
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Heterogeneous Byzantine Replicated Systems

Permalink
https://escholarship.org/uc/item/2kt7w4nb

Author
Li, Xiao

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-ShareAlike License, available at https://creativecommons.org/licenses/by-
nc-sa/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2kt7w4nb
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Heterogeneous Byzantine Replicated Systems

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Xiao Li

September 2024

Dissertation Committee:

Dr. Mohsen Lesani, Chairperson
Dr. Philip Brisk
Dr. Vassilis Tsotras
Dr. Heng Yin

Copyright by
Xiao Li

2024

The Dissertation of Xiao Li is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

It has been a long journey for me to reach the end of the Ph.D program. I joined

University of California, Riverside as a Master student and later transferred to the Ph.D

program. At the S3 lab, I spent valuable times of my life to explore different research

problems, design protocols, write proofs, build prototype systems and present our works. I

would like to thank all the people who have helped and supported me along this way, which

made it possible for me to achieve so many accomplishments. First, I would like to thank

my advisor, who guided me to the world of formal methods and distributed system research.

He invited me to work in his S3 lab when I was a Master student and together we published

my first paper [292]. From then on, he has been providing countless help every step of the

way. I would not be writing this PhD dissertation without his exceptional guidance. I also

would like to thank my family for all the encouragement and support: my father Li Yi,

my mother, Wang Mei, my grandmother Hu Ling and my grandfather, Li Jingze. They

have always been proud of me and hold beliefs in my potentials. I would like to thank my

partner and closest friend, Zhenxiao Qi, whose love and support are priceless. We met each

other at the beginning of my Ph.D study and since then he has been there for me no matter

happy or sad, good or bad. We are the pillars of each other in this challenging journey and

we both made it! I also want to thank my friends and the members of UCR’s karate club

including but not limited to Sensi Amy and Senpai Tobby. Friendship and Karate has been

my support network when I stuck on research projects. Last but not least, I want to express

my deepest love and appreciation to my cat Boba and dog Ori. Their love are anchors of

my life and I own them a lot for being my sweetest support.

iv

Chapter 2 was previously published as “Hamraz: Resilient partitioning and repli-

cation” in 2022 IEEE Symposium on Security and Privacy (SP) [292]. The reviewers found

“impressed by the rigor of the paper; every concept and process is formalized, and the sys-

tem provides formal guarantees of noninterference and resilience.” I would like to express

my appreciation to both my advisor and the second author Dr. Farzin Houshmand. My

advisor provided valuable support from formalizing the ideas to analyzing the experiment

results. Farzin made great contributions for the experiment section.

Chapter 3 was previously published as “Quorum Subsumption for Heterogeneous

Quorum Systems” in DISC ’23 (The International Symposium on Distributed Computing)

[289]. I would like to thank both the second author Eric and Dr. Giuliano Losa from Stellar

Development Foundation. Without their help, it is not possible to complete my proudest

yet challenging project. I would like to express special appreciation to Dr.Guliano Losa. He

spent a lot of time to discuss with me the subtle details of the concrete consensus protocol,

which content was later invited to the journal submission for DISC Special Issue. I also want

to thank Prof. Rotem Oshman, the editor of DISC 2023 for recognizing the fundamental

importance of our paper and inviting us to submit an extended version to the DISC 2023

Special Issue.

Chapter 4 was recently accepted as “Brief Announcement: Reconfigurable Het-

erogeneous Quorum Systems” in DISC’ 24 (The International Symposium on Distributed

Computing). The full version is available on arXiv [295]. I would like to thank my advisor

for all the insightful discussions.

v

Chapter 5 is an ongoing collaboration with my colleague Tejas. I would like to

thank him for implementing all the protocols I designed. The experiment results are im-

portant contributions for this paper and will definitely make it a stronger submission.

Finally, I would like to express my appreciation to all the grants, fundings, fellow-

ships and awards for their generous support: NSF CAREER: Distributed System Synthesis

on Certified Middleware (Award Number: 1942711); DARPA Information and Vulnerability

Flow Type Systems (Grant number: D22AP00146-00); NSF CRII: SHF: Certified Byzantine

Fault-tolerant Systems (Award Number: 1657204); Dissertation Year Completion Fellowhip

(UC Riverside); Grace Hopper Conference Scholarship 2023 (UC Riverside); Dissertation

Year Program Fellowhip 2023/2024 (UC Riverside); Student Travel Grant for 2022 ACM

Conference on Computer and Communications Security (CCS); GSA Travel Award (UC

Riverside); Student Travel Award, 2022 IEEE Symposium on Security and Privacy (S&P).

vi

To Ori and Boba for being the stars of my life.

vii

ABSTRACT OF THE DISSERTATION

Heterogeneous Byzantine Replicated Systems

by

Xiao Li

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, September 2024

Dr. Mohsen Lesani, Chairperson

Since the advent of Byzantine replicated systems such as PBFT, numerous follow-

up variants can maintain consistent replications in the presence of malicious nodes. However,

Byzantine replication systems have been traditionally monolithic and homogeneous: the

quorums nodes trust are fixed and uniform. This dissertation considers multiple aspects of

heterogeneity for Byzantine replicated systems.

First, this dissertation considers heterogeneous replicated systems that ensure the

trustworthiness specifications for a given computation. In the face of malicious Byzantine

attacks, the ultimate goal is to assure end-to-end policies for confidentiality, integrity and

availability. This dissertation presents a security-typed object-based language, a partition-

ing transformation to partition methods, an operational semantics and an information flow

type inference system for replicated classes, and a synthesis tool called Hamraz. Given

a class and the specification of its end-to-end policies, Hamraz applies type inference to

automatically place and replicate the fields and methods of the class on Byzantine quorum

systems, and synthesizes trustworthy-by-construction distributed systems. The experiments

viii

show the resiliency of the resulting systems; they can gracefully tolerate attacks that are as

strong as the specified policies.

Second, this dissertation investigates heterogeneous quorum systems (HQS) where

each process can declare its own quorums. In traditional replication systems, the set of

trusted quorums is homogeneous across processes. However, trust is a subjective matter.

This dissertation presents a general model of HQS. When quorum systems are not uniform,

the properties that they should maintain to support reliable broadcast and consensus are

not well understood. It was shown that quorum intersection and availability are necessary.

This dissertation proves that they are not sufficient. It then defines the notion of quorum

subsumption, and shows that the three conditions together are sufficient: it presents reliable

broadcast and consensus protocols and proves their correctness.

Thirdly, this dissertation investigate reconfiguration protocols for HQS. Tradition-

ally, the trusted set of quorums was not only homogeneous but fixed. However, trust evolves;

processes might need to change their quorums. This dissertation presents reconfiguration

protocols for HQS including joining and leaving of a process, and adding and removing of

a quorum, and further, proves their correctness. The design of the protocols is informed

by the trade-offs for the properties that reconfigurations can preserve. The dissertation

further presents a graph characterization of HQS and its application for reconfiguration

optimization.

Finally, this dissertation considers heterogeneous clustered replication where nodes

are divided into clusters based on proximity to enable scalability across the globe. Existing

clustered replication protocols are homogeneous and closed: the number of nodes across

ix

clusters is the same and fixed. This dissertation presents heterogeneous and reconfigurable

clustered replication. It presents a clustered replication protocol that supports different

cluster sizes, and further, allows processes to join and leave clusters. It formally states and

proves the safety and liveness properties of proposed protocols.

x

Contents

List of Figures xiv

List of Tables xvi

1 Introduction 1
1.1 Overview of Contributions . 2

1.1.1 Resilient Partitioning and Replication 2
1.1.2 Quorum Subsumption for Heterogeneous Quorum Systems 3
1.1.3 Reconfigurable Heterogeneous Quorum Systems 4
1.1.4 Reconfigurable Clustered Byzantine Replication 4

2 Resilient Partitioning and Replication 6
2.1 Introduction . 6
2.2 Overview . 11
2.3 Classes and Security Types . 18
2.4 Partitioning . 23
2.5 Operational Semantics . 28
2.6 Information Flow Type System . 33
2.7 Security and Resiliency Guarantees . 38
2.8 Constraint Solving . 44
2.9 Implementation and Experiments . 45
2.10 Related Works . 49
2.11 Conclusion . 51
2.12 Constraint Solving . 53
2.13 Security Guarantees . 59

2.13.1 Confidentiality Non-Interference . 59
2.13.2 Integrity Non-Interference . 63
2.13.3 Availability Non-Interference . 66
2.13.4 Integrity Resilience . 68
2.13.5 Availability Resilience . 73
2.13.6 Helper Lemmas . 76

xi

3 Quorum Subsumption for Heterogeneous Quorum Systems 80
3.1 Introduction . 80
3.2 Heterogeneous Quorum Systems . 83

3.2.1 Processes and Quorums . 84
3.2.2 Properties . 85

3.3 Protocol Implementation . 92
3.4 Protocol Specification . 94
3.5 Impossibility . 95

3.5.1 Consensus . 97
3.5.2 Byzantine Reliable Broadcast . 100

3.6 Protocols . 101
3.6.1 Reliable Broadcast Protocol . 103
3.6.2 Byzantine Consensus Protocol . 110
3.6.3 Practical Byzantine Consensus Protocol 119

3.7 Example Execution for Consensus . 125
3.8 Discussion . 128
3.9 Related Works . 129
3.10 Conclusion . 133

4 Reconfigurable Heterogeneous Quorum Systems 134
4.1 Introduction . 134
4.2 Quorum Systems . 138
4.3 Properties . 141
4.4 Graph Characterization . 147
4.5 Reconfiguration and Trade-offs . 151
4.6 Leave and Remove . 156
4.7 Add . 162
4.8 Sink Discovery . 165
4.9 Join . 169
4.10 AC Leave and Remove . 171

4.10.1 Correctness . 171
4.11 Add . 173

4.11.1 Protocol . 179
4.11.2 Correctness . 184

4.12 PC Leave and Remove . 188
4.13 Sink Discovery . 189
4.14 AC Leave and Remove Proofs . 193

4.14.1 Remove, Inclusion-preservation . 193
4.14.2 Remove, Availability-preservation . 194
4.14.3 Remove, Intersection-preservation 195

4.15 Add Proofs . 197
4.15.1 Add, Inclusion-preservation . 197
4.15.2 Add, Availability-preservation . 199
4.15.3 Add, Intersection-preservation . 200

4.16 Sink Discovery Proofs . 202

xii

4.16.1 Sink Discovery, Completeness . 202
4.16.2 Sink Discovery, Accuracy . 203

4.17 Discussion . 205
4.18 Related Works . 206
4.19 Conclusion . 210

5 Reconfigurable Clustered Byzantine Replication 211
5.1 Introduction . 211
5.2 Overview . 215
5.3 Inter-cluster Communication . 225
5.4 Reconfiguration . 231
5.5 Protocol Phases . 240

5.5.1 Correctness . 242
5.6 Related Work . 245
5.7 Conclusion . 248
5.8 Protocol Phases . 249
5.9 Proofs . 257

5.9.1 Remote Leader Change . 257
5.9.2 Inter-cluster Broadcast . 262
5.9.3 Byzantine Reliable Dissemination . 263
5.9.4 Reconfiguration . 266
5.9.5 Replication System . 270

6 Conclusions 273

Bibliography 276

xiii

List of Figures

2.1 One-Time Transfer. (a) User specification, (b) Partitioned class, (c) Typing,
(d) Placement, (e) Execution. A = {pA1, .., pA7}, B = {pB1, .., pB4}. The
set Pn(S) is the set of subsets of S of cardinality n. The set Si..j denotes
{pSi, .., pSj}. 10

2.2 Syntax. P(S) = 2S is the power set of S. 19

2.3 Lattices for (a) Confidentiality (b) Integrity and (c) Availability. Arrows
show the correct flow direction: more confidentiality, less integrity, and less
availability. 19

2.4 Factoring. (a) Factored expressions. (b) Example factored expression Jtransfer
(x)K res. (c) CPS transformation. 24

2.5 Splitting Transformation . 26

2.6 Runtime State . 30

2.7 Sequential Operational Semantics . 30

2.8 Distributed Operational Semantics. It is parametric in terms of the class
C = 〈o, d〉, the method and object placements M and O, and the Byzantine
principals B. In the ThisCall rule, the union operator ∪ is extended for ⊥
values: ⊥ ∪ s = ⊥. 31

2.9 Information Flow Type Inference System 34

2.10 Top row: Response time for increased faults. Bottom row: Response time
for increased resiliency. Pi(A)×∪ ..×∪Pk(Z) is denoted as 〈i, .., k〉@n where
n is the total number of principals. 46

2.11 Response time for increased load . 50

3.1 Quorum System Example . 87

xiv

3.2 Indistinguishable Executions . 99

3.3 Last Minute Attack. b = 〈1, 4〉. The candidate of well-behaved leader l2 is
b′ = 〈2, 3〉. The votes commit and abort are abbreviated as C and A. The
new leader events are triggered at the black dots at each process. Prepared
ballots are shown below the time line for each process. 113

4.1 Example Quorum System . 139

4.2 Quorum inclusion of q for P . Process p is a member of q that falls inside
P , and q′ is a quorum of p. Well-behaved processes of q′ (shown as green)
should be a subset of q. 144

4.3 Quorum Graph Example . 148

4.4 Example Quorum Systems for Trade-offs 153

4.5 The Leave and Remove Protocols, Preserving Quorum Intersection. 158

4.6 The Add protocol, Preserving Quorum Intersection. 162

4.7 The Add protocol, Preserving Quorum Intersection. 174

4.8 Phase 2: Intersection Check, and Phase 3: Update 177

4.9 Phase1: Inclusion Check . 180

5.1 Overview of Phases and Sub-protocols . 216

5.2 Phase 2: Inter-cluster Communication. f1 = 1, f2 = 2. 218

5.3 Phase 1: Reconfiguration . 221

xv

List of Tables

2.1 Partitioning and Type Inference. PT: Partitioning time, CN: Constraints
number, GT: Constraint generation time, ST: Constraint solving time, TT:
Total time . 47

3.1 Non-termination for Bracha protocol with blocking sets 89

3.2 An execution for consensus protocol with leader switch 127

xvi

Chapter 1

Introduction

Since the advent of Practical Byzantine Fault Tolerance (PBFT), numerous vari-

ants have been developed to maintain consistent replication in the presence of malicious

nodes. These protocols are energy-efficient and ensure that all nodes possess equal power

within the network, making them an appealing technology for a wide range of applica-

tions, including finance, supply chain, and healthcare. Despite their widespread adoption,

traditional Byzantine Fault Tolerant (BFT) systems remain monolithic and homogeneous.

Typically, nodes from geographically distant regions are grouped together, and the quorums

they trust are fixed and uniform. In contrast, Bitcoin and other resource-based blockchains

are naturally open and decentralized. However, they suffer from high energy consumption,

low throughput, and probabilistic liveness guarantees. This dissertation aims to combine

the best of the two worlds: enabling the heterogeneity and openness of Byzantine replicated

systems.

1

1.1 Overview of Contributions

This dissertation explores multiple dimensions of heterogeneity and openness within

BFT replicated systems. More specifically, this dissertation presents the heterogeneity of

resilient partitioning and replication for BFT systems, formal definitions and conditions for

reliable broadcast and consensus in heterogeneous quorum systems (HQS), reconfiguration

protocols for HQS and reconfigurable clustered Byzantine replication.

1.1.1 Resilient Partitioning and Replication

With the rise of inter-organization corporations in healthcare, finance, and mil-

itary, multiple parties with different trust assumptions need to coordinate for a common

goal. The heterogeneity of trust assumptions (confidentiality policies) leads to the distribu-

tion of data and computation across administrative boundaries, which prohibit simple full

replication of the whole system. Moreover, the various integrity and availability policies

from different parties result in different levels of replication, which makes system designs

error-prone and hard to enforce system-wide policies.

Research about end-to-end security and Byzantine fault tolerance systems have

been two separate paths: Information flow control can guarantee that sensitive data does

not leak and computed results are correct. But there is no practical abstraction for availabil-

ity; Byzantine quorum replication protocols can enforce availability in the face of Byzantine

failures. However, they are monolithic systems with uniform trust assumptions. Therefore,

chapter 2 explores the ultimate goal of assuring end-to-end policies for the three aspects of

trustworthiness: confidentiality, integrity and availability in the face of malicious Byzantine

2

attacks, We present a security-typed object-based language, a partitioning transformation,

an operational semantics, and an information flow type inference system for partitioned

and replicated classes. The type system provably guarantees that well-typed methods en-

joy noninterference for the three properties, and that their types quantify their resilience

to Byzantine attacks. Given a class and the specification of its end-to-end policies, our

developed tool Hamraz applies type inference to automatically place and replicate the

fields and methods of the class on Byzantine quorum systems, and synthesize trustworthy-

by-construction distributed systems. The experiments show the resiliency of the resulting

systems: they can gracefully tolerate attacks that are as strong as the specified policies.

1.1.2 Quorum Subsumption for Heterogeneous Quorum Systems

The traditional Byzantine quorum-system model assumes a pre-existing, global

agreement on the set of quorums (typically defined as the sets consisting of more than

two-thirds of the participants). This assumption is problematic in permissionless systems,

which strive to allow anyone to join or leave the system dynamically. While proof-of-stake

permissionless systems like Ethereum require newly joining participants to register into the

system, other permissionless systems like the XRP Ledger or the Stellar network allow

participants to join the system without synchronization by forgoing agreement on the set

of quorums. This results in what we call a heterogeneous quorum system, where each

participant has its own, personal set of quorums.

An important question is to determine under what condition is it possible to solve

synchronization problems like reliable broadcast or consensus in a heterogeneous quorum

system. In chapter 3, we show that the traditional quorum intersection and quorum avail-

3

ability conditions are not sufficient in heterogeneous quorum systems. Moreover, we propose

quorum subsumption, a new condition which, together with quorum availability and quorum

intersection, is sufficient to allow solving reliable broadcast and consensus.

Finally, we propose algorithms for reliable broadcast and consensus in heteroge-

neous quorum systems that satisfy quorum subsumption.

1.1.3 Reconfigurable Heterogeneous Quorum Systems

In contrast to proof-of-work replication, Byzantine quorum systems maintain con-

sistency across replicas with higher throughput, modest energy consumption, and determin-

istic liveness guarantees. If complemented with heterogeneous trust and open membership,

they have the potential to serve as blockchains backbone. In chapter 4, we present a gen-

eral model of heterogeneous quorum systems where each participant can declare its own

quorums, and captures the consistency, availability and inclusion properties of these sys-

tems. In order to support open membership, we then present reconfiguration protocols for

heterogeneous quorum systems including joining and leaving of a process, and adding and

removing of a quorum, and further, prove their correctness in the face of Byzantine attacks.

The design of the protocols is informed by the trade-offs we prove for the properties that

reconfigurations can preserve. We further present a graph characterization of heterogeneous

quorum systems, and its application for reconfiguration optimization.

1.1.4 Reconfigurable Clustered Byzantine Replication

In order to scale Byzantine replicated systems across the globe, clustered replica-

tion protocols divide nodes into clusters based on proximity. However, existing protocols

4

are homogeneous and closed: the number of nodes across clusters is the same and fixed.

Chapter 5 presents heterogeneous and reconfigurable clustered replication. We present a

clustered replication protocols that supports different cluster sizes, and further, allows pro-

cesses to join and leave clusters. We formally states and proves the safety and liveness

properties of the protocol.

5

Chapter 2

Resilient Partitioning and

Replication

2.1 Introduction

Building trustworthy systems has been the holy grail of computing. The three

desired properties, confidentiality, integrity, and availability, also known as the CIA triad,

guarantee that sensitive data does not leak, computed results are correct, and the system

remains accessible in the face of failures and attacks. Assurance of these properties is

particularly needed when multiple principals with partial mutual trust cooperate. Inter-

organizational systems are common: business-to-business procurement systems, medical

information systems that integrate care-provider institutions, and joint military information

systems. The distrust between the components of these systems leads to distribution of data

and computation across administrative boundaries. However, building distributed systems

6

that are resilient to both benign (crash) and malign (Byzantine) failures is notoriously

complicated.

Given an integrated system, the ultimate question is whether it complies with

system-wide trustworthiness policies. Furthermore, given the end-to-end trustworthiness

policies, how can trustworthy-by-construction systems be automatically constructed? In-

formation flow control [147, 393, 374, 426] can enforce end-to-end policies. To preserve

confidentiality, it restricts the flow of information from the secret to the public domain.

