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ABSTRACT OF THE DISSERTATION 

Planning and Operation of a Crowdsourced Package Delivery System:  

Models, Algorithms and Applications 

by 

Dingtong Yang 

Doctor of Philosophy in Civil and Environmental Engineering 

University of California, Irvine, 2021 

Professor Michael F. Hyland, Chair 

Online shopping has increased steadily over the past decade that has led to a dramatic increase in 

the demand for urban package deliveries. Crowdsourced delivery, or crowd shipping, has been 

proposed and implemented by logistics companies in response to the growth in package delivery 

business. Crowdsourced delivery is a delivery service in which logistics service providers 

contract delivery services from the public (i.e., non-employees), instead of providing delivery 

services exclusively with an in-house logistics workforce.  

This dissertation studies different types of urban last-mile crowdsourced delivery services and 

provides a taxonomy for crowdsourced package delivery. Urban package crowdsourced delivery 

can be categorized in terms of the way packages are delivered and the role/tasks of crowdsourced 

drivers. Given these two dimensions, this study identifies three types of urban package 

crowdsourced delivery, namely, crowdsourced time-based delivery, crowdsourced trip-based 

delivery, and crowdsourced shared-trip delivery. Crowdsourced time-based delivery drivers are 

paid for their idle time and work as sub-contractors. Crowdsourced trip-based delivery matches 

drivers with individual tasks and utilizes the drivers for specific delivery trips. The last type, 
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crowdsourced shared-trip delivery utilizes the common segments of a crowdsourced personal 

vehicle trip to deliver packages. In this type, the package shares part of the driver’s trip.  

The literature formulates the crowdsourced delivery problem as a Vehicle Routing Problem 

(VRP) and proposes a variety of solution approaches. However, all the solution algorithms are 

limited to relatively small-scale problems. In addition, the factors that impact the efficiency and 

effectiveness of crowdsourced delivery have not been thoroughly analyzed. To bridge the gap in 

crowdsourced delivery and urban freight logistics, this dissertation provides an alternative 

formulation for the static crowdsourced shared-trip delivery problem and proposes a novel 

decomposition heuristic to solve the problem. 

The alternative formulation is based on the set partitioning problem. The novel decomposition 

heuristic handles packages that are served by shared personal vehicles (SPVs) and dedicated 

vehicles (DVs), separately. After that, the algorithm deploys a package switch procedure, which 

rearranges packages between SPVs and DVs. The dissertation discusses various algorithms 

employed to solve different sub-problems, such as the budgeted k-shortest path, large scale bi-

partite matching, decision of package switching, and vehicle routing.  

To validate the models and algorithms, this dissertation presents a numerical case study that uses 

the network of the City of Irvine, CA, USA. The results of the numerical study unveil interesting 

results that are valuable to both researchers and industrial practitioners. The results indicate that 

crowdsourced shared-trip delivery service can reduce total delivery costs by between 20% to 

50%, compared to a delivery service that exclusively uses its own dedicated vehicles and drivers. 

However, the results show that dedicated vehicles are still required since the shared vehicles are 

not able to serve all packages even with a considerably large set of candidate shared vehicles. 

Vehicle Miles Traveled (VMT) savings depend on the crowdsourced driver selection and their 
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trip origins. The dissertation also analyzes and discusses important factors that impact the 

effectiveness of crowdsourced delivery. In particular, the dissertation includes sensitivity 

analysis results with respect to changes in the depot location and the willingness of shared 

vehicles to detour. 
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Chapter 1 Introduction 

1.1   Overview of crowdsourced freight delivery 

This dissertation explores a novel way of conducting urban freight delivery service, 

crowdsourced delivery, which is sometimes named as “crowd shipping” or “delivery with ad hoc 

drivers”. The term “crowdsourced” indicates that vehicles, and more importantly, driver-hours 

are sourced from the general public. 

Crowdsourcing might not be a brand-new idea in the field of transportation studies and is 

definitely not a new concept in the human history. Two hundred years ago, in the financial 

industry, this idea was applied for mutual fund raising and insurance purchasing. Moreover, 

when the website Wikipedia was first launched in 2001, the website sourced information and 

knowledge from the general public.  

In the transportation service sector, the concept of crowdsourcing become prominent with the 

introduction and growth of transportation network companies (TNCs). TNCs source passenger 

transportation service to essentially anyone with a vehicle and a smartphone. TNC services are 

similar to traditional carpooling and ride-sharing services wherein, in the latter services, a driver 

utilizes the extra capacity (i.e., seats) in their vehicle to transport passengers whose trips 

originate and terminate at locations that do not require the driver to detour too much from their 

original route. However, while traditional ride-sharing and carpooling services often require 

drivers and riders to agree on pickup location and pickup time at least an hour or two before the 

driver began their trip, the ubiquity of smartphones allows ride-sharing services to dynamically 

match potential riders and drivers who are traveling in a similar direction. This dissertation 
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extends the concept of dynamic ride-sharing for people to ride-sharing or ride-crowdsourcing for 

parcels.   

Crowdsourced delivery or crowd-shipping has been defined in various ways by researchers. 

Punel & Stathopoulos (2017) define crowd-shipping as “a goods delivery service that is 

outsourced to occasional carriers drawn from the public of private travelers and is coordinated 

by a technical platform to achieve benefits for the involved stakeholders.” Rai et al. (2017) 

defines crowd-shipping as “(an informative connectivity enabled concept that) matches supply 

and demand for logistics services with an undefined and external crowd that has free capacity 

with regards to time and/or space, participates on a voluntary basis and is compensated 

accordingly”. 

From these definitions, the dissertation summarizes three key factors associated with 

crowdsourced delivery: 

1. Supply of mobility (shipping/delivering source): undefined/external/general public/crowd 

2. Matching of demand and supply: Either smart algorithms considering time and space 

constraints or spontaneous search and bargain on a platform.  

3. Medium of information exchange (Platform of ordering and matching): information 

technology supported platforms (Mobile phone applications/mobile apps, websites) 
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Figure 1.1 Three Key Factors of Crowdsourced Delivery 

The three factors represent the information flow and goods flow in the crowdsourced delivery 

process. In the following chapters, when analyzing a crowdsourced delivery case, the dissertation 

applies the three-factor definition. Out of the three, the first factor is the most important one. 

Without sufficient supply of crowdsourced drivers, the entire system effectiveness and efficiency 

becomes severely degraded. The second factor requires an algorithm to determine eligibility and 

feasibility as well as perform the matching. The third factor works as an infrastructure for this 

type of service, it provides timely information to both the demand and supply parties.  

Following the three-factor definitions, the dissertation lists out several crowdsourced delivery 

examples: 

1. Walmart asks in-store customers to delivery packages for online order customers. 

2. Amazon asks drivers with idle time to sign up for a short-term package delivery task. 

3. Roadie seeks drivers for inter-state package delivery. 

4. Uber Eats seeks drivers for meal delivery. 
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There are many other examples of crowdsourced delivery. If the mode of service is not restricted 

to road/land vehicles, asking people that are flying to another city to carry goods/items is also a 

type of crowdsource delivery. To categorize the service, the dissertation first groups the service 

by travel distance. Crowdsource delivery can be done at both inter-city level (long distance) and 

intra-city level (short distance). The majority of crowdsourced delivery these days involves intra-

city travel, since most deliveries include food, groceries and emergency document same-day 

delivery.  

For intra-city delivery, the supply of mobility mainly involves city level commuter trips or 

people’s daily shopping trips. The matching of demand and supply usually relies on smart 

algorithms that consider spatial and temporal dimensions of vehicles and packages. In this type 

of matching, usually the drivers cannot choose a specific item that they would like to deliver, 

rather, they follow the results of matching algorithms. The only option that the drivers may have 

is to accept or reject the task order. The third factor is a smartphone app, where the end-customer 

orders and the driver receive delivery information. Meal, grocery, and one-day delivery of 

packages and documents all belong to this category. 

1.2   Motivations of the dissertation 

Then the next question to ask is: why freight sharing is needed in our society? One may 

understand this question from the most basic two factors of modern economics, demand and 

supply.  

In recent decade, the demand for package delivery and reverse logistics services has increased 

significantly due to online shopping. E-commerce in the U.S grew at a rate of 16% from 2017 to 

2018 (Figure 1.2, (Statista, 2021)); this growth rate would double packages delivery volume 
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every 5 years at (Ivanov, 2018). However, the COVID pandemic, which rooted people indoor, 

resulted in a huge increase in demand for package delivery to households (Bhatti et al., 2020). 

Ultimately, package delivery requests need to be delivered to households and businesses and 

doing so requires a large number of trucks, vans or other last mile delivery vehicles.  

 

Figure 1.2 E-commerce Volume in USA (2017 – 2025) 

On one hand, logistics companies, who are the major service providers of freight delivery, are 

facing challenges related to distributing large volumes of parcels and they need to make planning 

decisions on future facility investments and their vehicle fleet based on uncertainty about future 

demand. Given the uncertainty about future demand, logistics companies are looking for 

alternatives to making large capital investments in facilities and vehicle fleets, and 

crowdsourcing has emerged as a flexible option.  

On the other hand, from the social perspective, additional package deliveries may result in 

increasing vehicle trips. Growth in vehicle trips for pickup and delivery in urban/suburban areas 

presents the following major challenges to our society.  
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1. Additional vehicle trips will contribute to traffic congestion. Additional vehicle trips and 

the traffic congestion they generate may lead to more energy consumption and carbon 

emissions.  

2. While handling parcels, delivery vehicles require parking space, such as curb space, 

loading zones, and alleys, which are already of scarcity in urban areas. Ivanov (2018) 

show that Commercial Vehicle Load Zones (CVLZs) almost reach full occupancy during 

workdays in Seattle. 

Designing new logistics systems in urban areas can both save cost for logistics companies and 

reduce carbon emissions (Huang et al., 2018). Currently, most packages or freight items are 

delivered by designated vehicles and personnel. However, other alternatives based on 

crowdsourcing deliveries are possible. 

Large numbers of people travel everyday with idle space in their personal vehicles. The empty 

space can be leveraged for freight delivery. If these people do not have to detour far to pick up 

and deliver parcels to houses or businesses, then the cost to logistics providers (or shippers) are 

likely to be low and the extra vehicle trips, mileage, and congestion from increased package 

delivery are likely to be low. Hence, this form of crowdsourced package delivery is an option 

that could benefit both logistics companies and the society. 

Benefits of crowdsourced delivery include improved economic, social, and environmental 

sustainability (Rai et al., 2017). From an economic perspective, first, for logistic companies, 

crowdsource delivery helps reduce the fleet size and dedicated human resources involved in 

delivery. As a result, crowdsourcing can reduce capital and labor cost for logistics company (Qi 

et al., 2018). From a social perspective, crowdsourced delivery could potentially lower traffic 

generated from freight delivery, which reduces congestion and improves transportation 
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efficiency (Archetti et al., 2016; Arslan et al., 2019). Crowdsourced delivery also enhances the 

opportunity for same-day delivery, including both packages and food (Ulmer, Thomas, 

Campbell, & Woyak, 2021; Voccia et al., 2019), which improves quality-of-life in urban areas. 

Last but not least, from an environmental perspective, reducing freight delivery traffic can 

decrease fuel consumption and harmful emissions (S. Lee et al., 2016a).  

Motivated by the needs of establishing a new urban freight delivery system and the benefit that 

the crowdsourced delivery system can bring, this dissertation attempts to develop a modeling and 

analysis framework to improve understanding of and evaluate crowdsourced delivery systems. 

This dissertation reviews the current practice and studies related to crowdsource delivery, while 

at the same time, creates a new algorithm which is capable of solving crowdsourced problem in 

larger scale scenarios.  

1.3   Problem statements, research questions and contributions 

Previous research related to crowdsourced logistics has been wide-ranging in terms of research 

methodology. This section reviews crowdsourced logistics research that employ (i) empirical 

methods to model crowdsourced delivery behavior and demand (Punel et al., 2018; J. Rougès & 

Montreuil, 2014),  (ii) optimization methods to model, design, and analyze crowdsourced 

logistics systems/services (Archetti et al., 2016; Arslan et al., 2019), and (iii) other methods 

including analytical models and simulations (P. Chen & Chankov, 2018).  

Previous studies formulate the crowdsourced delivery under various assumptions. These 

assumptions jeopardize the generality of modelling a crowdsourced delivery problem. Besides, 

the problem instance sizes addressed in literature are relatively small, and in some real-world 

scenarios, existing models and solution algorithms are hard to apply. In addition, the details of 
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crowdsourced delivery operation are not fully understood. To bridge the gap and improve 

understanding of and knowledge related to crowdsourced delivery, this dissertation aims to 

provide a general formulation of the crowdsourced delivery problem, design a novel solution 

algorithm that is capable of solving real-world scale problems, and reveal critical service design 

factors and model parameters that impact the operation of crowdsourced delivery. 

Additionally, this dissertation aims to answer research questions covering both planning level 

and operational level concerns. Addressing these research questions, as this dissertation does, 

should provide valuable information for both academia and industry. 

(1) Planning Questions: 

- What vehicles could be utilized for crowdsourced delivery? 

- Are dedicated vehicles still required for logistics companies? 

- How many dedicated vehicles should be reserved for one distribution center? 

- What are the potential savings of crowdsourced delivery in terms of monetized cost, 

vehicle miles travelled (VMT), and emissions? 

(2) Operational Questions: 

- What packages should be handled by shared vehicles? 

- What packages should be handled by dedicated vehicles? 

- How many incentives should be offered to trip-sharing (i.e., crowdsourcing) drivers? 

- How will time window and capacity constraints impact the performance of a 

combined dedicated vehicle and shared vehicle fleet?  

- How will time window and capacity constraints be included and considered in the 

problems? 
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The major contributions of this dissertation include the following. First, the dissertation provides 

a comprehensive overview of the different types of crowdsourced delivery systems and 

summarizes the unique features of each type. Second, this dissertation provides a comprehensive 

review of the literature related to the development of crowdsourced delivery systems. Third, the 

dissertation proposes an urban freight delivery system that combines shared-use and dedicated 

vehicles (crowdsourced shared-trip delivery). Specifically, the proposed delivery system 

leverages the considerably large volume of trips made each day by persons in their personal 

vehicles for package delivery in urban areas. Even if a small percentage of these vehicles opt into 

a crowdsourcing delivery system, the shared personal vehicles (SPVs) can deliver a large volume 

of packages with minimal detour time, distances, or cost. Fourth, this study models the proposed 

urban freight delivery system and the underlying operational problem as both a mixed integer 

program based on the Vehicle Routing Problem (VRP) and a set covering problem, while 

summarizing and comparing the solution techniques that could be used. Fifth, based on the set 

covering formulation, the paper introduces a decomposition heuristic that is capable of solving 

relatively large-scale problem instances. In addition, the dissertation, through the models, 

solution approach, and case studies, provides valuable insights into the design of the proposed 

urban delivery system with shared and dedicated vehicles. The relevant design aspects include 

the dedicated and shared vehicle fleet sizes, as well as the impact of parameters such as the cost 

of DVs, the cost of SPVs, the maximum detour distance for SPV, etc. 

1.4   Dissertation outline 

This dissertation is organized as the follows.  
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Chapter 2 provides the necessary background information, conceptual framework, and a 

literature review of the research topic. This chapter describes in detail the operations of various 

crowdsourced delivery services.  

Chapter 3 consists of different mathematical formulations of the operational problem. The 

chapter explains the rationale of different formulations and the meaning of the equations. This 

dissertation applies a set-partitioning type of formulation that will be used by the decomposition 

heuristic developed in this dissertation. 

Chapter 4 presents a novel solution approach for the static crowdsourcing package delivery 

problem. The solution method is a decomposition heuristic that separately considers the shared 

vehicle routes and dedicated truck routes, and then jointly decides the package split between the 

two vehicle types. At the end of the chapter, the dissertation presents a comparison in terms of 

computation time between the decomposition heuristic and traditional Vehicle Routing Problem 

(VRP) problem. 

Chapter 5 is the application of models and algorithms. The dissertation uses the City of Irvine, 

CA as the study area and compares performance metrics including cost of using SPV, total cost 

of delivery, SPV/truck VMT, total VMT and shared vehicle used. This chapter also conducts 

sensitivity analyses by varying the detour willingness of drivers and choosing an alternative 

depot. Significant findings about cost and VMT of crowdsourced shared-trip delivery are 

unveiled. 

Chapter 6 presents different operating policies and incentive strategies for crowdsourced 

delivery. The chapter presents a Pickup and Delivery Problem (PDP) based formulation to find 
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the optimal operation policy for logistics companies. The chapter also lists out different 

incentive/compensation policy for crowdsourced drivers.  

Chapter 7 summarizes the dissertation and discusses further research.  

. 
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Chapter 2 Conceptual Framework and Literature Review 

This chapter presents the conceptual framework of urban crowdsourced delivery, compares three 

types of crowdsourced delivery services, identifies the crowdsourced delivery service that this 

dissertation focuses, and reviews related literature. 

2.1   Urban freight crowdsourced delivery 

As described in Chapter 1, crowdsourced delivery could be intra- or inter-city level. This 

dissertation narrows down to intra-city level (urban level) crowdsourced delivery. In urban level 

crowdsourced delivery, three major categories could be identified (Table 2.1). The separation is 

based on whether the driver is an “amateur” service provider or a semi-professional (“semi-pro”) 

service provider, and whether the source of mobility is a trip-based sourcing or time-based 

sourcing. The three different ways of crowdsourced delivery include sourcing a semi-pro driver 

for trips, sourcing a semi-pro driver for time, and sourcing an amateur driver for shared trips. In 

the section, the three types of crowdsourced delivery are explained in detail. 

Table 2.1 Types of Urban Crowdsourced Delivery and Examples 

Working Type 
Sourcing Type 

Time Trips 

Amateur -  
Crowdsourced shared-trip Delivery 

(e.g., Store Customer Delivery) 

Semi-pro 
Crowdsourced Time-based 

Delivery (e.g., Amazon Flex) 
Crowdsourced Trip-based Delivery 

(e.g., Uber Eats) 

 

Though in the above table, Uber Eats type of business is categorized as crowdsourced trip-based 

delivery, in real-world operations, the business could be a mixture of crowdsourced trip-based 

delivery and trip-shared delivery depending on the driver types. In food delivery sector, the 
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coordinating platform may contract with a group of “committed drivers”, who are committed to 

conducting the service in a designated time slot, then the service that is provided by these drivers 

are more likely to be in the category of crowdsourced trip-based or time-based delivery 

depending on the ways of compensation. If a driver happens to carry a delivery order on the way 

home, then the service is a trip-shared delivery. 

Crowdsourced time-based delivery 

The first type of urban crowdsourced delivery is a delivery type which logistics companies 

crowdsource drivers who are willing to work for a relatively long period as a delivery person. It 

usually requires drivers to commit 3 to 4 consecutive hours to deliver a set of packages (usually 

60 to 80). An example is the program of Amazon Flex package delivery. The process is as 

follows. First, after registering as a time-shared driver, a driver will be provided with a list of 

delivery tasks with different time requirements and number of packages. The potential list that a 

specific driver could receive depends on the location of the driver. The compensation for 

completing different tasks is different and the calculation is usually based on the number of 

packages in the task. Then the driver could select a task that fits him/her the best. The last step is 

travelling to the depot/distribution center, pick up all packages and deliver them. 

To understand the service better, one could use the three-factor analysis for the time-based 

crowdsource delivery. The major supply of mobility is drivers with long idle time. It is worth 

noticing that though idle time is the key component for mobility supply, an idle vehicle and 

empty space are also underlying components. The matching of demand and supply is supplier 

selection based. However, the bundling of packages and pricing of tasks are done by the logistics 

company. The packages are bundled by their delivery locations and the route of delivery is 
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optimized. Once receiving the tasks, drivers will have a time limit to finish delivering all 

packages. During the working time, the driver is quite similar to profession delivery personnel. 

The final factor, media of communication, is a mobile phone app. 

The dissertation names this type of crowdsourced delivery as crowdsourced time-based delivery, 

since the type of service requires more than a single trip or a short period of time. It is closer to 

the type of “hiring occasional drivers and their vehicles for a period of time”. Crowdsourced 

time-based delivery has multiple benefits over the traditional truck delivery service. From the 

cost perspective, the logistics companies save cost of purchasing additional trucks, cost of hiring 

professional delivery personnel and related administrative/miscellaneous cost. For VMT, it 

seems drivers may incur additional VMT by travelling to the distribution center. However, their 

delivery service replaced the heavy truck/vehicle delivery. Therefore, although the total VMT 

may increase, but the actual pollution brought by truck delivery may exceed the crowdsourced 

delivery. For drivers, they could earn additional income in their idle time.  

Crowdsourced trip-based delivery 

The second type of service is commonly seen in meal delivery or some other same day delivery 

examples (Ulmer, Thomas, Campbell, Woyak, et al., 2021). Uber Eats and DoorDash are both 

examples of this type of service. I name it “trip-based” because drivers are usually required to 

complete certain trips in order to receive compensation. The crowdsourced trip-based delivery is 

similar as an Uber/Lyft type of ride sourcing service, or a ride share service. When packages are 

ready to be delivered, the delivering platform searches nearby drivers and matches them with 

orders. Then drivers pick up packages and deliver them to designated locations. If a driver picks 

up and deliver one order at a time, it is similar as a non-share ride matching problem. If multiple 
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packages are picked up simultaneously or sequentially, and then delivered sequentially, the 

shipping process is close to a rideshare of people transportation. It is worth noticing that the 

drivers are usually paid per order, and compensation per order is either fixed or based on 

distance travelled (Yildiz & Savelsbergh, 2019).  

 The three-factor analysis in Chapter 1 could be applied again for this type of service. First, the 

supply mobility is the trips of drivers who are willing to deliver. The matching of packages and 

drivers are conducted by optimization schemes of the matching plat form. Drivers may reject 

unwilling-to-deliver packages. The third factor, communication media, is a mobile app.  

The dissertation hereby compares the crowdsourced time-based delivery and the crowdsourced 

trip-based delivery. The first difference is that the former requires drivers to work for 

consecutive hours for a set of inseparable tasks, while for the second one, the drivers usually 

have choices to accept or reject individual tasks and the working time is based on the number of 

tasks that the driver has accepted. The second difference is that the crowdsourced time-based 

delivery is closer to a static Vehicle Routing Problem (VRP), while the second one is closer to a 

dynamic pickup and delivery problem (PDP). The third difference is that the goods delivered by 

crowdsourced trip-based delivery is usually more urgently needed than the goods delivered by 

crowdsource time-based delivery. Therefore, the trip-based one is usually used in food, medicine 

or same-day delivery. The third difference also leads to the fourth one that the per package 

delivery cost of crowdsourced trip-based delivery is considerably higher than the per package 

delivery cost of crowdsourced time-based delivery. The common feature of the two is that 

drivers are semi-professional, which means they are not involved in other tasks or trips with 

other purposes at the meantime.  
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Freight share-a-trip delivery/Crowdsourced shared-trip delivery 

The last type of urban crowdsourced delivery is the one that this dissertation concentrates on. 

This type of service is usually conducted by an amateur driver who shares part of his/her trips to 

deliver goods. In literature, it is called as VRP with occasional drivers (Archetti et al., 2016), 

crowdsourced delivery (Arslan et al., 2019), same-day crowd-shipping(Dayarian & Savelsbergh, 

2020). Also in literature, usually this type of service is restricted as “using in-store customers for 

the delivery”. In this dissertation, instead of restricting the supply of mobility to in-store 

customers, the dissertation applies a more general description for the crowdsourced shared-trip 

delivery.  

Assume one distribution center (DC) is responsible for package delivery in a service area. The 

task of distribution center is to deliver packages/freight to specific locations and not violate the 

time window constraint. Private vehicle drivers who are willing to participate in delivering small 

to medium size package in urban/sub-urban areas register their trip information to the depot. 

Once they are matched with a package, they come to the depot and carry the package on their 

way to destinations. The trip sharing vehicles are called shared-trip vehicles (named “shared 

personal vehicles”, “shared vehicles”, or abbreviated as SPVs). To successfully complete a 

delivery, SPV drivers may need to detour for package pickup and delivery. Each driver has a 

time window of travel, which is described by the difference between latest arrival time (LAT) at 

their destination and their earliest departure time (EDT) from their origin. The detour time needs 

to be with the time window of travel. Each package also has a loose time window of delivery. 

The distribution center also has a number of dedicated vehicles (DVs) available, which are 

dedicating to package delivery. Each DV has a capacity limit for carrying packages but no time 

constraint for returning to the depot. Since in this setting, the packages are delivered by shared 
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trips of SPVs, I name this type as freight share-a-trip delivery or crowdsourced shared-trip 

delivery. Figure 2.1demonstrates the crowdsourced shared-trip delivery. 

