maternal exposure to oil-based paints 
on the association between maternal exposure to pesticides and 
ASD in children may act as an effect modifier. The other two 
research studies investigated the effect of drinking water sources, 
vegetable and seafood diet, and blood arsenic and mercury con-
tents in ASD patients. One study discovered that drinking water 
sources, eating avocado, and eating “callaloo, broccoli, or pok choi” 
were all connected with increased arsenic levels [126]. However, 

after controlling for other variables, they discovered no signifi-
cant associations between blood arsenic levels and ASD. In the 
second investigation, children who ate seafood had higher blood 
mercury levels than children residing in the USA or Canada in 
both ASD cases and controls. Still, no association was observed 
between ASD and mercury levels after controlling for multiple 
factors [127]. Their results also revealed that children with par-
ents who have a high school education were at a greater risk of 
mercury exposure than children with at least one parent with a 
higher level of education. The research from Latin America and 
the Caribbean, encompassing studies from Brazil, Mexico, and 
Jamaica, highlights the complex interplay between environmen-
tal factors, DNA methylation, and ASD. These findings contribute 
to the growing body of evidence suggesting that both genetic and 
environmental variables play critical roles in the development of 
ASD, underscoring the need for further investigation using DNA 
methylation across diverse populations and regions.

Africa
Several elements of the African continent have been recognized 
and examined. Malawi, Benin, and Tanzania all investigated 
and considered malaria as an environmental risk factor for ASD 
because it is more prevalent in African countries. However, those 
factors have only been examined about ASD or the prevalence 
of neurodevelopmental disorders rather than examining the DNA 
methylation in ASD biospecimens. With over 125 million preg-
nant women at risk of malarial infection, a few studies show that 
maternal infection during pregnancy without congenital infection 
was associated with an increased risk for neurocognitive defects 
in offspring [128]. In Benin, they performed a study measuring the 
prevalence of malaria infection before pregnancy and placental 
malaria, defined as the accumulation of plasmodium-infected red 
blood cells in the placenta [129, 130].

Additionally, regions in Africa at risk of malarial infection 
are controlled by indoor residual spraying with dichlorodiphenyl-
trichloroethane (DDT) and pyrethroids, and exposure to such 
chemicals is known to be associated with neurodevelopmental 
delay [131]. While studies suggest malarial infection as a poten-
tial risk factor, investigations of DNA methylation effects and 
gene expression analyses have not yet been performed to observe 
genetic pathways and regulation in response to malaria that may 
produce ASD-related phenotypes. Furthermore, studies in these 
regions contain significant environmental factors that may con-
tribute to ASD, such as high rates of HIV, helminth infections, 
and significant economic and food insecurities [131]. Despite the 
limited resources and challenges, examining multiple variables 
is highly limited, and one can only observe the most prevalent 
factors within that country of research.

Similarly, research conducted in Egypt was limited to observ-
ing exposure to mercury, lead, and aluminum levels through hair 
analysis [132]. While there were no statistically significant rela-
tions between levels of mercury, lead, and aluminum and ASD 
severity, interestingly, elevated hair concentrations of heavy met-
als were observed in autistic children and correlated with the 
severity of symptoms [132]. For studies in Egypt, these studies 
did not examine DNA methylation and its relation to environ-
mental variables and the phenotype. Interestingly, South Africa 
has been one of only a few African countries performing genetic 
molecular research, which can be improved with more availabil-
ity of resources and funding. A study at the University of Cape 
Town looked at the DNA methylation of PGC1𝛼 and its asso-
ciated genes, such as STOML2, MFN2, FIS1, OPA1, and GABPA, 
all related to mitochondrial regulation [133]. Within the South 
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African cohort, PGC1𝛼 was hypermethylated in ASD samples and 
clustered around the transcriptional start site between the five 
prime untranslated regions (UTRs) and intron 1. In contrast, intron 
2, 12, and 3 prime UTRs were hypomethylated.

One primary concern with all African studies is the sampling 
methods, especially with diagnosis. Different studies performed 
different diagnoses, mainly due to the lack of medical profes-
sionals who can perform such diagnoses. Furthermore, many 
economic or social demographic variables may influence DNA 
methylation, which can be a significant confounding factor that 
we cannot ignore. This may apply to other studies in different 
world regions, but this issue is most prominent in Africa.