Further, to preserve integrity, a common technique is to compare multiple copies of data

or computation against each other, and information flow analysis can check that enough

copies are compared [451, 455]. However, this method can reduce availability as all the

copies need to be available.

Of the three major aspects of trustworthiness, availability has been often disso-

ciated from the others, and unfortunately, sidestepped. Confidentiality and integrity are

safety properties but availability is a liveness property. In contrast to safety properties, sim-

ply monitoring the system and denying the violating actions cannot provide liveness. A few

pioneering works consider information flow control for availability. However, they assume

availability of the computation platform [456] or require the user to explicitly program the

quorums [457].

Providing availability in the face of Byzantine failures [268] requires sophisticated

Byzantine quorum replication protocols [326, 114]. A quorum system is a set of quorums

such that each is an adequate set of hosts to perform operations. Quorum systems stay

available even if only one of their quorums is not compromised. However, Byzantine repli-

7

cation has been largely regarded as a separate discipline. Further, existing protocols often

provide guarantees only for a monolithic system based on assumptions on the Byzantine

fraction of the processes. How can Byzantine replication be applied to general compu-

tation on integrated systems? Since hosts and polices of an integrated system are often

heterogeneous, the deployed quorum systems should vary as the information flows from one

computation and storage to another.

This paper enforces end-to-end policies simultaneously for the three aspects of

trustworthiness, especially the resiliency of availability, in the face of Byzantine attacks. Fur-

ther, given the end-to-end policies, it automatically synthesizes trustworthy-by-construction

distributed systems that guarantee the specified policies. To this end, it presents a security-

typed object-based language, a partitioning transformation, an operational semantics, and an

information flow type inference system for partitioned and replicated classes.

We present a security-typed object-based language to describe classes that can

encapsulate multiple field objects to implement their methods. The field objects abstract

subsystems and the methods capture their interaction. The language allows the user to

specify trustworthiness policies as type annotations. A security type consists of three com-

ponents for the three trustworthiness properties. The space of types for each property is

elegantly modeled as a lattice. The confidentiality type of a value is the set of hosts that

are trusted to observe or store that value. We represent a failure or attack scenario as a

set of principals, i.e., the Byzantine principals. Our novel representation of the integrity

(and similarly availability) type of a value is a set of attack scenarios that the integrity (and

availability) of the value is resilient to.

8

The language permits a class to be described as a centralized definition with no

distribution details. We present a high-level sequential operational semantics that model

central executions. However, confidentiality types restrict the placement of objects and

methods. In particular, a single principal may not be able to host the whole body of a

method. Therefore, a method may need to be partitioned and hosted by multiple principals.

We present a CPS (continuation-passing style) transformation to partition methods. Fur-

ther, integrity and availability types require replication of fields and methods on Byzantine

quorum systems. We present a distributed operational semantics that model the executions

of partitioned and replicated classes. The semantics is parameterized for the placement and

replication of the fields and methods.

We present a type inference system to enforce policies for the three trustworthiness

properties: confidentiality, integrity and availability. It performs dependency analysis and

rejects classes that violate the type specifications. In particular, if a method depends on

results from another method, then the former can be at most as available as the latter. The

type system provably guarantees that well-typed methods have noninterference for the three

properties. For example, an expression does not access objects of higher confidentiality,

lower integrity, or lower availability than its type. Further, well-typed methods do not go

wrong: they are resilient against Byzantine attacks that are as strong as their types. In

particular, if the Byzantine attack is no stronger than the integrity and availability type of

a method, then any distributed execution of the method matches its sequential execution.

Given the placement and replication of field objects and methods, the type sys-

tem can check their adequacy for the type specifications. More importantly, given the type

9

Class OneTimeTrans {
r1 . Reg 〈Int〉
r2 . Reg 〈Int〉
r . Reg 〈Bool〉
transfer(x) {

if ¬r.read() then
r.write(true);
if x then

r1.read()
else

r2.read()
else 0 } }

Γ = {r1 7→ 〈A ∪ {p0}, , 〉,
r2 7→ 〈B ∪ {p0}, , 〉,
transfer 7→ τ0, τ0 → τ
where τ = 〈
c := {p0},
i := P2(A)×∪ P1(B),
a := P1(A)×∪ P1(B)〉}

Class OneTimeTrans {
r1 . Reg 〈Int〉
r2 . Reg 〈Int〉
r . Reg 〈Bool〉
transfer(x) {

m4(x) }
m4 (x) {

x′ := r.read();
if ¬x′ then

m3(x)
else

res(0) }
m3 (x) {

r.write(true);
if x then

m1(⊥)
else

m2(⊥) }
m1 () {

x′ := r1.read();
res(x′) }

m2 () {
x′ := r2.read();
res(x′) }

res(x) {
x } }

τ1
τ2
τ3
τ0, τ0 → τ
τ
τ0, τ0 → τ
τ3
τ3
τ

τ
τ3, τ3 → τ
τ3
τ3
τ

τ
τ3, τ3 → τ
τ4
τ
τ3, τ3 → τ
τ5
τ
τ, τ → τ

M := [m 7→ 〈H,Qc〉]
M = {transfer 7→ 〈p0, {{p0}}〉,

m4 7→ 〈B2..4, {{p0}}〉,
m3 7→ 〈B2..4, P2(B)〉,
m2 7→ 〈B2..4, P2(B)〉,
m1 7→ 〈A2..5, P2(B)〉,
res 7→ 〈{p0}, P3(A) ∪ P2(B)〉}

O := [o 7→ 〈H,Qs, Qc〉]
O = {r1 7→ 〈A, P5(A), P3(A)〉,

r2 7→ 〈B, P3(B), P2(B)〉,
r 7→ 〈B, P3(B), P2(B)〉}

(d)

(a) (b) (c) (e)
τ0 = 〈⊥, {A ∪B}, {A ∪B}〉 τ1 = 〈c := A ∪ {p0}, i := P2(A)×∪ {B}, a := P1(A)×∪ {B}〉,

τ2 = 〈c := B ∪ {p0}, i := P1(B)×∪ {A}, a := P1(B)×∪ {A}〉,
τ3 = 〈c := A ∪B ∪ {p0}, i := {A} ×∪ P1(B), a := {A} ×∪ P1(B)〉
τ4 = 〈c := A ∪ {p0}, i := P2(A)×∪ P1(B), a := P1(A)×∪ P1(B)〉
τ5 = 〈c := B ∪ {p0}, i := {A} ×∪ P1(B), a := {A} ×∪ P1(B)〉

Figure 2.1: One-Time Transfer. (a) User specification, (b) Partitioned class, (c) Typing,
(d) Placement, (e) Execution. A = {pA1, .., pA7}, B = {pB1, .., pB4}. The set Pn(S) is the
set of subsets of S of cardinality n. The set Si..j denotes {pSi, .., pSj}.

10

specifications, the type inference system can derive constraints for the placement and repli-

cation. Transforming and solving these constraints yields the Byzantine quorum systems

that host the fields and and methods of the class. This leads to trustworthy-by-construction

distributed systems: the user describes the class with type annotations specifying the trust-

worthiness policies, and our tool, Hamraz, automatically synthesizes a distributed system

that assures the policies. Hamraz can automatically construct hosting Byzantine quorum

systems, and adjust them to the resiliency strength of type specifications. Experimental

results on a cluster of nodes show that Hamraz generates resilient systems; the resulting

systems can gracefully tolerate attacks that are as strong as the specifications.

We will start with an overview in section 5.2. We see the programming model,

the lattices of the security types, and quorum systems in section 2.3. Then, we present

the partitioning transformations in section 2.4. Next, we see the operational semantics,

the type inference system, and the security guarantee theorems in section 2.5, section 2.6,

and section 2.7. Then, we consider constraint solving for type inference in section 2.8. We

describe the implementation and report experimental results in section 2.9. Finally, we

discuss the related works in section 2.10 before we conclude in section 2.11.

2.2 Overview

In this section, we see a glimpse of security types, partitioning, and the inference

of placement and replication.

One-time Transfer. We illustrate these concepts by a simple use-case: one-

time transfer : Alice manages the set of servers (or principals) A = {pA1, pA2, .., pA7} and a

11

register object r1. Similarly, Bob manages the set of principals B = {pB1, pB2, .., pB4} and a

register object r2. The problem is to program a transfer method that lets a client principal

p0 (not Alice or Bob principals) choose to see one of the two registers, and reveals the

value of that register to p0 only once. The system should keep Alice’s register confidential

from Bob and vice versa. Further, there are resiliency specifications for the integrity and

availability of the system. The system should maintain the integrity of the transfer method

to return the correct value even if two of Alice’s principals and one of Bob’s principals are

Byzantine. It should also stay available even if one of Alice’s principals and one of Bob’s

principals are Byzantine. Byzantine principals are compromised by the adversary and may

behave arbitrarily. (A variant where Alice and Bob are not authorized to view the client’s

choice is called oblivious transfer and is a use-case in our experiments.)

Centralized Definition. The one-time transfer class OneTimeTrans is shown

in Figure 2.1.(a). It is a high-level centralized definition with no extra details for distribution.

The class has three field objects: Alice’s register r1, Bob’s register r2, and the register r

that stores whether the client has already read a value. The transfer method takes the

client’s choice as a boolean parameter x. It first checks the value of the register r. If it is

true, the client has already read a value, and transfer simply returns 0. Otherwise, it sets

r to true, and depending on the parity of x, it reads and returns either the value of the

register r1 or r2.

Security Types. The user can also annotate her program with security types.

A type is the triple 〈c, i, a〉 of confidentiality c, integrity i and availability a types. (In order

to focus the type system on trustworthiness, types do not capture the classical representation

12

types such as Int.) The confidentiality type c of a value is the set of principals that are trusted

to access the value. An integrity (and similarly availability) type represents resiliency

against certain attacks. A resiliency value {b} characterizes all the attack scenarios of the

system: for every execution of the system, there is a set b that contains all the Byzantine

principals in that execution. The integrity type i of a value is defined as a resiliency {b} such

that the value is correct even in the face of each Byzantine set b. Similarly, the availability

type a of a value is a resiliency {b} such that the value is accessible even in the face of each b.

For two resiliency values B and B′, let their join B×∪B′ be {b∪b′ | 〈b, b′〉 ∈ B×B′}. Types

form a lattice with the weakest and strongest types ⊥ and >. In particular, a resiliency

value B is stronger than (or can flow to) another B′, written as B v B′, if for any attack

in B′, there is a stronger attack in B. Let Pn(S) represent the set of subsets of the set S

of cardinality n. For example, P2(A) represents the attack scenario where two principals of

the set A can be Byzantine.

Trustworthiness Policies. The user specifies the trustworthiness policies as

type annotations. The type environment Γ in Figure 2.1.(a) represents the user type anno-

tations for the OneTimeTrans class. The register r1 should be confidential and accessible

to only the set of principals A and the client p0. Similarly, r2 should be confidential for B

and p0. (The unspecified integrity and availability types are left for type inference as .)

The type of the transfer method is a function type τx, τ → τ ′ from the context type τx and

the parameter type τ to the return type τ ′. (As we will see later in section 2.6, the context

type represents the trustworthiness of the calling context. Here, it is simply the type τ0

as any context. Similarly, the parameter x is not confidential, has complete integrity and

13

availability at the client p0; thus, its type is simply τ0.) The return type τ of transfer is

more interesting. The confidentiality type c is {p0}; only the client p0 should be able to call

the method. The integrity type i is P2(A)×∪ P1(B); it requires the integrity of the return

value to be resilient to two A and one B Byzantine principals. Similarly, the availability

type a is P1(A) ×∪ P1(B); it requires the availability to be resilient to one A and one B

Byzantine principals. The goal is to automatically partition and replicate the field objects

and methods so that the above specifications are satisfied.

Partitioning. The method transfer calls methods on both registers r1 and r2.

However, there is no principal in the sets A and B that is authorized to see the values of

both registers. Therefore, in section 2.4, we adapt the CPS transformation to partition the

methods of a class to smaller methods such that each makes at most one call to an object.

The result of partitioning the transfer method of Figure 2.1.(a) is presented in Figure 2.1.(b).

The transfer method is partitioned into six methods. The earlier methods call later ones

as tail-calls. The initial method transfer and the response method res are both hosted

at the client p0 to invoke the call and to later receive the return value respectively. (For

uniformity, methods with no parameters take a dummy parameter .) It is critical that the

two calls on the two registers r1 and r2 are partitioned into the two separate methods m1

and m2; the type inference places them on separate sets of A and B hosts.

Replication. To satisfy the resiliency specifications, the field objects and

the methods of the class should be sufficiently replicated. We apply Byzantine quorum

systems for replication. A quorum system Q is a set of quorums; a quorum q is a set of

principals that is adequate to properly perform operations. We use two types of quorum

14

systems: communication quorum systems and storage quorum systems. We use the former

to communicate and validate method call requests, and the latter to replicate field objects.

The placement M(m) of each method m is a pair 〈H,Qc〉: the method m is replicated

on the set of hosts H that each execute a call on m if they receive the same call from

the communication quorum system Qc. The placement O(o) of each field object o is a

triple 〈H,Qs, Qc〉: the object o is replicated on the set of hosts H with the the storage

quorum system Qs that executes a method call on o if it receives the same call from the

communication quorum system Qc.

Consider a quorum system Q = {q} and a set of Byzantine principals b. As we

will see in section 2.3, for the availability of Q, at least one q should not intersect with

b. For the integrity of Q as a storage system, the intersection of every pair of quorums q1

and q2 should not be contained in b, and for the integrity of Q as a communication system,

no q should be contained in b. The placements O and M for the OneTimeTrans class are

shown in Figure 2.1.(d). (We will see below how these placements can be inferred from the

specified policies.) The notation Si..j denotes the set {pSi, .., pSj}. As an example, assume

that we expect resiliency to two Byzantine principals in A. The storage quorum system

Qs for the register r1 is P5(A), subsets of A of size 5. The set A has 7 principals. Thus,

there is always a quorum (a subset of A with size 7 − 2 = 5) of non-Byzantine principals.

Therefore, Qs preserves its availability. Further, any pair of quorums intersect in at least

2 × 5 − 7 = 3 principals. Therefore, there is at least 3 − 2 = 1 non-Byzantine principal in

the intersection, and Qs preserves its integrity. The communication quorum system Qc for

r1 is P3(A), subsets of A of size 3. Therefore, there is at least 3 − 2 = 1 non-Byzantine

15

principal in every quorum. Thus, every call request received from a quorum is valid, and

Qc preserves its integrity.

We now consider a distributed execution with the given placements, and then

consider placement inference.

Replication Semantics. An example execution fragment from the method call

m3(true) to m1 and finally res is shown in Figure 2.1.(e). The two principals pA5 and pB2

are Byzantine. The method m3 is hosted on B2..4. The non-Byzantine hosting principals

of m3 (i.e., pB3 and pB4) execute r.write(true) and the then branch of the subsequent if

expression to call m1. They send request messages to call m1 to the hosting principals of

m1 that are A2..5. A call to m1 is executed only when the request is received from a quorum

in P2(B) (that is two B principals). Since there are enough non-Byzantine hosts for m3,

enough requests are received at hosts of m1, and its non-Byzantine hosts (i.e., pA2, pA3 and

pA4) execute m1. The method m1 reads the register r1 and calls the method res with the

read value. A call to res is executed only when the request is received from a quorum in

P3(A)∪P2(B). In this case, three A principals make a quorum, and res is finally executed

at the client p0 with the value of the first register. We note that the quorums P2(B) in the

communication quorum system of res are used when the method m2 calls res.

Type and Placement Inference. The user-specified type for the return value

of transfer is τ . Therefore, the return type and the parameter of the response method res

are expected to be of type τ . Given the type specification of the method res, and the user

type annotations in Γ, the type inference system can infer the types of the other methods.

Further, it can infer the placement for the field objects and the methods. We will see the

16

type inference system in section 2.6. The inferred type of each method and expression in

Figure 2.1.(b) is written in front of it in Figure 2.1.(c). The inferred placements O and M

are shown in Figure 2.1.(d). We look at a few steps that infer the storage quorum system

of the object r1, the communication quorum system of the method res, and the hosts of the

method m1.

Storage Quorum Inference. The type of the parameter x of the method

res is τ , The integrity and availability components of τ are i = P2(A) ×∪ P1(B), and

a = P1(A)×∪ P1(B). The method m1 calls res with the argument x′. The integrity ix′ of

the argument x′ should be stronger than the integrity i of the parameter x, i.e., ix′ v i. The

variable x′ in m1 binds the return value of a call to the object r1. Therefore, the integrity

ir1 of r1 should be stronger than the integrity ix′ of x′, i.e., ir1 v ix′ . The integrity of r1

is determined by the quorum system Qs that stores it. By the transitivity of the above

relations, the integrity iQs of Qs should be stronger than the integrity i above, i.e., iQs v i.

A similar argument for the availability aQs of Qs yields aQs v a. Further, according to the

confidentiality of r1, Qs should be stored on only the A principals. Therefore, the integrity

of Qs should be resilient to 2 Byzantine principals, and the availability of Qs should be

resilient to 1 Byzantine principal. What is the size s of the subset of A that hosts Qs?

Further, what is the quorum size n for Qs? The quorum system Qs will be Pn(A1..s). For

integrity, the quorums should have a non-Byzantine intersection. Thus, we should have

2× n− s > 2. For availability, there should be a non-Byzantine quorum. Thus, we should

have s−1 ≥ n. A solution to these constraints is s = 7 and n = 5. As Figure 2.1.(d) shows,

the storage quorum system Qs for r1 is P5(A) (as A1..7 is obviously equal to A).

17

Communication Quorum Inference. The integrity type of the parameter x

of res is i = P2(A)×∪ P1(B). The quorum system Qc that receives calls to res should have

stronger integrity than the parameter. Thus, its integrity should be resilient to 2 A and 1 B

Byzantine principals. Therefore, the quorums in Qc should have at least 2+1 = 3 principals

from A, or 1 + 1 = 2 principals from B. Therefore, as the placement M in Figure 2.1.(d)

shows, Qc is P3(A) ∪ P2(B).

Host Inference. Now, let us consider the hosting principals of m1. Since m1

calls a method on r1, and r1 is confidential for A, the method m1 can be hosted on only A

principals. The method m1 calls res. As we just saw, the quorum system Qc of res receives

a call from A subsets of size 3. The type of the parameter x of res is τ , and the availability

component of τ is a = P1(A)×∪ P1(B). The parameter should be available if one principal

in A is Byzantine. To satisfy the availability of the parameter of res, the method m1 should

send the argument from at least 3 + 1 = 4 principals in A. Therefore, the hosting principals

of m1 are a subset of A of size 4. The placement shown in Figure 2.1.(d) chose the set A2..5.

2.3 Classes and Security Types

Class Definition. As shown in Figure 2.2, a class C = 〈o, d〉 is described as

a set of field objects o and method definitions d. A method definition m(x) := e defines a

method m with parameter x and the body e. An expression e is either an integer value v or

none value ⊥, a variable x, an operation ⊕ on expressions, a sequence expression x := e; e′

that evaluates e and binds its value to x for e′, a conditional expression if, a this-method call

m(e) (a method call on the current object this of the enclosing class), or an object-method

18

C := 〈o, d〉 Class
o Field Object
d := m(x) := e Method Definition
e := v | ⊥ | x | e⊕ e | x := e; e Expression
| if e then e else e | m(e) | o.m(e)

p, h : P Principal or Host
q, b,H : P(P) Quorum, Byzantine set, Hosts
Q,B : P(P(P)) Quorum System, Resiliency

M := [m 7→ 〈H,Qc〉] Method Placement

O := [o 7→ 〈H,Qs, Qc〉] Object Placement
τ := 〈c, i, a〉 Type
c := H Confidentiality
i := B Integrity
a := B Availability

Figure 2.2: Syntax. P(S) = 2S is the power set of S.

c1 ∩ c2

c1 c2

c1 ∪ c2

c′

c

c v c′

i1 ×∩ i2

i1 i2

i1 ×∪ i2

i′

i

i v i′
a1 ×∩ a2

a1 a2

a1 ×∪ a2

a′

a

a v a′

(a) (b) (c)

Figure 2.3: Lattices for (a) Confidentiality (b) Integrity and (c) Availability. Arrows show
the correct flow direction: more confidentiality, less integrity, and less availability.

call o.m(e). The sequence expression e; e′ is a syntactic sugar for a sequence whose bound

variable is not free in e′. The language achieves Turing-completeness through recursive

this-method calls.