  

Figure 2.1 Freight share-a-trip delivery 

The three-factor analysis could be again used on this type of crowdsourced delivery. The 

mobility supply of this service is the trips of personal car drivers who are willing to share. In 

addition, DV will be used if SPVs are not able to complete the task. The matching between the 

demand and supply are conducted by optimization schemes. The media of communication is also 

mobile apps. The major difference between crowdsourced trip-based delivery and crowdsourced 

shared-trip delivery is whether the drivers’ primary purpose of a trip is a delivery trip or not. If 

the driver’s primary purpose of a trip is not delivery goods, but shopping trips or working trips 

etc., the delivery is considered as crowdsourced shared-trip delivery. Otherwise, it is a 

crowdsourced trip-based delivery. 
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Comparison between crowdsourced delivery types and traditional truck delivery 

This subsection compares the differences between all urban freight delivery methods. The 

following is a summary table of three crowdsourced delivery types and traditional truck delivery. 

Table 2.2 Comparison between urban crowdsourced delivery and traditional delivery 

Delivery Type 
Crowdsourced 

Time-based 

Delivery 

Crowdsourced 

Trip-based 

Delivery 

Crowdsourced 

shared-trip 

Delivery 

Traditional Truck 

Delivery 

Supply of 

Mobility 

Private vehicle 

drivers to complete 

specific trips 

Private vehicle 

drivers to complete 

specific trips 

Daily traveler trips 

and vehicle extra 

capacity + Truck 

In-house logistics 

or 3rd Party 

logistics 

Matching of 

Supply and 

Demand 
Driver selection Optimization Optimization 

Vehicle Routing 

Problem 

Handling 

Personnel 
Private vehicle 

drivers, Semi-pro 
Private vehicle 

drivers, Semi-pro 
Private vehicle 

drivers, amateur 
Professional 

delivery workers 

Compensation 
Package bundles 

and distance 
Fixed per trip or 

distance base 
Fixed per deliver + 

detour 
Wages 

 

 
Figure 2.2 Relations between different crowdsourced delivery and traditional truck delivery 

The first difference between crowdsourced delivery and traditional truck delivery is on the 

supply of mobility. For traditional truck delivery, usually the depot/logistics company owns a 
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fleet, but for crowdsourced delivery, mobility supply is sourced from private vehicles by 

different ways. It is worth noticing that for crowdsourced shared-trip delivery, dedicated trucks 

are still necessary since when shared vehicles are limited, SPV mobility may not cover all 

package locations. The matching of demand and supply for all types of delivery are similar. 

Though, for crowdsourced time-based delivery, drivers decide their preferred packages set by 

selection, but the package set is bundled by logistics companies using optimization methods. For 

handling personnel, both crowdsourced time-based and trip-based delivery are using 

crowdsourced drivers as semi-pro drivers. This dissertation defines a semi-pro delivery person as 

a driver whose primary task is to deliver packages during flexible, self-decided working hours. 

The drivers for crowdsourced shared-trip delivery do not have the primary trip purpose of 

delivery packages, and they are amateur delivery persons. The compensation schemes are also 

various for different delivery type, which would be discussed in Chapter 5. 

This dissertation narrows down to further study crowdsourced shared-trip delivery. The next 

section, literature review, will review related literature, which include studies related to 

crowdsourced delivery, vehicle routing problem, ridesharing problem and urban freight delivery 

integrated with other modes. 

2.2   Terminology 

Up to Section 2.1 of this dissertation, I have introduced a few new terms. This section 

summarizes and clarifies the terms that are used in this dissertation and related to crowdsourced 

delivery. 

Crowdsourced delivery is the logistics mode that sources mobility supply from the general 

public. It is sometimes called crowd shipping. By distance, crowdsourced delivery could be 
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categorized to inter-city crowdsourced delivery and intra-city crowdsource delivery. Intra-city 

crowdsourced delivery, which is the focus of this dissertation, is also named urban last-mile 

crowdsourced delivery. 

This dissertation introduces a taxonomy for urban last-mile crowdsourced delivery and names 

three categorizes, crowdsourced trip-based delivery, crowdsourced time-based delivery and 

crowdsourced shared-trip delivery. The definitions of the three categories could be found in 

Section 2.1 and are not repeated them in this section. The drivers who participate in 

crowdsourced delivery are called crowdsourced drivers; their vehicles are called crowdsourced 

vehicles. In the third category, crowdsourced shared-trip delivery, since the drivers share the 

space in their personal vehicles and part of their trips, they are specially called shared personal 

vehicle drivers, and their vehicles are called shared personal vehicles (abbreviated as SPVs, or 

SVs). Any non-crowdsourced vehicles used in this dissertation are called dedicated vehicles 

(abbreviated as DVs), and since most of the time DVs are medium size trucks or vans, trucks or 

vans in this dissertation also refer to dedicated vehicles. 

2.3   Literature review 

This section reviews related literature. The review of literature starts with ridesharing problems, 

followed by the people and freight integrated transportation problem, followed by the 

crowdsourced delivery problem and ends with literature on the Vehicle Routing Problem (VRP). 

Ridesharing problems are a category of problems arising from shared economy. It focuses on the 

sharing of vehicles of routes between two separate parties, who have common segment of routes 

and accept reasonable detour. Ridesharing problem are also intensively study in recent years. 
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Reviewing literature on ridesharing between people helps enhance the understanding of 

ridesharing between people and parcels. 

Ridesharing problems 

Ridesharing problems are a group of problems where a set of vehicles serve a set of passengers 

such that route overlapped passengers may be serve by the same vehicle. The objectives include 

maximize people served, maximize profit, minimize total route distances or minimize total wait 

and in-vehicle time for passengers.  

(Shaheen & Cohen, 2019) present a taxonomy of rideshare services. In their categorizations, 

rideshare services include three major classes, namely core pooled services, ridesharing and on-

demand ride services. Core pooled services define a broad type of services that encompasses 

pooling services without smartphone apps (e.g., public transit). Ridesharing consists of general 

carpool/vanpool of families, coworkers, in which smartphone apps are also not necessarily 

involved. The last category, on-demand ride services, utilize smartphone apps for matching 

drivers and riders. On-demand ride services are further classified into four sub-classes, including 

ride sourcing (Uber, Lyft), ride splitting (Uber pool, Lyft Line), taxi share and micro transit. 

Ridesharing services are proved to have large social and economic benefit (Rayle et al., 2016). 

The ridesharing services reduce vehicle miles travelled, ride sourcing cost and road network 

congestion (Wang & Yang, 2019). (Levin et al., 2017) simulate the city traffic of Austin with 

and without dynamic ridesharing. They find that dynamic ridesharing could reduce the additional 

empty vehicle repositioning trips.  

These findings all inspire us to think whether similar benefits could be achieved by enabling 

people and freight to share the same trip. The difference between freight and people is that 
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freight requires less space than people, and the time window requirement of freight is usually not 

as urgent as people (unless it is some emergency packages). Therefore, one may replicate some 

approaches used in ridesharing between people to rideshare between people and parcels. 

On the other hand, technically, providing on-demand ridesharing service is complicated and 

challenging. One of the reasons is that dynamic matching of vehicles and passengers usually 

involves choosing “the best” out of large numbers of feasible vehicle-passenger pairs and routing 

vehicles in a dynamic and smart manner. 

There are different ways of matching vehicle and passengers. The closet one to the people and 

parcel trip integration problem is the matching of a “single driver, multiple rider arrangement”, 

i.e. a driver could simultaneously serve multiple riders, and riders will not switch to new drivers 

during the process (Agatz et al., 2012). Match-up of passenger drivers could be modelled 

multiple ways using different objective functions and constraint sets. Objective functions are set 

to achieve different goals. Multiple objective functions are considered in previous studies, such 

as minimizing total vehicle miles travelled (VMT) (Pelzer et al., 2015; Simonetto et al., 2019), 

minimizing total delays and waiting (Alonso-mora et al., 2018), and maximize the total VMT 

saved (Qian et al., 2017). Besides the difference in objective functions, the formulation of the 

problem either involves an integer programming (IP) of assignment problem (Alonso-mora et al., 

2018; Hosni et al., 2014; Simonetto et al., 2019) or dial-a-ride problem (DARP) (Cordeau & 

Laporte, 2003, 2007; Quadrifoglio et al., 2008). This paper uses the objective of minimizing total 

vehicle miles travelled and adopts the MIP structure for the vehicle-passenger bi-partite 

matching problem. Bi-partite matching problem (also called assignment problem) is a widely 

used 0-1 integer programming type, the dissertation explains the problem of bi-partite matching 

problem in the content of a ride matching problem as follows. 
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Bi-partite matching formulation 

There is a set of vehicles 𝑉, and a set of passengers 𝑃. The task is to match passengers to 

vehicles in order that every passenger is served by a vehicle. The decision variable of the 

problem is 𝑥𝑖𝑗, a binary variable that indicates whether a passenger 𝑖 is served by vehicle 𝑗. 

𝑀𝑎𝑥 𝑍 =  ∑𝑐𝑖𝑗𝑥𝑖𝑗
𝑖,𝑗

 (2.1) 

subject to: 

∑𝑥𝑖𝑗
𝑗

= 1, ∀𝑖 ∈ 𝑃 (2.2) 

∑𝑥𝑖𝑗
𝑖

≤ 𝑞𝑗, ∀𝑗 ∈ 𝑉 (2.3) 

𝑥𝑖𝑗 ∈ [0, 1](2.4) 

Objective (2.1) maximize the total matching number of packages. Constraint (2.2) ensures that a 

package is served by a vehicle. Constraint (2.3) limits the number of packages served by a 

vehicle must be smaller than its capacity. A bi-partite matching problem is an integer problem, 

but could be solved efficiently with linear relaxation, since all corner points of the feasible region 

are all integers (Y. Lee & Orlin, 1994). The problem is a special case of transportation problem, 

and is widely used in crew scheduling, ride matching and pairing problems. 

The solution algorithms of the matching/assignment problem were well developed in literature. 

Most algorithms could achieve a polynomial time solution (Burkard & Çela, 1999). Efficient 

algorithms include Hungarian method (Kuhn, 1955), which has a complexity of 𝑂(𝑛3); Shortest 

augmented path algorithms (Jonker & Volgenant, 1987), which could achieve a complexity of 
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𝑂(𝑛2𝑙𝑜𝑔𝑛) 𝑜𝑟 𝑂(𝑛2) for some special cases; Simplex-based algorithms (Hung, 1983), which 

also has a complexity of 𝑂(𝑛3). Overall, the assignment problem is handled with polynomial 

algorithms and usually used as an important relaxation for traveling salesman (TSP) type of 

routing problems.      

Besides the assignment of vehicles to passengers, the choice of routes for vehicles also impacts 

the efficiency of ridesharing system significantly. Routing a vehicle includes deciding the 

sequence of pickup and delivery when ride splitting appears and choosing the paths from one 

pickup/drop-off location to another. The decision of pickup/drop-off sequence is often tackled by 

solving the problem as a vehicle routing problem (VRP) or more specifically, a DARP, which 

could be seen in (Ma et al., 2015) and (Simonetto et al., 2019). The path from one location to 

another is determined by travel time or distance. In most cases, the shortest path is used. 

However, proper detour may increase the opportunity for a vehicle to serve additional passengers. 

This concept is also applicable in freight sharing ride problem. When the service vehicle detours 

with its time constraints, it enlarges the possibility of matching to additional parcels. 

In summary, the problem of ridesharing between people has considerable similarities with the 

problem of ridesharing between people and parcels. The idea of vehicle detour routing and 

matching vehicles with passengers could be applied to freight share-trip delivery. 

People and freight integrated transportation problem (PFIT problem) 

The second part of literature reviews the problem that integrates people movement and parcel 

delivery into the same vehicle. Broadly, integrating freight and passenger systems is also a part 

of People and Freight Integrated Transportation Problems (W. Chen et al., 2017). PFIT problems 

are a category of problems, which study the movement of freight and passengers as a combined 
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objective. In these problems, freight is handled combined with passenger movements. In 

literature, researchers propose three ways of integration (W. Chen et al., 2017), namely, freight 

delivery integrated with public transit, taxi or Transportation Network Company services (TNCs), 

and private/personal vehicles. This dissertation will review literature in the three categories 

respectively. 

Freight movement integrated with public transit 

The first type of integration concerns with transporting goods for relatively long distances by 

using idle capacity of transit or adding carts to passenger trains. The benefit of this type of 

integration is mainly for cross-city transportation of freight. Public transit, in literature, which 

includes buses, trains and other rail systems, are largely involved in this type of integration. The 

feature of public transit is that it has relatively large idle capacity during non-peak hours, but its 

service routes are fixed. Therefore, additional freight transfer may be needed. 

(Trentini & Malhene, 2010) conceptually describe the integration of passengers and goods 

transport services. They provide examples in this paper about how freight and passengers can 

share transportation resources. A new design of Freight-Bus is mentioned, which combines 

passenger and freight transport together. They summarize possible scenarios where buses, rails 

and light rails systems are available for transferring good.  

Masson et al. (2017) formulated the Mixed Urban Transportation Problem (MUTP) as a mixed 

integer programming and solved the problem with neighborhood search technique. A case study 

in the city of La Rochelle has been conducted to get preliminary results. Studies using similar 

approaches include (Trentini et al., 2013) (A mixed integer vehicle routing problem) and 

(Woensel, 2013) (A mixed integer pickup and delivery problem).  
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Fatnassi et al., (2015) propose a combined passenger and freight rapid transit system for urban 

freight. In their design, a rapid train is equipped with both passenger carts and freight carts. 

Passengers and freights can share the same train and also have their own time of operation. At 

each station, dedicated personnel will use forklift to handle the collection of parcels. 

Freight movement integrated with taxi or TNCs 

Integration between freight and taxis or vehicles of ride sourcing companies belongs to the 

second category. In this type of integration, packages are considered the same as a passenger to 

share the vehicle. (B. Li et al., 2014) initiated a study on people and freight integrated 

transportation problems (PFIT problems). They construct a scenario where people and freight are 

sharing vehicles. In that scenario, they attempted to insert freight into an itinerary of a people, 

which is so called a freight insert problem. They formulated a mixed integer programming for 

the problem and solved it with neighboring search algorithm. They have concluded that at certain 

level, taxi companies had to compromise their profit with matching rate if freight and passengers. 

In addition, traditional distribution vehicles might still be needed as a supplementary service.  

Qi et al., (2018) conducted another study on shared mobility for e-commerce package delivery 

problem. In their problem set-up, they considered a case that both distribution trucks and shared 

vehicles of ride sourcing companies (crowdsourcing mobility services) are both serving multiple 

terminals for distribution. In this study, they provided analytical solutions for decisions of 

service zones, wage paid to shared-vehicle drivers, and cost density of using shared-vehicles and 

trucks. They concluded that, shared-mobility cost was not scalable as truck cost of delivery when 

demand increase. By using shared vehicle for delivery, a company could effectively reduce its 

fleet size, and receive benefit from not purchasing extra trucks. From environmental perspective, 
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they also conclude that using shared vehicles for delivery might not reduce emission due to extra 

trips of each vehicle. 

Freight movement integrated with personal vehicles 

The third type of integration is the most relevant way related to this dissertation. It considers 

packages delivered by personal vehicles. This kind of integration sometimes is named 

crowdsourced delivery with ad-hoc/occasional drivers, or same-day delivery problem. The 

dissertation provides detailed reviews of related literature in next subsection. 

The earliest literature that one could found about this type of integration is (Archetti et al., 2016), 

which formulate a vehicle routing problem with occasional drivers (VRPOD). They provide 

basic formulation and regulate the number of packages served by shared vehicles to be one. 

Similar formulations are also proposed by (Macrina, Di Puglia Pugliese, et al., 2017). This 

dissertation further extends the formulation with time window and heterogeneous capacity 

among SPVs.  

Both Archetti et al., (2016) and Macrina, Di Puglia Pugliese, et al., (2017) uses Solomon 

VRPTW instances (Solomon, 1987) for their numerical experiments. Both works show potential 

reduction in cost and Vehicle Miles Travelled (VMT) by applying crowdsourced delivery. 

Arslan et al., (2019) formulate the crowdsourced delivery problem as a matching problem and 

propose a rolling horizontal framework for dynamic cases. Their numerical study results indicate 

a potential 37% saving in VMT by using occasional drivers. 

Environmental impact of crowdsourced delivery service is studied by (S. Lee et al., 2016b) and 

(Rai et al., 2017). It is possible to reduce carbon emission by using SPVs to deliver packages. 
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Crowdsourced delivery 

This section reviews related research in the literature and delineates the unique contribution of 

the current study relative to the existing literature. Previous research related to crowdsourced 

logistics has been wide-ranging in terms of research methodology. This section reviews 

crowdsourced logistics research that employ (i) empirical methods to model crowdsourced 

delivery behavior and demand, (ii) optimization methods to model, design, and analyze 

crowdsourced logistics systems/services, and (iii) other methods including analytical models and 

simulations.  

J.-F. Rougès & Montreuil, (2014) study 18 startups in the crowd shipping industry and claim that 

the business-to-consumer (B2C) crowdsourced delivery works best for intra-urban deliveries due 

to the need for partnerships with retailers and population density in urban areas. (Punel et al., 

2018) analyze the determinants of using crowd shipping after collecting 800 responses from a 

web-based survey. Their results indicate that crowd shipping package users believe the major 

advantages of crowd shipping relate to environmental benefits and vehicle utilization instead of 

affordability of crowd shipping items. The dissertation applies optimization for the modeling, 

analysis, and design of crowdsourced delivery; hence, the related literature will be reviewed in 

detail. The study of crowdsource delivery problem as an optimization problem has been 

conducted from both static and dynamic perspectives.  

Static problems usually treat the crowdsource delivery problem as a multi-vehicle routing 

problem (m-VRP) or multi-vehicle pickup and delivery problem (m-PDP). Archetti et al., (2016) 

model the crowdsource delivery as an extension of classic static VRP. The proposed model 

assumes a maximum of one task per shared vehicle driver. The study applies a multi-start 

heuristic by first assigning all packages to dedicated trucks and then solving a series of small 
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scale bi-partite matching problem to assign packages to SPVs. Macrina, di Puglia Pugliese, et al., 

(2017) extended the problem to a VRP with time-windows (VPRTW) and allow SPVs to carry 

multiple packages. Dahle et al., (2019) formulate the problem with consideration of pickups and 

drop-offs and formulate the problem as a pickup and delivery problem with time windows 

(PDPTW). The focus of Dahle et al., (2019) is to compare different compensation schemes. The 

study argues that the compensation needs to be large enough to exceed the threshold of the 

driver’s willingness to deliver. The paper concludes that all crowdsource delivery would reduce 

total costs for logistic companies and the savings would be around 10-15%. 

The crowdsourced delivery problem is also formulated as a dynamic problem in literature.  

Arslan et al., (2019) provide a dynamic way of modelling the problem. Besides a single store as 

depot, the paper also considers in-store customers willing to travel to another depot for pickup 

and delivery. To solve the problem, the paper proposes a rolling horizon approach that employs a 

matching problem solution technique. Dayarian & Savelsbergh, (2020) also model the dynamic 

crowdsourcing problem with the assumption of maximum one task per SPV. The paper proposes 

and compares decision strategies, namely, myopic assignment and sample scenario planning. 

Gdowska et al., (2018) model the problem as a bi-level stochastic problem. They consider the 

possibility that in-store customers reject a matching of delivering a package. The paper proposes 

a cost-driven heuristic technique for solutions. 

Studies applying approaches other than empirical analysis and optimization include P. Chen & 

Chankov, (2018) (an agent-based simulation) and Qi et al., (2018) (an analytical approach). In P. 

Chen & Chankov, (2018), the simulation results indicate that the maximum willingness of detour 

effects the service level and the number of packages served by SPVs the most. Qi et al., (2018) 

develop a continuous approximation model for the open vehicle routing problem of SPV drivers. 
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The study points out that the major economic benefit of crowdsourced delivery is reducing fleet 

size and offering operational flexibility. 

While formulating the crowdsource delivery problem based on VRP or PDP, simultaneously 

routing both DVs and SPVs is unavoidable and challenging for medium- and large-scale problem 

instances. Due to the NP-hard nature of routing problems, despite the rich literature related to 

solving VRP (Cordeau & Laporte, 2003; Golden et al., 2008; Laporte, 1992; Laporte, Gendreau, 

Potvin, et al., 2000), optimal routes are tough to obtain with even a dozen dedicated trucks, not to 

mention hundreds of potential SPVs in this problem. Moreover, the decision to assign a package 

to a dedicated truck or a SPV is not simple to make. The decision is ultimately driven by costs; 

however, the marginal cost of assigning a package to an SPV or DV is hard to precisely and 

accurately estimate.  

This dissertation differentiates itself from previous studies on the following aspects. The 

comparison of major optimization related papers is listed in Table 1. First, this paper provides an 

additional set cover formulation of the problem along with a traditional VRPTW with detour 

consideration. Second, by decomposing the set covering problem to a package-SPV matching 

and a DV routing problem, the method can successfully handle a large number of SPVs and 

restrict the VRP to limited number of dedicated trucks. Formulating the Crowdsourced Shared-

trip ProblemChapter 3 presents the mathematical model and Chapter 4 explains the solution 

approach. 
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Table 2.3 Comparison with other crowdsourced shared-trip delivery studies 

Literature 
Problem 

Nature 
Formulate 

SPV 

Capacity 

SPV 

compensation 

Solution 

Technique 
Test Scale 

(Archetti et 

al., 2016) 
Static 

VRP-

based 
One Package location  

Muti-Start 

Heuristic 
100 Task, 

100 SPVs 

(Macrina, di 

Puglia 

Pugliese, et 

al., 2017) 

Static 
VRPTW-

based 
Multiple Detour-based  

CPLEX 

directly 
100 Task, 

100 SPVs 

(Dahle et al., 

2019) 
Static 

PDPTW-

based 
Multiple 

Threshold of 

compensation 
MOSEL  

70 Task, 

100 SPVs 

This 

dissertation 
Static 

 Set 

Cover 

Based 
Max. 4 

Fixed + Detour-

based 
Decompose 

heuristic 
200 Task, 

1200 SPVs 

(Arslan et al., 

2019) 
Dynamic 

 
Max. 4 Detour-based  Heuristic  

 

(Dayarian & 

Savelsbergh, 

2020) 

Dynamic 
 

One Store credit 
Matching 

SPV first  

(Gdowska et 

al., 2018) 
Dynamic 

 
One Package location Heuristic  

 

 

Vehicle routing problem (VRP) 

This freight share-s-trip delivery problem could also be viewed from a VRP point of view. VRP 

has a long history and has been well studied by researchers.  

VRP is described as the problem of obtaining optimal delivery/pickup routes from the depots to a 

spatial distribution of customer locations. It works as a base for combinatorial optimization 

(Laporte, 1992).  

The basic settings of a VRP includes the following factors: 

- Graph 𝐺 =  (𝑁, 𝐴). 
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- Node/vertex set N: 𝑁 = {𝑛0, 𝑛1, 𝑛2, … 𝑛𝑖}, where 𝑛0 represents the depot. 

- Arc set A: 𝐴 = {(𝑛𝑖 , 𝑛𝑗)}, ∀𝑛𝑖 ∈ 𝑁, 𝑖 ≠ 𝑗. 

- Vehicle set V: 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑘}. 

- Cost matrix: 𝑐𝑖𝑗 for the travel cost between 𝑁𝑜𝑑𝑒 𝑛𝑖  𝑎𝑛𝑑 𝑛𝑗 . 

The objective of the problem is to visit all nodes with given fleet at a minimum cost. There are 

certain number of deviations of standard VRP, which can be summarized as follows (Laporte, 

1992). 

- Capacity constraints: each vehicle in fleet can be assigned a capacity of carrying goods. 

This type of problem is referred as Capacity-restricted Vehicle Routing Problems 

(CVRPs). 

- Total time/route constraints: the length of route may be restricted by an upper bound U 

due to the limitation of working hours/fuel/time. This type is of question is referred as 

time constrained VRPs. 

- Time window: each location to be visited may be associated with a time interval [𝑡𝑎, 𝑡𝑏]. 

This type is referred as VRP with time window (VRPTW). 

- Precedence relation: some 𝑁𝑜𝑑𝑒 𝑛𝑖 must be visited before 𝑁𝑜𝑑𝑒 𝑛𝑗 . 

In addition to the aforementioned variants,(Irnich et al., 2014) also suggests the following 

elements that could modify the original VRP: 

- The road network structure (Arc routing problem) 

- The type of transportation requests (Collection, simple visit, load split or repeat supply) 

- The constraints that affect each route individually (Route length, vehicle scheduling)   

- The fleet characteristics (Mixed fleet, multiple depot) 
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- The inter-route constraints (Task, operation and movement synchronization) 

- The optimization objectives (Single, multiple, hierarchical objectives) 

VRP belongs to the category of NP-hard problem in computational complexity literature. Due to 

the NP-hardness, problem size of VRP problem is vital in computation. This dissertation 

addresses problems where both the number of nodes and the number of vehicles are large. In this 

section, both exact and heuristic algorithms to solve VRP will be reviewed. 