Discussion
Prospects for prevalence studies in ASD 
worldwide
The first thing that can be appreciated is that although prevalence 
estimates have shown that there is an apparent recent increase in 
ASD, there is significant variability in the estimates, which makes 
it difficult to compare between studies. There are differences in the 
diagnostic criteria that are used. A universal diagnostic approach 
would help account for the heterogeneity between the studies. 
Also, in formulating a universal diagnostic tool, it will be essen-
tial to formulate one that is culturally relevant and appropriate. 
For instance, avoiding eye contact in some cultures is shunned, so 
it will be essential to consider that. Although some countries have 
translated the DSM-V and M-CHAT into their languages, more 
needs to be done [134–136]. The diagnostic criteria are challeng-
ing when the clinical definition of ASD changes, which is the case 
for DSM-IV and DSM-V [137].

Secondly, there might be an underestimation of prevalence 
estimates in some regions due to a lack of trained personnel, lack 
of resources for both the patients and healthcare facilities, social 
stigma that might exist about mental disorders, religious beliefs, 
and lack of awareness within communities [4, 35, 38, 138–143]. 
Promoting funding to less privileged communities is essential as 
it might help support those needing services.

Finally, prevalence data showed that males are diagnosed 
more often than females, which raises important questions about 
potential diagnostic biases and the underlying mechanisms of sex 
differences in ASD. Some researchers have mentioned that this 
bias toward diagnosing males rather than females might be due 
to sex-specific behavioral manifestations, with females having 
socially acceptable behaviors that might not meet the diagnos-
tic criteria [4, 30, 142]. The other possibility is that environmental 
factors might interact differently in males and females, leading 
to differences in risk and disease manifestation [144]. These dif-
ferences might also be explained by the female protective effect, 
in which females would need a higher genetic or environmen-
tal burden to present with ASD [145]. Therefore, differences in 
ASD prevalence estimates across different regions, along with sex 
differences in diagnosis, show the critical need for standardized, 
culturally sensitive diagnostic criteria and increased awareness to 
ensure all individuals with ASD, regardless of location or sex, are 
accurately identified and supported.

Comparative analysis of findings within and 
across continents
We have summarized the results of research studies that exam-
ined DNA methylation at the interface of environmental risk fac-
tors for ASD across different continents and countries, as well as 
studies examining the environmental factors in countries where 

DNA methylation studies were lacking. Overall, the results of 
this comprehensive review point to areas of convergence between 
studies and significant gaps in research in this critical area.

Findings within continents
In North America and Europe, we focused on studies that showed 
how different environmental factors affect DNA methylation and 
how that is associated with ASD. Studies from these regions have 
identified specific environmental exposures, including cannabis 
use, air pollution, maternal smoking, and exposure to POPs, asso-
ciated with DNA methylation changes in genes related to ASD. 
These findings underscore the importance of considering both 
genetic predispositions and environmental exposures in under-
standing ASD’s etiology. These continents’ research capacity and 
healthcare infrastructure have facilitated large-scale epidemio-
logical and molecular studies, allowing for a more nuanced under-
standing of ASD. However, despite these advances, challenges 
still need to be addressed, particularly ensuring that findings are 
inclusive and representative of diverse populations. This region 
is pushing toward integrative approaches to ASD and constantly 
creating technological advancements. While innovative, it is also 
important to share common ground with other regions world-
wide to be more inclusive by investigating the efficacy of such 
approaches worldwide.

Asia presents a varied landscape of ASD research, with studies 
highlighting different environmental factors—such as exposure to 
plasticizers, pesticides, and heavy metals—that may contribute 
to the disorder. The research from China emphasizes the role 
of candidate genes and their methylation status in ASD, sug-
gesting potential biomarkers for the disorder. However, the con-
tinent faces challenges in standardizing diagnostic criteria and 
methodologies, which complicates efforts to fully understand 
ASD’s prevalence and etiology across diverse Asian populations. 
With cultural stigma toward neurodevelopmental diseases, the 
acceptance of treatment and recognition of ASD is severely lim-
ited. Indeed, it is essential to emphasize the importance of the 
unification of diagnostic criteria; it is also crucial to spread educa-
tion and awareness that would allow the destigmatization of ASD 
in Asian countries.

In Oceania, particularly Australia and New Zealand, there is a 
notable recent increase in ASD prevalence, alongside research into 
environmental factors such as maternal smoking and cannabis 
exposure during pregnancy. These studies contribute to the grow-
ing body of evidence linking prenatal environmental exposures to 
changes in DNA methylation patterns associated with ASD. How-
ever, the region’s molecular research is still in its early stages, with 
a need for more comprehensive studies to explore the complex 
interplay of genetic, environmental, and epigenetic factors in ASD.