Principal Sets. A principal (process or host) denoted as p (or h) from the

universe of principals P can host both objects and methods. The identity of principals

can be authenticated. A quorum q, Byzantine set b, or hosts H is a set of principals. A

quorum system Q, or resiliency value B is a set of subsets of principals (such that none

of the subsets is contained in another). A quorum system {q} is a set of quorums q such

that each is adequate to perform operations. A resiliency value {b} characterizes all the

19

attack scenarios of the system: for every execution, at least one of the b sets contains

all the Byzantine principals in that execution. Byzantine principals are controlled by the

adversary; they may not follow the user-defined programs and system protocols. (In the

literature, a set {b} is called a failure-prone system [326] as well.)

We define the basic operators v, ×∪ and ×∩ on quorum systems and resiliency

values. A resiliency value B is stronger than (or can flow to) another B′, written as B v B′

iff for every set b′ in B′, there is a set b in B such that b′ ⊆ b. We say that a Byzantine attack

b is subsumed by a resiliency value B iff B v {b}. Finally, B×∪B′ = {b∪b′ | 〈b, b′〉 ∈ B×B′}

and similarly, B ×∩ B′ = {b ∩ b′ | 〈b, b′〉 ∈ B ×B′}.

Method and Object Placement. A method placementM is a mapping from

each method m to a pair 〈H,Qc〉 where H is the set of principals that host m, and Qc is

the communication quorum system for requests to call m. A host h in H executes a call to

m only if it receives the call with the same argument from a quorum q in Qc. An object

placement O is a mapping from each object o to a triple 〈H,Qs, Qc〉 where H is the set of

principals that hosts o, Qs is the storage quorum system that serves calls to o, and Qc is

the communication quorum system to request calls on o. A method call on o is executed by

a quorum in Qs only if they receive the same call from a quorum in Qc. (We will see more

details of the operational semantics in section 2.5.)

Security Types. A type τ is a tuple 〈c, i, a〉 where c is the confidentiality, i is

the integrity, and a is the availability type.

Confidentiality. The confidentiality type c of a value is the set of principals

that are trusted to access the value. A confidentiality type c is less than (or can flow to)

20

another c′, written as c v c′, iff c′ ⊆ c. As Figure 2.3.(a) shows, information can flow from

low confidentiality c to high confidentiality c′. Assume that the confidentiality type of x is

cx = {p1, p2} and the confidentiality type of x′ is cx′ = {p1}. cx v cx′ . The flow from x to x′

leaks no information, but the flow from x′ to x can leak a secret in x′ to p2. Confidentiality

types form a lattice where join t is ∩, meet u is ∪, ⊥ is P and > in ∅.

Integrity. The integrity type i of a value is defined as a resiliency {b} such that

the value is correct even in the face of each Byzantine attack b. We say that an integrity

type i is stronger than (or can flow to) another i′ if i v i′. (We saw the definition of v

on resiliency values above.) Intuitively, larger Byzantine sets b represent more integrity.

As Figure 2.3.(b) shows, information can flow from high integrity i to low integrity i′.

Assume that the integrity type of x is ix = {{p1}, {p2}} and the integrity type of x′ is

ix′ = {{p1, p2, p3}}. The variable x preserves its integrity even if p1 or p2 are Byzantine.

The variable x′ preserves its integrity even if p1, p2 and p3 are Byzantine. Thus, ix′ v ix.

The flow from x′ to x preserves the integrity of x. However, the flow from x to x′ can violate

the integrity of x′ if both p1 and p2 are Byzantine, or p3 is Byzantine. Integrity types form

a lattice where join t is ×∩, meet u is ×∪, ⊥ is {P} and > in {∅}.

Availability. Similar to integrity, the availability type a of a value is defined as

a resiliency {b} such that the value is accessible even in the face of each Byzantine attack

b. We say that an availability type a is stronger than (or can flow to) another a′ if a v a′.

As Figure 2.3.(c) shows, information can flow from high availability a to low availability a′.

Similar to integrity, if we have ax′ v ax, the flow from x′ to x preserves the availability of

x but not vice versa. Availability types form a lattice where join t is ×∩, meet u is ×∪,

21

⊥ is {P} and > in {∅}. We note that no resiliency is represented as {∅}. An integrity or

availability type is expected to be non-empty.

We represent and analyze integrity and availability types separately. However, an

available value is often usable only if it has integrity. To assure availability of a correct

value, the Byzantine set should be subsumed by both the integrity and availability types.

Therefore, as Figure 2.1.(a) shows, integrity type is often stronger than availability type.

Type. A type τ = 〈c, i, a〉 is a subtype of another type τ ′ = 〈c′, i′, a′〉, written

as τ v τ ′, iff c v c′, i v i′ and a v a′. We note that with the lattice (and flow) direction

defined for integrity and availability above, all the three type components are co-variant.

Intuitively, the super-type has more confidentiality, less integrity and less availability. A

type can be implicitly up-cast to a super-type. If τx v τx′ then it is safe for the data from

x to flow into x′. Types form a lattice with the expected point-wise definitions for t, u, ⊥

and > on the lattices of their three components.

Resiliency of Quorum Systems. First, we consider the integrity of commu-

nication and storage in turn. Then, we consider the availability of quorum systems.

Integrity of Communication Quorum Systems. Communication quorum systems

are used to deliver a message to a target principal. Sender principals echo the message, and

the target principal delivers it only if it receives the same message from a quorum. Thanks

to the redundancy in the messages, the delivered message has integrity even if only one of

the senders is a non-Byzantine principal. The integrity of a communication quorum system

Q = {q}, written as CIntegrity(Q), is the resiliency B = {b} : the Byzantine sets b are the

maximal subsets of the set of principals P , for each b, no quorum q that is a subset of b.

22

Integrity of Storage Quorum Systems. Storage quorum systems are used to store

and retrieve objects. To store a value for the object, at least a quorum should store it,

and to retrieve its value, at least a quorum should retrieve the same value. In order to

retrieve the latest stored value, it is crucial that the two quorums have a non-Byzantine

principal in their intersection. The integrity of a storage quorum system Q = {q}, written

as SIntegrity(Q), is the resiliency B = {b} where the Byzantine sets b are the maximal

subsets of the set of principals P such that for each b, the intersection of every pair of

quorums q1 and q2 is not a subset of b.

Availability of Quorum Systems. Given a set of hosts H for a quorum system

Q = {q} and a set of Byzantine principals b, consider a quorum q that is tasked with the

execution of an operation. The quorum q can perform the operation if all of its members are

in H and none of them are in b. Therefore, Q is available if at least one of its quorums q is a

subset of H and doesn’t intersect b. The availability of a set of hosts H for a quorum system

Q = {q}, written as Availability(Q,H), is the resiliency B = {b} where the Byzantine sets

b are the maximal subsets of the set of principals P such that for each b, there is at least

one quorum q that is a subset of H and doesn’t intersect b.

We note that as a quorum system is a set of quorums, the classical labels that

represent one set of principals are not enough to capture its integrity and availability.

2.4 Partitioning

A method of a class can execute multiple calls on its field objects. A principal

that hosts a method should be more confidential than all the objects that it accesses. Such

23

f := v | ⊥ Integer Literal
| x Variable
| f ⊕ f Operation
| if f then f else f Conditional
| m(f) This call

c := call x := o.m(f) in c Method Call
| if f then c else c Conditional
| f Expression

call x1 := r.read() in
if ¬x1 then

call := r.write(true) in
if x then

call x2 := r1.read() in
res(x2)

else
call x3 := r2.read() in
res(x3)

else res(0)

JvK k = k v
J⊥K k = k⊥
JxK k = k x

Je1 ⊕ e2K k = Je1K (λx1. Je2K (λx2. k (x1 ⊕ x2)))
Jif e0
then e1 = Je0K (λx. if x then Je1K k
else e2K k else Je2K k)

Jx := e1; e2K k = Je1K (λx. Je2K(λx2. k x2))
Jm(e)K k = JeK (λx. k m(x))

Jo.m(e)K k = JeK (λx1. call x2 := o.m(x1) in k x2)
(a) (b) (c)

Figure 2.4: Factoring. (a) Factored expressions. (b) Example factored expression Jtransfer
(x)K res. (c) CPS transformation.

a principal might not exist. For example, in our running example, the one-time transfer

class OneTimeTrans in Figure 2.1.(a), the method transfer calls methods on both objects

r1 and r2. However, there is no principal (except the client) that is confidential enough

to access both objects. Further, placing more methods on more confidential principals can

cause imbalance for the computation load across principals. Therefore, as the first step for

resilient replication, we partition the methods of the class into smaller methods such that

each method makes at most one object-method call. When methods make at most one

object-method call, they provide maximum flexibility for their placement and replication

during the type inference.

We perform partitioning in two steps: we first factor the object-method calls by

an adaptation of the CPS transformation, and then split the methods.

Factoring Object-method Calls. We first transform expressions e (that

we saw in Figure 2.2) to factored expressions c as defined in Figure 2.4.(a). In a factored

expression c, object-method calls are lifted as explicit call expressions callx := o.m(f) where

the expressions f are free of object-method calls. As an example, Figure 2.4.(b) shows the

factored representation of the body of the transfer method that we saw in Figure 2.1.(a).

The object-method call r.read() is lifted to the beginning of the body. Similarly, r1.read()

24

and r2.read() are lifted to the beginning of their enclosing branches of the if statement.

Factoring is performed in two steps: First, we perform a CPS transformation to make

object-method calls and their evaluation order explicit. Object-method calls are translated

to explicit call expressions, and their call-by-value order of evaluation is made explicit as

nested call expressions. Second, once the call expressions are captured, we apply β-reduction

to remove redundant lambda abstractions.

CPS Transformation. The CPS transformation is presented in Figure 2.4.(c).

The rules for values v and ⊥, variables x, and operations ⊕ are straightforward. The rule for

the if expression applies the transformation to the condition and the branches in order. The

rule for the sequence expressions x := e1; e2 first evaluates the first expression e1, and then

passes its result as x to the second expression e2 and evaluates it. The rule for this-method

calls m(e) evaluates the argument e before calling the method m. Similarly, the rule for

object-method calls o.m(e) evaluates the argument e first. More importantly, it converts

o.m(e) to an explicit call expression call x2 := o.m(x1) in k x2 instead of directly passing

it to the continuation k as k o.m(x1). The explicit call expressions preserve object-method

calls and their order after β-reductions.

Reduction. The CPS transformation introduces administrative lambda abstrac-

tions to pass continuations and make the evaluation order explicit. After the transformation,

we apply β-reduction to remove the administrative lambda abstractions and restore a con-

cise representation.

β-reduction (λx. e) e′ → e[e′/x]

We note that the β-reduction cannot rewrite call expressions. Consider the expression

25

Call
JcK . 〈f ′, X ′, D′〉 freshm′ X ′′ = FV(f) ∪X ′ \ x

Jcall x := o.m(f) in cK .
〈m′(X ′′), X ′′, D′ ∪ {m′(X ′′) := (x := o.m(f); f ′)}〉

If
Jc1K . 〈f1, X1, D1〉 Jc2K . 〈f2, X2, D2〉

Jif f then c1 else c2K .
〈if f then f1 else f2,FV(f)∪X1∪X2, D1∪D2〉

FExp
JfK . 〈f,FV(f), ∅〉

Method
JeK . 〈e′, , D〉

Jm(x) := eK . D ∪ {m(x) := e′}

Class
J〈o, d〉K . 〈o,∪JdK〉

Figure 2.5: Splitting Transformation

call x2 := o.m(x1) in k x2. The β-reduction cannot replace x2 with o.m(x1). Therefore,

even if x2 is not used in k, the object-method call o.m(x1) is not removed. Further, the

evaluation order of calls is preserved.

Splitting This-methods. Given a class such that the body of the this-methods

are factored expressions c, this step splits each this-method into multiple this-methods such

that each one calls at most one object-method call.

Figure 2.5 presents the splitting transformation. The judgments that translate a

factored expression c are of the form JcK . 〈f,X,D〉 where f is the resulting expression,

X is the set of free variables of f , and D is the set of generated this-method definitions

that f transitively calls. The rule Call translates a call expression call x := o.m(f) in c.

It first translates c to f ′ with free variables X ′ and this-methods D′. It then generates

a new this-method m′ with the sequence x := o.m(f); f ′ as the body. We note that the

generated this-method includes only one object-method call. The free variable X ′′ in the

body are the free variables of f and the free variables of f ′ (i.e., X ′) except x that is bound

by the call. The free variables X ′′ should be passed as parameters to m′. Thus, the call

26

expression is translated to the this-method call m′(X ′′). If the translated call expression is

part of a larger expression, the resulting this-method call m′(X ′′) can inductively become

a leaf expression of the body of the this-method that is generated for the larger expression.

Thus, calls to the generated this-methods appear only as tail-calls. The rule If inductively

splits the branches of the if expression and results in an if statement that is free of object-

method calls. The rule FExp simply translates an f expression to the tuple of itself, its

free variables FV(f) and no new this-methods. The rule Method splits a this-method, and

the rule Class splits each this-method of a class.

As an example, applying the splitting transformation to the factored expression

in Figure 2.4.(b) results in the split methods in Figure 2.1.(b). Starting from the leaf

expressions, the two branches of the inner if expression are split to the two methods m1

and m2. This split is crucial to the enforcement of the confidentiality policies. The objects

r1 and r2 can be accessed by only the principals A and B respectively. After the split,

the methods m1 and m2 can be separately placed on A and B principals. Next, the then

branch of the outer if expression is split to the method m3. We note that there is only one

object-method call at the beginning of each generated method. Next, the outer if expression

is split to the method m4 where the object-method call r.read() is at the top. Finally, the

body of the top-level this-method transfer is translated to a call to m4.

We note that partitioning allows maximum flexibility for placement inference;

however, if a caller and a callee are placed on the same hosts, the call can be inlined.

We also note that partitioning results in non-blocking methods where a call to the method

immediately returns, and the return value is later passed by a callback method (e.g. res).

27

If needed, a non-blocking method can be made blocking by simply waiting for the callback

using standard synchronization mechanisms.

2.5 Operational Semantics

In the previous section, we saw how the methods of a class are partitioned. In this

section, we present the operational semantics of these classes. We first present a baseline

sequential semantics and then present a distributed semantics that replicates both objects

and methods, and marshals call requests between quorums of hosts.

Sequential Semantics. The state of the operational semantics is defined in

Figure 2.6. For the sequential semantics, the state is the pair 〈e, S〉 where e is an expression,

and S is a mapping from objects o to their encapsulated states s. A reduction context

R captures the next expression to be reduced. The sequential operational semantics is

presented in Figure 2.7. The transitions are straightforward. We saw in the previous

section that after partitioning, this-method calls appear only as tail-calls. Thus, in the rule

SThisCall, this-method calls do not need a context R. For brevity, we use in the place

of symbols that are unused and stay the same in the transition. (In order to factor the

reduction context, an extra rule could be added. For the next semantics, yet another rule

would be needed to factor the context for multiple principals. The current representation

with explicit contexts seems to be more concise.)

Distributed Semantics. The distributed state is the triple 〈P,S,N〉. As defined

in Figure 2.6, the principal states P is a map from principals to their states. The state of

a principal is the expression e that it is executing, the identifier id of the call that is being

28

executed, and the number of calls n that have been executed by this call. Consider the

call tree rooted at the initial method call. The unique identifier of a call is the list of the

branch numbers in the path from the initial method call to that call. The object state S is

a map from objects o to pairs 〈s, r〉 where s is the state of o, and r is the recorded calls,

a map from call identifiers to their return values. Consider a this-method m() that calls

an object-method o.m′(). Since m() is replicated on multiple principals, multiple requests

to execute o.m′() with the same identifier can be issued. To avoid duplicate execution of

object-method calls, the storage quorum system of an object o not only keeps its state s

but also a record r of the previously executed calls and their return values. The network N

keeps pending request messages to execute this-method calls. It is a mapping from tuples

〈p, id,m, v〉 to a set of principals q (or ⊥), where p is the receiver principal, id is the identifier

of the call, m is the method requested to be called, v is the argument, and q is the set of

sender principals that requested the call. The value of the mapping is ⊥ when the requested

call is already processed and should not be reprocessed. A transition label and a sequence

of labels are denoted as l and L respectively.

Figure 2.8 defines the distributed operational semantics that models the runtime

system. It is parametric in terms of a class C = 〈o, d〉, the method and object placements

M and O, and the set of Byzantine hosts B. We say that the resiliency of a system is {b}

if it is resilient in all executions of all instantiations of the operational semantics with a B

where {b} v {B}, that is a B that is a subset of a b. Thus, in the theorems of section 2.7,

B is universally quantified.

29

〈e, S〉 Sequential State
R := R⊕ e | v ⊕R | x := R; e Red. Context

| if R then e else e | m(R) | o.m(R) | []
s Object State
S := [o 7→ s] Seq. Object States

〈P,S,N〉 Distributed State

P := [p 7→ 〈e, id, n〉] Principal States
id : list nat Method call identifier

S := [o 7→ 〈s, r〉] Dist. Object States

r := [id 7→ v] Method calls record

N := [〈p, id,m, v〉 7→ q | ⊥] Network
l := p | p | 〈p, id,m, v〉 Label
| 〈p, p,m, id, v〉 | 〈p, v〉

L := l∗ Labels

Figure 2.6: Runtime State

SOp
v1 ⊕ v2 = v3

〈R[v1 ⊕ v2], 〉 → 〈R[v3], 〉

SSeq
〈R[x := v; e], 〉 → 〈R[e[v/x]], 〉

SIfThen
〈R[if 1 then e1 else e2], 〉 →

〈R[e1], 〉

SIfElse
〈R[if 0 then e1 else e2], 〉 →

〈R[e2], 〉
SThisCall

(m(x) := e) ∈ d
〈m(v), 〉 → 〈e[v/x], 〉

SObjCall
S(o) = s m(s, v) = 〈s′, v′〉

〈R[o.m(v)], S〉 → 〈R[v′], S[o 7→ s′]〉

Figure 2.7: Sequential Operational Semantics

The rules Op, Seq, IfThen and IfElse make local transitions and are similar to

their sequential counterparts.

This-method calls. The rule ThisCall reduces a this-method call m(v) on a

principal p. Let the identifier of the method call that is currently being executed be id, and

the number of calls that it has executed be n. Thus, the identifier of the new method call

is id :: n. Let the placement of m be the set of principals {p′}. A request message from the

sender p to execute the method m with identifier id :: n and argument v is sent to every

30

Op
v1 ⊕ v2 = v3

〈P[p 7→ 〈R[v1 ⊕ v2], , 〉], , 〉 p
〈P[p 7→ 〈R[v3], , 〉], , 〉

Seq
〈P[p 7→ 〈R[x := v; e], , 〉], , 〉 p
〈P[p 7→ 〈R[e[v/x]], , 〉], , 〉

IfThen
〈P[p 7→ 〈R[if 1 then e1 else e2], , 〉], , 〉 p

〈P[p 7→ 〈R[e1], , 〉], , 〉

IfElse
〈P[p 7→ 〈R[if 0 then e1 else e2], , 〉], , 〉 p

〈P[p 7→ 〈R[e2], , 〉], , 〉
ThisCall
M(m) = 〈{p′}, 〉 N(p′, id :: n,m, v) = q N′ = N[(p′, id :: n,m, v) 7→ q ∪ {p}]

〈P[p 7→ 〈m(v), id, n〉], ,N〉 p 〈P[p 7→ 〈⊥, id, n+ 1〉], ,N′〉
ThisCallExec

M(m) = 〈 , {q}〉 N(p, id,m, v) = q′ q ⊆ q′
(m(x) := e) ∈ d N′ = N[(p, id,m, v) 7→ ⊥]

〈P[p 7→ 〈⊥, , 〉], ,N〉 〈p,id,m,v〉 〈P[p 7→ 〈e[v/x], id, 0〉], ,N′〉
ThisCallByz
p ∈ B N(p′, id′,m, v) = q′ N′ = N[(p′, id′,m, v) 7→ q′ ∪ {p}]

〈P[p 7→ 〈e, id, n〉], ,N〉 〈p,p
′,id′,m,v〉
 〈P[p 7→ 〈e′, id′, n′〉], ,N′〉

ObjCall
O(o) = 〈H,Qs, Qc〉 Qc = {q} q ⊆ {p} SIntegrity(Qs) v {B} Availability(Qs, H) v {B}

S(o) = 〈s, r〉 id :: n 6∈ dom(r) m(s, v) = 〈s′, v′〉 S′ = S[o 7→ 〈s′, r[id :: n 7→ v′]〉]

〈P[p 7→ 〈R[o.m(v)], id, n〉], S, 〉 p 〈P[p 7→ 〈R[v′], id, n+ 1〉], S′, 〉
ObjReCall

O(o) = 〈H,Qs, 〉 SIntegrity(Qs) v {B}
Availability(Qs, H) v {B} S(o) = 〈s, r〉 r(id :: n) = v′

〈P[p 7→ 〈R[o.m(v)], id, n〉], S, 〉 p 〈P[p 7→ 〈R[v′], id, n+ 1〉], S, 〉
ObjCallByz

O(o) = 〈 , Qs, 〉 SIntegrity(Qs) 6v {B}

〈P[p 7→ 〈R[o.m(v)], , 〉], , 〉 p 〈P[p 7→ 〈R[v′], , 〉], , 〉

Figure 2.8: Distributed Operational Semantics. It is parametric in terms of the class C =
〈o, d〉, the method and object placementsM and O, and the Byzantine principals B. In the
ThisCall rule, the union operator ∪ is extended for ⊥ values: ⊥ ∪ s = ⊥.