Exact Algorithms for VRP 

According to Laporte & Nobert, (1987) and Laporte, (1992), three categories of exact algorithms 

are summarized for VRP, namely, direct tree search, dynamic programming, and integer 

programming.  

Early exact algorithms related to direct tree search include (Laporte et al., 1992; Laporte & 

Nobert, 1986). In these studies, VRP has been transformed to one of its relaxations, multiple-

vehicle Travelling Salesman Problem (m-TSP). Then m-TSP problem is solved by branch-and-

bound (Christofides, 1981; Laporte & Nobert, 1986). Branch-and-Cut (BC) algorithm is also 

widely applied in CVRPTW (Capacitated Vehicle Routing Problems with Time Windows). 

(Augerat et al., 1995) first apply Branch-and-Cut (BC) algorithm for CVRP, which can solve up 

to 135 locations. Baldacci et al., (2004) formulate a two-commodity flow version of CVRP and 

apply BC with rounded capacity inequalities.  

Dynamic programming methods include (Christofides & Eilon, 1969; Eilon, 1971). The problem 

is solved by some relaxation and finding lower bound of optimal solutions. 
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Integer programming approach includes (Balinski & Quandt, 1964), J. Desrosiers et al., (1984), 

and Desrochers et al., (1990). A set partitioning formulation is suggested for VRP. Column 

generation method is used to generated possible path which covers subsets of nodes. Following 

set partitioning formulation, Fukasawa et al., (2006) use a column-and-cut generation method to 

get lower bound and Branch-and-cut-and-price to solve CVRP. Baldacci, Battarra, et al., (2008); 

Baldacci et al., (2012b), and Baldacci et al., (2011) are also related to set partitioning formulation 

and solutions. Exact methods work well for small scale problems, the reported experiment nodes 

for above studies ranges from 20 to 200.  

Heuristic Algorithms 

Due to the NP-hard nature of VRP, researchers have been working on heuristics reduce the 

computational time.  

Classical heuristics are mainly constructed by two main techniques: merging existing routes 

using a saving criterion, or gradually assigning nodes to routes using an insertion cost. Gendreau 

et al., (1994). Early studies related to saving criteria include (Clarke & Wright, 1964)(Saving 

algorithm), (Gaskell, 1964), (Nelson et al., 1985)(enhanced saving algorithms), and (Desrochers 

& Verhoog, 1991) (merging of routes). Literature related to insertion algorithm includes, (Wren 

& Hollidayt, 1972), (Gillett et al., 1974) (sweep algorithm), and (Bramel & Simchi-levi, 1995) 

(clustering and routing). 

Metaheuristics including simulated annealing and tabu search are early heuristics used to solve 

VRP (Gendreau et al., 1994). Tabu search in generation starts from an initial solution and move 

to a best neighbor in each iteration (Laporte, Gendreau, & Potvin, 2000). Related literature 

includes (Taillard, 1993), (Xu & Kelly, 1996), (Diana & Dessouky, 2004), (Cordeau & Laporte, 
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2003) (Tabu search), (Ã et al., 2010) (Variable Neighborhood Search) and (Braekers et al., 

2014). 

In Tabu Search literature, Gendreau & Laporte, (1992) develop a Generalized Insertion 

Procedure (GENI), which involves moving vertex from its current route to another route. Also, 

tabu-route procedure untightens the feasibility of solutions, which means, it produces a mixture 

of feasible and infeasible solutions to avoid trapping in local optimal. 
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Chapter 3 Formulating the Crowdsourced Shared-trip Problem 

This chapter presents the mathematical formulation of the crowdsourced shared-trip delivery 

problem. This chapter will present both the static and dynamic version of the problem and 

alternative formulations. In the static version, the study assumes that logistics companies are 

fully aware of the planned itinerary of drivers, and all packages that need to be delivered are well 

prepared before the decision process starts. The dissertation assumes all package and shared 

vehicle information (e.g., location of delivery, time window) are not fully known before the 

beginning of the first stage and may appear over time. 

A detailed list of notations used in this dissertation can be found in Appendix A. 

3.1   Problem Description 

A set of package delivery orders that require delivery is defined as 𝑃. Each package order (𝑝𝑖) 

may have multiple packages. The study assumes that all packages are small- to medium- sized 

and easily fit in a normal sedan. Each package order 𝑝𝑖 has a designated drop-off location, an 

earliest pickup time 𝑇𝑑
𝑝𝑖, and latest delivery time, 𝑇𝑎

𝑝𝑖. 

Two types of vehicles are used for delivery in the crowdsourced shared-trip delivery system, 

shared-personal vehicles (SPVs, usually family size sedans or wagons) and dedicated vehicles 

(DVs, usually vans or trucks) for delivery. Let 𝑉 be the set of all vehicles, 𝑆 be the set of SPVs 

and 𝐷 be the set of DVs; hence, 𝑉 = {𝑆 ∪ 𝐷}. An individual SPV is represented as 𝑠𝑘 (𝑠𝑘 ∈ 𝑆). 

The driver of an SPV may indicate the maximum number of package orders they are capable or 

willing to carry/serve, and the parameter is denoted 𝑞𝑠𝑘 . Each SPV has its own origin and 

destination pair. If any package orders are assigned to an SPV, the SPV must travel from its 
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origin to the depot first, pick up the packages, deliver all package orders, and lastly travel to its 

own destination. Let 𝑇𝑑
𝑠𝑘  denote the earliest time an SPV 𝑠𝑘 can pick up packages at the depot 

and let  𝑇𝑎
𝑠𝑘  denote the latest arrival time that an SPV 𝑠𝑘 should arrive at its own destination. A 

DV is represented as 𝑑𝑘 (𝑑𝑘  ∈  𝐷). The study assumes that all DVs are identical and have a 

maximum number of stops they can make, denote 𝑞𝑑. The maximum number of stops is 

determined jointly by the size and range of the vehicle, the maximum consecutive working hours 

for a driver, and the maximum driving distances of the vehicle and driver. DVs are required to 

return to the depot/hub after completing delivery tasks. 

The service network is defined on a graph 𝐺 = (𝑁, 𝐴). 𝑁 is the set of nodes, including the hub, 

all package drop-off locations, and all origins and destinations of SPVs. 𝐴 is the arcs/links 

connecting nodes, represented by tuple (𝑖, 𝑗), where 𝑖 𝑎𝑛𝑑 𝑗 are nodes. The departure and arrival 

hubs of DVs are represented as 0 𝑎𝑛𝑑 ℎ (physically they are both the depot). The drop-off 

location of each package order 𝑝 is represented as 𝑁𝑝. The designated destination of each SPV 𝑠𝑘 

is represented as 𝑁𝑠𝑘 . The monetized travel cost of a link (𝑖, 𝑗) is represented as 𝑐𝑖𝑗
𝑠  and 𝑐𝑖𝑗

𝑑  for 

SPVs and DVs respectively. The travel time of a link (𝑖, 𝑗) is represented as 𝜏𝑖𝑗. An SPV driver 

is compensated by both the number of delivery orders completed and the total detour distances 

from delivery. The per delivery order compensation is represented by 𝑒. The detour distance 

calculation is demonstrated in Figure 3.1. The monetized cost for each SPV to travel from its 

origin to the depot is represented as 𝑐0𝑠𝑘. The monetized cost for each SPV to travel directly 

from its origin to destination is represented as 𝑐𝑠𝑘. Therefore, the total detour cost(compensation) 

for an SPV is calculated as 𝑐0𝑠𝑘 + 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑠𝑡 − 𝑐𝑠𝑘 . Every time a DV is used, a 
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fixed cost, 𝐹𝑑, is incurred, which includes the labor, administrative, and miscellaneous overhead 

costs associated with an additional DV. 

 
Figure 3.1 Detour Distance of SPVs 

3.2   m-VRPTW based formulation 

The natural way to formulate a delivery problem is using vehicle routing problem (VRP) 

formulation, since the delivery problem has the requirements of “unrepeated route” and 

“returning to depot”. The crowdsource delivery problem is a special variant of the original VRP. 

First, this problem needs to route two general types of vehicles, SPVs (sedans) and DVs (trucks). 

Therefore, the problem is considered as a heterogeneous fleet or mixed fleet VRP (Baldacci, 

Battarra, et al., 2008; Irnich et al., 2014). In addition, in this crowdsourced shared-trip problem, 

SPVs will not return to the depot similar to another variant of VRP, the so-called Open VRP (F. 

Li et al., 2007). The combined variant could be named as a Mixed Fleet Open Capacitated 

Vehicle Routing Problem with Time Windows (MFOCVRPTW). 

In order to adapt to the combined nature of the MFOCVRPTW, one may consider “dummy 

packages for SPVs” in this problem in formulation. A dummy package will not occupy space or 

capacity in the SPV. The vehicles need to “deliver” the dummy packages to a specific location. 
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The study assigns a dummy package to each SPV in the system. The dummy package must be 

picked up at the depot/distribution center by assigned vehicle. Each dummy package has a 

unique drop-off location, which is the same location as the assigned vehicle, and it also has a 

latest drop-off time, which represents the latest arrival time of the personal vehicle at its 

destination. 

Assigning a dummy package to SPV guarantees that each vehicle completes its trip at the 

designated destination and before the required time. Under the regulation of dummy packages, 

SPV drivers are required to come to the depot first. Therefore, they have two possible routes 

after leaving the depot, one is going to dummy package destination directly, and the other is 

delivering real packages first then going to the dummy package destination. Figure 3.2shows 

possible routes.  

 

Figure 3.2 Three Types of Shared Vehicle Routes 

Figure 3.2(a) denotes the original trip of SPVs. When only a dummy package is assigned, and no 

physical package is matched, the driver is actually driving to the depot then to his destination 

(Figure 3.2(a). In the formulation, I assume that it is the necessary trip to be completed by a 

driver. However, in practice, if no physical package is assigned, SPV drivers will not be required 
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to travel to the depot, and in calculating objective function, this unnecessary detour is eliminated. 

Figure 3.2c is the case when physical packages are assigned to SPVs. The SPVs will perform 

delivery before they travel to their destinations. The total detour is calculated by the distance 

travelled in Figure 3.2(c) minus the distances travelled in Figure 3.2(a). 

The detour distance calculated  

Decision variables are defined as follows: 

 𝑧𝑘 ∈ {0,1}, ∀ 𝑘 ∈ 𝑆.   𝑧𝑘 = 1, if SPV k is used. 

 𝑢𝑘 ∈ {0,1}, ∀𝑘 ∈ 𝐷.   𝑢𝑘 = 1, if vehicle 𝑘 is used. 

 𝑥𝑖𝑗
𝑘 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐴, ∀ 𝑘 ∈ 𝑉.  𝑥𝑖𝑗

𝑘 = 1, if arc (𝑖, 𝑗)  is visited by vehicle k. 

 𝑡𝑖
𝑘 ∈ ℝ+, ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑉.  Arrival time of vehicle 𝑘 at node 𝑖. 

 Formulation 1 

𝐦𝐢𝐧
𝒙,𝒛,𝒕,𝒖

𝚯𝟏 = 

∑

(

 
 
𝑧𝑘((𝑐0𝑠𝑘 + ∑ 𝑐𝑖𝑗

𝑠 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

− 𝑐𝑠𝑘)+ 𝑒( ∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

− 1))

)

 
 

𝑘∈𝑆

+∑ ∑ 𝑐𝑖𝑗
𝑑𝑥𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐷

+∑𝐹𝑑𝑢𝑘
𝑘∈𝐷

 

(3.1) 

 

subject to 

∑  ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝑉 𝑗∈{𝑁𝑝,𝑁𝑠𝑣},𝑗≠𝑖

= 1 ∀𝑖 ∈ {𝑁𝑝} (3.2) 

∑  ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝑉 𝑖∈{0,𝑁𝑝},𝑖≠𝑗

= 1 ∀𝑗 ∈ 𝑁\{ℎ} (3.3) 
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∑ ∑𝑥𝑖𝑗
𝑘

𝑘∈𝑉𝑖∈{0,𝑁𝑝},𝑖≠𝑗

− ∑ ∑𝑥𝑗𝑙
𝑘

𝑘∈𝑉𝑙∈{𝑁𝑝,𝑁𝑠𝑣},𝑙≠𝑗

= 0 ∀𝑗 ∈ {𝑁𝑝} 

(3.4) 

 

∑ 𝑥𝑖,𝑁𝑠𝑘
𝑘 = 1

𝑖∈𝑁\{𝑁𝑠𝑘}

 ∀𝑘 ∈ 𝑆 (3.5) 

∑ 𝑥0𝑗
𝑘

𝑗∈{𝑁𝑝𝑖}

− ∑ 𝑥𝑖,ℎ
𝑘

𝑖∈{𝑁𝑝𝑖}

= 0 
∀𝑘 ∈ 𝐷 (3.6) 

𝑧𝑘 ≤ 1 − 𝑥0,𝑁𝑠𝑘
𝑘  ∀𝑘 ∈ 𝑆 (3.7) 

𝑢𝑘 ≥ ∑ 𝑥0𝑗
𝑘

𝑗∈{𝑁𝑝𝑖}

 
∀𝑘 ∈ 𝐷 (3.8) 

∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴\{(0,𝑁𝑠𝑘)}

 ≤ 𝑧𝑘 × (𝑞𝑠𝑘 + 1) ∀𝑘 ∈ 𝑆 (3.9) 

∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

≤ 𝑢𝑘 × (𝑞𝑑 + 1) ∀𝑘 ∈ 𝐷 (3.10) 

𝑇𝑑
𝑘 ≤ 𝑡0

𝑘 ∀𝑘 ∈ 𝑆 (3.11) 

𝑡𝑁𝑠𝑘
𝑘  ≤  𝑇𝑎

𝑘 ∀𝑘 ∈ 𝑆 (3.12) 

𝑇𝑑
𝑝
≤ 𝑡0

𝑘 + (1 − ∑ 𝑥𝑖,𝑁𝑝
𝑘

𝑖∈𝑁{𝑁𝑠𝑘}

)×𝑀 

∀𝑝 ∈ 𝑃, 

∀𝑘 ∈ 𝑆 

(3.13) 

𝑡𝑁𝑝
𝑘 ≤ 𝑇𝑎

𝑝
+ (1 − ∑ 𝑥𝑖,𝑁𝑝

𝑘

𝑖∈𝑁{𝑁𝑠𝑘}

)×𝑀 

∀𝑝 ∈ 𝑃, 

∀𝑘 ∈ 𝑆 

(3.14) 

𝑡𝑖
𝑘 + 𝜏𝑖𝑗 ≤ 𝑡𝑗

𝑘 + (1 − 𝑥𝑖𝑗
𝑘 ) × 𝑀 

∀𝑖, 𝑗 ∈ 𝑁,  𝑖 ≠ 𝑗 

∀𝑘 ∈ 𝑉 

(3.15) 
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𝑥𝑖𝑗
𝑘 ∈ {0,1} 

∀𝑖, 𝑗 ∈ 𝑁 

∀𝑘 ∈ 𝑉 

(3.16) 

𝑧𝑘 ∈ {0,1} ∀𝑘 ∈ 𝑆 (3.17) 

𝑢𝑘 ∈ {0,1} ∀𝑘 ∈ 𝐷 (3.18) 

𝑡𝑖
𝑘 ≥ 0 

∀𝑖 ∈ 𝑁 

∀𝑘 ∈ 𝑆 

(3.19) 

 

In this formulation, objective function aims to minimize the total cost of delivery using SPVs and 

DVs. The term, (𝑐0𝑠𝑘 + ∑ 𝑐𝑖𝑗
𝑠 𝑥𝑖𝑗

𝑘
(𝑖,𝑗)∈𝐴 − 𝑐𝑠𝑘), represents the total detour cost of an SPV 𝑘. The 

term 𝑒(∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴 − 1) is the compensation for delivery orders completed by SPV 𝑘. The first 

term is multiplied by 𝑧𝑘, the indicator variable for whether an SPV 𝑘 is used. If 𝑧𝑘 is 0, the SPV 

travels directly from its origin to its destination. The second term, ∑ ∑ 𝑐𝑖𝑗
𝑑𝑥𝑖𝑗

𝑘
(𝑖,𝑗)∈𝐴𝑘∈𝐷 , is the total 

delivery routing cost of all DVs. The last term, ∑ 𝐹𝑑𝑢𝑘𝑘∈𝐷 , calculates the total fixed cost for 

using dedicated vehicles. 

Constraints (3.2) to (3.6) are routing constraints. Constraints (3.2) and (3.3) indicate that every 

node must be visited once and only once by each vehicle (either type). The constraints in Eqn. 

(3.4) are the flow balance constraints at each node. The constraints in Eqn. (3.5) indicate that an 

SPV must arrive at its designated destination. The constraints in Eqn. (3.6) are for DVs, and they 

guarantee that if a DV leaves the depot, it must return to the depot. The constraints in Eqn. (3.7) 

state that if an SPV 𝑘 delivers no packages on its way to destination, then 𝑧𝑘 = 0. The 

constraints in Eqn. (3.8) represent the DV usage constraint, meaning that only DVs that are 

activated can serve requests. The constraints in Eqn. (3.9), together with the constraints in Eqn. 
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(3.7), ensure that when 𝑧𝑘 = 0, the only activity for the SPV k is to travel to its own destination 

(𝑁𝑠𝑘), i.e., this vehicle is not used for package delivery. Additionally, the constraints in Eqn. (3.9) 

regulate the number of delivery locations an SPV 𝑘 can visit and is the so-called “capacity” 

constraint. Similarly, the constraints in Eqn. (3.10) regulate the number of delivery locations a 

DV can visit.  

Constraints (3.11) to (3.15) are time window constraints. The constraints in Eqn. (3.11) 

guarantee that the trip for an SPV starts after its earliest departure time. The constraints in Eqn. 

(3.12) guarantee that and SPV’s arrival time at its destination must be no later than its latest 

arrival time. The constraints in Eqn. (3.13) ensure that a package is only picked up after its 

earliest pickup time. The constraints in Eqn. (3.14) ensure that a package must be delivered no 

later than its latest delivery time. The constraints in Eqn. (3.15) indicate that if 𝑥𝑖𝑗
𝑘 = 1 (i.e., 

𝑁𝑜𝑑𝑒 𝑗 is visited right after 𝑁𝑜𝑑𝑒 𝑖 by 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘), the arrival time of 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 at 𝑁𝑜𝑑𝑒 𝑗 must 

be later than the arrival time of 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 at 𝑁𝑜𝑑𝑒 𝑖 plus the necessary travel time of arc (𝑖, 𝑗). 

The constraints in Eqn. (3.15) also serve as sub-tour elimination constraints. The constraints in 

Eqn. (3.16) to (3.19) are the binary and no-negativity constraints for decision variables. 

Formulating the crowdsourced shared-trip delivery problem from a vehicle routing perspective 

enables us to solve the problem by leveraging rich literature in VRP. Exact methods include 

Branch-and-bound (Christofides & Eilon, 1969; Little et al., 1963) and branch-and-cut or 

generating cuts (Baldacci, Christofides, et al., 2008; Baldacci et al., 2012a; Laporte et al., 1985). 

Heuristics include the earliest and famous Clarke and Wright saving heuristic (Clarke & Wright, 

1964) to multiple meta heuristics (Gendreau & Potvin, 2005; Hansen et al., 2001; Nikolaev & 

Jacobson, 2010; Prins, 2004). The MFOCVRPTW is an NP-hard problem and using exact 

methods for large-scale problem is computationally infeasible. Therefore, for large-scale 
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problems, heuristics are preferable. Inspired by the literature, this study constructs a 

decomposition heuristic algorithm to solve the problem. The basis for the decomposition is a set 

partitioning formulation, presented in the following subsection.  

3.3   Set-partitioning formulation 

The m-VRP can be reformulated from a set partitioning perspective (Baldacci, Christofides, et 

al., 2008; M. Desrosiers et al., 1992; Laporte, 1992; Y. H. Lee et al., 2008; Ropke & Cordeau, 

2009). The paper treats the collection all package locations (𝑁𝑝) as a set of nodes to be 

covered/contained by a collection of route sets (the collections of vehicle routes). Then the 

objective is to assign the origin and destination locations of each package to one feasible vehicle 

route while minimizing the total cost of the collection of vehicle routes. 

Similar to the approaches of (Baldacci, Christofides, et al., 2008) and (Ropke & Cordeau, 2009), 

the study alternatively formulates the crowdsourced shared-trip delivery problem as a set 

partitioning problem by using new variables. Let 𝑦𝑖,𝑘
𝑠  be a binary decision variable and represent 

whether the 𝑖𝑡ℎ feasible route of 𝑆𝑃𝑉 𝑘 is used. Correspondingly, let binary variable 𝑦𝑖,𝑘
𝑑  

represent whether the 𝑖𝑡ℎ feasible route of 𝐷𝑉 𝑘 has been used. Let 𝑐𝑖,𝑘
𝑠  and 𝑐𝑖,𝑘

𝑑  be the cost of 

travelling on 𝑟𝑜𝑢𝑡𝑒 𝑖 of shared/dedicated 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 respectively. Let 𝑎𝑖,𝑗,𝑘
𝑠  and 𝑎𝑖,𝑗,𝑘

𝑑  be two 

binary parameters. When 𝑎𝑖,𝑗,𝑘
𝑠  or 𝑎𝑖,𝑗,𝑘

𝑑  is 1, it is feasible for 𝑟𝑜𝑢𝑡𝑒 𝑖 of shared/dedicated 

𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 to service 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑜𝑟𝑑𝑒𝑟 𝑗. The set partitioning formulation of the 

problem is written as: 

Formulation 2 
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𝐦𝐢𝐧
𝒚
   𝚯𝟐 = ∑∑(𝑐𝑖,𝑘

𝑠 − 𝑐𝑠𝑘)𝑦𝑖,𝑘
𝑠

𝑖𝑘

+ 𝑒∑∑∑𝑎𝑖,𝑗,𝑘
𝑠 𝑦𝑖,𝑘

𝑠

𝑗𝑖𝑘

+ ∑∑𝑐𝑖,𝑘
𝑑 𝑦𝑖,𝑘

𝑑

𝑖𝑘

+ 𝐹𝑑∑∑𝑦𝑖,𝑘
𝑑

𝑖𝑘

 (3.20) 

 

subject to 

∑∑𝑎𝑖,𝑗,𝑘
𝑠 × 𝑦𝑖,𝑘

𝑠

𝑗𝑘

+∑∑𝑎𝑖,𝑗,𝑘
𝑑 × 𝑦𝑖,𝑘

𝑑

𝑗𝑘

= 1 ∀𝑖 ∈ {𝑁𝑝} (3.21) 

∑𝑦𝑖,𝑘
𝑠

𝑖

= 1 ∀𝑘 ∈ 𝑆 (3.22) 

∑𝑦𝑖,𝑘
𝑑

𝑖

≤ 1, ∀𝑘 ∈ 𝐷 (3.23) 

 

𝑦𝑖,𝑘
𝑠 , 𝑦𝑖,𝑘

𝑑 ∈ {0,1} ∀(𝑟, 𝑘) ∈ 𝑅 (3.24) 

 

The objective function (3.20) is similar to the MFOCVRPTW formulation and minimizes the 

total cost. The first term, ∑ ∑ (𝑐𝑖,𝑘
𝑠 − 𝑐𝑠𝑘)𝑦𝑖,𝑘

𝑠
𝑖𝑘 , is the total detour cost of SPVs, and the second 

term (𝑒 ∑ ∑ ∑ 𝑎𝑖,𝑗,𝑘
𝑠 𝑦𝑖,𝑘

𝑠
𝑗𝑖𝑘 ) is the total “per package order completed compensation” for SPVs. 

The third term is the total routing cost of DVs, and the last term is the total fixed cost of using 

DVs. 

The constraints in Eqn. (3.21) ensure that each package order must appear once and only once on 

all vehicle routes. The constraints in Eqn. (3.22) guarantee that one and only one feasible route 

for each SPV is selected in the optimal solution. The constraints in Eqn. (3.23) state that no more 

than one feasible route for a DV should be used. The constraints in Eqn. (3.24) are binary 

constraints for the decision variables. 
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A set partitioning problem can easily be converted to a bi-partite matching problem. Therefore, 

Formulation 2 provides a new approach for solving the crowdsourced shared-trip delivery 

problem as a matching/assignment problem between the delivery orders and vehicle routes. 

Since the bi-partite matching problem has the feature of total unimodularity (Yannakakis, 1985), 

it allows linear relaxation of an integer problem.  