Research from Latin America and the Caribbean is limited. Still, 
it suggests that perinatal and maternal factors may play a role 
in ASD, with some findings also found in more extensive studies 
[146, 147]. The studies available highlight the potential for DNA 
methylation studies for ASD since they can be linked to the envi-
ronmental factors they found. However, they also demonstrate 
significant gaps in research capacity and infrastructure that need 
to be addressed to understand ASD in these regions better. Collab-
orative funding and research toward investigating the prevalence 
of ASD must be a priority, as there are no accurate estimates 
compared to North America.

Africa faces the most significant challenges in ASD research, 
with limited prevalence and molecular studies data. Some studies 
suggest that environmental factors like malaria due to immune 
activation may be relevant in some countries in this region. 
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Table 3. Summary of key findings

Summary

Convergent themes

Environmental exposures: Several studies highlight common environmental risk factors such as maternal smoking, air pollution, heavy metals, 
and prenatal cannabis exposure that are associated with DNA methylation changes linked to ASD.

Key Genes: Consistent epigenetic changes are observed in CYP2E1, DLGAP2, and OXTR across multiple regions, suggesting their pivotal role in 
ASD etiology.

Prenatal influences: Prenatal exposures, including tobacco smoke, pesticides, and stress, are significant contributors to ASD, affecting DNA 
methylation patterns in key neurodevelopmental genes.

Current gaps

Regional biases: There are limited studies from Africa and Latin America, leading to potential biases in our understanding of ASD prevalence 
and etiology due to underdiagnosis and lack of resources in these regions.

Diagnostic criteria: Variability in diagnostic criteria and methodologies across studies complicates direct comparisons and the integration of 
findings from different regions. A standardized diagnostic approach is crucial.

Genetic and environmental interactions: More research is needed to understand the G×E interactions, particularly in genetically diverse 
populations, to uncover the complex mechanisms underlying ASD.

Sample size and population differences: Variations in sample sizes and population demographics across studies can influence the generalizabil-
ity of the findings. Large-scale, diverse population studies are required.

Proposed solutions

Standardization of diagnostic tools: Implementing a universal diagnostic approach that is culturally relevant and appropriate to different 
regions can help standardize ASD diagnosis and improve comparability between studies.

Enhancing research capacity: Promoting funding and collaborations for research in underrepresented regions, particularly Africa and Latin 
America, can help address gaps in ASD prevalence and etiology data.

Genome-wide discovery approaches: Conducting genome-wide DNA methylation studies in diverse populations can ensure that findings are 
representative of the global population, accounting for differences in genetics, environments, and G×E interactions.

Large-scale sequencing consortia: Establishing large sequencing consortia for DNA methylomes like human genome sequencing projects can 
help overcome biases in current array-based platforms and improve the diversity of genomic databases.

Advanced Technologies: Utilize advanced sequencing technologies such as WGBS to overcome biases in current array-based methods and 
improve the comprehensiveness of DNA methylation studies.

International Collaborations: Fostering international collaborations can facilitate large-scale genomic and epigenomic studies, enabling data 
integration across different regions and enhancing the reproducibility and generalizability of findings.

Cultural Sensitivity and Awareness: Raising awareness and reducing cultural stigma toward ASD through education and media can improve 
acceptance and recognition of the disorder, facilitating early diagnosis and intervention.

However, the lack of comprehensive molecular research shows the 
urgent need for increased research efforts to understand ASD’s 
unique manifestations and causes in African populations. The 
effects of malaria on DNA methylation at ASD-risk genes are 
worth further investigation. As global warming becomes more 
prevalent, vector-borne pathogens will likely become more preva-
lent in more geographical regions. Knowing more about the rele-
vance of infectious diseases during pregnancy to ASD susceptibil-
ity and DNA methylation patterns will, therefore, be important in 
the future.

Common themes about specific genes and exposures in envi-
ronmental epigenetic studies of ASD
Several environmental factors associated with DNA methylation 
changes at specific genes have been identified across different 
studies. These factors impact DNA methylation patterns and 
contribute to ASD risk. These factors have predominantly been 
identified during pregnancy, where they affect DNA methylation 
patterns in the offspring.