31

receiver p′. For each receiver p′, the principal p is added to the set of senders q. As we

saw in section 2.4, after partitioning, this-method calls appear only as tail-calls. Thus, they

transfer control to the hosts of the callee, and the new expression of the hosting principal p of

the caller becomes the none value ⊥ which denotes that p can execute another this-method

call. We saw an example of this-method calls in Figure 2.1.(e). The non-Byzantine hosting

principals of m3 (i.e., pB3 and pB4) issue a call to m1. They send call request messages to

the hosting principals of m1 (i.e., A2..5).

The rule ThisCallExec executes a this-method call if request messages from a

quorum are received. The receiving principal p is not processing any calls as its current

expression is none ⊥. Let the communication quorum system for the method m be {q}. If

the set of requesting principals q′ to call m(v) (with the same identifier) is a superset of a

quorum q, the current expression of p becomes the body e of m after the parameter x is

substituted with the argument v. Finally, the processed request message is mapped to ⊥

to prevent duplicate executions. We saw an example in Figure 2.1.(e). The communication

quorum system for m1 is P2(B); a quorum should have at least two B principals. The

non-Byzantine hosts of m1 (i.e., pA2, pA3 and pA4) executed m1, since each received the

request from a quorum.

The rule ThisCallByz models the behavior of Byzantine principals that can arbi-

trarily change their state, and send arbitrary call requests to arbitrary principals. However,

thanks to authentication upon receiving messages, they cannot send a message on behalf

of another principal. (A step by a Byzantine principal to impersonate another Byzantine

principal can be simulated as two consecutive steps by the two principals.)

32

Object-method calls. The rule ObjCall executes an object-method call

o.m(v). Let the storage quorum system of o be Qs, and the communication quorum system

of o be Qc = {q}. If (1) a set of principals {p} that are a superset of a communication

quorum q call the object-method, (2) the set of Byzantine principals B cannot compromise

the integrity and availability of the storage system Qs, and (3) the method call is not already

executed, i.e., it is not in the recorded calls r, then the method call is executed on the current

state s of o. The resulting state s′ is stored, and the return value v′ is recorded in r for the

identifier of the call. The method call is evaluated to the value v in each of the principals in

{p}. Object-method calls block for the return value, and are unblocked once a quorum of

principals make the same call, and the call is executed. The rule ObjReCall reduces an

object-method call that is already executed (when the storage system is not compromised).

It retrieves the return value from the recorded calls r. The rule ObjCallByz models the

execution of an object-method call when the set of Byzantine principals is large enough to

compromise the integrity of the storage system. In this case, the call returns an arbitrary

value.

2.6 Information Flow Type System

In this section, we present the information flow type inference system and its guar-

antees. Instances of a well-typed class preserve their type specifications for confidentiality,

integrity and availability at run time.

We present the type inference system in Figure 2.9. Given a class C, it yields

constraints C on types and placements. The judgments are of the form Γ,O,M ` C, C

33

ValT
Γ,O,M,H, τx ` v : ⊥, ∅

VarT
Γ,O,M,H, τx ` x : Γ(x), ∅

OpT
Γ,O,M,H, τx ` ei : τi, Ci for i ∈ {1, 2}
fresh τ C = C1 ∪ C2 ∪ {τ1 t τ2 v τ}

Γ,O,M,H, τx ` e1 ⊕ e2 : τ, C

SeqT
Γ,O,M,H, τx ` e1 : τ1, C1 τx = 〈cx, ix, ax〉 τ1 = 〈 , , a1〉

Γ[x 7→ τ1],O,M,H, 〈cx, ix, ax t a1〉 ` e2 : τ2, C2

fresh τ C = C1 ∪ C2 ∪ {τ1 t τ2 v τ}
Γ,O,M,H, τx ` x := e1; e2 : τ, C

IfT
Γ,O,M,H, τx ` e0 : τ0, C0

Γ,O,M,H, τx t τ0 ` ei : τi, Ci for i ∈ {1, 2} fresh τ C = C0 ∪ C1 ∪ C2 ∪ {τ0 t τ1 t τ2 v τ}
Γ,O,M,H, τx ` if e0 then e1 else e2 : τ, C

ThisCallT
Γ,O,M,H, τx ` e : τ, C Γ(m) = τ ′x, τ1 → τ2 τ1 = 〈 , , a1〉

M(m) = 〈 , Q〉 C ′ = C ∪ {τx v τ ′x,
τ t τx v τ1, Availability(Q,H) v a1}

Γ,O,M,H, τx ` m(e) : τ2, C
′

ObjCallT
Γ,O,M,H, τx ` e : τ, C Γ(o.m) = τ1 → τ2 τ1 = 〈 , , a1〉
τ2 = 〈c2, , 〉 O(o) = 〈 , , Q〉 C ′ = C ∪ {c2 v H,

τ t τx v τ1, Availability(Q,H) v a1}
Γ,O,M,H, τx ` o.m(e) : τ2, C

′

MethodT
M(m) = 〈H,Qc〉 Γ(m) = τx, τ1 → τ2 τx = 〈cx, , 〉 τ1 = 〈c1, i1, 〉 Γ[x 7→ τ1],O,M, H, τx ` e : τ, C

C ′ = C ∪ {τ v τ2, τ1 v τ2, c1 t cx v H, CIntegrity(Qc) v i1}
Γ,O,M ` m(x) := e, C ′

FieldT
O(o) = 〈H,Qs, Qc〉 Γ(o) = 〈c, i, a〉 M(o) = m

Γ(o.m) = 〈cm, im, am〉 → 〈c′m, i′m, a′m〉
Cm = {〈c, i, a〉 v 〈cm, im, am〉 v 〈c′m, i′m, a′m〉} C = ∪Cm ∪ {tc′m v H SIntegrity(Qs) v ui′m,

Availability(Qs, H) v ua′m, CIntegrity(Qc) v uim}
Γ,O,M ` o, C

ClassT
Γ,O,M ` o, C Γ,O,M ` m, C ′

Γ,O,M ` 〈o,m〉, ∪C ∪ ∪C ′

Figure 2.9: Information Flow Type Inference System

that states that the class C is well-typed under the type environment Γ, and the placements

O and M for the field objects and methods of C, if the constraints C are satisfied. (The

judgments of the corresponding type checking system is Γ,O,M ` C. Instead of yielding

constraints, it would simply check the same conditions.) The typing judgments for an object

field o and a method definition d are Γ,O,M ` o, C and Γ,O,M ` d, C respectively.

The typing judgments for an expression e is Γ,O,M,H, τx ` e, C where H is the set of

hosts that replicate the execution of e, and τx is the type of the context under which e is

34

executed. The context type τx = 〈cx, ix, ax〉 captures the implicit information flow. The

context confidentiality type cx represents the information that can be learned from the fact

that the execution has reached the current expression e. Similarly, the context integrity

type ix represents the integrity of the information that determines the control flow to the

current expression e. The conditions of the if expressions that enclose e determine its

context confidentiality and integrity types. The context availability type ax represents the

availability of the information that the control flow requires to reach the current expression

e. The conditions of the if expressions that enclose e, and the sequence expressions that

precede e determine its context availability type.

The type environment Γ is a mapping from variables x and objects o to types τ ,

from this-methods m to function types τx, τ → τ ′, and from object-methods o.m to function

types τ → τ ′, where τx is the context type, τ is the parameter type, and τ ′ is the return

type. The interfaces that objects expose can be called from any context. Thus, the type of

their context parameter is > and is elided in an object interface.

Values, Variables, Operations, and Sequences. The rule ValT simply

type-checks a value v as ⊥, and the rule VarT type-checks a variable x according to the

environment Γ. The rule OpT type-checks an operation e1⊕e2 as (a super-type of) the join

of the types of the operands. Similarly, The rule SeqT type-checks a sequence x := e1; e2 as

the join of the types of the two operands. However, to type-check e2, the type environment

maps x to the type of e1, and the availability of the context is reduced by the availability

of e1. The intuition is that e2 cannot be evaluated if e1 is unavailable.

35

Conditionals. The rule IfT type-checks a conditional expression as the join

of the types of the condition and the branch expressions. To type-check the branch ex-

pressions, the given context type τx is joined with the type τ0 of the condition expression

e0. The intuition is that e0 implicitly flows to the branches. The fact that a branch is

executed can leak the value of e0. Therefore, the context confidentiality is increased by the

confidentiality of τ0. Further, the choice of the right branch is dependent on the integrity of

e0. Therefore, the context integrity is reduced by the integrity of τ0. Further, the branches

cannot be evaluated if e0 is unavailable. Therefore, the context availability is reduced by

the availability of τ0.

Method Calls. The rule ThisCallT type-checks a this-method call m(e). It

first type-checks the argument e as τ , and then retrieves the type τ ′x, τ1 → τ2 of m from the

environment Γ, where τ ′x is the context parameter type, τ1 = 〈 , , a1〉 is the parameter type,

and τ2 is the return type of the method. It then checks that the current context type τx is

a subtype of the context parameter type τ ′x. It also checks that the argument type τ is a

subtype of the parameter type τ1. In addition, it checks that the current context type τx is

a subtype of the parameter type τ1. The intuition is that the argument can implicitly flow

confidential information from the context (e.g. the enclosing conditionals) to the callee, and

the integrity and availability of the context can affect the integrity and availability of the

argument. Finally, the rule checks that the current hosts H that send the argument for the

call to m meet the availability specification a1 of the parameter. More precisely, let Q be

the communication quorum system that an argument for a call to m is accepted from. If

Q is restricted to H, then it should be more available than a1.

36

The rule ObjCallT type-checks an object-method call o.m(e). It is similar in

structure to ThisCallT with two differences. First, it does not include the constraint on

context types since the context parameter type of an object-method is implicitly >. Second,

the hosts H should be confidential enough to observe the return value.

Methods. The rule MethodT type-checks a method definition m(x) := e. It

first retrieves the type τx, τ1 → τ2 of m from the given environment Γ. It then type-checks

the body e under the context type τx, and the environment Γ extended with x typed as

τ1. The resulting type τ of e has to be a subtype of the return type τ2. Further, the

parameter type τ1 has to be a subtype of the return type τ2. This makes a this-method

call have a stronger type than its argument. Further, the hosting principals H should

be more confidential than c1 and cx because the hosts can learn confidential information

in the argument and about the context from the fact that the call is made. Finally, the

communication quorum system that accepts the arguments for m should provide more

integrity than the integrity i1 that the parameter expects.

Field Objects. The rule FieldT checks the following conditions for an object

o. (1) Let 〈c, i, a〉 be the type of o in the environment Γ. The rule checks that c is a

lower bound for the confidentiality, and i and a are higher bounds for the integrity and

availability of the parameters and return values of the methods m of o. (These bounds are

used to state the non-interference properties in the next section.) (2) Let H be the hosts for

the the storage quorum system Qs of o. (2.1) The rule checks that the hosting principals H

are confidential enough to host the methods of o. More precisely, it checks that the join (i.e.,

intersection) of the confidentiality of the return values c′m can flow to (i.e., is a superset of)

37

H. (2.2) Further, in order to host o, Qs should provide more integrity and availability than

the integrity i′m and availability a′m that the return value of each method m is expected to

have. (3) Let Qc be the communication quorum system that the arguments of method calls

on o are accepted from. Qc should provide more integrity than the integrity im that the

parameter of each method m expects.

Class. The rule ClassT type-checks a class 〈o,m〉 by type-checking each object o

and method m.

2.7 Security and Resiliency Guarantees

The type system guarantees non-interference for confidentiality, integrity and avail-

ability of methods of well-typed classes. Further, their integrity and availability types char-

acterize their resilience to Byzantine attacks. In this section, we will see that if a method

is typed, it enjoys non-interference from objects of super-types, and resilience to Byzantine

attacks of sub-types. After basic definitions, we first look at the non-interference theorems

and then the resilience theorems. The proofs are available in the appendix section 2.13.

The partitioning process splits methods to a sequence of methods. In the initial

state, the client invokes the first method in that sequence that we call the initial method.

Definition 1 (Initial method) The initial (or client) method m0 is a method that is

hosted on a non-Byzantine (client) principal p0 and can be directly invoked by p0. More

precisely, if B denotes the set of Byzantine principals, and M denotes the method place-

ment, then p0 6∈ B and M(m0) = 〈{p0}, {{p0}}〉.

38

Definition 2 (Initial distributed state) In the initial distributed state, p0 calls m0 with

the initial argument v0, the objects have their initial states, and the set of messages in

the system is empty. More precisely, the initial distributed state is 〈P0, S0, ∅〉 where P0 =

[p 7→ 〈⊥, 0, 0〉][p0 7→ 〈m0(v0), 0, 0〉], S0 = [o 7→ 〈S0(o), ∅〉], where S0(o) is the initial state of

o.

To state properties over only a subset of objects in the maps O and S, we project

them over the three type kinds.

Definition 3 (Projection over types) Given a typing environment Γ, and a map M on

the objects domain, the projection of M over a confidentiality c restricts the domain of M to

objects with confidentiality less than c in Γ. More precisely, M |Γ c = M | {o | let 〈c′, , 〉 :=

Γ(o) in c′ v c}. Similarly, the projection of M over an integrity i restricts the domain of

m to objects with integrity more than i. The projection over an availability a is similarly

to objects of more availability than a. More, precisely, M |Γ i = M | {o | let 〈 , i′, 〉 :=

Γ(o) in i′ v i} and M |Γ a = M | {o | let 〈 , , a′〉 := Γ(o) in a′ v a}.

We lift the integrity of storage quorum systems, SIntegrity , to object placements

O, as the join of SIntegrity of the storage systems of all the objects in O. More precisely,

SIntegrity([o 7→ 〈 , Q, 〉]) = tSIntegrity(Q)

Non-Interference. The type that the type system associates with a method m

captures the trustworthiness of the objects that it accesses. If the return type of m is τ , then

m accesses only objects that are typed as sub-types of τ , and enjoys non-interference from

objects that are typed as super-types of τ . In fact, there is non-interference even if the super-

type relation holds only for one of the three type components. If the type system associates

39

a confidentiality type with (the return value of) m, then calls to m don’t access objects of

higher confidentiality. Similarly, if the type system associates an integrity or availability

type with m, then calls to m don’t access objects of lower integrity or availability. Changing

the state of these objects doesn’t interfere with the return value.

Confidentiality. Assume that the client method is type-checked with the con-

fidentiality type c. Let Oc be the objects that are less (or as) confidential than c. The

following non-interference theorem states that if two state maps S1 and S2 have the same

states for the objects Oc, and the integrity of Oc is not compromised by the Byzantine

principals B, then any two executions with S1 and S2 that return a value to the client,

return the same value. The integrity of the objects is required since a compromised object

that loses integrity can behave non-deterministically.

Theorem 4 (Non-interference) For all Γ, O, M, C, B, c, i, a, S1, S2, P′1, P′2, L, v and

v′, if

Γ,O,M ` C, and Γ(m0) = , → 〈c, i, a〉, and either

• S1 |Γ c = S2 |Γ c, and SIntegrity(O |Γ c) v {B}, or

• S1 |Γ i = S2 |Γ i, and SIntegrity(O |Γ i) v {B}, or

• S1 |Γ a = S2 |Γ a, and SIntegrity(O |Γ a) v {B}, or

〈P0, S1, ∅〉
L

∗
〈P′1, , 〉, and 〈P0,S2, ∅〉

L

∗
〈P′2, , 〉,

P′1(p0) = 〈v, , 〉, and P′2(p0) = 〈v′, , 〉,

then v = v′.

40

The proof is by induction on the steps. For confidentiality, every step preserves

the invariant that both the expressions in non-Byzantine principals, and the requested this-

method calls in messages are less confidential than c. Thus, only objects that are less

confidential than c are accessed. Further, these objects are assumed to have the same state

in S1 and S2, and preserve integrity. Therefore, object-method calls behave deterministically

and return the same value in the two executions, which in turn preserves the equality of

the expression of every non-Byzantine principal in the two executions.

Integrity. Assume that the client method is type-checked with the integrity type

i. Let Oi be the objects with integrity more than i. The above non-interference theorem

states that if two state maps S1 and S2 have the same states for the objects Oi, and the

integrity of Oi is not compromised by the Byzantine principals B, then any two executions

with S1 and S2 that return a value to the client, return the same value.

Availability. Similarly, the above theorem states non-interference for availability.

If a method is type-checked with the availability type a, then different states for objects

that are less available than a cannot interfere with the return value.

Resilience. Well-typed classes are resilient to Byzantine principals. In par-

ticular, the integrity and availability types that the type system associates with a method

characterize the resilience of its integrity and availability to Byzantine principals. The in-

tegrity of the method is resilient to any Byzantine attack that is subsumed by the integrity

type of (the return value of) the method. Similarly, the availability of the method is resilient

to any Byzantine attack that is subsumed by its integrity and availability types.

41

Integrity Resiliency. If the Byzantine principals are subsumed by the integrity

type, then the results of distributed executions is the same value as the sequential execution.

More precisely, if the sequential semantics evaluates the client method call to the value v,

and the set of Byzantine principals B is subsumed by the integrity type i of (the return value

of) the method, then any distributed execution of the method call that results in a value,

results in v as well. For example, in Figure 2.1.(a) and (b), the integrity of the return type

τ of transfer is P2(A)×∪P1(B). Therefore, the result of a distributed execution of transfer

is the same as its sequential execution even if two A and one B principals are Byzantine.

Theorem 5 (Integrity Resilience) For all v, Γ, O, M, C, i, B, P, and v′, if

〈m0(v0), S0〉 →∗ 〈v, 〉,

Γ,O,M ` C, Γ(m0) = , → 〈 , i, 〉, and i v {B},

〈P0, S0, ∅〉 ∗ 〈P, , 〉, and P(p0) = 〈v′, , 〉, v′ 6= ⊥,

then v′ = v.

The proof is by induction on macro-steps where a step is taken by all replicating

principals before the next step is taken. For every execution, there is a corresponding

macro-step execution. A macro-step preserves the invariant that the expression of every

non-Byzantine principal has more integrity than i, and there is a sequential execution from

the initial call to that expression. In the case for execution of a this-method call, we show

that the request is received from at least one non-Byzantine principal and use the invariant

for that principal.

Availability Resiliency. If the Byzantine principals are subsumed by the integrity

and availability types, then a distributed execution can make progress and results in the same

42

value as the sequential execution. More precisely, if the sequential semantics evaluates the

client method call to the value v, and the set of Byzantine principals B is subsumed by the

integrity i and availability a types of (the return value of) the method, then a distributed

execution results in v as well. For example, in Figure 2.1.(a) and (b), the integrity and

availability of the return type τ of transfer are P2(A) ×∪ P1(B), and P1(A) ×∪ P1(B)

respectively. Therefore, a distributed execution of transfer results in the same value as its

sequential execution, even if one A and one B principals are Byzantine.