However, a major challenge still remains. To ensure optimality, it is necessary to enumerate all 

possible routes for each SPV and DV. Doing so for SPVs is challenging, whereas, doing so for 

DVs is computationally infeasible. Hence, most research relies on generating a ‘sufficient’ 

number of promising, yet distinct, routes for each vehicle (Ryan et al., 1993). The first obstacle 

is to enumerate a large number of routes for SPVs. The second challenge is that even with a huge 

number of SPV routes, some package locations may still be unvisited, therefore the DV routes 

generated must cover all unvisited locations to guarantee the feasibility of problem. To cope with 

these challenges, the paper introduces a novel decomposition heuristic, which handles the routing 

and assignment of SPVs and DVs separately and considers potential package switching for 

solution improvement. Therefore, the study introduces a decomposition heuristic algorithm in 

Solution Algorithm to solve the problem.  
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Chapter 4 Solution Algorithm 

This chapter explains the solution algorithm proposed by this dissertation. The solution 

algorithm aims at solving large scale the crowdsourced shared-trip delivery problem. I believe 

that the algorithm would be a solid supplementary to the current solution methods in literature. 

This chapter also reviews and compares some existing algorithms in detail. 

In general, solving a crowdsourced shared-trip delivery problem is challenging, because the 

combinatorial feature of the problem. Depending on the mixed integer programming with VRP 

type of formulation limits the scale of the problem. To the best of our knowledge, the current 

solution scale of the problem is at the level of 50 packages and 100 vehicles. This dissertation 

proposes a decomposition heuristic which is capable of handling cases of hundreds of packages 

and thousands of vehicles. The decomposition heuristic includes four major steps that would be 

explained in detail in this chapter. At the end of the chapter, the dissertation compares the 

computational efficiency and accuracy of this algorithm with traditional VRP solvers.  

4.1   Solution algorithm overview 

Chapter 3 presents the MFOCVRPTW formulation of the problem. However, solutions based on 

this formulation would be extremely time costly. Therefore, an alternative formulation, set 

partitioning formulation, is presented. One may rely on the unimodularity of a matching problem 

to reduce the complexity of computing. However, generating vehicle routes for a set partitioning 

problem may be another challenge. 
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For an ordinary VRP, with a set partitioning/covering formulation, the first step is usually 

generating the possible vehicle routes. Since in ordinary VRP, no mixed fleet exists. The 

generation of possible vehicle routes is straight forward. Heuristics such petal methods are 

recommended. It is worth noticing that since it is nearly impossible to exhaustively generate all 

possible routes of vehicles. Therefore, constructing a set of promising routes and solving the 

problem heuristically are suggested (Ryan et al., 1993). 

On contrast, the crowdsourced shared-trip delivery problem has two types of vehicles, SPVs and 

DVs. To solve the problem, I first assume that on average, the per package cost of SPV delivery 

is lower than the cost of DV/truck delivery. Similar assumption could also be found in (Arslan et 

al., 2019). To substantiate the reasonability of assumption, I also did some estimation with 

different cost structures. First, for mile-based variable cost, a heavy truck doubles the fuel cost of 

a normal sedan. Once the driver’s hourly rate, insurance cost and depreciation of vehicles are 

added, the per mile cost of a truck is more than 70 cents. While for the SPV, it is reasonable to 

use the business reimbursement rate suggested by IRS (Internal Revenue Service, 2021), the per 

mile cost is $56 cents. This calculation has not added the fixed cost of purchasing a truck and 

maintenance cost. With this assumption, the design of the algorithm could attempt to matching 

all possible packages to SPVs while using trucks to serve the rest. Considering this assumption 

and following the approach of solving an ordinary VRP, the study needs to generate routes for 

both SPVs and DVs. At this point, one may have two possible approaches, first simultaneously 

generating routes for both SPVs and DVs then matching packages to both sets of routes at once. 

Second, generating SPV routes and match packages to SPVs first then handle the rest using DVs. 

Why the first option is less preferable than the second one? Because the “promising” set of DV 

routes is depending on the package delivery ability of the set of SPVs. Without incorporating the 
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SPV route information into the generation of DV routes may lead to answers that are far from the 

optimal solution. Therefore, the main structure of the algorithm is to match packages and SPVs 

first, then considers DV routes. 

The next question pops up naturally. How to generate SPV routes? As described in Chapter 3, an 

SPV has a travel budget that is regulated by earliest starting time and latest arrival time. 

Therefore, the feasible route set for an SPV is the route from the origin or depot to the 

destination that is smaller than or equal to the travel budget. The dissertation calls this problem 

the budgeted k shortest path problem and explain the details in Section 4.2. Once the routes of 

SPV are generated, the next step is to match packages to SPVs. The matching problem is close to 

a bi-partite matching and is explained in Section 4.3. After matching packages to SPVs, one 

could route DVs for the rest of packages. Due to the cost structure of a VRP, it may be more cost 

efficient to switch some packages that are originally matched to SPVs to DVs. Therefore, the 

dissertation conducts a cost analysis and package switching process. After that, a final route of 

DVs could be decided and the delivery decisions could be finalized.  

The solution procedure is described as follows: 

 Initialization:  

o Initialize counter 𝑖 = 1 

o Initialize current set of SPVs, 𝑆0 = { } 

o Slice the total SPV set 𝑆 into 𝑚 subsets {𝑠1, 𝑠2, … 𝑠𝑚} with roughly the same 

number of SPVs in each set. Add subset 𝑠1 to the current set of SPVs, 𝑆0.  

 Step 1: SPV Route Generation.  

o Generate a set of feasible routes for each SPV in 𝑆0. 

 Step 2: Delivery order-shared vehicle assignment problem.  

o Assign SPVs to delivery orders. This problem is close to a bi-partite matching 

problem and can be efficiently solved. 

 Step 3: DV routing problem.  
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o Route one DV to serve the delivery orders not served in Step 2 without any 

capacity constraints. The step is to obtain an estimated route and delivery cost for 

each order by using DV.  

 Step 4: Swapping packages from SPVs to DVs problem. 

o For delivery orders served by SPVs, calculate the insertion cost of the SPV-served 

order if it would have been instead served by a DV, based on DV route estimated 

from Step 3.  

 If all DVs are at capacity, the insertion cost should include the cost of 

adding a new DV to the fleet. 

o Rank order the packages by their insertion cost. 

o Starting with the SPV package with the lowest insertion cost, insert SPV packages 

into the DV route.  

o Terminate when the insertion cost of an order exceeds the SPV service cost. 

 Step 5: DV and SPV re-routing problem.  

o Route DVs based on an m-VRP solution algorithm to serve all package orders 

assigned to DVs in Step 3 and Step 4. 

o Rematch the delivery orders still assigned to SPVs to SPV routes. 

 Step 6: Optimality check.  

o Calculate the cost of the assignment and routes determined in Step 5 

o Compare this new cost with the current best solution and store the new solution if 

it is smaller than the current best solution. 

 Step 7: Terminate or Increment 𝒊 and 𝑺𝟎.  

o If 𝑆0 includes all SPVs in 𝑆, terminate.  

o Otherwise, increment 𝑖 by one and add a new random subset of SPVs, 𝑠𝑖 to the 

current set of SPVs 𝑆0 and go to Step 1.  

Pseudocode for the decomposition algorithm is presented as follows.  

Algorithm 1: Decomposition heuristic for crowdsourced shared-trip delivery 

A set of SPVs 𝑆 = {𝑠𝑁}; A set of DVs {𝐷𝑘}; A set of package delivery orders {𝑃}; 
Travel budget for SPV 𝑠𝑘 = 𝐵𝑘; 

Initialization: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑒𝑠𝑡 = +∞ 

                        Slice 𝑆 = {𝑠1, … , 𝑠𝑛} + {𝑠𝑛+1, … 𝑠2𝑛} + ⋯+
                                     {𝑠𝑚𝑛+1, … , 𝑠𝑁}, 𝑆0 = {𝑠1, … , 𝑠𝑛} 

 

While 𝑆0 ⊊ 𝑆:  

 For 𝑠𝑘 𝑖𝑛 {𝑠1, … , 𝑠𝑛}: 

                    Find 𝑅𝑠𝑘 = {𝑟|𝑟𝑂𝐷 = (𝑑𝑒𝑝𝑜𝑡 𝑎𝑛𝑑 𝐷𝑠𝑘) 𝑎𝑛𝑑 𝑐𝑟 ≤ 𝐵𝑘} 

          End For  

          Do     Matching {𝑃} 𝑎𝑛𝑑 {𝑅𝑠  = 𝑅𝑠1 + 𝑅𝑠2 +⋯+𝑅𝑠𝑁}, {𝑃} = {𝑃𝑠𝑣} + {𝑃𝑑𝑣} 

                    Calculating 𝑐𝑖,𝑗,𝑘 cost of serving 𝑝𝑖 by route 𝑗 of SPV 𝑘 

                    Route single VRP for {𝑃𝑑𝑣}, get 𝐷𝑉 𝑅𝑜𝑢𝑡𝑒 = 𝑅𝑑𝑣 

                    Find the smallest insertion cost 𝜆 for 𝑝 𝑖𝑛 {𝑃𝑠𝑣} to route 𝑅𝑑𝑣 

          While 𝜆 ≤  𝑐𝑖,𝑗,𝑘: 

                    Move package order 𝑖 to {𝑃𝑑𝑣} 
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                    For 𝑝 𝑖𝑛 {𝑃𝑠𝑣}: 
                               Find the smallest insertion cost 𝜆 for 𝑝 𝑖𝑛 {𝑃𝑠𝑣} to route 𝑅𝑑𝑣 

                    End For 

          End While 

          Do     m-VRP for {𝐷𝑘} and {𝑃𝑑𝑣}, calculate total cost 𝑐𝑇 = 𝑐𝑆𝑃𝑉 + 𝑐𝐷𝑉 

          If       𝑐𝑇 ≤ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 

                    𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑒𝑠𝑡 = 𝑐𝑇 

          End If 

          Increment 𝑆0 by {𝑠𝑘𝑛+1, … 𝑠(𝑘+1)𝑛} 

End While 

Return: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑏𝑒𝑠𝑡 

 

The reason for implementing an incremental approach, whereby, the algorithm adds a subset of 

SPVs at every iteration, is to avoid being trapped in a local minimum. The cause for local 

minimum is the non-convexity of truck routing, which can lead to inefficient package switching 

between SPVs and DVs in the case where all SPVs are included in 𝑆0 from the beginning. 

Without the incremental approach, the researchers found that there were instances where cost 

increased as the number of SPVs increased, which indicated the solution algorithm does not 

necessarily improve as the solution space expands. For the incremental approach, the fewer 

SPVs in every batch, the more batches, the higher the solution quality but the longer the 

computational time. 

The advantages of applying the decomposition heuristic are as follows. First, generating routes 

for an SPV is a relatively straight-forward task since the route length is bounded by the detour 

willingness the SPV. Hence, SPV route generation can be conducted off-line. With day-to-day 

operations, the “promising” SPV routes identified or ‘learned’ from prior days can be stored and 

retrieved as needed.  

Additionally, under the assumption that on average delivery packages via SPV is cheaper than 

delivering packages via DV, it makes sense to initially assign as many vehicles to SPVs as 
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possible, which the algorithm does. Separating the SPVs and DVs in the routing process enables 

a straight-forward assignment problem between delivery orders and the set of SPV routes.  

On the other hand, serving the remaining, non-SPV, delivery orders with DVs are also 

straightforward given the wide range of exact, approximate, and heuristic solution algorithms for 

the VRPTW available in the literature.  

Moreover, using an insertion heuristic algorithm for DV routing also simplifies the procedure of 

obtaining marginal cost of serving an additional delivery order. Based on extensive empirical 

analysis, the SPV to DV package switching step significantly improves the overall solution 

quality. The main reason for the improvement is that even though the average delivery cost for 

SPVs is much lower than the average delivery cost for DVs, once a DV is put into operation, the 

marginal cost of serving a package via DV is smaller than the marginal cost of serving most 

packages via an SPV, until the DVs near their capacity limits.  

The following sections are arranged as follows. Section 4.2 describes the algorithms to obtain 

budgeted k-shortest paths, which corresponds to the aforementioned Step 1 of Algorithm 1. 

Section 4.3 explains the large-scale package vehicle route assignment problem, which extends 

Step 2 of Algorithm 1 in further details. Section 4.4 presents the insertion algorithm used for 

vehicle routing problems in Step 3 and Step 5. Section 4.5 is the procedure for deciding package 

switch between SPVs and DVs, which is the Step 4 that is described before. Section 4.6 is a 

comparison of computational time and results between the decomposition heuristic and the exact 

method. Section 4.7 summarizes this chapter.  
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4.2   Budgeted k-shortest path 

This section presents the algorithm for generating k-shortest paths with budget constraints, which 

is the first step of the decomposition heuristic. This step is an off-line procedure, in which we 

generate the possible routes from the depot to different SPV destination locations with various 

levels of detour willingness. The quality of k-shortest paths is the main determinant of the 

solution quality of the package/vehicle route assignment problem, and we attempt to 

exhaustively generate all possible routes for an SPV under a travel budget constraint.  

The k-shortest paths with budget constraints problem could be described as the follows. Given a 

graph 𝐺 = (𝑉, 𝐸), find all possible paths between a start node 𝑠 and a target node 𝑡 that are 

within the travel time/cost/budget of 𝐵. 

It is worth noting that the budget 𝐵 in this section is not equivalent to maximum willingness to 

detour for SPV drivers in the crowdsourced delivery problem. The maximum willingness to 

detour for an SPV driver is defined as the maximum time the driver is willing to delay arriving at 

their destination given the departure time from their origin. In this step, we generate routes for 

SPVs from the depot to their destinations (the bule paths in Figure 3.1), therefore the budget 𝐵 

for an SPV 𝑘 equals the maximum willingness to detour of the SPV (𝐵𝑘
𝑀) minus the shortest path 

travel time from the SPV origin to the depot (𝑐0𝑠𝑘) and possible order pickup and drop-off time 

(𝜏𝑝𝑑), represented as 𝐵𝑘 = 𝐵𝑘
𝑀 − 𝑐0𝑠𝑘 − 𝜏𝑝𝑑. 

To solve the k-shortest path with budget constraints problem we first present an intuitive 

recursion algorithm. The pseudo code is as follows. 
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Algorithm 2: Recursion algorithm for budgeted k-shortest paths 

𝐺 = (𝑉, 𝐸), 𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑠, 𝑠𝑖𝑛𝑘 = 𝑡, 𝑏𝑢𝑑𝑔𝑒𝑡 = 𝐵 
Function 𝑩𝒈𝒕𝑲𝑷𝒂𝒕𝒉(𝐺, 𝑠, 𝑡, 𝐵, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ, 𝑃𝑎𝑡ℎ𝐶𝑜𝑠𝑡): 
Initialization:  

                        𝑁𝑜𝑑𝑒𝑉𝑖𝑠𝑖𝑡𝑒𝑑 = [𝑠], 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ = [𝑠] 
 

                        𝑘𝑃𝑎𝑡ℎ𝐻𝑒𝑎𝑝 = [ ], 𝑃𝑎𝑡ℎ𝐶𝑜𝑠𝑡 = 0  

If 𝑠 == 𝑡:  

           𝑘𝑃𝑎𝑡ℎ𝐻𝑒𝑎𝑝. 𝑝𝑢𝑠ℎ(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ, 𝑃𝑎𝑡ℎ𝑐𝑜𝑠𝑡)  

Else:  

 For 𝑢 ∈ 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟[𝑠]: 
        If 𝑢 ∉ 𝑁𝑜𝑑𝑒𝑉𝑖𝑠𝑖𝑡𝑒𝑑: 
                If 𝑒𝑑𝑔𝑒𝐶𝑜𝑠𝑡[𝑠][𝑢] + 𝑃𝑎𝑡ℎ𝐶𝑜𝑠𝑡 < 𝐵: 

                        𝑃𝑎𝑡ℎ𝐶𝑜𝑠𝑡+= 𝑒𝑑𝑔𝑒𝐶𝑜𝑠𝑡[𝑠][𝑢] 
                        𝐵−= 𝑒𝑑𝑔𝑒𝐶𝑜𝑠𝑡[𝑠][𝑢] 
                        Recursion  

                        𝑘𝑃𝑎𝑡ℎ𝐻𝑒𝑎𝑝 = 𝑩𝒈𝒕𝑲𝑷𝒂𝒕𝒉(𝐺, 𝑢, 𝑡, 𝐵, 𝐶𝑢𝑟𝑟𝑒𝑡𝐶𝑜𝑠𝑡, 𝑃𝑎𝑡ℎ𝐶𝑜𝑠𝑡) 
                           End If  

                  End If 

                  Reset vertex  𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑃𝑎𝑡ℎ. 𝑝𝑜𝑝(𝑢) 
                  𝑁𝑜𝑑𝑒𝑉𝑖𝑠𝑖𝑡𝑒𝑑. 𝑝𝑜𝑝(𝑢) 
                  Reset cost  𝑃𝑎𝑡ℎ𝐶𝑜𝑠𝑡−= 𝑒𝑑𝑔𝑒𝐶𝑜𝑠𝑡[𝑠][𝑢] 
                  𝐵+= 𝑒𝑑𝑔𝑒𝐶𝑜𝑠𝑡[𝑠][𝑢] 
           End For 

End If 

Return: 𝑘𝑃𝑎𝑡ℎ𝐻𝑒𝑎𝑝 

 

The recursion algorithm has the advantage of being intuitive and easy to code. The complexity of 

the algorithm depends on the number of nodes and the connectivity of the network. It has 

reasonable computational time for sparse networks. In the numerical example, presented in 

Section 6, we test the recursion algorithm on the City of Irvine network. For the 2000 SPV case, 

the computational time ranges from 12 mins (10 mins detour willingness) to 6 hours (30 mins 

detour willingness). For a network with a high level of connectivity, Algorithm 2 runs slowly 

since it has a complexity of 𝑂(𝑛!). 

In order to cope with the complexity issue, we attempt to apply Yen’s algorithm (Yen, 1971) by 

adding budgeted constraints to it. The pseudo code of the budgeted Yen’s algorithm is as follows: 
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Algorithm 3 Yen’s algorithm with budgeted constraints 

𝐺 = (𝑉, 𝐸), 𝑠𝑜𝑢𝑟𝑐𝑒 = 𝑠, 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑡, 𝑏𝑢𝑑𝑔𝑒𝑡 = 𝐵 
Function 𝑩𝒈𝒕𝒀𝒆𝒏𝑲𝒔𝒑(𝐺, 𝑠, 𝑡, 𝐵): 
Initialization:  

       𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠 𝑎𝑛𝑑 𝑡, 𝑠𝑡𝑜𝑟𝑒 𝑖𝑛 𝑙𝑖𝑠𝑡 𝐴 
 

       𝐴 = [𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎(𝐺, 𝑠, 𝑡)], 𝐴𝑐𝑜𝑠𝑡 = [𝑆𝐻𝑃 𝑐𝑜𝑠𝑡]  

       𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎 ℎ𝑒𝑎𝑝/𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦 𝑞𝑢𝑒𝑢𝑒 𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛    

       𝐶 = ℎ𝑒𝑎𝑝. 𝑞𝑢𝑒𝑢𝑒()  

       𝐵𝑢𝑑𝑔𝑒𝑡𝐹𝑙𝑎𝑔 = 𝐓𝐑𝐔𝐄  

While 𝐵𝑢𝑑𝑔𝑒𝑡𝐹𝑙𝑎𝑔 𝑖𝑠 𝐓𝐑𝐔𝐄:  

            For 𝑝𝑎𝑡ℎ 𝑖𝑛 𝐴:  

                    For 𝑛𝑜𝑑𝑒 𝑖𝑛 𝑝𝑎𝑡ℎ, 𝑓𝑖𝑛𝑑 𝑠𝑝𝑢𝑟 𝑛𝑜𝑑𝑒𝑠:   

                           𝑠𝑝𝑢𝑟𝑁𝑜𝑑𝑒 = 𝑛𝑜𝑑𝑒  

                           𝑟𝑜𝑜𝑡𝑃𝑎𝑡ℎ = 𝑝𝑎𝑡ℎ[: 𝑛𝑜𝑑𝑒]  

                           𝑒𝑑𝑔𝑒𝑅𝑒𝑚𝑜𝑣𝑒 = [ ]  

                           For 𝑝𝑎𝑡ℎ 𝑖𝑛 𝐴:    

                                  If 𝑟𝑜𝑜𝑡𝑃𝑎𝑡ℎ = 𝑝𝑎𝑡ℎ[: 𝑠𝑝𝑢𝑟𝑁𝑜𝑑𝑒]  

                                      𝑅𝑒𝑚𝑜𝑣𝑒 𝑙𝑖𝑛𝑘𝑠 𝑠ℎ𝑎𝑟𝑒𝑑 𝑏𝑦 𝑟𝑜𝑜𝑡𝑃𝑎𝑡ℎ  

                                      𝑒𝑑𝑔𝑒𝑅𝑒𝑚𝑜𝑣𝑒. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑙𝑖𝑛𝑘𝑠)  

                          𝐹𝑖𝑛𝑑 𝑆𝐻𝑃 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑝𝑢𝑟𝑁𝑜𝑑𝑒 𝑡𝑜 𝑡 
                          𝑠𝑝𝑢𝑟𝑃𝑎𝑡ℎ = 𝐷𝑖𝑗𝑘𝑠𝑡𝑟𝑎(𝐺, 𝑠𝑝𝑢𝑟𝑁𝑜𝑑𝑒, 𝑡) 
                          If 𝑛𝑜 𝑙𝑜𝑜𝑝 𝑖𝑛 (𝑠𝑝𝑢𝑟𝑃𝑎𝑡ℎ, 𝑟𝑜𝑜𝑡𝑃𝑎𝑡ℎ): 
                              𝑡𝑜𝑡𝑎𝑙𝑃𝑎𝑡ℎ = 𝑟𝑜𝑜𝑡𝑃𝑎𝑡ℎ + 𝑠𝑝𝑢𝑟𝑃𝑎𝑡ℎ 

                              𝑡𝑜𝑡𝑎𝑙𝑃𝑎𝑡ℎ𝐶𝑜𝑠𝑡 = 𝑟𝑜𝑜𝑡𝑃𝑎𝑡ℎ𝐶𝑜𝑠𝑡 + 𝑠𝑝𝑢𝑟𝑃𝑎𝑡ℎ𝐶𝑜𝑠𝑡 
                              𝐶. ℎ𝑒𝑎𝑝. 𝑝𝑢𝑠ℎ((𝑡𝑜𝑡𝑎𝑙𝑃𝑎𝑡ℎ𝐶𝑜𝑠𝑡, 𝑡𝑜𝑡𝑎𝑙𝑃𝑎𝑡ℎ)) 
                          For 𝑒𝑑𝑔𝑒 𝑖𝑛 𝑒𝑑𝑔𝑒𝑅𝑒𝑚𝑜𝑣𝑒𝑑: 
                                 𝐴𝑑𝑑 𝑏𝑎𝑐𝑘 𝑡𝑜 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 𝑒𝑑𝑔𝑒𝑠 𝑡𝑜 𝐺 

                    If 𝑙𝑒𝑛(𝐶) > 0:     
                          𝐺𝑒𝑡 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑡𝑖𝑚𝑒 𝑖𝑛 𝐵;  𝑝𝑎𝑡ℎ𝐴𝑑𝑑𝐶𝑜𝑠𝑡, 𝑝𝑎𝑡ℎ𝐴𝑑𝑑 = 𝐶. 𝑔𝑒𝑡() 
                    If 𝑝𝑎𝑡ℎ𝐴𝑑𝑑 𝑛𝑜 𝑖𝑛 𝐴, 𝑎𝑛𝑑 𝑝𝑎𝑡ℎ𝐴𝑑𝑑𝐶𝑜𝑠𝑡 ≤ 𝐵: 
                          𝐴. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑝𝑎𝑡ℎ𝐴𝑑𝑑),𝐴𝑐𝑜𝑠𝑡. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑝𝑎𝑡ℎ𝐴𝑑𝑑𝐶𝑜𝑠𝑡) 
                    elif 𝑝𝑎𝑡ℎ𝐴𝑑𝑑𝐶𝑜𝑠𝑡 > 𝐵: 

                           𝐵𝑢𝑑𝑔𝑒𝑡𝐹𝑙𝑎𝑔 = 𝐅𝐀𝐋𝐒𝐄 

Return 𝐴, 𝐴𝑐𝑜𝑠𝑡 

 

The complexity of original Yen’s algorithm is 𝑂(𝑘𝑉(𝐸 + 𝑉log𝑉), with 𝑘 number of paths to be 

generated. Algorithm 3 keeps the heap structure of storing paths and applying Dijkstra’s 

algorithm for shortest path finding, which is 𝑂(𝐸 + 𝑉𝑙𝑜𝑔𝑉). In the worst-case scenario, when 

the network is fully connected and the budget is huge, along the spur path, all nodes will be 

visited. The Dijkstra’s algorithm would be called 𝐵 × |𝑉| times if we treat budget 𝐵 as a large 

constant. The overall complexity for Algorithm 3 is 𝑂(𝐵𝑉(𝐸 + 𝑉log𝑉).  
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4.3   Large-scale matching problem of packages and vehicles 

The previous subsection presents the algorithms of generating 𝑘 𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑠 for SPVs. The 

next step is to match the packages with SPVs. To be more specific, instead of matching packages 

to individual SPVs, the decomposition algorithm attempts to match packages to SPV routes that 

were generated from the previous step. The following formulation is therefore presented. 