Air pollution, particularly exposure to NO2, O3, and PM2.5, has 
also been frequently linked to DNA methylation changes associ-
ated with ASD. Ladd-Acosta et al. reported that prenatal exposure 
to NO2 and O3 leads to methylation loss in CYP2E1 [69], a gene that 
was also found in a methylation analysis of ASD in the placenta 

[65]. Further, studies by Wang et al. and Lee et al. demonstrated 
that exposure to CO, NO2, and Pb during pregnancy significantly 
increased the risk of ASD, indicating that air pollutants can induce 
epigenetic modifications in neurodevelopment-related genes [106, 
107].

Maternal smoking during pregnancy is another common envi-
ronmental factor associated with DNA methylation changes 
linked to ASD. Hannon et al. identified a significant association 
between maternal smoking and increased DNA methylation at 
specific loci, including AHRR [90]. Additionally, Rijlaarsdam et al. 
found that maternal smoking is associated with child autistic 
traits and changes in OXTR methylation [93]. These findings sug-
gest that maternal smoking can impact the epigenetic regulation 
of neurodevelopmental genes, thereby increasing the susceptibil-
ity to ASD.

Heavy metal exposure, particularly to lead, cadmium, and 
manganese, has been implicated in altering DNA methylation 
patterns related to ASD. Aung et al. reported hypermethylation 
near genes such as CYP24A1 in response to lead exposure [73]. 
Similarly, Mohamed et al. and Omotosho et al. found increased 
mercury, lead, and aluminum levels in autistic children, indi-
cating that heavy metal exposure can disrupt neurodevelopment 
through epigenetic modifications [132, 148].

The impact of THC (cannabis) on DNA methylation and ASD 
risk has also been explored. Schrott et al. and Schrott et al. found 
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that cannabis use is linked to hypomethylation in genes such 
as DLGAP2 and significant alterations in methylation patterns in 
spermatogenic cells, affecting genes like NR4A2 [81, 82]. These 
studies suggest that cannabis use during critical periods can 
influence the epigenetic landscape of neurodevelopmental genes, 
contributing to ASD risk.

Prenatal stress has been shown to induce DNA methylation 
changes associated with ASD. Rijlaarsdam et al. linked prenatal 
maternal stress exposure to child autistic traits and OXTR methy-
lation [93], while Stoccoro et al. found that prenatal stress leads 
to aberrant methylation levels in genes related to neurodevelop-
ment [95]. These findings highlight the role of prenatal stress in 
modulating epigenetic mechanisms that may influence ASD risk.

One limitation of attempting to summarize common themes 
is that all the exposures and at least half of the DNA methy-
lation studies summarized in Table 1 resulted from testing spe-
cific hypotheses of candidate genes and/or exposures. Thus, the 
summary of these findings may be biased by ascertainment bias.

Prospects for DNA methylation studies in ASD 
worldwide
While DNA methylation studies in ASD promise to yield a panel 
of methylated regions at specific gene loci that may predict risk 
for ASD with greater than 90% sensitivity and specificity, there 
are still many gaps to fill to achieve this goal. First, genome-wide 
discovery-based approaches should be performed in different 
global populations and countries to ensure a diversity of genetics, 
environments, and G×E interactions representative of ASD etiol-
ogy. It is encouraging that some genes identified from EWAS were 
replicated across studies, including CYP2E1, DLGAP2, and CSMD1. 
Furthermore, some imprinted genes appear replicated in candi-
date and genome-wide studies. While most EWAS studies utilize 
the uniformity of Illumina Infinium array-based platforms, there 
is a concern about the bias of probe representation of these plat-
forms. Infinium arrays are biased toward promoters and genic 
regions, which are overall enriched for lower genetic and epi-
genetic polymorphism compared to other areas of the genome. 
These arrays were also designed based on biased human genome 
maps of the past rather than the much more comprehensive 
current genome maps of human diversity across the globe. There-
fore, sequencing-based discovery studies should be performed for 
DNA methylation in multiple countries across continents. Large 
sequencing consortia for DNA methylomes would be one way 
of solving these significant gaps, such as what has worked for 
human genome sequencing to improve the diversity of genomic 
databases. Furthermore, smaller funding mechanisms could pro-
mote global collaborations between researchers in underrepre-
sented countries and those using cutting-edge genomic sequenc-
ing platforms.