Theorem 6 (Availability Resilience) For all v, Γ, O, M, C, i, a, B, and P, if

〈m0(v0), S0〉 →∗ 〈v, 〉,

Γ,O,M ` C, Γ(m0) = , → 〈 , i, a〉, and i t a v {B},

then there exists P such that

〈P0, S0, ∅〉 ∗ 〈P, , 〉, and P(p0) = 〈v, , 〉.

The set of Byzantine principals should be subsumed by not only the availability

type a but also the integrity type i so that the storage quorum systems of the objects keep

their quorum intersection and return sound values. Compromised return values can drift

the execution to paths that do not match the sequential execution, and can even lead to

non-termination.

We note that while Theorem 4 states the safety property that a typed method

does not access objects that are less available than its type, Theorem 6 states the liveness

property that it makes progress despite Byzantine principals that are not as strong as its

integrity and availability types.

43

2.8 Constraint Solving

We translate the constraints C to the theory of linear arithmetic. Let the number

of principal classes (trust domains) be n and let Pj denote the set of principals of class

j. For example, in Figure 2.1, n is 3, and the principal classes P0, P1 and P2 are A, B

and C = {p0}. We represent a confidentiality value c as a tuple 〈c0, c1, .., cn−1〉 where each

cj represents an integer variable with the value 1 or 0. The principal class j is trusted or

untrusted if the value of cj is 1 or 0 respectively.

We represent a set of hosting principals H as subsets of given sizes of the principal

classes. The hosting principals H are represented as a tuple where Hj represents the

number of hosting principal from the class j. Similarly, we represent a quorum system Q

or a resiliency value B as subsets of certain sizes of the principal classes. For example, in

Figure 2.1.(a), the availability of τ is P2(A)×∪P1(B) that is all the subsets with 2 principals

from A and 1 principals from B. This can be succinctly represented as the tuple 〈2, 1, 0〉.

In general, we represent the set of subsets s = Ps0(P0) ×∪ Ps1(P1) ×∪ .. ×∪ Psn−1(Pn−1)

as 〈s0, s1, .., sn−1〉. We let a quorum system Q (or resiliency value B) be the union of n

such sets: Q = ∪i∈{0,1,..,n−1}〈Qij0 , Qij1 , .., Qijn−1〉. The indices i range over n tuples. In

the tuple with index i, the number of principals from class j is Qij . Having n such tuples

keeps the space of quorums tractable, and is expressive enough to capture common quorum

systems. For example, the quorum system P4(P0) ∪ P5(P1) ∪ P2(P2) is represented as

〈4, 0, 0〉 ∪ 〈0, 5, 0〉 ∪ 〈0, 0, 2〉 that is all the subsets of size 4 from P0, of size 5 from P1, and

of size 2 from P2. Thus, each quorum system Q or resiliency value B can be represented by

n2 variables.

44

We now define the translation of two constraints. (The translation of all the

constraints is available in the appendix.) Each constraint is translated to a constraint of

size at most O(n4). CIntegrity(Q) v B .
∧
i

∧
i′

∨
j

Qij > Bi′j

Availability(Q,H) v B .
∧
i′

∨
i

∧
j

Qij > 0→ Qij ≤ Hj −Bi′j

In the first rule, the assertion states that none of the quorums of Q is contained

in a Byzantine set of B. More precisely, for each tuple i in Q, and tuple i′ in B, for at

least one of the indices (principal classes) j, Qij is more than Bi′j . In the second rule, the

assertion states that for every Byzantine set b in B, there is at least one quorum q in Q

that falls inside the hosts H and doesn’t intersect b. More precisely, for each tuple i′ in B,

there is a tuple i in Q such that for all indices j, if Qij is non-zero, it is less than or equal

to Hj minus Bi′j .

We minimize the number principals in the host sets and quorum systems to reduce

the load. Let M = [m 7→ 〈H,Q〉] and O = [o 7→ 〈H ′, Q′, Q′′〉]. The optimization constraint

is min
∑
j Hj +H ′j +

∑
i

∑
j Qij +Q′ij +Q′′ij that minimizes the size of hosts and quorums.

For example, in our running example, the one-time transfer, for the given specification in

Figure 2.1.(a), type inference can find the correct placement that we saw in Figure 2.1.(d). If

we add the minimization constraint, the more efficient placement 〈A1..5, P4(A1..5), P3(A)〉

for r1 can be found; it has 5 hosts and quorums of size 4.

2.9 Implementation and Experiments

We developed a tool called Hamraz and experimented with multiple resiliency

specifications for six use-cases on a cluster of nodes. The experiments show that Hamraz

45

0 1 2 3 4 5 6

100

150

200

250

(a) 〈6 : 1〉@24
R
es
p
on

se
ti
m
e
(m

s)
One-time Transfer

0 2 4 6 8 10
100

150

200

250

300

350
(b) 〈5 : 5 : 0〉@34

Ticketing System

0 1 2 3 4 5

150

200

250

300

(c) 〈5 : 1 : 1〉@25

Salary Averaging

0 1 2 3 4 5

150

200

250

300

(d) 〈5 : 2 : 2 : 2〉@42

Friend Map

0 1 2 3 4 5 6

50

60

70

80
(e) 〈1 : 1 : 6〉@28

leader failure
random failure
follower failure

Oblivious Transfer

〈1
: 1
〉@

9

〈2
: 1
〉@

12

〈3
: 1
〉@

15

〈4
: 1
〉@

18

〈5
: 1
〉@

21

〈6
: 1
〉@

24

50

60

70

80

90

100

(f)

R
es
p
on

se
ti
m
e
(m

s)

〈1
: 1
: 0
〉@

10

〈2
: 2
: 0
〉@

16

〈3
: 3
: 0
〉@

22

〈4
: 4
: 0
〉@

28

〈5
: 5
: 0
〉@

34
60

80

100

120

140

160
(g)

〈1
: 1
: 1
〉@

13

〈2
: 1
: 1
〉@

16

〈3
: 1
: 1
〉@

19

〈4
: 1
: 1
〉@

22

〈5
: 1
: 1
〉@

25

100

120

140

160

180

200

220

(h)

〈0
: 2
: 2
: 2
〉@

22

〈1
: 2
: 2
: 2
〉@

26

〈2
: 2
: 2
: 2
〉@

30

〈3
: 2
: 2
: 2
〉@

34

〈4
: 2
: 2
: 2
〉@

38

〈5
: 2
: 2
: 2
〉@

42

100

120

140

160

180

200

(i)

〈1
: 1
: 1
〉@

13

〈1
: 1
: 2
〉@

16

〈1
: 1
: 3
〉@

19

〈1
: 1
: 4
〉@

22

〈1
: 1
: 5
〉@

25

〈1
: 1
: 6
〉@

28
20

40

60

80

100 (j)

normal
faulty

Figure 2.10: Top row: Response time for increased faults. Bottom row: Response time for
increased resiliency. Pi(A) ×∪ .. ×∪ Pk(Z) is denoted as 〈i, .., k〉@n where n is the total
number of principals.

can successfully infer the placements and replications for the given resiliency specifications.

Further, it generates systems that can gracefully tolerate injected faults that are as strong

as the resiliency specifications, and it can adjust the level of replication according to the

resiliency specifications. We make Hamraz publicly available as open-source software.

Implementation. Hamraz is implemented in Java in two parts: the synthesizer

and the runtime. The synthesizer closely follows the partitioning and type inference system

of section 2.4 and section 2.6, and the runtime closely follows the distributed operational

semantics of section 2.5. We used the Z3 SMT solver (v. 4.8.10) [144] for constraint solving

and optimization. We implemented communication quorum systems using SSL StartTLS

from the Netty library [11], and storage quorum systems for field objects using the BFT-

SMaRt library [66].

Platform. The experiments are done on a high-performance cluster with Intel

Broadwell CPUs with 4 cores, 2GB of RAM and CentOS-7 Linux x86 64 3.10.0. JDK is

OpenJDK RE 18.9. The runtime is executed for each principal on a separate node of the

46

PT (s) CN GT (ms) ST (s) TT (s)

One-time Transfer 0.03 181 10.6 6.08 6.12

Ticket System 1.18 525 12.60 214.46 215.65

Oblivious Transfer 0.04 203 14.6 9.96 10.01

Auction 36.43 681 10.60 22.53 58.98

Friend Map 0.03 302 13.2 359.94 359.98

Salary Sharing 26.74 611 14.2 160.38 187.13

Table 2.1: Partitioning and Type Inference. PT: Partitioning time, CN: Constraints num-
ber, GT: Constraint generation time, ST: Constraint solving time, TT: Total time

cluster. The nodes are connected with 56 Gb/s InfiniBand. Each reported number is the

arithmetic mean of 5 repetitions. Each repetition is the average of the response time for

150 method calls.

Use-cases. We experiment with six use-cases: one-time transfer that we saw in

section 5.2, oblivious transfer [451], ticketing system, auction system, friend map [299] and

privacy-preserving salary averaging [308].

Consider the sets of principals A to Z. In our plots, we concisely represent a

resiliency specification Pi(A)×∪ ..×∪ Pk(Z) as 〈i, .., k〉@n where n is the total number of

principals that is (3× i+1)+ ..+(3×k+1) plus 1 for the client. We use the same resiliency

specification for both integrity and availability.

Partitioning and Type Inference. Hamraz successfully partitioned and

inferred the placement and replication for each field object and method of the above use-

cases. Table 2.1 shows the detailed execution times. The process takes less than 6 minutes.

We see that the process is often dominated by constraint solving. However, when the

use-case has a large number of object-method calls (e.g. the Auction use-case), the CPS

transformation takes longer and the partitioning time is a larger faction.

47

Increasing Faults. In this experiment, we validate the hypothesis that Hamraz

generates replicated systems that are as resilient as the specifications require. In this ex-

periment (the first row of Figure 2.10), the specification is fixed and is written in the plot

of each use-case. We consider the effect of increasing the number of injected faults on the

response time. Injected faults are randomly selected from three types: crash fault, cor-

rupted payload, and delayed response. In these plots, we increase the number of faults for

the principals (a) A, (b) A and B at the same time, (c) A, (d) A, and (e) C, from 0 to

their specified resiliency. In plots (a)-(d), the failing principals host objects but in plot

(e), the failing principals host only methods. Each plot shows three lines for three fault

injection scenarios: solid: failing only leaders, dotted: failing only followers, and dashed:

failing randomly.

In all the failure scenarios across the use-cases, the resulting systems can gracefully

tolerate the injected faults. Random failures increase the response time between 3 and 42

percent. Further, we observe that tolerating failing leaders is considerably slower than

failing followers due to leader reconfiguration. We observe in plots (a)-(d) that increasing

the faults increases the response time. On the other hand, in plot (e), the increase in

response time is negligible (overlapping lines). This is due to the fact that in contrast to

principals that host objects (plots (a)-(d)), tolerating failure of principals that host methods

(plot (e)) does not require reconfiguration.

Increasing Resiliency. In the following two experiments, we validate the hy-

pothesis that Hamraz can adjust replication according to the strength of the specification.

In the second row of Figure 2.10, we consider the effect of increasing resiliency on the

48

response time in normal (solid line) and faulty executions (dashed line) with maximum

number of faults. Higher resiliency requires more replicas and more communication be-

tween them that affects the overall response time. If a fixed number of replicas was used,

the response time would be flat.

Increasing the Load. In the auction use-case, if the initial offer o is less than

350, then A immediately wins with the offer o − 1. Otherwise, the two agents beat each

other’s offers o − 350 times until A offers 349 and wins. Figure 2.11 shows the response

time for increased initial offers. Larger initial offers lead to more object-calls and increased

load. We experimented with three specifications where the resiliency for A and B is doubled

from one to the next. We observe that as the load increases, the response time of more

resilient systems grows slightly faster. More resilient system require more principals and

more coordination.

2.10 Related Works

Information flow control [147, 393, 374, 426, 347, 45, 59, 112, 364, 242] has been

widely used to enforce confidentiality and integrity policies. It has been applied to concur-

rent [406] and distributed [392] programs on trusted hosts. Further, Fabric [299] supports

programming distributed systems on heterogeneously trusted hosts, and enforces confiden-

tiality and integrity types, but doesn’t provide Byzantine replication and doesn’t enforce

availability policies. Several previous works [92, 356, 424, 129, 125, 126, 352] automatically

partition applications to multiple tiers, often to the web server and client tiers, and enforce

confidentiality and integrity, but not availability. Jif/split [451, 455] partitions programs

49

340 350 360 380 400
0

0.2
0.4
0.6
0.8

1

Initial Offer
R

es
p

on
se

ti
m

e
(s

) Auction

〈8 : 4 : 0〉@40
〈4 : 2 : 0〉@22
〈2 : 1 : 0〉@13

Figure 2.11: Response time for increased load

and replicates code partitions and data. It can replicate commitments instead of cleartexts

to increase integrity without reducing confidentiality. Further, its secure communication

assumptions between partitions were later lifted by a cryptographic back-end [181]. Ptr-

Split [301] splits programs with C++ pointers. However, these projects do not provide

availability; in fact, Jif/split may reduce availability as all replicas need to be available.

Another work [46] synthesizes cryptographic implementations for distributed applications;

however, it does not consider availability polices.

Later, information flow type systems were applied to enforce availability policies

[456] but assumed availability of the computation platform and did not consider Byzantine-

resilient replication and their type lattices. Similarly, RMS [298] adjusts the placement

and replication of objects based on availability and performance specifications; however,

it does not tolerate Byzantine failures. Qimp [457] provides a language construct for

clients to run an expression on references at a use-specified quorum, and type-checks

availability guarantees. (In addition, when it is provable that integrity is compromised,

it can use a default value to provide low integrity but high availability.) In contrast, this

50

paper allows the user to describe a class composed of field objects and methods, with

confidentiality, integrity and particularly availability type policies, and without distribution

details. It then automatically partitions the class and infers adequate Byzantine quorum

systems for methods and field objects to enforce the three polices.

State-machine replication is a well-known technique often used to tolerate crash

failures [261, 99, 359, 358]. Byzantine failures were coined in the Byzantine Generals agree-

ment problem [268] together with a few early protocols for Byzantine replication. Later, the

more practical PBFT protocol [114], and an abundant number of optimized variants such as

Q/U [13], HQ [140], Zyzzyva [249], Stewart [30], ABSTRACT [42], MinBFT [422], Cheap-

BFT [238], ZZ [436], UpRight [131], BFT2F [286], Aardvark [133] and HoneyBadgerBFT

[337] appeared. Further, researchers verified the replication protocols [362, 152, 376, 241,

231, 119, 447, 186, 217, 377, 292]. However, these projects only consider a monolithic

replicated system. In contrast, this project supports classes whose methods are imple-

mented based on multiple objects. It partitions each method and separately replicates each

partitioned method and field object, and yet guarantees end-to-end non-interference and

resiliency.

2.11 Conclusion

This paper presented a theoretical framework and a system for trustworthy dis-

tributed systems. It includes a lattice model of resiliency, a security-typed object-based

language to capture end-to-end type polices for the three aspects of trustworthiness, a

partitioning transformation, operational semantics, an information flow type inference sys-

51

tem, and quorum constraint solving to automatically construct partitioned and replicated

systems that guarantee non-interference and resiliency properties especially for availability.

52

2.12 Constraint Solving

Core Constraints. The constraints C that the type system generates are of

the following forms.

C := Constraint

| τ v τ C1

| τ t τ v τ C2

| τ t τ t τ v τ C3

| c v c′ C4

| i v i′ C5

| a v a′ C6

| tc′m v ∪Q C7

| CIntegrity(Q) v uim C8

| SIntegrity(Q) v ui′m C9

| Availability(Q,H) v ua′m C10

| Availability(Q,H) v a C11

The constraints C can be reduced to the core constraints A below. By distribution

of t over v and then decomposing types to their three elements, the constraints C1, C2

and C3 is reduced to A1 and A2. The constraint C4 is A1. The constraint C5 and C6 are

A2. By distribution of t over v, the constraint C7, is reduced to A3. By distribution of v

over u, the constraints C8, C9 and C10 are reduced to A4, A5 and A6 respectively.

53

A := Core Constraint

| c v c′ A1

| B v B′ A2

| c v ∪Q A3

| CIntegrity(Q) v B A4

| SIntegrity(Q) v B A5

| Availability(Q,H) v B A6

Translation. We translate the constraints C to the theory of linear arithmetic.

Let the number of principal classes (trust domains) be n and let Pj denote the set of

principals of class j. For example, in Figure 2.1, n is 3, and the principal classes P0, P1 and

P2 are A, B and C = {p0}. We represent a confidentiality value c as a tuple 〈c0, c1, .., cn−1〉

where each cj represents an integer variable with the value 1 or 0. The principal class j is

trusted or untrusted if the value of cj is 1 or 0 respectively.

We represent a set of hosting principals H as subsets of given sizes of the principal

classes. The hosting principals H are represented as a tuple where Hj represents the

number of hosting principal from the class j. Similarly, we represent a quorum system Q

or a resiliency value B as subsets of certain sizes of the principal classes. For example, in

Figure 2.1.(a), the availability of τ is P2(A)×∪P1(B) that is all the subsets with 2 principals

from A and 1 principals from B. This can be succinctly represented as the tuple 〈2, 1, 0〉.

In general, we represent the set of subsets s = Ps0(P0) ×∪ Ps1(P1) ×∪ .. ×∪ Psn−1(Pn−1)

as 〈s0, s1, .., sn−1〉. We let a quorum system Q (or resiliency value B) be the union of n

such sets: Q = ∪i∈{0,1,..,n−1}〈Qij0 , Qij1 , .., Qijn−1〉. The indices i range over n tuples. In

54

the tuple with index i, the number of principals from class j is Qij . Having n such tuples

keeps the space of quorums tractable, and is expressive enough to capture common quorum

systems. For example, the quorum system P4(P0) ∪ P5(P1) ∪ P2(P2) is represented as

〈4, 0, 0〉 ∪ 〈0, 5, 0〉 ∪ 〈0, 0, 2〉 that is all the subsets of size 4 from P0, of size 5 from P1, and

of size 2 from P2. Thus, each quorum system Q or resiliency value B can be represented by

n2 variables. We note that duplicating a tuple does not change the represented set.

We now define the translation of constraints to the theory of linear arithmetic.

First, we generate the following constraints for each variable c, H, Q, and B.

Variable c .
∨
j

cj = 0 ∨ cj = 1

Variable H .
∧
j

0 ≤ Hj ≤ |Pj |

Variable Q .
∧
i

∧
j

0 ≤ Qij ≤ |Pj |

Variable B .
∧
i

∧
j

0 ≤ Bij ≤ |Pj |

We now define the translation of each constraint A. Each constraint is translated

to a constraint of size at most O(n4).

55

c v c′ .
∧
j

c′j = 1→ cj = 1 T1

B v B′ .
∧
i′

∨
i

∧
j

B′i′j ≤ Bij T2

c v ∪Q .
∧
i

∧
j

Qij > 0→ cj = 1 T3

CIntegrity(Q) v B .
∧
i

∧
i′

∨
j

Qij > Bi′j T4

SIntegrity(Q) v B for O(o) = 〈H,Q, 〉 . T5

∧
i1

∧
i2

∧
i′

∨
j

Qi1j +Qi2j −Hj > Bi′j

Availability(Q,H) v B . T6

∧
i′

∨
i

∧
j

Qij > 0→ Qij ≤ Hj −Bi′j

The translation rule T1 translates a flow relation between two confidentiality vari-

ables c and c′. The assertion states that the principal classes that are authorized by c′ are

authorized by c as well. More precisely, for each index j (principal class) of the tuples c

and c′, if c′j is 1 then cj is 1 as well.

56

The translation rule T2 translates a flow relation between two resiliency variables

B and B′. The assertion states that every set in B′ is a subset of a set in B. More precisely,

for each tuple i′ in B′, there is a tuple i in B such that for each index j (principal class),

B′i′j is less than or equal to Bij .

The translation rule T3 translates the flow relation from a confidentiality variable

c to the union of the quorums of a quorum system Q. The assertion states that if a quorum

in Q has a principal in class j, then the class j is authorized by c as well. More precisely,

if there is a tuple i in Q whose index j is greater than zero, then cj is 1.

The translation rule T4 translates the constraint that the integrity of the commu-

nication quorum system Q is stronger than a resiliency variable B. The assertion states

that none of the quorums of Q is contained in a failure set of B. More precisely, for each

tuple i in Q, and tuple i′ in B, at least in one of the indices (principal classes) j, Qij is

more than Bi′j .