Formulation 3: 

max
𝑥𝑝𝑟𝑘

Θ3 = ∑∑∑𝜔𝐴𝑝𝑟𝑘𝑥𝑝𝑟𝑘
𝑝𝑟𝑘

−∑∑𝑐𝑟𝑘𝑧𝑟𝑘
𝑟𝑘

 (4.1) 

subject to: 

∑∑𝑥𝑝𝑟𝑘
𝑟𝑘

≤ 1 ∀𝑝 ∈ 𝑃 (4.2) 

∑𝑧𝑟𝑘
𝑟

≤ 1 ∀𝑘 ∈ 𝑆 (4.3) 

∑𝑥𝑝𝑟𝑘
𝑝

≤ 𝑧𝑟𝑘𝑞𝑠𝑘 ∀(𝑟, 𝑘) ∈ 𝑅 (4.4) 

𝑥𝑝𝑟𝑘, 𝑧𝑟𝑘 ∈ {0,1} 
∀𝑝 ∈ 𝑃 

∀(𝑟, 𝑘) ∈ 𝑅 
(4.5) 

 

 𝑥𝑝𝑟𝑘  ∈ {0,1},  Equal to one if package 𝑝 assigned to route 𝑟 of SPV 𝑘 

 𝑧𝑟𝑘 ∈ {0,1},  Equal to one if SPV 𝑘 uses route 𝑟 

The objective function (4.1) maximizes the total benefit of matching delivery orders to SPV 

routes. To encourage successful matchings, 𝜔 (a larger number) is introduced as a reward term. 

This operationalizes the strategy to match as many packages to SPVs as possible initially. In the 

objective function, 𝐴𝑝𝑟𝑘 is a binary parameter that indicates whether the 𝑟𝑡ℎ route/path of SPV 𝑘 

can feasibly serve package delivery order 𝑝. The constraints in Eqn. (4.2) guarantee that a 

delivery order is served by at most one route and at most one vehicle. The constraints in Eqn. 

(4.3) ensure each SPV only travels on at most one path through the depot. The constraints in Eqn. 

(4.4), ensure a package 𝑝 is only assigned to route 𝑟 if a SPV k is assigned to route 𝑟. If 𝑧𝑟𝑘 
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equals zero, SPV 𝑘 does not use route 𝑟, and therefore, no package order should be served by 

vehicle 𝑘 on route 𝑟. Moreover, if 𝑧𝑟𝑘 equals one, then vehicle 𝑘 does use route 𝑟 and the total 

orders carried by the vehicle should not exceed the maximum number of orders SPV 𝑠𝑘 is 

willing to serve. Constraint (4.4) also acts as a linking constraint between decision variables 𝑥𝑝𝑟𝑘 

and 𝑧𝑟𝑘. 

It is worth noting that without Constraints (4.3) and the decision variable 𝑧𝑟𝑘, Formulation 3 

becomes a bi-partite matching problem, which is solvable in polynomial time and has complexity 

of 𝑂(𝑛3). Commercial solvers, such as Gurobi (Gurobi, 2021), could solve the large-scale 

assignment problem in reasonable time. For a mixed integer programming, such as Formulation 

3, solving a linear relaxation of the problem also provides a good approximation of the optimal. 

For normal size problem, the study applies Gurobi to solve Formulation 3 directly. When the 

number of vehicles, the travel budget (detour buffer) and the number of packages increase, the 

problem of matching packages to vehicle routes would expand to a large-scale problem. The 

computation time still raises sharply since the total number of routes increases exponentially as 

the travel budget expands. To cope with potentially large-scale scenarios and to take advantage 

of the complexity of the bi-partite matching problem, the dissertation implements a Bender’s 

decomposition to Formulation 3 for large-scale cases when the detour willingness of SPVs is 

high. The formulation and procedure for performing Benders decomposition are presented as 

follows. 

Formulation 4 

Master Problem (MP) 

𝐦𝐚𝐱
𝒛𝒓𝒌

𝚯𝐌𝐏 = 𝑍 (4.6) 
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subject to 

∑𝑧𝑟𝑘
𝑟

≤ 1 ∀𝑘 ∈ 𝑆 (4.7) 

𝑍 ≤ 𝐶𝑢𝑡𝑠  (4.8) 

𝑧𝑟𝑘 ∈ {0,1} ∀(𝑟, 𝑘) ∈ 𝑅 (4.9) 

 

Subproblem (SP) 

𝐦𝐚𝐱
𝒙𝒑𝒓𝒌

𝚯𝐒𝐏(�̅�𝒓𝒌) = ∑∑𝜔𝐴𝑝𝑟𝑘𝑥𝑝𝑟𝑘
𝑝(𝑟,𝑘)

− ∑ 𝑐𝑟𝑘𝑧�̅�𝑘
(𝑟,𝑘)

 (4.10) 

 

subject to 

∑ 𝑥𝑝𝑟𝑘
(𝑟,𝑘)

≤ 1 ∀𝑝 ∈ 𝑃  (4.11) 

∑𝑥𝑝𝑟𝑘
𝑝

≤ 𝑧�̅�𝑘𝑞𝑠𝑘 ∀(𝑟, 𝑘) ∈ 𝑅 (4.12) 

𝑥𝑝𝑟𝑘 ≥ 0  ∀(𝑟, 𝑘) ∈ 𝑅 (4.13) 

 

The dual subproblem (DSP) could be written as: 

𝐦𝐢𝐧
𝝀
𝚯𝐃𝐒𝐏(�̅�𝒓𝒌) = ∑𝜆𝑝

𝑝

+ ∑ 𝑧�̅�𝑘𝑞𝑠𝑘𝜆(𝑟,𝑘)
(𝑟,𝑘)

+ ∑ 𝜆(𝑟,𝑘)𝑧�̅�𝑘
(𝑟,𝑘)

− ∑ 𝑐𝑟𝑘𝑧�̅�𝑘
(𝑟,𝑘)

 (4.14) 

 

subject to 

𝜆𝑝 + 𝜆(𝑟,𝑘) ≥ 𝐴𝑝𝑟𝑘 ∀𝑝 ∈ 𝑃, ∀(𝑟, 𝑘) ∈ 𝑅 (4.15) 

𝝀 ≥ 0  (4.16) 

Formulation 4 presents the master problem (MP) and subproblem (SP) of the delivery order-

vehicle route assignment problem. The SP is a linear assignment problem with a time complexity 

of 𝑂(𝑛3). To obtain optimal cuts (corner solutions), the study solves the dual problem (DSP). 

When initialized with a feasible solution from the MP, the SP is always feasible because the 

linear assignment problem always has a solution given its parameter settings are valid. Hence, 

the DSP is never unbounded, and one does not need to generate feasibility cuts (extreme rays) 
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for the MP. The solution procedure is a standard Benders decomposition procedure, which is 

presented as follows. 

Algorithm 4: Benders decomposition for delivery order - vehicle assignment problem 

Initialization:  

           A feasible solution �̃�𝒓,𝒌
𝟎 ; 𝐿𝐵 =  −∞,𝑈𝐵 = +∞. 

           Iteration counter t = 1            

 

While 𝑈𝐵 − 𝐿𝐵 > 𝜀:  

 Do Solve the dual subproblem (DSP) 

                    Get extreme points �̃�𝒕  
                    Add cut 𝑍 ≤ ∑ �̅�𝑝

𝑡
𝑖 + ∑ 𝑧�̅�,𝑘

𝑡−1𝑞𝑠𝑘�̅�(𝑟,𝑘)
𝑡

(𝑟,𝑘) +∑ (�̅�(𝑟,𝑘)
𝑡 − 𝑐𝑟𝑘)𝑧𝑟𝑘(𝑟,𝑘)   

                    𝐿𝐵 = max {𝐿𝐵,∑ �̅�𝑝
𝑡

𝑖 + ∑ 𝑧�̅�,𝑘
𝑡−1[(𝑞𝑠𝑘 + 1)�̅�(𝑟,𝑘)

𝑡 − 𝑐𝑟𝑘](𝑟,𝑘) } 

          Do Solve the master problem (MP) 

                    Get solution 𝑈𝐵 = ΘMP
∗  

End While 

Return: 𝐿𝐵, �̃�𝒑𝒓𝒌, �̃�𝒓𝒌 

 

In Formulation 4, the SP is convex and is a restricted problem of the original problem 

(Formulation 3). Therefore, the SP is an underestimation of the optimal value for the original 

problem and solving SP gives a lower bound (LB) for the original problem. On the other hand, 

the MP is non-convex with all integer constraints, and it is a relaxation of the original problem. 

Solving MP gives an upper bound (UB). Comparing with the original problem, the problem size 

(number of constraints and variables) is significantly reduced. Adding cuts that are generated 

from the SP gradually restricts the MP and alleviates the gap between LB and UB. 

4.4  Solving the vehicle routing problem 

In Algorithm 1, the decomposition heuristic, the routing of trucks is generated by solving a VRP. 

The truck routing problem that is used in Algorithm 1 is a single depot, single/multiple-vehicle 

routing. The algorithm that is chosen for solving the problem is an insertion algorithm that was 

described in (Campbell & Savelsbergh, 2004). Other related algorithms are reviewed in Chapter 

2. 
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The reasons for choosing an insertion algorithm for solving the vehicle routing are as follows. 

First, Algorithm 1 includes a step of comparing marginal price of serving a package if the 

package is switched from an SPV to a DV. An insertion algorithm provides a directly ways of 

obtaining the marginal cost. The following section, Section 4.5 elaborates the usage of marginal 

cost in detail. Moreover, as suggested by (Campbell & Savelsbergh, 2004), an efficient insertion 

heuristic achieves a time complexity of 𝑂(𝑛3), and therefore could handle problem in large-scale. 

The insertion algorithm has been used as for a single vehicle routing (Step 3) and a multi-vehicle 

routing (Step 5) in Algorithm 1. Step 3 performs a single vehicle routing in order to obtain an 

estimation of overall delivery cost for the packages that are to be served by DVs. More 

importantly, a single route that is formed by the all the DV-served packages provides a direct 

estimation of the insertion cost if any packages are to be moved from SPV-served set. The 

marginal cost (for the DVs) of switching a package from the SPV-served set is calculated as 

follows. Assume the original link in a DV route is link (𝑖, 𝑗), and the node to insert is node 𝑢. 

𝑀𝑎𝑟𝑔𝑖𝑛𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝑐𝑖,𝑢 + 𝑐𝑢,𝑗 − 𝑐𝑖,𝑗 (4.17) 

 

Algorithm 4: Insertion Algorithm for m-VRP 

Initialization:  

           𝑃𝑑𝑣 = 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑢𝑛𝑟𝑜𝑢𝑡𝑒𝑑 𝑝𝑎𝑐𝑘𝑎𝑔𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 
           𝑅 = 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑟𝑜𝑢𝑡𝑒𝑠; Include an empty route 

 

While 𝑃𝑑𝑣 ≠ ∅:  

           Minimum insertion cost 𝑐∗ = +∞  

           Node to insert 𝑢∗ = 𝑁𝑜𝑛𝑒  

           Link to insert (𝑖, 𝑗)∗ = 𝑁𝑜𝑛𝑒  

           Route to insert 𝑟∗ = 𝑁𝑜𝑛𝑒  

           For 𝑢 ∈ 𝑃𝑑𝑣:  

                  For 𝑟 ∈ 𝑅:  

                         If 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦[𝑝] + 𝑙𝑜𝑎𝑑[𝑟] ≤ 𝑞𝑘:  

                               For (𝑖, 𝑗) ∈ 𝑟:  

                                      Do 𝑐𝑖𝑛𝑠 = 𝑐𝑖,𝑢 + 𝑐𝑢,𝑗 − 𝑐𝑖,𝑗  

                                       If 𝑐𝑖𝑛𝑠 < 𝑐
∗ and time window fits:  
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                                                𝑢∗ = 𝑢; 𝑐∗ = 𝑐;  

                                                (𝑖, 𝑗)∗ = (𝑖, 𝑗); 𝑟∗ = 𝑟;  

                                                                                End If                      

                      End For            

                End If 

        End For 

 End For 

 Insert 𝑢∗ 𝑡𝑜 (𝑖, 𝑗)∗ 𝑖𝑛 𝑟∗, update 𝑟∗. 
 𝑃𝑑𝑣 ∖ 𝑢

∗ 

End While 

Return r𝑜𝑢𝑡𝑒 𝑠𝑒𝑡 𝑅 

 

Step 5 applies the insertion algorithm for a multi-vehicle routing, the pseudo code for the 

insertion algorithm is presented in Algorithm 4. 

In computational experiments, the insertion algorithm achieves high computational efficiency 

and relative optimal results. The overall performance of Algorithms 1, which includes the 

application if Algorithm 4, is discussed in Section 4.6. 
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4.5   Decision of package switching – cost driven approach  

Step 4 of the Algorithm 1 involves a procedure of switching packages from the set to be served 

by SPVs to the set to be served by DVs. The questions that one may be interested in about this 

step include why switching packages reduces cost for the system and which packages should be 

switched. This section explains the reasons for the two questions in detail.  

To answer the first question, one may need to understand the cost elements of operating a DV or 

truck for logistics company. Usually, operating a truck for delivery involves two major 

categories of cost, the fixed cost items and variable cost items. Fixed cost items are the cost 

items that are not depending on the volume of the business. In other words, some cost that has to 

be paid regardless of making profit or not. For a package delivery business, fixed cost items, for 

example, usually includes vehicle purchasing cost, rentals, administrative cost and 

wages/benefits for necessary employees. On the other hand, variable cost is the cost that 

depending on the volume of the business, i.e., the more packages that are delivered, the higher 

the cost (also more profit at the same time). The variable cost component usually contains fuel 

cost, depreciation of truck based on mileage, and labor cost based on mileage or working hours. 

One may assume that in package delivery business, the variable cost unit is measured by the 

vehicle miles travelled (VMT). Therefore, total variable cost equals variable cost per package 

times the number of packages. In this dissertation, I apply the “fixed plus variable” cost structure 

for estimating truck cost. 

The basic rule for package switching is that if the delivery cost for a package is cheaper on a 

truck than on SPVs, the package would be served by a truck. Therefore, it is necessary to 
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estimate the “per package cost” on truck. As describe above, the truck total cost includes a fixed 

and a variable component, therefore, the average cost of delivering a package by truck is 

calculated by (𝐹𝑖𝑥𝑒𝑑 𝑐𝑜𝑠𝑡 + 𝑉𝑎𝑟𝑖𝑏𝑙𝑒 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑚𝑖𝑙𝑒 × 𝑉𝑀𝑇 𝑇𝑜𝑡𝑎𝑙)/𝑁𝑢𝑚 𝑜𝑓 𝑃𝑎𝑐𝑘𝑠. When the 

number of packages delivered increases, the fixed cost is averaged. Therefore, the average 

package cost decreases with the number of packages. 

The total variable cost estimation for truck delivery is complex. The main reason is that for a 

given set of packages, it is hard to obtain an optimal route of delivery and therefore hard to 

estimate the total variable cost. Dedicated vehicle delivery cost has been studied in literature 

with different estimation schemes (Daganzo, 1984; Figliozzi, 2008, 2009). The literature uses the 

number of packages, average distance from package to depot, truck capacity and service region 

area to estimate average delivery cost for dedicated vehicles. The study demonstrates the 

delivery cost estimation by applying (Daganzo, 1984) estimation as: 

𝑐�̅�(𝑛) =
2𝑟𝑛

𝑄
+ 0.57√𝑛𝐴  (4.18) 

In the above equation, 𝑐�̅� is the average travel cost for making 𝑛 stops, 𝑟 is the average distance 

from stops to depot. 𝑄 is the truck loading capacity. 𝐴 is the area. 

Let us denote the fixed cost of using a truck as 𝑐𝑓. The average total vehicle delivery cost is 

estimated as 𝑐�̅� = (𝑚 × 𝑐𝑓 + 𝑛 × 𝑐�̅�)/𝑛, where 𝑚 is the total number of trucks used. Each truck 

is also associated with a capacity, which is usually determined by truck size and truck driver 

working hours. Every time a new truck is used, the total cost increase by 𝑐𝑓. Figure 4.1 presents a 

sample estimation for average VMT and average total cost. It indicates that when the number of 

packages is the low, the average cost per package is high. As the number of packages increases, 

the average cost drops. However, when the number of packages is beyond a truck load (or 
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delivery time longer than the truck driver working hours, additional trucks are required. The 

finding indicates that if a truck is used, the most cost-efficient way is to exhaust its capacity. The 

figure also demonstrates the non-convexity of truck delivery cost function, which is one of the 

difficulties for precise VRP solutions. An exact way of calculating average cost is to run a DV 

routing problem, this procedure is executable if the unassigned SPV package number is small. 

However, when the unassigned SPV package number is large, an approximation heuristic or an 

estimation scheme would be more time efficient.  

 

Figure 4.1 Average Package Delivery Cost by Truck 

After knowing the cost structure of dedicated vehicle delivery, the dissertation designs the 

switching scheme as Step 4 in Algorithm 1 and describe it in further details as follows. 

Step 4.0 Obtain truck route from single VRP as in Step 3. 

Step 4.1 For every package location to be served by SPVs (𝑖), find the nearest location that is to 

be served by DVs (𝑗). The DV round-trip cost (2 × 𝑐(𝑖,𝑗)
𝑑𝑣 ) between 𝑖 𝑎𝑛𝑑 𝑗 provides an upper 

bound cost of using DV to serve this location. If 2 × 𝑐(𝑖,𝑗)
𝑑𝑣 < 𝑐𝑖

𝑆𝑃𝑉(the cost of serving location 𝑖 

by SPV), it is more cost efficient to using DVs to serve the package location 𝑖. Location 𝑗 is the 
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nearest neighbor for location 𝑖. The study uses the insertion cost of either inserting 𝑖 into link 

(𝑗−, 𝑗) or link (𝑗, 𝑗+) to be the estimation of insertion cost of SPV location 𝑖 to the truck route. 

Step 4.2 Calculate the potential cost saving for location 𝑖 that if packages in location 𝑖 are 

switched from SPVs to DVs.  

𝐶𝑜𝑠𝑡 𝑆𝑎𝑣𝑖𝑛𝑔 = 𝑆𝑃𝑉 𝑠𝑒𝑟𝑣𝑒 𝑐𝑜𝑠𝑡 − 𝐷𝑉 𝑟𝑜𝑢𝑡𝑒 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛 𝐶𝑜𝑠𝑡
− 𝐴𝑑𝑑𝑡𝑖𝑜𝑛 𝐷𝑉 𝐹𝑖𝑥𝑒𝑑 𝐶𝑜𝑠𝑡(𝑖𝑓 𝑎𝑛𝑦) 

Compare over all locations to be served by SPVs. Find the minimum one. If the load of DV after 

switching goes beyond a truck load, an additional truck is required, and therefore additional truck 

fixed cost needs to be added to the cost saving estimation.  

Step 4.3 Switch packages, update truck routes and SPV location list. Repeat Step 4.1 and 4.2. 

Terminate when all cost savings are negative. 

The pseudo code for package switching is as follows. 

Algorithm 5: Package Switching from SPVs to DVs 

Initialization:  

           𝑙𝑜𝑐𝑠𝑝𝑣 = {1,2,… 𝑖} = 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑆𝑃𝑉 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠;  
           𝑙𝑜𝑐𝑑𝑣 = {1,2,… 𝑗} = 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝐷𝑉 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠; 
           𝑐𝑠𝑎𝑣

𝑚𝑖𝑛 = +∞            

 

While 𝑐𝑠𝑎𝑣
𝑚𝑖𝑛 > 0:  

           Find nearest DV locations to SPV locations = {𝑖: 𝑗} 
           Location to switch 𝑙∗ = 𝑁𝑜𝑛𝑒 

           𝑐𝑠𝑎𝑣
𝑚𝑖𝑛 = +∞ 

 

           For 𝑖 ∈ 𝑙𝑜𝑐𝑠𝑝𝑣:  

                  If 2 × 𝑐(𝑖,𝑗)
𝑑𝑣 < 𝑐𝑖

𝑆𝑃𝑉: 

                       𝑐𝑖
𝑖𝑛𝑠 = min {𝑐(𝑗−,𝑖,𝑗), 𝑐(𝑗,𝑖,𝑗+)} 

                       If 𝑖𝑛𝑡 (
𝑙𝑜𝑎𝑑𝑑𝑣+𝑞𝑖

𝑞𝑑𝑣
) > 𝑖𝑛𝑡 (

𝑙𝑜𝑎𝑑𝑑𝑣

𝑞𝑑𝑣
): 

                             𝑐𝑖
𝑠𝑎𝑣 = 𝑐𝑖

𝑆𝑃𝑉 − 𝑐𝑖
𝑖𝑛𝑠 − 𝑐𝑓 

                       Else:  𝑐𝑖
𝑠𝑎𝑣 = 𝑐𝑖

𝑆𝑃𝑉 − 𝑐𝑖
𝑖𝑛𝑠 

                       End If 

                       If 𝑐𝑖
𝑠𝑎𝑣 < 𝑐𝑠𝑎𝑣

min: 

                              𝑐𝑠𝑎𝑣
𝑚𝑖𝑛 = 𝑐𝑖

𝑠𝑎𝑣; 𝑙∗ = 𝑖 

 

                       End If  

                  End If  

           End For  
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           Insert 𝑖 to DV route, update  

End While 

 

4.6   Computational results comparison 

This section compares the computational results between the decomposition heuristic and exact 

method of multi-vehicle routing problem to assess the effectiveness and efficiency of the 

decomposition heuristic(D-H). The numerical experiment is conducted by using the network of 

the City of Irvine, CA, USA. In total, the number of packages ranges from 10 to 100, and 

packages are distributed uniformly in the study area. In addition, a number of SPV samples are 

generated randomly. The numerical experiment regulates that every SPV has a fixed detour time 

of 20 minutes. The depot is located on the boundary of the network. The detailed settings are 

listed below.  

Table 4.1 Experiment setting 

Parameter Value 

Depot location Node 152688 (boundary) 

Number of packages 10 ~ 100 

Number of SPVs 10 ~ 1,000 

SPV capacity 1 ~ 4 

SPV max detour willingness 20 𝑚𝑖𝑛𝑠 
SPV detour compensation rate $ 0.56 /𝑚𝑖𝑙𝑒 

SPV package deliver compensation $ 0.5 /𝑝𝑎𝑐𝑘𝑎𝑔𝑒 

Truck capacity 60 

Truck per mile cost $ 0.56 /𝑚𝑖𝑙𝑒 

Truck fixed cost $ 120 /𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

 

The comparison is conducted between the decomposition heuristic (Algorithm 1) and the exact 

method of solving the crowdsourced shared-trip delivery problem (Formulation 1, Chapter 3). 

Algorithm 1 is implemented in Python 3.7 language, and the exact solution is obtained by using 

commercial solver Gurobi 9.1. The computation is executed on a 2.20 GHz Intel Xeon Server 

with 128 GB RAM. The comparison focuses on the computational time and the optimality gaps. 
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The computational time limit that is set for Gurobi is 1,200 seconds. If Gurobi does not finish the 

optimization process after 1,200 seconds, the optimality gap between the primal and dual 

problems is reported along with the optimality gap between D-H and exact solutions. The 

experiment contains both small-scale problems (e.g., 10 packages, 10 SPVs) to larger-scale 

problems (e.g., 100 packages, 100 SPVs). The results are summarized in Table 4.2.  

The study first compares the computational results for relatively small-scale problems. In the 

four cases of 10 packages, the optimality gap between the D-H and exact method is from 0% to 

0.36%. Optimality gap is calculated by (𝑂𝑏𝑗𝐷𝐻 − 𝑂𝑏𝑗𝑉𝑅𝑃)/𝑂𝑏𝑗𝑉𝑅𝑃. The computational time for 

D-H ranges from 10% to 25% of the computational time of exact method. In the four cases of 20 

packages, D-H even solves the problem with smaller fraction of time comparing to an exact 

method. While at the same time, D-H maintains the optimality gap to be smaller than 1.5%. To 

summarize, in small-scale problems, D-H achieves solutions fairly close to the true optimal 

solution (less than 1.5%), while uses much less time for computation than the exact method. 

For problems with large scales, the exact method starts to slow down with commercial solvers. 