A second significant gap for epigenetic and genetic research 
in ASD is the problems associated with variable ASD diagnosis 
across countries and within distinct populations within individual 
countries. The discovery of biomarkers depends on the qual-
ity of the subjects’ diagnoses in any study. A potential solution 
to this problem is for all countries to use the same diagnos-
tic criteria through the established ADOS or other agreed-upon 
diagnostic tool. This is why the discovery of DNA methylation sig-
natures of ASD may be best performed on human cohorts that 
have had a uniform diagnosis by trained professionals, including 
both ASD cases and controls. While such studies would be inher-
ently smaller in sample size compared to those that take anyone 
based on parent-reported ASD diagnosis, they would yield repro-
ducible results that are less biased by social determinants of ASD 

diagnoses. Ultimately, DNA methylation-based biomarkers hold 
the promise to provide a quantitative molecular assessment of 
risk for ASD at the interface of both genetic and environmental
factors.

Finally, the concept of epigenetic aging provides valuable 
insights into the biological aging process and its potential role 
in ASD. DNA methylation-based measures, such as the epige-
netic clock, allow researchers to estimate the biological age of 
tissues and cells, offering a novel avenue for understanding 
how early-life environmental exposures might accelerate aging 
processes in ASD. Accelerated epigenetic aging could contribute 
to the clinical heterogeneity observed in ASD, where individ-
uals present with varying levels of symptom severity. Impor-
tantly, these measures may also serve as potential biomarkers for 
ASD, possibly predicting disease onset, progression, or treatment
response.

Conclusion
This study shows a worldwide view of ASD research with progress 
and gaps. While much research in North America and Europe has 
started to reveal the complex genetic and environmental inter-
actions that exist in ASD, much remains unknown about ASD’s 
global prevalence and etiology. The variability in research focus, 
capability, and outcomes across continents signifies the impor-
tance of international collaboration and funding in ASD research, 
especially in areas with limited resources. Addressing these gaps 
will allow the global research community to gain a more compre-
hensive and inclusive understanding of ASD, allowing for better 
diagnosis and early intervention.
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155. Diallo FB, Fombonne É, Kisely S et al. Prevalence and corre-
lates of autism spectrum disorders in Quebec. Can J Psychiatry
2018;63:231–39.

156. Maenner MJ, Shaw KA, Baio J et al. Prevalence of autism spectrum 
disorder among children aged 8 years — autism and develop-
mental disabilities monitoring network, 11 sites, United States, 
2016. MMWR Surveill Summ 2020;69:1–12.

157. Maenner MJ, Shaw KA, Bakian AV et al. Prevalence and charac-
teristics of autism spectrum disorder among children aged 8 
years — autism and developmental disabilities monitoring net-
work, 11 sites, United States, 2018. MMWR Surveill Summ 2021;
70:1–16.

158. Ellefsen A, Kampmann H, Billstedt E et al. Autism in the 
Faroe Islands. An epidemiological study. J Autism Dev Disord
2007;37:437–44.

159. Isaksen J, Diseth TH, Schjølberg S et al. Observed prevalence 
of autism spectrum disorders in two Norwegian counties. Eur J 
Paediatr Neurol 2012;16:592–98.

160. Nygren G, Cederlund M, Sandberg E et al. The prevalence of 
autism spectrum disorders in toddlers: a population study 
of 2-year-old Swedish children. J Autism Dev Disord 2012;42:
1491–97.

161. Ko ̌covská E, Biskupstø R, Gillberg IC et al. The rising prevalence 
of autism: a prospective longitudinal study in the Faroe Islands. 
J Autism Dev Disord 2012;42:1959–66.

162. Saemundsen E, Magnússon P, Georgsdóttir I et al. Prevalence of 
autism spectrum disorders in an Icelandic birth cohort. BMJ Open
2013;3:e002748.

163. Idring S, Lundberg M, Sturm H et al. Changes in prevalence 
of autism spectrum disorders in 2001–2011: findings from the 
Stockholm youth cohort. J Autism Dev Disord 2015;45:1766–73.

164. van Bakel MME, Delobel-Ayoub M, Cans C et al. Low but 
increasing prevalence of autism spectrum disorders in a French 
area from register-based data. J Autism Dev Disord 2015;45:
3255–61.

165. Bachmann CJ, Gerste B, Hoffmann F. Diagnoses of autism spec-
trum disorders in Germany: time trends in administrative preva-
lence and diagnostic stability. Autism 2018;22:283–90.
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