The translation rule T5 translates the constraint that the integrity of the storage

quorum system Q is stronger than a resiliency variable B. The assertion states that the

intersection of no two quorums of Q is contained in a failure set of B. More precisely, for

each pair of tuples i1 and i2 in Q, and tuple i′ in B, for at least one of the indices (principal

classes) j, the sum of Qi1j and Qi2j minus the size of the principal class j in the hosting

principals H is more than Bi′j .

The translation rule T6 translates the constraint that the availability of the quorum

system Q on the set of hosts H is stronger than a resiliency variable B. The assertion states

that for every Byzantine set in B, there is at least one quorum in Q that falls inside the

57

hosts H and does not intersect the Byzantine set. More precisely, for each tuples i′ in B,

there is a tuple i in Q such that for every index (principal class) j, Qij is less than or equal

to Hj minus Bi′j . The implication with the premise Qij > 0 requires the condition above

for only the classes j that the quorums Qi have a member from. Otherwise, when Qij = 0,

no host in principal class j is needed but the condition fails if Hj < Bi′j .

Optimization. We want to satisfy the constraints above while minimizing

the number of hosts. Replication on fewer hosts reduces the load on the system. Let

M = [m 7→ 〈H,Q〉] and O = [o 7→ 〈H ′, Q′, Q′′〉]. The optimization constraint is

min
∑
j

Hj +H ′j +
∑
i

∑
j

Qij +Q′ij +Q′′ij

It minimizes the number of principals that host methods and objects, and the

number of principals in the communication and storage quorum systems. Weighted factors

can be added to the formula incorporate their relative load.

We note that duplicating a tuple in the representation of a quorum system does

not change the represented quorum system. If there are duplicate tuples in the solution

for a quorum system variable Q (or resiliency variable B), a post-process filters them and

keeps only one instance of each tuple.

58

2.13 Security Guarantees

2.13.1 Confidentiality Non-Interference

Theorem 7 (Confidentiality Non-interference) For all Γ, O, M, C, B, c, S1, S2, P′1,

P′2, L, v and v′, if

Γ,O,M ` C, and Γ(m0) = , → 〈c, , 〉,

S1 |Γ c = S2 |Γ c, and SIntegrity(O |Γ c) v {B},

〈P0, S1, ∅〉
L

∗
〈P′1, , 〉, and 〈P0,S2, ∅〉

L

∗
〈P′2, , 〉,

P′1(p0) = 〈v, , 〉, and P′2(p0) = 〈v′, , 〉,

then v = v′.

Proof. By induction on the steps
L

∗

of the first execution, and Lemma 11 and

Lemma 12.

Definition 8 For all P, Γ, O, M, B and c,

P ≤Γ,O,M,B c iff

∀p, e.

P(p) = 〈e, , 〉 ∧ p 6∈ B ⇒

∃c′. Γ,O,M, , ` e : 〈c′, , 〉 ∧ c′ v c

59

Definition 9 For all N, Γ, and c, N ≤Γ c iff

∀p,m, id, v, c′.

N(p, id,m, v) 6= ∅ ∧

Γ(m) = , → 〈c′, , 〉 ⇒

c′ v c

Definition 10 For all P, P′, and B, P ≡B P′ iff

∀p. p 6∈ B ⇒ P(p) = P′(p)

Lemma 11 For all Γ, O, M, B, C, c, P, S, N, P′, S′, and N′, if

Γ,O,M ` C,

Γ(m0) = , → 〈c, , 〉,

P ≤Γ,O,M,B c,

N ≤Γ c,

〈P, S,N〉 l
 〈P′,S′,N′〉,

then

P′ ≤Γ,O,M,B c, and N′ ≤Γ c

Proof. By case analysis on the step
l
 . And then inversion on the type of the

stepping expression and then Lemma 38.

60

Case Op:

Trivial. By the rule ValT, values have the ⊥ confidentiality. By the rules Op and OpT,

the confidentiality stays as ⊥.

Case Seq:

By the rules Seq and SeqT, confidentiality can only decrease.

Case IfThen:

By the rules If and IfT, the type changes from the join of two types to one of them.

Confidentiality can only decrease.

Case IfElse:

Similar to the case IfThen.

Case ThisCall:

We note that this-calls are tail calls. Therefore, R = [].

For P: The expression in the post-state is the value ⊥. The confidentiality of a value is ⊥.

Thus, the confidentiality of the result is less than c.

For N: The expression m(v) is typed with confidentiality less than c. Thus, by the rule

ThisCallT, the confidentiality of the return type of m is less than c.

Case ThisCallExec:

The invariant on P is proved using the invariant on N.

Case ThisCallByz:

By Lemma 35, the confidentiality of the return type of all the split methods is less than c.

Case ObjCall:

The result is a value. The confidentiality of a value is ⊥. Confidentiality can only decrease.

61

Case ObjReCall:

Similar to ObjCall.

Case ObjCallByz:

Similar to ObjCall.

Lemma 12 For all C, Γ, O, M, C, B, c, P1, P′1, S1, N, P2, P′2, S′1, N′, S2, S′2 and N′2, if

Γ,O,M ` C,

SIntegrity(O |Γ c) v {B},

P1 ≤Γ,O,M,B c,

〈P1, S1,N〉
l
 〈P′1,S′1,N′〉,

P1 ≡B P2,

〈P2, S2,N〉
l
 〈P′2,S′2,N′2〉,

S1 |Γ c = S2 |Γ c,

then

P′1 ≡B P′2, N′2 = N′, and S′1 |Γ c = S′2 |Γ c.

Proof. Case analysis on the step 〈P, S1,N〉
l
 〈P′, S′1,N′〉:

The only interesting cases are ObjCall, ObjReCall and ObjCallByz. The rest are

trivial.

Case ObjCall:

If there is no process in {p} that is not in B, then the expressions of these processes in the

post-states are not important. Further, if the state of the accessed object in the two steps

62

are the same in the pre-state, they are the same in the post-state as well. If there is such a

non-Byzantine process in p, from p 6∈ B and P ≤Γ,O,M,B c, we have that the confidentiality

type of the expression of p is less than c. By Lemma 39, the redex o.m(v) is less confidential

than c. By the rules ObjCallT and FieldT, we have that if Γ(o) = 〈c′, , 〉 then c′ v c.

From c′ v c and S1 |Γ c = S2 |Γ c, we have S1(o) = S2(o). Therefore, by the update in the

rule ObjCall, the resulting states are equal: S′1(o) = S′2(o) and the resulting expressions

v′ in the two steps are the same.

Case ObjReCall:

Similar to the case ObjCall, we can show that if the process p is non-Byzantine, then

S1(o) = S2(o). Therefore, the resulting expressions v′ of the two steps are the same.

Case ObjCallByz:

If p ∈ B, then its post-state is not important.

If p 6∈ B, similar to the case ObjCall, we can show that if Γ(o) = 〈c′, , 〉 then c′ v c.

Thus, o ∈ O |Γ c. Therefore, from SIntegrity(O |Γ c) v {B}, for O(o) = 〈 , Q, 〉, we have

SIntegrity(Q) v

{B} . This is in contradiction with the assumption of this step.

2.13.2 Integrity Non-Interference

Theorem 13 (Integrity Non-interference) For all Γ, O, M, C, B, i, S1, S2, P′1, P′2,

L, v and v′, if

Γ,O,M ` C, and Γ(m0) = , → 〈 , i, 〉,

S1 |Γ i = S2 |Γ i, and SIntegrity(O |Γ i) v {B},

〈P0, S1, ∅〉
L

∗
〈P′1, , 〉, and 〈P0,S2, ∅〉

L

∗
〈P′2, , 〉,

63

P′1(p0) = 〈v, , 〉, and P′2(p0) = 〈v′, , 〉,

then v = v′.

Proof. By induction on the steps
L

∗

of the first execution, and Lemma 16 and Lemma 17.

Definition 14 For all P, Γ, O, M, i and B,

P ≥Γ,O,M,B i iff

∀p, e.

P(p) = 〈e, , 〉 ∧ p 6∈ B ⇒

∃i′. Γ,O,M, , ` e : 〈 , i′, 〉 ∧

i′ v i

Definition 15 For all N, Γ, and i,

N ≥Γ i iff

∀p,m, id, v, i′.

N(p, id,m, v) 6= ∅ ∧

Γ(m) = , → 〈 , i′, 〉 ⇒

i′ v i

64

Lemma 16 For all Γ, O, M, B, C, i, P, S, N, P′, S′, and N′, if

Γ,O,M ` C, Γ(m0) = , → 〈 , i, 〉,

P ≥Γ,O,M,B i, N ≥Γ i,

〈P, S,N〉 l
 〈P′,S′,N′〉, then

P′ ≥Γ,O,M,B i, and N′ ≥Γ i

Proof. Similar to Lemma 11. In contrast to confidentiality that decreases, integrity

increases with the steps.

Lemma 17 For all C, Γ, O, M, C, B, i, P1, P′1, S1, N, P2, P′2, S′1, N′, S2, S′2 and N′2,

if

Γ,O,M ` C,

{B} v SIntegrity(O |Γ i),

P1 ≥Γ,O,M,B i,

〈P1, S1,N〉
l
 〈P′1,S′1,N′〉,

P1 ≡B P2,

〈P2, S2,N〉
l
 〈P′2, S′2,N′2〉,

S1 |Γ i = S2 |Γ i,

then

65

P′1 ≡B P′2,

N′2 = N′, and

S′1 |Γ i = S′2 |Γ i.

Proof. Similar to Lemma 12. In contrast to the fact that objects with confidentiality

lower than c have the same state, we have that objects with integrity higher than i have

the same state.

2.13.3 Availability Non-Interference

Theorem 18 (Availability Non-interference) For all Γ, O, M, C, B, a, S1, S2, P′1,

P′2, L, v and v′, if

Γ,O,M ` C, and Γ(m0) = , → 〈 , , a〉,

S1 |Γ a = S2 |Γ a, and SIntegrity(O |Γ a) v {B},

〈P0, S1, ∅〉
L

∗
〈P′1, , 〉, and 〈P0,S2, ∅〉

L

∗
〈P′2, , 〉,

P′1(p0) = 〈v, , 〉, and P′2(p0) = 〈v′, , 〉,

then v = v′.

Proof. By induction on the steps
L

∗

of the first execution, and Lemma 21 and Lemma 22.

Definition 19 For all P, Γ, O, M, a and B,

P ≥Γ,O,M,B a iff

∀p, e.

66

P(p) = 〈e, , 〉 ∧ p 6∈ B ⇒

∃a′. Γ,O,M, , ` e : 〈 , , a′〉 ∧

a′ v a

Definition 20 For all N, Γ, and a,

N ≥Γ a iff

∀p,m, id, v, a′.

N(p, id,m, v) 6= ∅ ∧

Γ(m) = , → 〈 , , a′〉 ⇒

a′ v a

Lemma 21 For all Γ, O, M, B, C, a, P, S, N, P′, S′, and N′, if

Γ,O,M ` C, Γ(m0) = , → 〈 , , a〉,

P ≥Γ,O,M,B a, N ≥Γ a, 〈P, S,N〉 l
 〈P′,S′,N′〉,

then

P′ ≥Γ,O,M,B a, and N′ ≥Γ a

Proof. Similar to Lemma 16.

67

Lemma 22 For all C, Γ, O, M, C, B, a, P1, P′1, S1, N, P2, P′2, S′1, N′, S2, S′2 and N′2,

if

Γ,O,M ` C,

{B} v SIntegrity(O |Γ a),

P1 ≥Γ,O,M,B a,

〈P1, S1,N〉
l
 〈P′1,S′1,N′〉,

P1 ≡B P2,

〈P2, S2,N〉
l
 〈P′2, S′2,N′2〉,

S1 |Γ a = S2 |Γ a,

then

P′1 ≡B P′2,

N′2 = N′, and

S′1 |Γ a = S′2 |Γ a.

Proof. Similar to Lemma 22.

2.13.4 Integrity Resilience

Theorem 23 (Integrity Resilience) For all v, Γ, O, M, C, i, B, P, and v′, if

〈m0(v0), S0〉 →∗ 〈v, 〉,

Γ,O,M ` C, Γ(m0) = , → 〈 , i, 〉, and i v {B},

〈P0, S0, ∅〉 ∗ 〈P, , 〉, and P(p0) = 〈v′, , 〉, v′ 6= ⊥,

then v′ = v.

68

Proof. Immediate from Lemma 29 and Lemma 30.

Definition 24 An execution is macro-step if a step is taken by all replicating processes

before the next step is taken.

Lemma 25 For every execution, 〈P0,S0, ∅〉
L

∗
〈P,S,N〉, there is a macro-step execution

〈P0, S0, ∅〉
L′

∗
〈P, S,N〉 where L′ is a permutation of L.

Proof. The macro-step execution can be incrementally constructed from the given exe-

cution by commuting step to the left. The steps taken by Op, Seq, IfThen, IfElse, and

ObjCallByz only change the expression of the current process. Therefore, they can freely

commute with steps of other processes. A step taken by ThisCall and ThisCallByz,

can be moved left. Moving them left only populates the set of messages N earlier; these

messages stay in N before they are consumed by a subsequent ThisCallExec step. A step

taken by ThisCallExec can be moved left until right after the ThisCall steps that issue

the call. They cannot be moved further left as they will not stay enabled due to missing

messages. A step taken by ObjCall can be taken left because the previous call to the

same object if any is already executed in the steps that are taken to the left. A step taken

by ObjReCall can be taken left until right after the ObjCall step that first executes the

call. It cannot be moved further left as it will not stay enabled due to missing identifier in

the recorded calls.

69

Definition 26 A step of a process is a tail step if it is not followed by a this-call. An

execution is tail-cut when its tail steps are removed.

Lemma 27 For every execution, 〈P0, S0, ∅〉
L

∗
〈P, S,N〉, and its tail-cut execution 〈P0,S0, ∅〉

L′

∗
〈P′,S′,N〉, if P(p0) = 〈v, , 〉, v 6= ⊥, then P′(p0) = 〈v, , 〉.

Proof. The computation of tail steps are only local to the executing process. Therefore,

removing them does not have any effect on the end result of the execution.

Definition 28 For all P, S, Γ, O, M, B, and i,

P,S ≥Γ,O,M,B i iff ∀p, e.

P(p) = 〈e, , 〉 ∧ p 6∈ B ∧ e 6= ⊥ ⇒

∃i′. Γ,O,M, , ` e : 〈 , i′, 〉 ∧ i′ v i ∧

〈m0(v0), S0〉 →∗ 〈e, S〉

where

let [o 7→ 〈s, r〉] := S in S = [o 7→ s].

70

Lemma 29 For all Γ, O, M, C, B, i, P, and v, if

Γ,O,M ` C,

Γ(m0) = , → 〈 , i, 〉,

i v B

〈P0, S0, ∅〉 ∗ 〈P, , 〉, and

P(p0) = 〈v, , 〉, v 6= ⊥

then 〈m0(v0), S0〉 →∗ 〈v, 〉.

Proof. Based on Lemma 25 and Lemma 27, we consider a macro-step tail-cut execution

that results in the value v.

The proof is by induction on the macro-steps of the macro-step execution. The

macro-steps are (1) single Op, Seq, IfThen, IfElse, or ObjCallByz steps, (2) the se-

quence of an ObjCall step and multiple ObjReCall steps for the same object call, and (3)

a sequence of ThisCall and ThisCallByz steps and then a sequence of ThisCallExec

steps for the same this-call. The inductive invariant is defined in Definition 28. This invari-

ant is a generalization of the invariant of Lemma 16. It adds the relation with the sequential

execution to the invariant. The following proof focuses on the added conditions.

Macro steps 1:

Case Op:

Immediate from the rules Op and SOp.

Case Seq:

71

Immediate from the rules Seq and SSeq.

Case IfThen:

Immediate from the rules IfThen and SIfThen.

Case IfElse:

Immediate from the rules IfElse and SIfElse.

Case ObjCallByz:

Similar to the same case in Lemma 16, this case cannot happen.

Macro steps 2:

A ObjCall step and then a sequence of ObjReCall steps:

For the ObjCall step, from the conditions of the ObjCall rule for the execution of the

method call, and from the relation of the concrete state S and the abstract state S, it can

be shown that an SObjCall step can be taken for each process in {p}. For the subsequent

ObjReCall steps, from the storage of the object state and the result in the ObjCall step

and their retrieval in the ObjReCall steps, it can be shown that an SObjCall step can

be taken for each ObjReCall step.

Macro steps 3:

A sequence of ThisCall and ThisCallByz steps and then a sequence of ThisCallExec

steps for the same this-call:

The ThisCall and ThisCallByz steps add messages for this-calls to the set of messages

N. For the messages added by non-Byzantine principals in the ThisCall steps, there is a

corresponding sequential execution. That does not necessarily hold for the messages that

are added by ThisCallByz steps. To show that the method call received by a This-

72

CallExec step has a corresponding sequential execution, we need to show that there is at

least one p in the senders q′ that is not in B. LetM(m) = 〈 , {q}〉. We have that there is a

q in the {q} that is a subset of q′. From the rule MethodT, we have CIntegrity({q}) v i1

where i1 is the integrity type of the parameter. By Lemma 37, we have i1 v i. We also

have i v {B}. Therefore, we have CIntegrity({q}) v {B}. Therefore, there is at least one

process in q that is not Byzantine. Thus, there is at least one process p in q′ that is not

Byzantine.

Lemma 30 For all e, v, and v′, if

〈e, S0〉 →∗ 〈v, 〉, and

〈e, S0〉 →∗ 〈v′, 〉

then v = v′.

Proof. Immediate from induction on the steps of the shorter execution.

2.13.5 Availability Resilience

Theorem 31 (Availability Resilience) For all v, Γ, O, M, C, i, a, B, and P, if

〈m0(v0), S0〉 →∗ 〈v, 〉,

Γ,O,M ` C, Γ(m0) = , → 〈 , i, a〉, and i t a v {B},

then there exists P such that

〈P0, S0, ∅〉 ∗ 〈P, , 〉, and P(p0) = 〈v, , 〉.

Proof. The proof is by induction on the sequential steps. For each sequential step, we

73

take macro-step steps for all the replicating processes. The inductive invariant is defined in

Definition 32 below. The preservation of the integrity i and the availability a is similar to

Lemma 16 and Lemma 21.

Case SOp:

The step Op is taken for all replicating processes.

Case SSeq:

The step Seq is taken for all replicating processes.

Case SIfThen:

The step SIfThen is taken for all replicating processes.

Case SIfElse:

The step SIfElse is taken for all replicating processes.

Case SThisCall:

A sequence of ThisCall steps is taken for each non-Byzantine replicating process H.

Then, a sequence of ThisCallExec steps is taken for each target replicating process.

By the invariant, the this-calls are typed. Therefore, from the rule ThisCallT, we have

Availability(Q,H) v a1 where a1 is the availability of the parameter. From Lemma 36, we

have a1 v a2 where a2 is the availability of the return value. From the inductive invariant,

we have a2 v a. From the assumption of the theorem, we have a v {B}. Therefore, by

transitivity, we have Availability(Q,H) v {B}. Therefore, there are enough non-Byzantine

principals q′ in H to make a quorum q in Q. Therefore, the condition q ⊆ q′ in the rule

ThisCallExec is satisfied. Thus, the ThisCallExec steps can be taken.

Case SObjCall:

74

A ObjCall step is taken by each non-Byzantine replicating process H. Let O(o) =

〈Q1, Q2〉. By the invariant, the object calls are typed. Therefore, from the rule ObjCallT,

we have Availability(Q2,H) v a1 where a1 is the availability of the parameter. From the rule

FieldT, we have a1 v a2 where a2 is the availability of the return value. From the inductive

invariant, we have a2 v a From the assumption of the theorem, we have a v {B}. There-

fore, by transitivity, we have Availability(Q2,H) v {B}. Therefore, there are enough non-

Byzantine principals q′ in H to make a quorum q in Q2. Therefore, the condition {p} ⊆ Q2

in the rule ObjCall is satisfied. Further, from the FieldT rule, if Γ(o) = 〈H, i′′, a′′〉, we

have i′′ v i2, SIntegrity(Q1) v i′′, a′′ v a2, Availability(Q1, H) v a′′. From the induc-

tive invariant, we have i2 v i and a2 v a. From the assumption of the theorem, we have

i v {B}, and a v {B}. Therefore, by transitivity, we have SIntegrity(Q1) v {B}, and

Availability(Q1, H) v {B}. Therefore, the other two conditions of the rule ObjCall are

satisfied as well. Therefore, the ObjCall step can be taken.