For the four cases with 50 packages, Gurobi could not find the optimal within time limit. For the 

case of 50 packages and 50 SPVs, the exact method provides a solution better than D-H, but the 

optimality gap is smaller than 1% (0.94%). For the cases of 100 SPVs and 250 SPVs, the exact 

method could not turn out a solution better than D-H within time limit. Moreover, for cases 

larger than 50 packages and 500 SPVs, with the exact method, Gurobi could not finish pre-

computation within the time limit and provides no optimality gaps between the primal and dual 

problems. Therefore, for large-scales problems, the D-H dominants the exact method. 
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Comparing the computational time of different cases with D-H, one could find that the 

scalability of D-H is decent under current settings. The computational time increase is relatively 

linear (10 packages 100 SPVs takes 11.3 secs, while 10 times the problem uses 96 secs).  

In summary, by comparing computational results for different cases, the study finds that the D-H 

algorithms is scalable. For small-scales problems, the algorithm achieves close solutions to the 

optimal objective value with a fractional of time that is used by the exact method. For large-scale 

problems, the algorithm outperforms the exact method within the time limit. 
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Table 4.2 Computational results comparison between decomposition heuristic and exact m-VRP 

      m-VRP D-H   m-VRP D-H   m-VRP D-H   m-VRP D-H 

Package No. 

10 

SPV No. 10   20   50   100 

Time (s) 3.11 0.33 
 

2.06 0.38 
 

4.14 0.83 
 

38.87 11.33 

Cost 134.91 134.91 
 

134.43 134.91 
 

134.43 134.91 
 

134.22 134.22 

OPT Gap 0.00% 

 

0.36% 

 

0.36% 

 

0.00% 

                          

20 

SPV No. 20 

 

40 

 

100 

 

200 

Time (s) 36.93 0.67 
 

88 1.06 
 

221.74 18.55 
 

1105.26 25.54 

Cost 138.69 140.72 
 

138.69 140.44 
 

138.69 140.44 
 

138 138.2 

OPT Gap 1.46% 

 

1.26% 

 

1.26% 

 

0.14% 

                          

50 

SPV No. 50 

 

100 

 

250 

 

500 

Time (s) 1200 3.83 
 

1200 11.21 
 

1200 29.89 
 

1200 60.48 

Cost 147.93 149.33 
 

157.81 149.33 
 

272.4 149.33 
 

- 149.33 

OPT Gap 
0.94%, (13.3%) * 

 

-5.37%, (51.5%) * 

 

-45.18%, (93.99%) 

* 
 

- 

                          

10

0 

SPV No. 100 

 

200 

 

500 

 

1000 

Time (s) 1200 11.62 
 

1200 13.72 
 

1200 41.15 
 

1200 96.94 

Cost - 283.61 
 

- 283.47 
 

- 192.71 
 

- 186.9 

OPT Gap -   -   -   - 

OPT Gap shows 

1. The optimality gap between D-H method and real optimal (m-VRP) if Gurobi turns out a solution in 1200 secs. 

2. The optimality gap and the dual gap (in parenthesis) between the solutions of primal and dual problem in if Gurobi 

doesn't finish in 1200 secs. (Mark with *) 

 3. Nothing if Gurobi doesn't start cutting planes in 1200 secs (Mark with - ). 
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4.7   Summary of the solution algorithms 

The previous chapters describe the decomposition heuristic and details of the algorithms that is 

used in every step. The procedure of decomposition heuristic involves solving different 

subproblems, and for every subproblems, different solution techniques are required. 

For the first subproblem, budgeted k-shortest paths problem, an algorithm (Algorithm 3) with a 

time complexity of 𝑂(𝐵𝑉(𝐸 + 𝑉log𝑉) is presented. In addition, the study has discussed the 

necessity of generating the entire set of k-paths. For the large-scale package/vehicle route 

assignment problem, the dissertation presents the formulation and explain the procedure for a 

Benders decomposition when the problem size is huge. For the vehicle routing problems, the 

study applies an insertion heuristic, which handles the problem efficiently and provides 

important cost reference for the comparison in the next solution step. For the package switch 

procedure, the dissertation utilizes the cost-driven approach that effectively decides the packages 

to be shifted from the SPV set to the DV set. The dissertation also compares the decomposition 

heuristic with the exact method of solving the MFOCVRPTW, the decomposition heuristic is 

comparable with the exact method in solution quality for small scale problems and outperforms 

the exact algorithms for large-scale problems.  

For further improvements of the decomposition heuristics, one may consider further improving 

the solution efficiency of the budgeted k-shortest paths problem, and the large-scale matching 

problem. 

The next chapter applies the decomposition heuristic in real-world case study and presents the 

results for different metrics. 
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-End of Chapter 4-  



 72 

Chapter 5 Application of Models and Algorithms: A Case Study in 

the City of Irvine 

5.1   Introduction 

This chapter presents an application of the models and algorithms described in previous chapters. 

The chapter attempts to model the crowdsourced shared-trip delivery behavior in the City of 

Irvine. The problem instance description is detailed below. 

This application is a large-scale deterministic case of the crowdsourced shared-trip problem. 

Information about driver trips and packages are available to the analysts or operator significantly 

in advance of the first driver trip and first package delivery. The study assumes that a depot is in 

the city and responsible for distributing packages in the service area. The depot could be a 

distribution center, a store (e.g., Walmart, Whole Foods, etc.), or a warehouse. The parcel sizes 

are small to medium size and can fit in a normal sedan or wagon (shared personal vehicles, or 

SPVs). Vehicle drivers, who are willing to deliver packages, may register their trip plans to the 

depot. Each SPV trip plan must include origin (O), destination (D), earliest starting time (EST), 

and latest arrival time (LAT). The driver also indicates the maximum number of packages they 

are willing to transport. The operator then determines the combination of packages and drivers. 

There are also a group of trucks on duty for delivery. The following flow chart explains the 

service process. 
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Figure 5.1 Process of crowdsourced shared-trip delivery 

 

The problem is a crowdsourced shared delivery problem, which fits the formulation explained in 

Formulating the Crowdsourced Shared-trip Problem.  To solve the problem, the study applies the 

algorithms described in Solution Algorithm The application chapter mainly analyze the results 

and findings and discuss about the factors that may affect the operation of crowdsourced shared-

trip delivery. 

5.2   Literature review and background information 

The methodological aspects of literature have been reviewed in Chapter 2 

 And Chapter 3. This literature review focuses on parameters that would affect the operation of 

crowdsourced shared-trip delivery.  

The operation usually contains only one depot. A slightly more complex operation is to use 

multiple depots and allow vehicles to transfer between depots (Arslan et al., 2019). The complex 

design of operations provides more options for package flow, but does not change the key factor 
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for operation, which is the availability of vehicles. Therefore, this study only considers a single 

depot design. However, I believe that the location, or using network study jargon, the 

connectivity of the depot has a large impact on the availability of shared vehicles. The following 

sections presents the sensitivity analysis results of different depot locations. 

Compensation schemes, or incentives of the service, is another factor that impacts the quality. In 

several studies(Archetti et al., 2016; Arslan et al., 2019; Dahle et al., 2019), researchers all 

mention the importance of a payment scheme to the reduction of total cost. Different payment 

schemes, such as fixed amount, variable amount, or grocery store coupon award are suggested 

and tested for payment. Fixed compensation means the driver would receive a fixed amount 

(e.g., $1) for each package that they deliver. Variable compensation usually depends on the 

travel distance or detour distance of drivers. (Archetti et al., 2016) suggest that a variable 

compensation scheme would benefit the driver more. This dissertation follows this conclusion 

and treats the payment amount as variable, but it also includes a fixed amount for each successful 

delivery. Hence, this study applies a mixed payment schedule, which is different from studies in 

the literature. Besides the payment schemes, another cost factor, cost of dedicated vehicles is 

sometimes overlooked in the literature. This study includes the fixed cost of using a truck, which 

is the summation of facility, administrative, and miscellaneous cost, into the decision process of 

package assignment.  

In addition to payment scheme, the effectiveness of crowdsourced shared delivery depends 

significantly on the detour willingness/buffer time of a shared vehicle drivers. Studies, such as 

(Archetti et al., 2016), show that higher willingness to detour results in lower costs. This 

conclusion is also tested in this dissertation chapter. To sum up, Figure 5.2 complies the 

connection between the potential factors.  
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Figure 5.2 Factors that affects crowdsourced shared-trip delivery 

This chapter utilizes the results of optimizing a crowdsourced shared-trip delivery problem to 

answer the following questions: 

1. What is the cost and VMT savings for crowdsourced shared-trip delivery service? What 

are the differences between drivers starting from origins and starting from the depot? 

2. What is the impact of driver willingness to detour on the operations and operational costs? 

What percentage of packages can be served by SPVs? 

3. What is the impact of the location of the depot? To what extent does it impact the 

available vehicles? 

The following sections present the detailed numerical study parameters and demonstrate the 

results.  
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5.3   Case study settings 

This study conducts a numerical case study using the road network of the City of Irvine, CA, 

USA. The network contains 442 nodes and 648 links. Two nodes are selected as potential depots 

for package delivery. Depot 1 is on the boundary and in a plaza that could potentially be a 

grocery store location. Depot 2 is close to the center of city; the node is also in a plaza of a 

wholesale club. In the benchmark case, the study uses Depot 1 as the depot. In the sensitivity 

analysis, the study compares the results of using Depot 2 to Depot 1. 

 
Figure 5.3 Irvine Network. Depot and Package Locations 

 

The numerical study includes 200 packages and a maximum of 1200 SPVs. The package 

locations are randomly chosen, uniformly distributed in the entire area. Multiple packages may 

share the same location. Each package has a latest time that it needs to be delivered (time 
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window). The latest delivery time for packages is randomly chosen from 12:00 at noon, 4:00 

p.m. or 8 p.m. The SPV trips are generated from the California State Travel Demand Model 

(CSTDM). An individual SPV has a capacity limit for carrying packages. The driver has an EST 

and an LAT. The maximum detour willingness of a vehicle is calculated by 𝐿𝐴𝑇 − 𝐸𝐷𝑇 −

𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑃𝑎𝑡ℎ 𝑇𝑖𝑚𝑒. The study will test detour willingness of 10, 15, 20 and 25 minutes. The 

vehicles are assumed to travel at an average speed of 45 miles per hour. The study also assumes 

that once a package is matched to an SPV driver, the driver will not reject the assignment. The 

SPV drivers are compensated based on the number of packages assigned to them (a fixed amount 

of $0.5 per package) and the detour distance that is incurred from the delivery (the study uses the 

IRS reimbursement rate for business travel, $0.56/mile). 

There are also a number of trucks available at the depot. The trucks are responsible for delivering 

the packages that are not served by the SPV. Trucks are identical and have a capacity of 60 

packages per trip. A truck has a fixed cost per trip of $120, which includes facility cost, 

administrative cost, and miscellaneous cost. The truck also has a variable cost depending on the 

mileage it travels. Variable cost includes fuel cost, insurance, and depreciation and has the value 

of $0.56 as well.  

The following is the summary table of the parameters used in the numerical study.  
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Table 5.1 Summary of parameter values for numerical study 

Parameter Value 

Area 32 𝑚𝑖𝑙𝑒2 

Depot location 152688 (Depot 1) *, 131052 (Depot 2) 

Number of nodes 442 

Number of delivery orders 200 

Number of SPVs 0 ~ 1,200 

SPV average speed 40 mph 

SPV max stop willingness 1 ~ 4 

SPV max detour willingness 20, 25, 30*, 35 mins  

SPV detour compensation rate $ 0.56 per mile 

SPV package deliver compensation $ 1.5 per delivery order 

DV average speed 30 mph 

DV max stop numbers 60 

DV per mile cost $ 1.5 per mile 

DV fixed cost $ 120 per use 

* The benchmark case  

 

The numerical study results are presents in the following section. 

5.4   Results 

The case study uses the numerical case where the depot is at Node 156288 (Depot 1 in Figure 

5.3) and the SPV detour willingness equals 20 minutes as the benchmark situation. The 

numerical study obtains results for cases where the number of SPVs range from 100 to 1,200. 

Number of delivery orders served by SPVs 

The first metric to compare in this study is the number of delivery orders served by SPVs. 

According to Chapter 4, the delivery orders are matched to the SPV first (an initial matching), 

and then possible delivery orders are switched from SPVs to DVs (final matching). This section 

presents the matching number for both initial matching and final matching. Figure 5.4 Package 

served by SPVs and trucks draws the initial and final matching numbers against the number of 

SPVs. 
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Figure 5.4 Package served by SPVs and trucks 

 

The blue line in Figure 5.4 represents the initial number of orders matched with SPVs. Section 

4.3 has shown that the initial matching number is also the largest possible number of delivery 

orders that could be served by SPVs. Unsurprisingly, the blue dash line shows a trend that the 

maximum number of package orders that could be served by SPVs increases as the number of 

SPVs increases. The final SPV served order number (orange line) is bounded by the blue dash 

line. The trend is a curve bending toward the x-axis, which indicates that the marginal increase in 

the number of SPV served packages decreases as the number of SPVs increases.  

It is also worth noting that even when the number of SPVs reaches a relatively high level, the 

entire deployed SPVs could not serve the entire group of delivery orders (matching rate at 

around 75%). If the company keeps increasing the number of SPVs, it is possible that all the 

orders will be served by SPVs, and no truck will be needed. However, the total number of SPVs 

required may be an enormous number, which leads to a question whether the logistics company 
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could obtain sufficient supply of SPVs (the matching of packages and SPVs are also highly 

dependent on the detour willingness of SPVs). Hence, in nearly all cases, at least one dedicated 

vehicle is needed to serve packages.  

The orange line in Figure 5.4 represents number of SPV served orders at the optimal or near-

optimal cost; the orange line forms a step function. The green line represents the number of 

delivery orders served by DVs, which are usually at its maximum stop times. These findings 

indicate that the optimal solution involves utilizing DV to full capability in operation but also 

minimizing the number of DVs in operation. When the number of SPVs increases to a level that 

the feasible SPVs could serve a truckload of delivery orders, the number of DVs required to 

deliver orders drops by one, and the total cost drops to a lower level. The results about total cost 

are shown in the following subsections. 

Delivery cost 

Total delivery cost is the most critical metric as it is the objective function for the original 

problem formulation. Figure 5.5 displays SPV cost, truck cost, and total delivery cost as a 

function of the number of SPVs in the system. Figure 5.5 displays the per package costs for 

SPVs, DVs, and all vehicles combined.  

Figure 5.5 and Figure 5.6 illustrate that the total delivery cost (and by definition average cost) 

decreases as the number of available SPVs increases. This finding is expected given more SPVs 

represent a larger feasible region or more options for package orders to be delivered by SPVs. 

Consistent with the results in Figure 5.4, the total delivery cost in Figure 5.5 reduces in steps as 

the number of SPVs increases. This is, again, the result of reducing the number of DVs necessary 

to deliver the packages. 



 81 

 
Figure 5.5 Cost Comparison 

 
Figure 5.6 Average Cost of Package Delivery 

The SPV cost line in Figure 5.5 shows an increasing trend while both truck (orange line) and 

total cost (green line) are decreasing. SPV costs are increasing with the number of SPVs due to 

the increase in packages served by SPV, while truck costs are decreasing due to the decrease in 
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packages served by trucks or more accurately the decrease in number of trucks needed to serve 

packages. This result also indicates that the savings from crowdsourced share delivery are mainly 

the result of truck fixed cost reduction. The fact that total costs are decreasing with the number of 

SPVs indicates that the marginal increases in total costs across SPVs are smaller in magnitude 

than the marginal decrease in total costs across trucks.  

The results show that if properly managed, logistics companies that employ crowdsourced 

delivery service can reduce the number of dedicated trucks they purchase as well as the 

associated storage, maintenance, insurance, and other overhead costs associated with each truck.  

Figure 5.6 shows that total cost is not entirely flat between vehicle size 400 to 900. It is 

decreasing relatively slowly. The decrease is caused by SPV cost saving due to additional SPVs, 

but the cost reduction before reaching a truck load is not significant. Table 5.2 also substantiates 

that freight share delivery saves cost and the cost saving percentage ranges from 20% to 50%. 

Since it is hard to serve all packages using SPVs, it is hard to eliminate truck service, and the 

cost saving may stall at 50% for even higher number of SPVs available. 

Besides the total cost, the average cost of delivering a package is also decreasing as the number 

of SPV increases. Both Figure 5.6 and Table 5.2 Delivery cost by SPVs and trucks demonstrate 

the trend. It is worth noticing that while the overall average delivery cost is decreasing, the 

average truck delivery cost increases slightly as the number of SPVs increase. This reason is that 

once packages are assigned to SPVs, the benefits from scale economy start to diminish for 

trucks. The average SPV delivery cost is relatively stable around $2, which indicates that the 

crowdsourced shared-trip delivery program has a decent utilization of the SPV trips. 
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Table 5.2 Delivery cost by SPVs and trucks 

  Orders served by Cost (S) AVG cost per order ($) 

SPV 

Number 
SPV DV SPV DV Total 

% Saving 

w.r.t SPV=0 
by SV  by DV overall 

0 0 200 0.00 656.06 656.06 - - 3.28 3.28 

100 20 180 39.86 513.94 553.79 15.59% 1.99 2.86 2.77 

200 20 180 39.48 512.81 552.30 15.82% 1.97 2.85 2.76 

300 20 180 39.33 512.81 552.15 15.84% 1.97 2.85 2.76 

400 80 120 158.75 367.13 525.88 19.84% 1.98 3.06 2.63 

500 80 120 158.01 364.31 522.32 20.39% 1.98 3.04 2.61 

600 80 120 154.65 360.94 515.58 21.41% 1.93 3.01 2.58 

700 80 120 153.30 360.94 514.24 21.62% 1.92 3.01 2.57 

800 80 120 153.30 360.94 514.24 21.62% 1.92 3.01 2.57 

900 80 120 151.29 360.94 512.22 21.92% 1.89 3.01 2.56 

1000 140 60 273.09 203.81 476.91 27.31% 1.95 3.40 2.38 

1100 140 60 272.57 203.81 476.38 27.39% 1.95 3.40 2.38 

1200 140 60 271.30 199.69 470.99 28.21% 1.94 3.33 2.35 

 

Vehicle Miles Travelled (VMT) 

Besides the total cost, the total vehicle mile travelled (VMT), a proxy for both congestion and 

environmental impact, is another important performance metric. Figure 5.7 and Table 5.3 present 

the total VMT to deliver packages for SPVs, trucks and overall vehicles. 
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Figure 5.7 VMT from Package Delivery 

 

The results indicate that total VMT tends to increase with the number of SPVs, although non-

monotonically. This finding is unsurprising given that as the number of SPVs increases the 

number of delivery orders assigned to SPVs increases thereby causing more SPVs to detour to 

pickup and drop-off packages, as opposed to relatively VMT-efficient DV delivering orders. 

Given that VMT increases with the number of SPVs, the question then becomes, does the 

crowdsourced delivery system increase congestion and worsen environmental impacts of 

package delivery? The answer for congestion is most likely ‘yes’ unless the DVs were blocking 

traffic lanes in dense urban areas. The answer for environmental impact is more nuanced. Since 

SPVs are family size sedans, the SPVs themselves are significantly more energy efficient and 

environmentally friendly than trucks or vans that dedicated delivery may use on a per mile bases. 

Therefore, crowdsourced shared-trip delivery does likely reduce environmental emissions 

relative to exclusive dedicated truck delivery, unless the trucks are fully electric. 
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Also, worth mentioning is that the VMT estimation for each individual SPV in Figure 5.7 

includes SPV travel from the SPV driver’s origin to the depot. If the logistics company only 

considers people who shop at the stores near the depot, which is the case in almost all previous 

studies (Archetti et al., 2016; Arslan et al., 2019; Dayarian & Savelsbergh, 2020), then total 

VMT decreases with the number of SPVs, as shown in Figure 5.8. In Figure 5.8, all the solid 

lines that are marked with “1” (indicating Case 1, SPVs have origins as their origins) are the 

same as Figure 5.7, while the dash lines represent the case (Case 2) where the case study 

assumes all SPV drivers are at the depot/store. While the VMT gap between DVs is relatively 

small in both cases, the gap between the VMT from SPVs is quite drastic in the two cases. 

Hence, the VMT savings from ‘assuming’ all the SPVs are already at the store/depot drives the 

overall savings in VMT between the two green lines. The dash green line is consistent with much 

of the literature and indicates that share-ride delivery saves VMT. 

 
Figure 5.8 VMT under different origins of SPVs 
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Table 5.3 VMT for package delivery 

  Orders served by VMT (miles) AVG VMT per order (miles) 

SPV 

Number 
SPV DV SPV DV Total 

% Saving 

w.r.t SPV=0 
by SV  by DV overall 

0 0 200 0.00 117.38 117.38  - -  0.59 0.59 

100 20 180 17.60 102.63 120.23 -2.43% 0.88 0.57 0.60 

200 20 180 16.93 101.88 118.81 -1.22% 0.85 0.57 0.59 

300 20 180 16.67 101.88 118.54 -0.99% 0.83 0.57 0.59 

400 80 120 69.20 84.75 153.95 -31.16% 0.87 0.71 0.77 

500 80 120 67.87 82.88 150.74 -28.43% 0.85 0.69 0.75 

600 80 120 61.87 80.63 142.49 -21.40% 0.77 0.67 0.71 

700 80 120 59.47 80.63 140.09 -19.35% 0.74 0.67 0.70 

800 80 120 59.47 80.63 140.09 -19.35% 0.74 0.67 0.70 

900 80 120 55.87 80.63 136.49 -16.29% 0.70 0.67 0.68 

1000 140 60 112.67 55.88 168.54 -43.59% 0.80 0.93 0.84 

1100 140 60 117.07 55.88 172.94 -47.34% 0.84 0.93 0.86 

1200 140 60 109.47 53.13 162.59 -38.52% 0.78 0.89 0.81 

 

Vehicle route usage 

This section analyzes the SPV (route) usage from the supply perspective to understand how the 

SPVs are used. The study defines an SPV with minimum possible detour as an SPV such that it 

travels to depot on the shortest path and then travels to its destination on the shortest path while 

delivering at least one package order. The route that the SPV traverses is called a minimum 

detour route. The numerical study finds that the average total detour distance for SPVs with 

delivery tasks is 1.06 miles. In addition, 14% SPVs uses its minimum detour route. These results 

are not abnormal since the algorithm also attempts to route SPVs on shorter routes to save cost. 

Another more important metric that is presented in this section is the number orders served by 

SPVs with different detour levels. This metric helps understanding how SPVs are used in 

crowdsourced share-trip delivery. Figure 5.9 shows the total number of package orders (sum up 

the orders from 100 SPV case to 1200 SPV case) delivered by SPVs with different detour levels. 

In Figure 5.9, on the x-axis, “0” indicates the route is a minimum detour route, and the other 
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integer numbers are the travel time differences between the used route and the minimum detour 

route. 

 
Figure 5.9 The number of packages served by routes with different detours 

Figure 5.9 demonstrates that half of the SPV delivered orders are carried by SPVs that travers a 

route which has a travel time that within 2 mins more than the minimum detour route. Especially 

17% of the orders are delivered by SPVs on a minimum detour route. Almost 90% of the SPV 

served orders are carried by an SPV on a route that is within 10 mins more than the minimum 

detour route. Therefore, the routes which have a longer detour distance are less preferable for 

SPVs to use.  

The reason may be that long-detour routes, when used, incurs higher detour compensations, 

which are less preferable for logistics companies. In addition, the compensations that paid to 

long-detour routes may be ultimately higher than the cost of using a DV to deliver the order, and 

therefore, are rarely used. This finding suggested that though longer detour of vehicle would 



 88 

potentially serve more package orders, most orders are delivered by SPVs that travels with a 

short detour distance. If we reduce the maximum detour willingness requirements for SPVs, 

when the total number of SPV is large, the result would not be impacted significantly. This 

finding also motivates us to conduct a sensitivity analysis on the impact of the maximum 

willingness to detour for SPVs. The finding also indicates that for route generation in Section 

4.2, one could limit the budget of k-shortest paths so as to reduce computational time for both 

Step 1 and 2 in Algorithm 1. 

Impact of detour willingness 

A sensitivity analysis to assess the impact of detour willingness of SPVs is conducted in this sub-

section. As explained in both Section 4.2 and Section 5.3, the maximum willingness to detour for 

an SPV includes the travel time from its origin to depot, the necessary order pickup/drop-off time 

and the travel time from the depot to the destination. The benchmark case has a maximum detour 

willingness of 30 minutes for every SPV. The study uses 20, 25 and 35 minutes of maximum 

detour willingness to generate results and compare them with the benchmark. 

The first metrics to compare is the total delivery cost. Figure 5.10 shows the cost comparison 

over different detour willingness. 
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Figure 5.10 Cost Comparison over Detour Willingness 

 

First, for the cases where the maximum detour willingness is 20 and 25 minutes, after the 

number of SPVs reaches 500, the total cost for delivery stabilizes at around $550. Further 

reduction in the total cost would require a relatively high number of SPVs to participate in the 

program. In addition, for the case of 500 SPVs and onwards, the total cost of for 20- and 25-

minute cases is almost the same. These two findings indicate that if SPV drivers are all with a 

low level of detour willingness, achieving high level of cost reduction would require a 

considerably large number of SPVs (more precisely, a large SPV/order ratio). 