Definition 32 For all P, S, e, Γ, O, M, H, B, i and a,

P, e, S ≥Γ,O,M,B i, a iff

∀p. p 6∈ H \ B ⇒

P(p) = 〈e, , 〉 ∧ ∃i′, a′.

Γ,O,M,H, ` e : 〈 , i′, a′〉 ∧ i′ v i ∧ a′ v a ∧

〈P0, S0, ∅〉 ∗ 〈P, , 〉 where

let [o 7→ s] := S in S = [o 7→ 〈s, 〉].

75

2.13.6 Helper Lemmas

Lemma 33 For all Γ, O, M, C, m, τ and τx, if

Γ,O,M ` C,

Γ(res) = , τ → τ ,

Γ(m) = τx, → ,

then

τx v τ .

Proof. The context type only becomes larger from its initial value at the beginning of

the method as it reaches the this-method calls. By the rule ThisCallT, both the initial

context type and the parameter type of a this-method is larger than the calling context

type. All methods transitively call the final res method. Thus, the parameter type of res

is larger than the initial context type of every this-method.

Lemma 34 For all Γ, O, M, C, m, τ and τ ′, if

Γ,O,M ` C,

Γ(res) = , τ → τ ,

Γ(m) = , → τ ′,

then

τ v τ ′.

Proof. All methods transitively call the final res method. All the this-calls are tail calls.

The proof is by induction on the length of the call sequence from m to the res method.

76

For both rules SeqT and IfT, the result of the join is more than the operands. If there

are mutually recursive functions, we consider them in one step. Consider two mutually

recursive function with return types τ ′ and τ ′′ where the former is closer to the res method.

We have τ v τ ′. Because of the mutually recursive calls, we have τ ′′ v τ ′, and τ ′ v τ ′′.

Therefore, we have τ v τ ′′.

Lemma 35 For all Γ, O, M, C, m, τ and τ ′, if

Γ,O,M ` C,

Γ(m0) = , → τ ,

Γ(m) = , → τ ′,

then

τ ′ v τ .

Proof. Similar to Lemma 34.

Lemma 36 For all Γ, O, M, C, m, τ and τ ′, if

Γ,O,M ` C,

Γ(m) = τx, τ
′ → τ ,

then

τx v τ , and

τ ′ v τ .

77

Proof. Immediate from Lemma 33, Lemma 34 and the condition τ ′ v τ in MethodT.

Lemma 37 For all Γ, O, M, C, m, m′, τ and τ ′, if

Γ,O,M ` C,

Γ(m0) = , → τ ,

Γ(m) = τx, τ
′ → ,

then

τx v τ , and

τ ′ v τ .

Proof. Immediate from Lemma 36 and Lemma 35.

Lemma 38 For all O, M, H, τx, R, e1, e2, τ1, τ2, τ , and τ ′, if

Γ,O,M,H, τx ` e1 : τ1,

Γ,O,M,H, τx ` e2 : τ2,

τ2 v τ1,

Γ,O,M,H, τx ` R[e1] : τ ,

then

Γ,O,M,H, τx ` R[e2] : τ ′,

τ ′ v τ .

78

Proof. Induction on R and then inversion on Γ,O,M,H, τx ` R[e] : τ .

R⊕ e, v ⊕R: The join result can be only smaller or the same.

R; e: The join result can be only smaller or the same.

if R then e else e: The join result can be only smaller or the same.

m(R): The smaller type of the argument still satisfies the conditions and the result type is

the same.

o.m(R): Similar to this-call case.

[]: Trivial.

Lemma 39 For all O, M, H, τx, R, e, and τ , if

Γ,O,M,H, τx ` R[e] : τ ,

then there exists τ ′ and τ ′x such that

Γ,O,M,H, τ ′x ` e : τ ′,

τ ′ v τ .

τx v τ ′x.

Proof. Induction on R. For ⊕ and ; and if, the result type is the join of operands. For

m([]) and o.m([]), conditions in FieldT and MethodT state that arguments are smaller

than the return types.

79

Chapter 3

Quorum Subsumption for

Heterogeneous Quorum Systems

3.1 Introduction

Bitcoin [350] had the promise to democratize the global finance. Globally scattered

servers validate and process transactions, and maintain a consistent replication of a ledger.

However, the nature of the proof-of-work consensus exhibited disadvantages such as high

energy consumption, and low throughput. In contrast, Byzantine replication have always

had modest energy consumption. Further, since its advent as PBFT [116], many recent

extensions [423, 338, 445, 110, 60, 94, 95] have improved its throughput. However, its

basic model of quorums is closed and homogeneous: the set of processes are fixed, and the

quorums are assumed to be uniform across processes. Thus, projects such as Ripple [397]

and Stellar [334, 307] emerged to bring heterogeneity and openness to Byzantine quorum

80

systems. They let every process declare its own set of quorums, or the processes it trusts

called slices, from which quorums are calculated.

In this paper, we first consider a basic model of heterogeneous quorum systems

where each process has an individual set of quorums. Then, we consider fundamental

questions about their properties. Quorum systems are the foundation of common distributed

computing abstractions such as reliable broadcast and consensus. We specify the expected

safety and liveness properties for these abstractions. What are the necessary and sufficient

properties of heterogeneous quorum systems to support these abstractions? Previous work

[311] noted that quorum intersection and weak availability properties are necessary for the

quorum system to implement the consensus abstraction. Quorum intersection requires that

every pair of quorums overlap at a well-behaved process. The safety of consensus relies

on the quorum intersection property of the underlying quorum system: intuitively, if an

operation communicates with a quorum, and a later operation communicates with another

quorum, a single well-behaved process in their intersection can make the second quorum

aware of the first. A quorum system is weakly available for a process if it has a quorum

for that process whose members are all well-behaved. Intuitively, the quorum system is

available to that process through that quorum. Since a process needs to communicate with

at least one quorum to terminate, the liveness properties are dependent on the availability

of the quorum system.

The quorum intersection and availability properties are necessary. Are they suffi-

cient as well? In this paper, we prove that they are not sufficient conditions to implement

reliable broadcast and consensus. For each abstraction, we present execution scenarios, and

81

apply indistinguishability arguments to show that any protocol violates at least one of the

safety or liveness properties. What property should be added to make the properties suf-

ficient? A less known property is quorum sharing [311]. Roughly speaking, every quorum

should include a quorum for all its members. This is a property that trivially holds for ho-

mogeneous quorum systems where every quorum is uniformly a quorum of all its members.

However, in general, it does not hold for heterogeneous quorum systems. Previous work

showed that it also holds for Stellar quorums if Byzantine processes do not lie about their

slices.

Since Byzantine processes’ quorums is arbitrary, in practice, quorum sharing is

too strong. In order to require inclusion only for the quorums of a well-behaved subset of

processes, we consider a weaker notion, called quorum subsumption. As we will see, this

property lets processes in the included quorum make local decisions while preserving the

properties of the including quorum. We precisely capture this property, and show that

together with the other two properties, it is sufficient to implement reliable broadcast and

consensus abstractions. We present protocols for both reliable broadcast and consensus,

and prove that if the underlying quorum system has quorum intersection, availability, and

subsumption for certain quorums, then the protocols satisfy the required safety and liveness

properties. We also present bunched voting and practical consensus protocols that use finite

state and only send and receive finite number of messages. They are refinement of the

reliable broadcast and consensus protocols mentioned before in order to be amendable for

implementation. In summary, this paper makes the following contributions.

82

• Properties of quorum-based protocols (section 3.3) and specifications of reliable broad-

cast and consensus on heterogeneous quorum systems (section 3.4).

• Proof of insufficiency of quorum intersection and availability to solve consensus (sub-

section 3.5.1) and reliable broadcast (subsection 3.5.2).

• Sufficiency of quorum intersection, quorum availability and quorum subsumption to

solve consensus and reliable broadcast. We present protocols for reliable broadcast

(subsection 3.6.1) and consensus (subsection 3.6.2), and their proofs of correctness.

• We present protocols (subsection 3.6.3) to solve consensus in practical systems with

finite states and messages transmitted.

3.2 Heterogeneous Quorum Systems

A quorum is a subset of processes that are collectively trusted to perform an

operation. However, this trust may not be uniform: while a process may trust a part

of a system, another process may not trust that same part. In this section, we adopt a

general model of quorum systems [294, 311] and its properties. These basic definitions

adapt common properties of quorum systems to the heterogeneous setting, and serve as the

foundation for theorems and protocols in the later sections. Since we want the theorems to

be as strong as possible, we introduce the weak notion of quorum subsumption here.

83

3.2.1 Processes and Quorums

Processes and Failures.

We consider a set of processes P partitioned into a set of well-behaved processes

W and a set of Byzantine processes B. Well-behaved processes follow the given protocol,

while Byzantine processes can deviate from the protocol arbitrarily.

Processes communicate by sending each other messages using point-to-point links.

We assume that there is a point-to-point link between each pair of processes.

We assume that the network is partially synchronous [160], i.e., that there is an

unknown global stabilization time (noted GST) and a known delay ∆ such that, after GST,

every message sent by a well-behaved process to a well-behaved process is received within

time ∆. Before GST, messages may be arbitrarily delayed and lost.

We also assume that processes have local clocks that tick at the same rate.

Heterogeneous Quorum Systems (HQS).

In a heterogeneous quorum system, each process has its own, personal set of quo-

rums. For simplicity, we assume that all the quorums of a process are minimal.

Definition 40 (Heterogeneous Quorum System) A heterogeneous quorum system Q

is a mapping from processes to sets of sets of processes such that, for every process p, Q(p)

is the set of quorums of p and :

• Q(p) is non-empty and, for every Q ∈ Q(p), Q is a non-empty set of processes.

• Each quorum of p is minimal among Q(p) (i.e. if Q ∈ Q(p) and Q′ ⊂ Q, then

Q′ 6∈ Q(p)).

84

Figure 4.1 presents an example quorum system. Note that, when the set of Byzan-

tine processes is known, we omit specifying the quorums of Byzantine processes, since their

behavior is arbitrary regardless of any quorum they may have.

When obvious from the context, we use Q to refer to the set of all individual

quorums of the system, i.e. the union of all sets in the co-domain of Q. Additionally, we

say quorum systems to refer to heterogeneous quorum systems.

Definition 41 (Follower) A process p is a follower of a process p′ when there is a quorum

q ∈ Q(p) that includes p′.

In dissemination quorum systems (DQS) [327] (and the cardinality-based quorum

systems as a special case), quorums are uniform for all processes. Processes have the

same set of individual minimal quorums. For example, a quorum system that tolerates f

Byzantine failures out of 3f + 1 processes considers any set of 2f + 1 processes as a quorum

for all processes.

3.2.2 Properties

A quorum system is expected to maintain certain properties in order to provide

distributed abstractions such as Byzantine reliable broadcast and consensus. Quorum in-

tersection and quorum availability are well-established requirements for quorum systems.

In the following section, we will see their adaption to HQS. Further, we identify a new

property we call quorum subsumption that helps achieve the aforementioned abstractions

on HQS. Finally, we briefly present a few related quorum systems, and their properties.

85

Quorum Intersection. Processes store and retrieve information from the quorum system

by communicating with its quorums. To ensure that information is properly passed from a

quorum to another, the quorum system is expected to maintain a well-behaved process at

the intersection of every pair of quorums. For example, in the running example in Figure 4.1,

all the quorums of well-behaved processes intersect at at least one of well-behaved processes

in {1, 3, 4}.

Definition 42 (Quorum Intersection) A quorum system Q has quorum intersection

when every pair of quorums of well-behaved processes in Q intersect at a well-behaved pro-

cess, i.e., ∀p, p′ ∈ W. q ∈ Q(p). q′ ∈ Q(p′). q ∩ q′ ∩W 6= ∅

Quorum Availability. In order to support progress for a process, the quorum system is

expected to have at least one quorum for that process whose members are all well-behaved.

We say that the quorum system is weakly available for that process. (In the literature, this

notion of availability is often unqualified, but we explicitly contrast the weak notion to the

strong notion that we will define.) In classical quorum systems, any quorum is a quorum

for all processes. This guarantees that if the quorum system is available for a process, it is

available for all processes. However, this is obviously not true in a heterogeneous quorum

system where quorums are not uniform. In this setting, we weaken the availability property

so that it requires only a subset and not necessarily all well-behaved processes to have a

well-behaved quorum. In Figure 4.1, Q is available for the set {1, 3, 4}: the quorum {1, 4}

of process 1, and the quorum {3, 4} of processes 3 and 4 make them weakly available. Each

process in that subset can always communicate with a quorum independently of Byzantine

processes.

86

P =W ∪ B, W = {1, 3, 4, 5}, B = {2}
Q = {1 7→ {{1, 2, 3}, {1, 4}},

3 7→ {{3, 4}, {1, 3}}
4 7→ {{3, 4}}
5 7→ {{1, 2, 3, 5}}}

Figure 3.1: Quorum System Example

Definition 43 (Weak Availability) A quorum system is weakly available for a set of

processes P when every process in P has at least one quorum that is a subset of the set of

well-behaved processesW. A quorum system is available when it is available for a non-empty

set of processes.

If a quorum system is weakly available, there is at least one well-behaved process

that can communicate with a quorum independently of Byzantine processes.

With quorum availability introduced, we can consider when a quorum system is

unavailable. A quorum system is unavailable for a process when that process has no quorum

in W, i.e., the Byzantine processes B can block every one of its quorums. We generalize

this idea in the notion of blocking.

Definition 44 (Blocking Set) A set of processes P is a blocking set for a process p (or

is p-blocking) if P intersects every quorum of p.

For example, consider cardinality-based quorum systems where the system con-

tains 3f + 1 processes. Any set of size f + 1 is a blocking set for all well-behaved processes,

since a set with f + 1 processes intersects with any quorum, a set with 2f + 1 processes.

In Figure 4.1, well-behaved process 5 is blocked by {2}, since its only quorum {1, 2, 3, 5}

intersect with {2}

87

Notice also that the definition does not stipulate that the blocking set is Byzantine,

but rather it is more general. The concept of blocking will be useful for designing our

protocols in (section 3.6). For now, we prove a lemma for blocking sets. In order to

state the lemma, we generalize the notion of availability. Given a set of processes P , we

generalize availability for P at the complete set of well-behaved processes W (Theorem 43)

to availability for P at a subset P ′ of well-behaved processes. We say that a quorum system

is weakly available for a set of processes P at a subset of well-behaved processes P ′ when

every process in P has at least one quorum that is a subset of P ′.

Lemma 45 In every quorum system that is weakly available for a set of processes P at P ′,

every blocking set of every process in P intersects P ′.

Proof. Consider a quorum system that is weakly available for P at P ′, a process p

in P , and a set of processes P ′′ that blocks p. By the definition of available, there is at least

one quorum q of p that is a subset of P ′. By the definition of blocking set (Theorem 74), q

intersects with P ′′. Hence, P ′ intersects P ′′ as well.

Quorum subsumption. We now introduce the notion of quorum subsumption.

Definition 46 (Quorum Subsumption) A quorum system Q is quorum subsuming for

a quorum q when every process in q has a quorum that is included in q, i.e., ∀p ∈ q. ∃q′ ∈

Q(p). q′ ⊆ q. We say that Q is quorum subsuming for a set of quorums if it is quorum

subsuming for each quorum in the set.

In Figure 4.1, Q is quorum subsuming for {3, 4}: both members in this quorum

have the quorum {3, 4} that is trivially a subset of itself. However, Q is not quorum

88

sender 1 2 3 4
BCast(m1)

Echo(m1) Echo(m1) Echo(m1)
Ready(m2)

Ready(m1) Ready(m2) Ready(m2)
blocked forever Deliver(m2)

Table 3.1: Non-termination for Bracha protocol with blocking sets

subsuming for process 1’s quorum {1, 4}: process 4’s only quorum {3, 4} is not a subset of

{1, 4}.

Quorum subsumption is inspired by and weakens the notion of quorum sharing

[311]. Quorum sharing requires the above subsumption property for all quorums. Thus,

many quorum systems including Ripple and Stellar do not satisfy it (unless Byzantine

processes do not lie about their slices [311].) They can maintain the subsumption property

only for quorums of a well-behaved subset of processes. In particular, no requirement

can be made for quorums of Byzantine processes. Therefore, we define the weaker notion

of quorum subsumption for a subset of quorums, and later show that it is sufficient to

implement broadcast and consensus.

In order to make progress, protocols (such as Bracha’s Byzantine reliable broadcast

[86]) require the members of a quorum to be able to communicate with at least one of their

own quorums, or communicate with a subset of processes that contains at least one well-

behaved process. Let us see intuitively how quorum subsumption can support liveness

properties.

Consider a quorum system Q for processes P = {1, 2, 3, 4} where the Byzantine

processes are {2}, and Q(1) = {{1, 3, 4}}, Q(3) = {{1, 2, 3}}, and Q(4) = {{2, 3, 4}}. The

89

quorum system Q has quorum intersection, and is weakly available for the set {1} since

there is a well-behaved quorum {1, 3, 4} for the process 1.

The classic Bracha protocol begins with the sender broadcasting Echo(m). Well-

behaved processes broadcast Echo(m) upon receiving it from the sender. After receiving

either 2f+1 Echo(m) or f+1 Ready(m) messages, processes broadcast Ready(m). Finally,

after receiving 2f+1 Ready(m) messages, processes deliver m. In Stellar [307] and follow-up

works [311, 185, 104], the check for receiving Ready(m) messages from f + 1 processes is

replaced with receiving Ready(m) messages from a blocking set of the current process.

Let’s consider the example execution presented in Table 3.1; it gives an intuition

of why the quorum system needs stronger conditions than weak availability. Consider a

Byzantine sender who sends BCast(m1) to process {1, 3, 4}. Well-behaved processes 1, 3,

and 4 send out Echo(m1) to each other. We let process 1 deliver Echo(m1) messages from

process 1, 3, and 4 first; it then sends out Ready(m1) messages. We note that the two

processes 3, and 4 cannot broadcast Ready(m1) since they have not received Echo(m1)

from a quorum of their own. Then the Byzantine process 2 sends Ready(m2) messages to

processes 3 and 4.

Since the set {2} is blocking for the quorums of both processes 3 and 4, both send

out Ready(m2) messages. These broadcast protocols prevent a process that is ready for

a value from getting ready for another value. Therefore, although {3} and {4} are both

blocking sets for the process 1, it cannot become ready for m2. Process 1 never receives

enough Ready messages for neither m1 nor m2 to deliver a message, and is blocked forever.

Now, briefly consider the case where the quorum {1, 3, 4} for process 1 had the quorum

90

subsumption property. Then, processes 3 and 4 could send out Ready(m1) messages, and

eventually process 1 would make progress.

Complete Quorum. We will later see that quorum availability and quorum subsumption

are important together for liveness. We succinctly combine the two properties into the

notion of complete quorums.

Definition 47 (Complete Quorum) A quorum q in a quorum system Q is a complete

quorum if all its members are well-behaved, and Q is quorum subsuming for q.

In our previous running example Figure 4.1, quorum {3, 4} is a complete quorum:

both of its members are well-behaved and Q is quorum subsuming for {3, 4}.

Definition 48 (Strong Availability) A quorum system Q has strong availability for a

subset of processes P when every process in P has at least one complete quorum. We call

P a strongly available set for Q, and call a member of P a strongly available process. We

say that Q is strongly available if it is strongly available for a non-empty set.

Intuitively, operations stay available at a strongly available process since its com-

plete quorum can perform operations on his behalf in the face of Byzantine attacks. In

Figure 4.1, Q is strongly available for {3, 4}. In contrast, Q is only weakly available for pro-

cess 1, since its quorum {1, 2, 3} includes 2 that is not well-behaved, and its other quorum

{1, 4} is well-behaved but not a complete quorum.

By Theorem 75, every blocking set of every strongly available process contains at

least one well-behaved process.