Higher detour willingness cases achieve the same cost reduction with fewer SPVs than low 

detour willingness cases. For example, the 35-minute (red line) and 30-min (green line) cases 

require only 100 SPVs to achieve a total cost around $550, while the 15-min case needs at least 

300 SPVs and the 10-min case requires around 500 SPVs. Naturally, a longer detour time allows 
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SPVs to travel to more ‘unpopular’ nodes that may have a delivery demand. Therefore, it would 

be interesting to examine the maximum number of delivery orders that all SPVs could serve 

under different scenarios. Figure 5.11 demonstrates the results of this analysis. 

 
Figure 5.11 Maximum delivery orders that SPVs could serve 

 

Figure 5.11 shows that with the same number of SPVs, the 35-min detour can serve 4 to 6 times 

more the orders than the 20 or 25-min cases. Moreover, compared to the 35-min case, the 30-min 

case can significantly increase the number of potential orders served. On the contrary, the 

additional orders that SPVs can serve between 35-min and 30-min cases are fewer than the 

improvement between 30- and 25-min cases. While these results are a function of the network 

structure, for the Irvine network the results indicate that the logistics company should incentivize 

drivers to accept a 30-min detour time.  
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A related parameter of interest is the percentage of SPVs that can deliver at least one order 

without violating any time-window constraints -- (𝑛𝑜. 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑆𝑃𝑉𝑠/𝑡𝑜𝑡𝑎𝑙 𝑆𝑃𝑉 𝑛𝑢𝑚𝑏𝑒𝑟)% -- 

as a function of the maximum willingness to detour. According to computational results for the 

Irvine case study with a 20-min detour willingness, only 2% ~3% of SPVs are feasible SPVs. 

While with a 25-min detour, the percentage increases to 18%. For the 30-min and 35-min cases, 

the feasible SPV percentages are 40% and 52%. This result substantiates the finding that a decent 

detour willingness significantly increases the potential of the crowdsourced shared-trip delivery 

service. Without a decent detour willingness for SPVs, a considerable large number of SPVs will 

be needed to mitigate the differences. 

This study also compares the SPV usage across different scenarios in Figure 5.12. Figure 5.12 

ascertains the aforementioned finding that a decent detour willingness (30-, 35-min cases) 

significantly improves the potential of delivering orders by SPVs. In addition, it shows that in 

different maximum detour willingness scenarios, the majority of orders delivered by SPVs are 

carried by SPVs that uses a low-detour route, meaning that most SPVs do not need to detour a lot 

from the depot to their own destinations to deliver package orders. 
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Figure 5.12 SPV usage under different maximum detour willingness 

 

Combining the findings of Figure 5.11 and Figure 5.12, we may conclude that a higher 

maximum detour willingness would allow more SPVs (especially for those SPVs whose origins 

and destinations are far away from the depot) to participate in the crowdsourced delivery system. 

However, individual SPVs who are matched with delivery orders, highly likely do not need to 

detour a lot when travels from the depot to their destinations. Therefore, in Step 2 of Algorithm 

1, we may not necessarily need a large budget to enumerate SPV routes from the depot to their 

destinations and therefore could potentially save computational time. 
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Impact of the depot location 

This subsection presents another sensitivity analysis to examine the impact of depot locations on 

several performance measures. As described at the beginning of this section, the study compares 

two cases: Case 1, where the depot is at the service region boundary; Case 2 where the depot is at 

the center of the city.  

The study first compares the total cost and total VMT based on the depot location. Figure 5.13 

shows that, in general, the center depot delivery costs are lower than the boundary depot costs. 

The reason is that a center located depot attracts more SPVs than boundary located ones. 

However, when the number of SPVs is high, the difference (about 5.4%) in the total cost 

between a center depot and a boundary depot is not significant. This finding indicates that a 

higher number of SPVs can mitigate the total cost deficit caused by depot location selection. 

Hence, from a managerial perspective, the location of depots may be less important, in terms of 

system cost, within a crowdsourced shared-trip delivery system than a conventional dedicated 

vehicles only system.  

For the total VMT metric Figure 5.14), in most cases, a center located depot results in less VMT 

than a boundary located vehicle, since a certain number of SPVs does not need to detour a lot to 

reach the depot for order pickup. Though the VMT different is significant (25%) for the SPV = 

1200 case, the boundary located case does show a trend of reducing. Therefore, it is reasonable 

to believe that when the number of SPVs reaches a larger level (may be huge), the differences 

between VMT could also be alleviated. 
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Figure 5.13 Cost Comparison over Different Depots 

 

On the other hand, the depot location affects the percentage of SPVs that can feasibly serve at 

least one package order. The center located depot tends to produce more feasible drivers than a 

boundary depot. The percentage of feasible drivers under a 30-min detour willingness 

assumption for the center located depot case is 60%, while the same metric for a boundary 

located depot is only 40% (as shown in the previous section). The higher percentage of feasible 

drivers also leads to a higher matching rate of package orders by the SPV. In Figure 5.15, for the 

maximum number of packages that could be served by SPV, the center located depot case 

(orange bars) still outperforms the boundary located depot case (blue bars). Both cases are 

moving toward 200, the total delivery order number, but still several hundreds of SPVs are 

needed to deliver all package orders by SPV. 
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Figure 5.14 VMT Comparison over Different Depots 

 
Figure 5.15 Feasible SPV percentages and SPV served packages 
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5.5   Minimum compensation required 

The above discussion and results assume that crowdsourced drivers accept any order assigned to 

them. Conversely this section assumes, realistically, that crowdsourced drivers can and will 

reject orders if the expected payment is smaller than their minimum acceptable compensation. 

The study tests the system performance of crowdsourced shared-trip delivery with different 

levels of minimum acceptable compensation for drivers and compares the results to the 

crowdsource time-based delivery. The comparison should help answer the question of when a 

company should deploy crowdsourced shared-trip delivery, or crowdsourced time-shared 

delivery, or simply use conventional truck delivery. 

Assume a shared personal driver (or simply using SPV 𝑘) has a minimum compensation that he 

would accept to deliver, and the minimum compensation, represented by 𝑤𝑘, is measured by 

monetarized cost. Assume there are two ways that drivers determine their minimum acceptable 

compensation. The first one is to compute the minimum compensation by value of time (or 

detour distance travelled). The analysis introduces the parameter 𝑤𝑘
𝑑 to represent the required 

compensation per mile detour for vehicle 𝑘. In the first case, 𝑤𝑘 = 𝑤𝑘
𝑑 × 𝑑𝑒𝑡𝑜𝑢𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒. The 

second one is to compute the minimum compensation by the number of packages, represented by 

𝑤𝑘
𝑝
, and 𝑤𝑘 = 𝑤𝑘

𝑝 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑐𝑎𝑘𝑔𝑒𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑. The shared vehicle drivers could have 

different values of 𝑤𝑘
𝑑  𝑜𝑟 𝑤𝑘

𝑝
. 

Therefore, another constraint based on the minimum acceptable compensation could be added to 

Formulation 1 of Chapter 3. 

(𝑐0𝑠𝑘 + ∑ 𝑐𝑖𝑗
𝑠 𝑥𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴

− 𝑐𝑠𝑘) + 𝑒 × ( ∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

− 1) ≥ 𝑧𝑠𝑘 × 𝑤𝑘, ∀𝑘 ∈ 𝑆 (5.1) 
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In Case 1, where drivers’ minimum acceptable compensation is based on detour time/distance, 

the constraint is written as: 

(𝑐0𝑠𝑘 + ∑ 𝑐𝑖𝑗
𝑠 𝑥𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴

− 𝑐𝑠𝑘) + 𝑒( ∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

− 1)

≥ 𝑧𝑠𝑘 × (𝑐0𝑠𝑘 + ∑ 𝑐𝑖𝑗
𝑠 𝑥𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴

− 𝑐𝑠𝑘) × 𝑤𝑘
𝑑, ∀𝑘 ∈ 𝑆 (5.2) 

which could be rewritten as: 

(𝑧𝑠𝑘 ×𝑤𝑘
𝑑 − 1) × (𝑐0𝑠𝑘 + ∑ 𝑐𝑖𝑗

𝑠 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

− 𝑐𝑠𝑘) ≤ 𝑒 × ( ∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

− 1) , ∀𝑘 ∈ 𝑆 (5.3) 

In Case 2, where drivers’ minimum acceptable compensation is based on number of packages 

delivered, the constraint is: 

(𝑐0𝑠𝑘 + ∑ 𝑐𝑖𝑗
𝑠 𝑥𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴

− 𝑐𝑠𝑘) + 𝑒( ∑ 𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴

− 1) ≥ 𝑧𝑠𝑘 ×𝑤𝑘
𝑝 × 𝑒( ∑ 𝑥𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴

− 1) , ∀𝑘

∈ 𝑆 (5.4) 

which is equivalent to: 

(𝑧𝑠𝑘 × 𝑤𝑘
𝑝 − 1) × 𝑒( ∑ 𝑥𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴

− 1) ≤ (𝑐0𝑠𝑘 + ∑ 𝑐𝑖𝑗
𝑠 𝑥𝑖𝑗

𝑘

(𝑖,𝑗)∈𝐴

− 𝑐𝑠𝑘) , ∀𝑘 ∈ 𝑆 (5.5) 

Similarly, in Formulation 3 (Chapter 4), when matching packages to vehicle routes, the new 

constraint for driver acceptable compensation is introduced as follows. 
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𝑒 ×∑𝑥𝑝𝑟𝑘
𝑝

+ 𝜔𝑑𝑐𝑟𝑘𝑧𝑟𝑘 ≥ 𝑤𝑘 × 𝑧𝑟𝑘, ∀(𝑟, 𝑘) ∈ 𝑅 (5.6) 

In Case 1, where drivers’ minimum acceptable compensation is based on detour time/distances, 

the constraint is: 

𝑒 ×∑𝑥𝑝𝑟𝑘
𝑝

+ 𝜔𝑑𝑐𝑟𝑘𝑧𝑟𝑘 ≥ 𝑤𝑘
𝑑𝑐𝑟𝑘 × 𝑧𝑟𝑘, ∀(𝑟, 𝑘) ∈ 𝑅 (5.7) 

which can be rearranged to get: 

𝑒 ×∑𝑥𝑝𝑟𝑘
𝑝

≥ (𝑤𝑘
𝑑 − 𝜔𝑑)𝑐𝑟𝑘𝑧𝑟𝑘, ∀(𝑟, 𝑘) ∈ 𝑅 (5.8) 

Inequality 5.8 indicates that, if the crowdsourced driver expects more compensation for per-mile 

detour than the actual amount that the company pays (𝑖𝑓 𝑤𝑘
𝑑 > 𝜔𝑑), then the compensation per 

package delivered should be sufficiently large to fill the deficit in order to attract the 

crowdsourced drivers to work. For a driver 𝑘, the minimum required compensation for a single 

package is calculated as: 

𝑒𝑘 = 𝑚𝑎𝑥 [
(𝑤𝑘

𝑑 − 𝜔𝑑) × 𝑑𝑒𝑡𝑜𝑢𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑁𝑜. 𝑜𝑓 𝑃𝑎𝑐𝑎𝑘𝑔𝑒𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑
, 0] (5.9) 

In Case 2, where the drivers’ minimum acceptable compensation is based on the number of 

packages that are assigned to them, the constraint is: 

𝑒 ×∑𝑥𝑝𝑟𝑘
𝑝

+ 𝜔𝑑𝑐𝑟𝑘𝑧𝑟𝑘 ≥ 𝑤𝑘
𝑝 ×∑𝑥𝑝𝑟𝑘

𝑝

× 𝑧𝑟𝑘(5.10) 

When ∑ 𝑥𝑝𝑟𝑘𝑝 ≠ 0 (the driver serves at least one packages), one could eliminate ∑ 𝑥𝑝𝑟𝑘𝑝  from 

both sides and rearrange the terms: 
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𝑒 ≥ 𝑤𝑘
𝑝𝑧𝑟𝑘 −

𝑧𝑟𝑘
∑ 𝑥𝑝𝑟𝑘𝑝

(𝜔𝑑𝑐𝑟𝑘) (5.11) 

When a route is active and 𝑧𝑟𝑘 = 1, the minimum requirement for per package compensation is: 

𝑒 ≥ 𝑤𝑘
𝑝 −

𝜔𝑑 × 𝑑𝑒𝑡𝑜𝑢𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑁𝑜. 𝑜𝑓 𝑝𝑎𝑐𝑎𝑘𝑔𝑒𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑
 (5.12) 

This study assumes that all crowdsourced drivers are homogenous (they choose the same 

evaluation criteria for the minimum acceptable compensation). This study tests the impact of 

incentive pricing schemes on the total cost and the alternative operating policies of logistics 

companies. The following scenarios will be considered: 

1. Under crowdsourced shared-trip delivery, crowdsourced drivers are compensated by both 

the number of packages delivered and the detour distance. The drivers value the 

minimum acceptable compensation to deliver by a constant. 

2.  Similar compensation scheme as scenario 1, but the drivers measure their minimum 

acceptable compensation by their maximum detour time. 

3. Similar compensation scheme as scenario 1, but drivers measure their minimum 

acceptable compensation by the number of packages that are assigned to them.  

4. Under crowdsourced time-based delivery, crowdsourced drivers are paid based on the 

time they work. To determine their willingness to participate, they compare the hourly 

rate to the income they would otherwise receive from crowdsourced trip-based delivery. 

The numerical results of different scenarios are discussed as follows. 

Scenario 1: Crowdsourced shared-trip delivery and driver minimum acceptable compensation is 

based on a constant. 
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In this scenario, each driver has a lower bound for acceptable compensation, i.e., the payment to 

a driver must be larger than a constant to attract the driver. Note that compensation is still based 

on the detour distance and number of packages delivered; hence, in this derived scenario, drivers 

effectively want to detour more and want to deliver more packages, while not exceeding a 

maximum detour or time window constraint.  

This section varies the minimum payment constant from 0 to 3 and obtains the total cost under 

different cases. The findings are shown in Figure 5.16. 

 
Figure 5.16 Minimum acceptable compensation valued by a constant 

Figure 5.16 indicates that when the minimum willingness is one dollar, the total cost is the same 

as when the minimum willingness of deliver is zero. The finding indicates that most drivers 

would receive a minimum payment of $1 or more. When the minimum willingness to deliver 

increases to $2, the total cost increases but is still lower than the conventional dedicated truck 

delivery. When crowdsourced drivers have a higher minimum compensation requirement, the 

logistics company tends to assign packages to routes that have longer detour distances to fulfill 

the driver expectation of higher payment. However, if the requirement becomes too high for 

logistics companies, it becomes less attractive to contract with crowdsourced drivers and 
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companies would switch to dedicated delivery. This appears to be the case when the minimum 

compensation is $3, as the total cost becomes equivalent to the truck-only cost. 

Scenario 2: Crowdsourced shared-trip delivery and driver minimum acceptable compensation is 

based on detour time. 

In this scenario, drivers measure their minimum acceptable compensation based on detour time. 

The detour time for a driver is calculated by the total time used for a trip minus the shortest path 

travel time. The study obtains the total cost based on four seperate value of time (VOT) levels. 

The comparison is shown in Figure 5.17. 

 
Figure 5.17 Minimum acceptable compensation to deliver valued by VOT 

The figure indicates that when crowdsourced drivers have a VOT of less than $30 per hour, 

crowdsourced shared-trip delivery is a better option than dedicated delivery. The result also 

indicates that with higher VOT, longer distance routes that can serve multiple packages become 

favorable, because these routes provide higher return for drivers, but also have a reasonable per 

package delivery cost. 

Scenario 3: Crowdsourced shared-trip delivery where driver minimum acceptable compensation 

is based on the number of packages delivered. 
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In this scenario, we found that based on the current compensation schemes, if drivers require a 

minimum per package compensation larger than 62 cents, dedicated delivery only becomes more 

preferable for companies. The reason is that in the current setting, about 20% of the packages are 

delivered by drivers that do not detour. For these drivers, their compensation from the detour 

time is limited, and therefore, they would require higher compensation per package delivered. 

The suggestion from the result is that the company may consider separate compensation schemes 

for drivers that complete delivery tasks with very small detour distances. 

Scenario 4. Crowdsourced time-based delivery 

In this scenario, the company attempts to contract with drivers, who work for a time period to 

deliver packages. Arranging package sets for drivers in this scenario is solved by a m-VRP. The 

drivers require hourly payment that is comparable to alternative crowdsourced trip-based 

delivery. We vary the alternative payment from $18/hour to $24/ hour and test the total cost of 

contracting with time-based crowdsourced drivers. 

 
Figure 5.18 Crowdsourced time-shared delivery 

The result indicates that in all tested-cases, crowdsourced time-based delivery returns a lower 

cost than the dedicated delivery. The major savings are from avoiding using a truck and therefore 
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saves fixed cost. When the expected payment for crowdsourced drivers is lower than $24, the 

service is also more preferrable than crowdsourced shared-trip delivery.  

5.6   Summary of findings and implementations 

Chapter 5 has presented a real-world city-scale numerical case study of crowdsourced shared-trip 

delivery. The results of computational time of using the decomposition heuristic, total cost, total 

VMT of crowdsourced shared-trip delivery system and two sensitivity analyses are presented. 

Though, all the results are generated based on the geometrical features and typology of the City 

of Irvine, they do bring lead to interesting findings and significant implications. 

The computational experiments shows that the decomposition heuristic outperforms the exact 

solver solution on computational time in all cases. In the cases where SPVs and package orders 

are small, the decomposition heuristic solution quality is comparable to the exact solution. In 

large cases, where the solver could not turn out solutions through exact method, the 

decomposition heuristic could still solve the problem in reasonable time. The ability of solving 

large-scale problems in crowdsourced delivery problem enables us to include more SPVs into the 

system and provides flexibility of modeling crowdsourced delivery problem. 

The case study also shows that the ability of delivering package orders with SPVs is linearly 

related to the number of participating SPVs. However, the total cost of delivering package orders 

does not have a linear relation with the number of participating SPVs. Using SPVs in a 

crowdsourced shared-trip delivery system saves cost compared to conventional dedicated 

delivery (from 15% to 40%), but the major cost savings are from the reduction of using DVs. 

Totally getting rid of DVs for delivery is possible, but a significantly large number of 

participating SPVs are required to achieve such goal. The total VMT of crowdsourced delivery 
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highly depends on the origins of SPVs. If SPVs are located near the depot, the VMT savings 

from crowdsourced delivery compared to dedicated delivery is about 10% to 20%. When the 

SPVs are far from the depot and needs to drive to the depot for package order pick, then the 

crowdsourced shared-trip delivery produces more VMT, and the amount of VMT increases as 

more SPVs are used. 

To further understand the impact of the maximum willingness to detour on crowdsourced 

delivery, we conduct a sensitivity analysis. The results indicates that, on one hand, when a higher 

maximum detour willingness is imposed, the system has more participating SPVs, and higher 

detour willingness leads to lower total cost. On the other hand, the SPVs which are matched with 

delivery orders are likely not required to detour a lot for the trip from the depot to their 

destinations. This finding could further inspire the improvement on the decomposition heuristic 

by only generating short detour routes from the depot to the destinations. 

Another sensitivity study on the depot location shows that a center located depot would attracts 

more feasible SPVs, have less total cost and VMT compared to a boundary located depot. When 

choosing the depot location, the decision makers may need a cost-benefit analysis since a center 

located depot may incur higher land use cost. 

As for the minimum compensation required for crowdsourced drivers, the findings indicate that 

in crowdsourced shared-trip delivery service, when the drivers have a minimum accepted 

compensation (no matter whether it is constant or by detour time), the current compensation 

scheme (incentive = compensation per package carried plus compensation per mile detour) 

would prefer to choose drivers with longer detour, and the system results in a higher VMT. To 

avoid the unnecessary VMT, the logistics companies should consider differentiates 

compensation schemes for drivers that could deliver packages with low detour miles and drivers 
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that needs long detour distances to deliver packages. For the former type of crowdsourced 

drivers, compensation schemes that based on the number of packages that could be carried may 

both achieve reduced cost for the company and avoid unnecessary mileages travelled by the 

drivers. On the other hand, when crowdsourced drivers have a relatively high expectation on 

their compensation, the company may consider switch to alternative services such as 

crowdsourced time-based delivery or dedicated delivery. 

Crowdsourced time-based delivery, in this case, may be preferrable from the total cost 

perspective. The findings show that under different expectations of incentives, crowdsourced 

time-based delivery is always preferable than dedicated delivery. If the hourly minimum 

acceptable compensation is low than $24, crowdsourced time-based delivery is preferrable than 

share-trip delivery from the cost perspective. However, more discussions are need from the 

social impact perspective to compare the two types of services. 
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Chapter 6 Incentive and Operational Policies in Crowdsourced 

Freight Delivery 

6.1  Introduction 

Chapter 2 presents the taxonomy of crowdsourced delivery and compares the three types of 

crowdsourced freight delivery types, namely crowdsourced trip-based delivery, crowdsourced 

time-based delivery, and crowdsourced shared-trip delivery. The three types of crowdsourced 

delivery mainly characterized by the source of mobility and freight types. The crowdsourced 

trip-based delivery is often used for high urgency freight, such as meals, and handled by 

drivers/vehicles that have the primary purpose of delivering goods. The crowdsourced time-

based delivery usually handles freight with low urgency. The same as crowdsourced trip-based 

delivery, the drivers for time-based delivery are semi-professional (semi-pro) drivers with trips 

that have a primary purpose of delivering goods. The term “semi-pro” indicates that the driver is 

not hired by the logistics company but works as a “contractor” for certain period of time or 

delivering certain tasks. The third type, crowdsourced shared-trip delivery handles freight with 

low urgency and utilizes trips of non-professional drivers.  

Figure 6.1 positions the three types of crowdsourced delivery and dedicated truck delivery on a 

coordinate system characterized by the urgency of freight and the professionalism of drivers. 

Crowdsourced time-based delivery, trip-shared delivery, and dedicated truck delivery all serve 

packages that have low urgency. Therefore, the three types of services “compete” on the demand 

side. From another perspective, they are supplementary services. From the supply perspective, 

crowdsourced trip-based delivery services and crowdsourced time-based delivery services both 

contract with semi-pro drivers, who work for a dedicated period of time or who conduct specific 
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delivery tasks. Hence, crowdsourced trip-based delivery and time-based delivery compete for 

drivers. The overlap of demand and supply of the four types of services raises an interesting pair 

of questions for logistics service providers: when delivering a set of low urgency parcels, which 

crowdsourcing type should be chosen and what compensation should be paid to the drivers? 

 

Figure 6.1 Three crowdsourced delivery types and dedicated delivery 

This chapter aims to compare the three types of delivery services (crowdsource time-based 

delivery, crowdsourced shared-trip delivery, and dedicated delivery) for low urgency package 

delivery. Moreover, the chapter aims to provide insights about the incentives to drivers provided 

by the services and increase understanding of the social impact of deploying each service type. 

The incentive schemes (compensation to crowdsourced drivers) and operational policies have 

been discussed from different perspectives in literature. Several studies include different 

compensation schemes for crowdsourced shared-trip delivery drivers (Archetti et al., 2016; 

Arslan et al., 2019; Dahle et al., 2019; Dayarian & Savelsbergh, 2020); auction-based pricing for 
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long-haul crowdsourced drivers (Rechavi & Toch, 2020); domain-of-influence pricing based on 

individual package delivery radius (Zhou et al., 2021);  user-centric incentive model to motivate 

driver participation (Hong et al., 2019); and the willingness of drivers to deliver goods (Qi et al., 

2018). 

Previous studies on incentives and operations of urban last-mile crowdsourced delivery all focus 

on a single crowdsourcing type, the crowdsourced shared-trip delivery, without considering the 

interchangeability of different types of services. In other words, an over-compensated scheme in 

crowdsourced shared-trip delivery may drive the logistics company to switch to crowdsourced 

time-based delivery or traditional dedicated truck delivery services. However, an under-

compensated scheme would fail to attract sufficient crowdsourced drivers as supply of mobility 

for the delivery service, and as a result, impair the service quality. This research attempts to build 

the linkage between incentive schemes and choice of crowdsourced delivery modes, and to 

address the gap in incentive strategies in urban last-mile crowdsourced delivery. It is worth 

noting that the decision of crowdsourced delivery types and compensation schemes are highly 

related to the type of parcels that is to deliver. For example, high urgency goods, such as food 

delivery, usually requires quick response and high reliability. Therefore, crowdsourced trip-

based delivery or time-based delivery are preferable for these services since the crowdsourced 

drivers are more committed than the crowdsourced trip-shared type.  

This chapter is organized as follows. Section 6.2 reviews related literature and explains 

background information. Section 6.3 presents the research design, research methods, and the 

numerical study parameters. Section 6.4 discusses the results and findings. Section 6.5 

summarizes the chapter. 
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6.2 Background information and literature review 

For delivering a set of low-urgency packages, a logistics service provider can deploy 

conventional dedicated truck delivery, contract with crowdsourced drivers for either time-based 

delivery (committed drivers) or trip-shared delivery (ad-hoc drivers). The results from the 

numerical case study in Chapter 5 indicate that crowdsourced shared-trip delivery reduces 

delivery costs by 50% compared to conventional dedicated truck service. The savings are mainly 

from the reduction in facility costs, such as vehicle procurement and maintenance. Therefore, not 

keeping a fleet of dedicated vehicle brings the benefit of reducing vehicle purchasing and 

maintenance cost. However, not keeping a dedicated vehicle fleet also means that the company 

needs to manage the uncertainty of crowdsourced driver supply. The planning level question that 

the logistics company would consider is whether they need to keep a fleet of dedicated vehicles, 

or more specifically, whether the company could deploy a mixture of vehicles for the service.  

On the other hand, the supply of crowdsourced drivers is related to the incentive or compensation 

schemes provided by the logistics company. In the literature, Archetti et al. (2016) compare 

different pricing options for crowdsourced shared-trip delivery (or in their terms, package 

delivery with occasional drivers). Their options of pricing include compensating the drivers 

based on the number of packages delivered or the distance travelled. Their conclusion claims that 

paying drivers based on distance benefits the drivers the most. Qi et al. (2018) conclude that in 

order to satisfy the constraints surrounding a driver’s willingness to deliver packages, the major 

cost savings in crowdsourced delivery service stems from facility cost savings instead of mileage 

savings. Dahle et al. (2019) also test different pricing options for crowdsourced delivery services 

with the requirement of meeting drivers’ willingness of deliver. Their results indicate that using 
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compensation schemes that are based on detour would encourage vehicles to travel on non-

shortest paths. 

6.3 Methodology 

A logistics company needs to deliver a set of package delivery orders (abbreviated as PDOs, denoted by 

𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛}) in a given time period. The company has a fixed number of 𝑘 (𝑘 ≥ 0) dedicated 

vehicles that are available for PDO delivery. Since the number of PODs varies from time to time, during 

some time periods, the company needs to “hire” or contract with crowdsourced drivers for delivery. There 

are two types of crowdsourced drivers, committed crowdsourced drivers (called as committed drivers) 

and ad-hoc crowdsourced drivers (called ad-hoc drivers). Committed drivers are crowdsourced drivers 

who signed up in smart phone apps in advance to become a dedicated driver for a certain time slot. Ad-

hoc drivers are crowdsourced drivers who arrive at the depot randomly and only serve a limited number 

of PDOs en-route to their destinations. We here assume that ad-hoc drivers would start the trip at the 

depot and not come back, but committed drivers, during their committed time slots, would return to the 

depot multiple times for PDO pickup. 

The cost of dedicated vehicles is calculated by the total vehicle miles travelled multiplied by the cost 

factor 𝑐𝑖𝑗
𝑑 . For committed drivers, there are three ways of compensation, namely, compensation by time, 

compensation by orders delivered, and compensation by total distance travelled. If committed drivers are 

compensated by time, they will be paid a fixed hourly rate 𝑓𝑡
𝑐. This indicates that under this payments 

scheme, the company will attempt to minimize the number of committed drivers. When committed 

drivers are compensated by the orders delivered, total compensation is calculated by the number of orders 

delivered times a fixed amount per package order 𝑓𝑝
𝑐. If the committed drivers are compensated by the 

distance travelled for delivery, the cost factor per mile is represented by 𝑐𝑖𝑗
𝑐 . Ad-hoc drivers will be 

compensated in two ways. The first one is compensation by the travel distance, in which the cost factor 
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per mile is represented by 𝑐𝑖𝑗
𝑎 . The second one is compensation by the number of packages carried, in 

which the compensation amount per package order is represented by 𝑓𝑝
𝑎. 

The logistics company considers one of the following five operating strategies for the delivery service. 

1. The logistics company keeps a fleet of dedicated vehicles and only deploys dedicated vehicles for 

delivery. 

2. The logistics company keeps a fleet of dedicated vehicles and contracts with some committed 

drivers for delivery when it is necessary. 

3. The logistics company keeps a fleet of dedicated vehicles and contracts with both committed and 

ad-hoc drivers for delivery when it is necessary. 

4. The logistics company only contracts with committed drivers for delivery. 

5. The logistics company contracts with both committed and ad-hoc drivers for delivery. 

In order to compare the cost of the aforementioned strategies, this chapter formulates the crowdsourced 

delivery problem as a Pickup and Delivery Problem (PDP).  

The decision variables are listed as follows: 

 𝑥𝑖𝑗
𝑘 ∈ {0,1}, ∀(𝑖, 𝑗) ∈ 𝐴, ∀ 𝑘 ∈ 𝑉.  𝑥𝑖𝑗

𝑘 = 1, if arc (𝑖, 𝑗)  is visited by vehicle k. 

 𝑡𝑖
𝑘 ∈ ℝ+, ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑉.  Arrival time of vehicle 𝑘 at node 𝑖. 

 𝑤𝑖
𝑘 ∈ ℕ0, ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑉.  Load of vehicle 𝑘 at node 𝑖. 

 𝑧𝑘
𝑑 ∈ {0,1}, ∀𝑘 ∈ 𝑉.                              Whether a dedicated vehicle is used. 

 𝑧𝑘
𝑐 ∈ {0,1}, ∀𝑘 ∈ 𝑉.                              Whether a committed driver is used. 

 𝑧𝑘
𝑎 ∈ {0,1}, ∀𝑘 ∈ 𝑉.                              Whether an ad-hoc driver is used. 

 

Strategy 1 works as the base case, the formulation for it is as follows: 

Formulation 5: 
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𝑀𝑖𝑛 Θ (6.1) 

 

subject to: 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐷 𝑗∈𝑁

= 1 ∀𝑖 ∈ 𝑁\{0} (6.2) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑘∈𝐷 𝑖∈𝑁

= 1 ∀𝑗 ∈ 𝑁\{ℎ} (6.3) 

∑ ∑𝑥𝑖𝑗
𝑘

𝑘∈𝐷𝑖∈𝑁,𝑖≠𝑗

− ∑ ∑𝑥𝑗𝑙
𝑘

𝑘∈𝐷𝑙∈𝑁,𝑙≠𝑗

= 0 ∀𝑗 ∈ 𝑁\{0, ℎ} 
(6.4) 

 

∑ 𝑥0𝑗
𝑘

𝑗∈{𝑁𝑝}

− ∑ 𝑥𝑖,ℎ
𝑘

𝑖∈{𝑁𝑑}

= 0 
∀𝑘 ∈ 𝐷 (6.5) 

∑𝑥𝑖𝑗
𝑘

𝑖∈𝑁

−∑𝑥𝑖,𝑗+𝑛
𝑘

𝑖∈𝑁

= 0 ∀𝑗 ∈ 𝑁𝑝 

∀𝑘 ∈ 𝐷  
(6.6) 

𝑧𝑘
𝑑 ≥ ∑ 𝑥0𝑗

𝑘

𝑗∈𝑁,𝑗≠0

 ∀𝑘 ∈ 𝐷 (6.7) 

𝑡𝑗
𝑘 + (1 −∑𝑥𝑖𝑗

𝑘

𝑖∈𝑁

) ×𝑀 ≥ 𝑇𝑗 
∀𝑗 ∈ 𝑁𝑝 

∀𝑘 ∈ 𝐷 
(6.8) 

𝑡𝑗
𝑘 ≤ (1 −∑𝑥𝑖𝑗

𝑘

𝑖∈𝑁

) ×𝑀 + 𝑇𝑗 
∀𝑗 ∈ 𝑁𝑑 

∀𝑘 ∈ 𝐷 
(6.9) 

𝑡𝑖
𝑘 + 𝜏𝑖𝑗 ≤ 𝑡𝑗

𝑘 + (1 − 𝑥𝑖𝑗
𝑘 ) ×𝑀 

∀𝑖, 𝑗 ∈ 𝑁,  𝑖 ≠ 𝑗 

∀𝑘 ∈ 𝐷 
(6.10) 

𝑡𝑖
𝑘 ≤ 𝑡𝑖+𝑛

𝑘  
∀𝑖 ∈ 𝑁𝑝 

∀𝑘 ∈ 𝐷 
(6.11) 

𝑤𝑗
𝑘 + 𝑞𝑗 ≤ 𝑄𝑘 + (1 −∑𝑥𝑖𝑗

𝑘

𝑖∈𝑁

) ×𝑀 
∀𝑗 ∈ 𝑁𝑝, 

∀𝑘 ∈ 𝐷 
(6.12) 

𝑤𝑗
𝑘 = 𝑤𝑖

𝑘 + 𝑞𝑗 ×∑𝑥𝑖𝑗
𝑘

𝑖∈𝑁

 ∀𝑖, 𝑗 ∈ 𝑁,  𝑖 ≠ 𝑗 

∀𝑘 ∈ 𝐷 
(6.13) 

𝑥𝑖𝑗
𝑘 ∈ {0,1} 

∀𝑖, 𝑗 ∈ 𝑁 

∀𝑘 ∈ 𝑉 
(6.14) 

𝑧𝑘
𝑑 ∈ {0,1} ∀𝑘 ∈ 𝐷 (6.15) 

𝑤𝑘 ∈ {0,1} ∀𝑘 ∈ 𝐷 (6.16) 

𝑡𝑖
𝑘 ≥ 0 

∀𝑖 ∈ 𝑁 

∀𝑘 ∈ 𝐷 
(6.17) 

 

The objective function is to minimize the total cost. The specific function depends on the compensation 

schemes that is used for committed drivers and ad-hoc drivers. Eqn. 6.2 to 6.4 are standard routing 

constraints that require that each node is visited once and only once. Eqn. 6.5 requires every dedicated 

vehicle that leaves the depot to return to the depot. Eqn. 6.6 ensures that every order is served. Eqn. 6.7 
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indicates whether a vehicle is used or not. Eqn. 6.8 to 6.11 are time window constraints. Eqn.6.8 and 6.9 

ensure that a pickup happens after the package order is ready and delivery happens before the time 

window is closed. Eqn. 6.10 is the sequencing constraint and also eliminates sub-tours. Eqn. 6.11 ensures 

delivery happens after pickup. Eqn. 6.12 and 6.13 are capacity constraints. Eqn.6.14 to 6.17 are binary 

and non-negativity constraints.  

 

For Strategy 2, when committed drivers are included, the following constraints are added to Formulation 

5. 

𝑧𝑘
𝑐 ≥ ∑ 𝑥0𝑗

𝑘

𝑗∈𝑁,𝑗≠0

 ∀𝑖 ∈ 𝑁 

∀𝑘 ∈ 𝐶𝑚 
(6.18) 

 

As mentioned previously, the objective function depends on the incentive scheme for committed drivers. 

When crowdsourced drivers are compensated by hourly rate, the objective is to minimize the total number 

of vehicles required. 

𝑀𝑖𝑛 Θ4 = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐷

+∑𝑓𝑑𝑧𝑘
𝑑

𝑘∈𝐷

+ ∑ 𝑓𝑡
𝑐𝑧𝑘
𝑐

𝑘∈𝐶𝑚

  (6.19) 

When crowdsourced drivers are compensated by the number of orders delivered the objective function is: 

𝑀𝑖𝑛 Θ5 = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐷

+∑𝑓𝑑𝑧𝑘
𝑑

𝑘∈𝐷

+ 𝑓𝑝
𝑐 ∑ ∑ ∑𝑥𝑖𝑗

𝑘

𝑖∈𝑁𝑗∈𝑁𝑑𝑘∈𝐶𝑚

 (6.20) 

When crowdsourced drivers are compensated by the distance travelled, the objective function is: 

𝑀𝑖𝑛 Θ6 = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐷

+∑ 𝑓𝑑𝑧𝑘
𝑑

𝑘∈𝐷

+ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐶𝑚

 (6.21) 

For Strategy 3, when ad-hoc drivers are included. The formulation needs to include the destination 

constraints and capacity constraints for ad-hoc drivers. The following constraints are added to 

Formulation 5. 
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𝑧𝑘
𝑎 ≤ 1 − 𝑥0,𝑁𝑠𝑘

𝑘  ∀𝑘 ∈ 𝐴ℎ𝑜𝑐 (6.22) 

∑ 𝑥𝑖,𝑁𝑠𝑘
𝑘 = 1

𝑖∈𝑁\{𝑁𝑠𝑘}

 ∀𝑘 ∈ 𝐴ℎ𝑜𝑐 (6.23) 

∑ ∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑁𝑑𝑖∈𝑁

 ≤ 𝑧𝑘
𝑎 × (𝑞𝑠𝑘 + 1) ∀𝑘 ∈ 𝐴ℎ𝑜𝑐 (6.24) 

∑∑ 𝑥𝑖𝑗
𝑘

𝑗∈𝑁𝑝𝑖∈𝑁

≤ 𝑞𝑠𝑘 ∀𝑘 ∈ 𝐴ℎ𝑜𝑐   (6.25) 

 

Eqn. 6.22 indicates whether an ad-hoc driver is used or not. Eqn.6.23 ensures every ad-hoc driver arrives 

at their own destination after delivery. Eqn.6.24 is the capacity constraint for ad-hoc drivers. Constraint 

6.25 ensures ad-hoc drivers only leave the depot once and do not return. 

For the objective function, this study assumes that both committed drivers and ad-hoc drivers are 

compensated by the homogenous schemes (not necessarily the same parameters) when all crowdsourced 

drivers are compensated by the number of delivery orders fulfilled, the objective function is: 

𝑀𝑖𝑛 Θ7 = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐷

+∑ 𝑓𝑑𝑧𝑘
𝑑

𝑘∈𝐷

+ 𝑓𝑝
𝑐 ∑ ∑ ∑𝑥𝑖𝑗

𝑘

𝑖∈𝑁𝑗∈𝑁𝑑𝑘∈𝐶𝑚

+ 𝑓𝑝
𝑎 ∑ ∑ ∑𝑥𝑖𝑗

𝑘

𝑖∈𝑁𝑗∈𝑁𝑑𝑘∈𝐴ℎ𝑜𝑐

(6.26) 

When all crowdsourced drivers are compensated by the distance traveled, the objective function is: 

𝑀𝑖𝑛 Θ8 = ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐷

+∑𝑓𝑑𝑧𝑘
𝑑

𝑘∈𝐷

+ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐶𝑚

+ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗
𝑘

(𝑖,𝑗)∈𝐴𝑘∈𝐴ℎ𝑜𝑐

 (6.27) 

The formulation of Strategy 4, deploying only committed drivers, is similar to the base case (Strategy 1) 

and will not be rewritten in this section. The formulation of Strategy 5 is also similar to Strategy 2. 
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6.4  Summary and discussion of future research 

This chapter discuss a novel problem of deciding and planning the mode of urban last mile 

delivery for logistics companies. The logistics company needs to decide, in relatively long-run, 

the mode of delivery, whether to use dedicated vehicles or crowdsourced vehicles.  

The chapter presents a PDP-based formulation with different objective functions to choose 

between different operational policies and pricing options. The formulation is able to capture the 

decision for five different operation strategies and three different incentive/compensation 

policies for crowdsourced drivers. 

In the next step of research, a dynamic and stochastic supply function could be considered for 

crowdsourced drivers. The compensation/incentive rate would impact the availability of 

crowdsourced drivers. With real-world data, this model is capable of capture the dynamics of 

crowdsourced driver supply. The optimization model is applicable for deciding the optimal long-

term operational policies for logistics company. 
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Chapter 7 Conclusions 

7.1  Conclusions 

This dissertation provides a comprehensive study on urban last-mile crowdsourced delivery. 

Beginning with different types of crowdsourced delivery and their features, the dissertation 

creates a taxonomy for urban crowdsourced delivery. Based on the sourcing type and driver 

working type, the dissertation categorizes urban crowdsourced delivery into crowdsourced time-

based delivery, trip-based delivery, and shared-trip delivery. The features and applications of the 

three types of crowdsourced services are discussed in the dissertation. 

Crowdsourced shared-trip delivery, which is the focus of the dissertation, has great potential in 

terms of cost and VMT savings in the shared economy. Small-scale crowdsourced shared-trip 

delivery problems are well studied by the literature, while large-scale problems are rarely 

attempted. The dissertation addresses the research gap on large-scale crowdsourced delivery 

problems by developing new mathematical models and algorithms and applying them to large 

real-world problems. 

Following the literature on crowdsourced delivery, the dissertation first models the crowdsourced 

shared-trip delivery as an MFOCVRPTW (mixed fleet open capacitated vehicle routing problem 

with time window). This formulation captures the generalized features of crowdsourced shared-

trip delivery. However, finding an optimal solution based on this formulation is time-consuming. 

To solve the problem in an efficient manner, the dissertation reformulates the problem as a set 

partitioning problem. The alternative set partitioning formulation also inspires a new solution 

approach, which is a novel decomposition heuristic. 
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The novel solution algorithm decomposes the problem into a set of shared personal vehicles and 

a set of dedicated vehicles and matches the packages to the two vehicle sets separately. The 

decomposition heuristic also solves 4 subproblems, namely, the budgeted k-shortest paths 

problem, the large-scale matching problem, the package switching problem, and the multiple 

vehicle routing problems. Solution algorithms for each subproblem are also discussed. The 

decomposition heuristic is compared with an exact method to solve the crowdsourced shared-trip 

delivery problem. The novel heuristic approach can obtain solutions with a 1.5% optimality gap 

and the heuristic is much faster than the exact method. 

The models and algorithms are applied to city-scale problems. In the case study of the City of 

Irvine, the dissertation analyzes major factors that would impact the efficiency of a 

crowdsourced shared-trip delivery. The findings indicate that when the number of participating 

drivers is small, the system requires crowdsourced drivers to have a longer willingness to detour 

in order to achieve significant cost reductions. In addition, when the number of drivers is small, a 

depot located in the center of the service region can achieve significantly lower total costs than a 

depot located along the boundary of the service region. However, the impact from both detour 

willingness and depot location is mitigated when the number of participating drivers increases. 

The dissertation also finds that the major cost saving components of crowdsourced delivery stem 

from reductions in facility costs, mainly the purchasing of dedicated trucks.  

Comparing the vehicle miles travelled for crowdsourced delivery and dedicated delivery, the 

dissertation finds that VMT savings depend on the distance that the drivers travel to the depot for 

package pick-up. The dissertation also discusses the choice of crowdsourcing service for a 

logistics company under different driver willingness to deliver assumptions and different 

compensation schemes. The findings indicate that to achieve reductions in both costs and VMT, 
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the company should differentiate between compensation schemes for drivers with short detour 

distances and long detour distances. 

Overall, the dissertation significantly advances science and the state-of-the-art through novel, 

computationally efficient and operationally effective, mathematical models and associated 

heuristic solution algorithms. Moreover, the dissertation contributes to industrial practice by 

addressing real-world problem instances (through numerical case studies) and summarizing 

important managerial implementations. Potential research areas that are inspired by this 

dissertation are discussed in the following section. 

7.2  Future research directions 

While writing this dissertation, it became relatively clear that the existing empirical evidence for 

crowdsourced delivery is not sufficient. On one hand, logistics companies may not share data for 

academic studies. On the other hand, there are still gaps in literature for finding empirical 

evidence for multiple aspects of crowdsourced delivery, such as driver detour willingness and 

expectation for compensation. Therefore, the first future research direction is to collect data 

through surveys/questionnaires or experiments that would help estimate critical parameter values 

for the design and operation of specific crowdsourced delivery services.   

The second research direction relates to algorithm advancements. This dissertation leveraged 

Yen’s algorithm with a budget constraint for computation. The results show that not all vehicle 

routes are need for matching. Therefore, setting up an intelligent algorithmic scheme for finding 

potentially valuable routes is likely to be computationally beneficial without negatively 

impacting the algorithms search for optimal solutions. The computational time reduction would 

improve the applicability of the algorithm in real-world scenarios. 
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The third research direction is to integrate crowdsourced delivery with other modes of delivery, 

such as delivery with transit or drone delivery. The “internet of things” enables items to be 

connected and also enables faster information exchange. Therefore, the integration of 

crowdsourced delivery and other modes would benefit the society by providing more reliable 

delivery options and lowing the carbon footprint.   
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Appendix A Mathematical notations used in this dissertation 

Notation Description 

0 Distribution center depot 

𝐴𝑝𝑟𝑘 Binary, whether a package 𝑝 could be visited by 𝑟𝑡ℎroute of SPV k 

𝑎𝑖,𝑗,𝑘
𝑠  Binary, whether a node j could be visited by 𝑖𝑡ℎroute of SPV k 

𝑎𝑖,𝑗,𝑘
𝑑  Binary, whether a node j could be visited by 𝑖𝑡ℎroute of dedicated vehicle k 

𝑎𝑡 The action to take at the stage t 

𝑏𝑘 Travel budget of vehicle 𝑘 

𝛾 Adjustment factor in dynamic programming 

𝐶𝑡 The total delivery cost incurred during stage t 

𝑐𝑖,𝑗
𝑠  Monetized travel cost to use link (𝑖, 𝑗) for shared vehicle 

𝑐𝑖,𝑗
𝑑  Monetized travel cost to use link (𝑖, 𝑗) for dedicated vehicle 

𝑐0𝑆𝑘 Monetized cost from origin to hub 0 for shared vehicle k 

𝑐𝑠𝑘 Monetized cost from origin to destination for shared vehicle k 

𝑐𝑖𝑘
𝑠  Cost of using route 𝑖 for shared vehicle k 

𝑐𝑖𝑘
𝑠  Cost of using route 𝑖 for dedicated vehicle k 

𝑐𝑖𝑟 Cost of using route r of shared vehicle k to serve package 𝑖 

𝑐𝑟𝑘 Cost of 𝑟𝑡ℎ route of shared vehicle 𝑘 
𝑐𝑓 Fixed cost when a truck/DV is used 

𝑐�̅� Average variable cost of package delivery using truck 

D Dedicated delivery vehicle set 

𝑑𝑘 Individual dedicated vehicle k,𝑑𝑘 ∈ D 

𝐸𝑡 The state of a stage 

e Compensation to shared vehicle for each drop-off, fixed 

𝐺 =  (𝑁, 𝐴) Network G consists of Vertexes/Nodes and Arcs/Links 

(𝑖, 𝑗) A tuple to describe a link between node 𝑖 and node 𝑗 

h Distribution center arriving hub 

K Number of all available vehicles 

𝐾𝑠 Number of shared-personal vehicles 

𝐾𝑑 Number of dedicated vehicles 

M A large Number 

𝑁𝑠𝑘 Destination node for shared vehicle k 

Np Drop-off node for package p 

P Set of packages to be delivered  

p Individual package p, p ∈ P 
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𝑞𝑠𝑘 Capacity for shared vehicle k 

R The set of feasible routes of all shared personal vehicles 

S Shared-personal vehicle set 

𝑠𝑘 Individual shared vehicle k, 𝑠𝑘 ∈ S 

𝜏𝑖𝑗 Time cost to use link (𝑖, 𝑗) 

𝑇𝑑
𝑠𝑘 Departing time of vehicle k from hub 0 

𝑇𝑎
𝑠𝑘 Arriving time of vehicle k to destination 

𝑇𝑑
𝑝
 Earliest pickup time for package p 

𝑇𝑎
𝑝
 Latest arrival time for package p 

𝑡𝑖
𝑘 The time for Vehicle k to arrive at Node 𝑖 

Θ Objective function values 

𝑢𝑖 Binary, indicates whether a truck 𝑖 is used 

𝑈𝑡 Total cost of stage 𝑡 and all stage afterwards 

V Total vehicle set 

𝜔 Service reward adjustment factor, a relatively large number 

𝑥𝑖𝑗
𝑘  Binary, indicates whether a link (𝑖, 𝑗) is visited by vehicle k 

𝑥𝑖𝑟
𝑘  Binary, indicates whether a package 𝑖 is served by 𝑟𝑡ℎroute of vehicle k 

𝑥𝑝𝑟𝑘 Binary, indicates whether a package 𝑝 is carried by 𝑟𝑡ℎroute of vehicle k 

𝑦𝑖,𝑘
𝑠   Binary, whether the 𝑖𝑡ℎ feasible route of shared vehicle k is used 

𝑦𝑖,𝑘
𝑠   Binary, whether the 𝑖𝑡ℎ feasible route of dedicated vehicle k is used 

𝑧𝑟𝑘 Binary, whether the 𝑟𝑡ℎroute of shared vehicle k is used 

𝑧𝑠𝑘 Binary, indicates whether a shared vehicle k is carrying any packages 

  

  

  

 