91

3.3 Protocol Implementation

In the subsequent sections, we will see that it is impossible to construct a protocol

for Byzantine reliable broadcast and consensus in an HQS given only quorum intersection

and quorum availability. After that, we give a protocol for Byzantine reliable broadcast and

consensus for an HQS that has quorum intersection and strong availability. We first need

a model of quorum-based protocols, and then the exact specifications of the distributed

abstractions we aim to design protocols for. In this section, we consider the former.

We consider a modular design for protocols. A protocol is captured as a component

that accepts request events and issues response events. A component uses other compo-

nents as sub-components: it issues requests to them and accepts responses from them. A

component stores a state and defines handlers for incoming requests from the parent com-

ponent, and incoming responses from children components. Each handler gets the pre-state

and the incoming event as input, and outputs the post-state and outgoing events, either as

responses to the parent or requests to the children components. The outputs of a handler

can be deterministically a function of its inputs, or randomized.

Definition 49 (Determinism) A protocol is deterministic when the outputs of its han-

dlers are a function of the inputs.

Quorum-based Protocols. A large class of protocols are implemented based on quorum

systems. In order to state impossibility results for these protocols, we capture the properties

of quorum-based protocols [311, 265] as a few axioms. Our impossibility results concern

protocols that adhere to the necessity, sufficiency, and locality axioms.

92

A process in a quorum-based protocol should process a request only if it can

communicate with at least one of its quorums.

Axiom 50 (Necessity of Quorums [311]) If a well-behaved process p issues a response

for a request then there must be a quorum q of p such that p receives at least one message

from each member of q.

In a quorum-based protocol, a process only needs the participation of itself and

members of one of its quorums to deliver a message.

Axiom 51 (Sufficiency of Quorums) For every execution where a well-behaved process

p issues a response, there exists an execution where only p and a quorum of p take steps,

and p eventually issues the same response.

We add a remark for Byzantine reliable broadcast (BRB) which has a designated

sender process. We will use a slight variant of the sufficiency axiom for BRB that states

that there exists an execution where only the sender, p and a quorum of p take steps.

A process’s local state is only affected by the information that it receives from the

members of its quorums.

Axiom 52 (Locality [171]) The state of a well-behaved process changes upon receiving a

message only if the sender is a member of one of its quorums. Given the same pre-state and

incoming messages from quorum members, a correct process produces the same post-state

and outgoing messages.

For BRB, we will use a slight variant of the locality axiom that allows processes

change state upon receiving messages from the sender in addition to members of quorums.

93

3.4 Protocol Specification

We now define the specification of reliable broadcast and consensus for HQS. The

liveness properties are weaker than classical notions since in an HQS, availability might be

maintained only for a subset P of well-behaved processes.

Reliable Broadcast. We now define the specification of the reliable broadcast abstraction.

The abstraction accepts a single broadcast request from a designated sender (either in the

system or a process that is separate from the other processes in system), and issues delivery

responses.

Definition 53 (Specification of Reliable Broadcast)

• (Validity for a set of well-behaved processes P). If a well-behaved process p broadcasts

a message m, then every process in P eventually delivers m.

• (Integrity). If a well-behaved process delivers a message m from a well-behaved sender

p, then m was previously broadcast by p.

• (Totality for a set of well-behaved processes P). If a message is delivered by a well-

behaved process, then every process in P eventually delivers a message.

• (Consistency). No two well-behaved processes deliver different messages.

• (No duplication). Every well-behaved process delivers at most one message.

We also consider a variant of reliable broadcast called federated voting. Similar to

reliable broadcast, the abstraction accepts a broadcast request from processes, and issues

delivery responses. In contrast to reliable broadcast where there is a dedicated sender, in

94

federated voting, every process can broadcast a message. The specification of federated

voting is similar to that of reliable broadcast except for validity. The messages that well-

behaved processes broadcast may not be the same. Therefore, the validity property provides

guarantees only when the messages are the same or there is only one sender. The validity

property for a set of well-behaved processes P guarantees that if all well-behaved processes

broadcast a message m, or only one well-behaved process broadcasts a message m, then

every process in P eventually delivers m.

Consensus. We now consider the specification of the consensus abstraction. It accepts

propose requests from processes in the system, and issues decision responses.

Definition 54 (Specification of Consensus)

• (Validity). If all processes are well-behaved, and some process decides a value, then

that value was proposed by some process.

• (Agreement). No two well-behaved processes decide differently.

• (Termination for a set of well-behaved processes P). Every process in P eventually

decides.

3.5 Impossibility

We now present the impossibility results for consensus and Byzantine Reliable

Broadcast (BRB). It is known that quorum intersection and quorum availability are neces-

sary conditions [311] to implement consensus and BRB protocols. In this section, we show

that while these two conditions are necessary, they are not sufficient.

95

We consider the information-theoretic settings (Fault axiom [171]), where byzan-

tine processes have unlimited computational power, and can show arbitrary behavior. How-

ever, processes communicate only over secure channels so that the recipient knows the

identity of the sender. A Byzantine process is unable to impersonate a well-behaved pro-

cess. This is similar to the classic unauthenticated Byzantine general problem [267], and

is advantageous for open decentralized blockchains and HQS, where the trusted authorities

including public key infrastructures may not be available.

The two proofs will take a similar approach. First, we assume there does exist

a protocol for our distributed abstraction that satisfies all the desired specifications. We

then present a quorum system Q and consider its executions that have quorum intersec-

tion and availability in the face of Byzantine attacks. We then show through a series of

indistinguishable executions that the protocol cannot satisfy all the desired specifications,

leading to a contradiction. The high-level idea is that in the information-theoretic setting,

a well-behaved process is not able to distinguish between an execution where the sender

is Byzantine and sends misleading messages, and an execution where the relaying process

is Byzantine and forwards misleading messages. For example, let p1, p2 and p3 be three

processes in the system. When p3 receives conflicting messages from p1 through p2, it does

not know whether p1 or p2 is Byzantine. This eventually leads to violation of the agreement

or validity property of the abstraction.

We consider binary proposals for consensus, and binary values (from the sender)

for reliable broadcast. For the consensus abstraction, we succinctly present the values that

processes propose as as a vector of values that we call a configuration. If the initial value

96

of a process is ⊥ in the configuration, that process is considered Byzantine. Otherwise, the

process is well-behaved. For example, a configuration C = 〈0, 0,⊥〉 denotes the first and

second process proposing zero and the third process being Byzantine.

3.5.1 Consensus

We first consider consensus protocols in HQS.

Theorem 55 Quorum intersection and weak availability are not sufficient for deterministic

quorum-based consensus protocols.

Proof.

We suppose there is a quorum-based consensus protocol that guarantees validity,

agreement, and termination for every quorum system Q with quorum intersection and weak

availability, towards contradiction. Consider a quorum system Q for processes P = {a, b, c}

with the following quorums: Q(a) = {{a, c}}, Q(b) = {{a, b}}, Q(c) = {{b, c}}.

We make the following observations: (1) if all processes are well-behaved, then Q

has quorum intersection and weak availability for {a, b, c}, (2) if only process a is Byzantine,

then Q preserves quorum intersection, and weak availability for {c}, (3) if only process c

is Byzantine, then Q preserves quorum intersection, and weak availability for {b}. Going

forward, we implicitly assume termination for weakly available processes.

Now consider the following four configurations as shown in Figure 3.2: C0 =

〈0, 0, 0〉, C1 = 〈1, 1, 1〉, C2 = 〈0, 1,⊥〉, and C3 = 〈⊥, 1, 1〉. The goal is now to show a series

of executions over the configurations so that at least one property of the protocol is violated.

• We begin with execution E0 (shown in red) with the initial configuration C0. All the

97

messages between a and c are delivered. By termination for weakly available processes

and validity, process a decides 0. Additionally, by quorum sufficiency, a can reach this

decision with only processes {a, c} taking steps.

• Next, we have execution E1 (shown in blue) with initial configuration C1. All the

messages between b and c are delivered. Again, by termination for weakly available

processes and validity, process c decides 1. By quorum sufficiency, c can reach this

decision with only processes {b, c} taking steps.

• Next, we have execution E2 as a sequence of E1 and E0, with initial configuration

C2. Suppose messages between well-behaved processes a and b are delayed. Byzantine

process c first replays E1 with process b, then replays E0 with process a. By locality,

this cause process a to decide 0. Now let Byzantine process c stay silent, and messages

between processes a and b be delivered. By termination for b, agreement and quorum

sufficiency, process a makes b decide 0 as well (shown in green).

• Lastly, we have execution E3 with initial configuration C3. Suppose messages between

b to c are delivered in the beginning. We let processes {b, c} replay E1; thus by locality,

c decides 1. Then, Byzantine process a sends messages to b as if it were at the end of

E2. In turn, b decides 0. Thus, agreement is violated as two well-behaved processes

decided differently.

Indistinguishably. We provide some intuition for the proof construction. Ul-

timately, the problem lies in process b not being able to distinguish whether process a or

process c is the Byzantine process. More specifically, both E2 and E3 begin with execution

98

a b c

C0

C1

C2

C3

0 0 0

1 1 1

0 1 ⊥

⊥ 1 1

E0

E1

E2

E3

Figure 3.2: Indistinguishable Executions

E1. Since process b cannot distinguish between the two executions, it does not know which

value to decide. If process b believes E2 is the actual execution, then b should decide 0 to

agree with the decision of well-behaved process a. However, if E3 is the actual execution,

then agreement is violated as process c decided 1. Conversely, if process b believes E3 is the

actual execution, then b should decide 1 to agree with the decision of well-behaved process

c. Then, if E2 is the actual execution, agreement is violated as the well-behaved process a

decided 0.

We note that this proof could not be constructed if there was quorum subsump-

tion. For example, if the process b adds the quorum {a, b, c}, then Q will have quorum

subsumption for the quorum {a, b, c} of b. However, then by quorum subsumption, there

will be no Byzantine process, and the executions E2 and E3 cannot be constructed. If the

process a adds the quorum {a, b}, then it will have quorum subsumption. However, then the

process a cannot Byzantine process anymore, and the executions E3 cannot be constructed.

Similarly, if the process b adds the quorum {b, c}, the executions E2 cannot be constructed.

99

3.5.2 Byzantine Reliable Broadcast

Now, we prove the insufficiency of quorum intersection and quorum availability

for Byzantine reliable broadcast.

For the reliable broadcast abstraction, we represent the initial configuration as

an array of values received by the processes from the sender. The sender is a fixed and

external process in the executions, and is only used to assign input values for processes in

the system, which are captured as the initial configurations. The sender does not take steps

in the executions, and processes are not able to distinguish executions based on the sender.

Theorem 56 Quorum intersection and weak availability are not sufficient for deterministic

quorum-based reliable broadcast protocols to provide validity and totality for weakly available

processes, and consistency.

Proof. The proof is similar to the proof for consensus. In fact, we will reuse the

construction. There are differences between reliable broadcast and consensus specifications

in (1) their validity properties, and (2) their totality and termination properties respectively.

The proof can be adjusted for these differences. For reliable broadcast, we need a sender

process s who broadcasts a message. In executions that we want a well-behaved process to

deliver the message m, we either (1) keep the sender s well-behaved and have it send m, and

then apply validity, or (2) have a process deliver m, then apply totality and consistency.

The initial configuration represents values received by each process from the sender.

Executions follow those in the previous proof. Message delivery and delays mirror

the previous executions. In execution E0 for configuration C0, the well-behaved sender

s broadcasts 0, and messages between processes a and c are delivered. By validity for

100

weakly available processes, process a delivers 0, and by quorum sufficiency, only processes

{a, c} need to take steps. In execution E1 for configuration C1, the well-behaved sender s

broadcasts 1, and messages between processes b and c are delivered. By validity for weakly

available processes, and quorum sufficiency, process c delivers 1, only with {b, c} taking

steps. In configurations C2 and C3, the sender s is Byzantine. The messages between

processes a and b are delayed in the beginning. In execution E2 for configuration C2, the

Byzantine sender s and Byzantine process c replay E1 with process b, then replay E0 with

process a by locality. Then Byzantine process c stays silent, and messages between processes

a and b are delivered. By totality for weakly available processes, since process a delivers

0, then process b will also deliver a value. By consistency, process b delivers 0 as well.

In the last execution E3 for configuration C3, we let the Byzantine process a stay silent

in the beginning, and processes b and c replay E1. Thus by locality, process c delivers 1.

Afterwards, messages between process b and c are delayed, and the Byzantine process a

replays E2. Again, process b cannot distinguish between the two executions E2 and E3.

Since process a sends the exact same messages to process b as the end of E2, process b will

deliver 0. Thus, consistency between c and b is violated.

3.6 Protocols

We just showed that quorum intersection and availability are not sufficient to

implement our desired distributed abstractions. Now, we show that quorum intersection

and strong availability, our newly introduced property are sufficient to implement both

Byzantine reliable broadcast and consensus.

101

Algorithm 1: Byzantine Reliable Broadcast (BRB)

1 Implements: ReliableBroadcast
2 request : broadcast(v)
3 response : deliver(v)
4 Vars:
5 Q . Minimal quorums of self
6 F : Set[P] . The followers of self
7 echoed , readied , delivered : Boolean← false
8 E,R : V 7→ Set[P]← ∅

. Set of echoed and readied processes
9 Uses:

10 apl : PointToPointLink
11 upon request broadcast(v) from sender
12 apl request send(p,BCast(v)) for each p ∈ P
13 upon apl response deliver(p′,BCast(v))
14 if ¬echoed then
15 echoed ← true
16 apl request send(p,Echo(v)) for each p ∈ F
17 upon apl response deliver(p′,Echo(v))
18 E(v)← E(v) ∪ {p′}
19 if ¬readied ∧ ∃q ∈ Q. q ⊆ E(v) then
20 readied ← true
21 apl request send(p,Ready(v)) for

each p ∈ F
22 upon apl response deliver(p′,Ready(v))
23 R(v)← R(v) ∪ {p′}
24 if ¬readied ∧ R blocks self then
25 readied ← true
26 apl request send(p,Ready(v)) for

each p ∈ F
27 if ¬delivered ∧ ∃q ∈ Q. q ⊆ R(v) then
28 delivered ← true
29 response deliver(v)

102

3.6.1 Reliable Broadcast Protocol

In Alg. 1, we adapt the Bracha protocol [86] to show that quorum intersection and

strong availability together are sufficient for Byzantine reliable broadcast. The parts that

are different from the classical protocol are highlighted in blue.

Each process stores the set of its individual minimal quorums Q, and its set of

followers F . It also stores the boolean flags echoed , readied , and delivered which record

actions the process has taken to avoid duplicate actions. It further uses point-to-point links

apl to each of its followers. Upon receiving a request to broadcast a value v (at line 11), the

sender broadcasts the value v to all processes (at line 12). Upon receiving the message from

the sender (at line 13), a well-behaved process echoes the message among its followers (at

line 16) only if it has not already echoed . When a well-behaved process receives a quorum

of consistent echo messages (at line 17), it sends ready messages to all its followers (at

line 21). A well-behaved process can also send a ready message when it receives consistent

ready messages from a blocking set (at line 24). When a well-behaved process receives

a quorum of consistent ready messages for v (at line 27), it delivers v (at line 29). The

implementation of the federated voting abstraction is similar. The only difference is that

there can be multiple senders (at line 11).

We prove that this protocol implements Byzantine reliable broadcast when the

quorum system satisfies quorum intersection, and strong availability. We remember that

strong availability requires both weak availability and quorum subsumption. More precisely,

it requires a well-behaved quorum q for a process p, and quorum subsumption for q.

103

Lemma 57 No two well-behaved, weakly available processes can send two different ready

messages.

Proof. Recall that a process sends a ready message for a message m upon the

satisfaction of one of two conditions: (1) the process receives a quorum of consistent echo

messages for m or (2) the process receives a blocking set of consistent ready messages for

m. This gives us three cases, each of which we show are not possible. Consider some

well-behaved process p.

The first case is where condition (1) is satisfied for two different messages m and

m′. However, p is in each of its own quorums and every process echoes at most one message.

Thus, p cannot receive a quorum of echoes for both m and m′.

The second case is where condition (1) is satisfied for message m and condition (2)

is satisfied for m′, without loss of generality. Since p is weakly available, it has a quorum

containing only well-behaved processes. This means any p-blocking set contains at least

one well-behaved process. Let this process be pw. We inductively reason that pw cannot

have sent a ready message for m′. The base case is that condition (1) is satisfied for pw for

m′. By quorum intersection, there is some well-behaved process between p’s quorum for m

and pw’s quorum for m′. This implies that a well-behaved process echoed m to p and m′

to pw. However, a well-behaved process cannot echo two different messages, thus the base

case cannot happen. The inductive case is that condition (2) is satisfied for pw for m′. That

is, pw received a pw-blocking set of ready messages for m′. This eventually reduces to the

base case by applying the same reasoning above; for pw to receive a blocking set of ready

messages, at least one of those processes is well-behaved thus is in the same situation as pw.

104

As we showed the base case is impossible, we showed that the second case is impossible as

well.

The third case is where condition (2) is satisfied for two different messages m and

m′. We can employ the same reasoning we saw in the previous case, showing that condition

(2) cannot be satisfied for m′. Essentially, both blocking sets for m and m′ must reduce to

two quorums of echoes for m and m′. By quorum intersection, these quorums must intersect

at a well-behaved process, which cannot echo both m and m′.

Theorem 58 Quorum intersection and strong availability are sufficient to implement Byzan-

tine reliable broadcast.

This theorem follows from the following five lemmas. In the following lemmas, we

consider a quorum system with quorum intersection and strong availability for P .

Lemma 59 The BRB protocol guarantees consistency.

Proof. A well-behaved process only delivers a message when it receives a quorum

of consistent ready messages. If p1 delivers m1 with q1, and p2 delivers m2 with q2, by

quorum intersection, there is well-behaved process p in q1 ∩ q2. The process p sends ready

messages with only one value. Thus, m1 = m2.

Lemma 60 The BRB protocol guarantees validity for P .

Proof. Consider a well-behaved sender that broadcasts a message m. We show

that every process in P eventually delivers m. By availability, every process p ∈ P has a

complete quorum q. Consider a process p′ ∈ q. By quorum subsumption, p′ has a quorum

105

q′ ⊆ q. By availability, all members of q (including q′) are well-behaved. Thus, when they

receive m from the sender, they all echo it to their followers. The processes in q′ have p′

as a follower. Thus, p′ receives consistent echo messages for m from one of its quorums q′.

Thus, p′ sends out ready messages for m to its followers. Thus, all processes in q send out

ready messages for m to their followers. The processes in q have p as a follower. Therefore,

p receives a quorum of consistent ready messages for m from one of its quorums q, and

delivers m. Consider a well-behaved sender that broadcasts a message m. We show that

every process in P eventually delivers m. The protocol stipulates that a process delivers m

upon receiving a quorum of consistent ready messages for m. Thus, it is sufficient to show

that this condition is satisfied for every process p ∈ P .

Since the quorum system is strongly available for the set of processes P , every

process p ∈ P has a complete quorum q. We want to show that every process p′ ∈ q sends

a ready message to p, satisfying the above condition. Since p is a follower of every process

p′, p′ sends ready to p upon receiving a quorum q′ of consistent echo messages.

To show that such a quorum q′ exists, we remind that q is a complete quorum and

that p′ ∈ q. Then by quorum subsumption, p′ must have a quorum q′ ⊆ q. Since q is a

complete quorum, every member of q is well-behaved, including those of q′. This implies

that when each member of q receives m from the sender,they echo it to their followers.

Thus, p′ would have received an echo for m from every member of q′.

Lemma 61 The BRB protocol guarantees totality for P .

106

Proof. We assume that a well-behaved process p has delivered m, and show that

every well-behaved process p′ ∈ P delivers m. We first show that every well-behaved process

p′′ sends ready messages for m to its followers.

The well-behaved process p delivers m only when it receives a quorum q of ready

messages for m. Consider a quorum q′′i of p′′. By quorum intersection, q and q′′i intersect in

at least a well-behaved process pi. Since pi is in q′′i , then pi has p′′ as a follower. Let I be the

union of the processes pi for all quorums q′′i of p′′. By construction, the set of processes I are

a subset of q, a blocking set of p′′, and have p′′ as a follower. All well-behaved processes in

q send ready messages to their followers. Thus, the set of processes I send ready messages

to p′′. Thus, p′′ receives a blocking set of ready messages, and sends ready messages to its

followers.

Thus, every well-behaved process p′′ sends ready messages to their followers. By

weak availability, p′ ∈ P has a quorum q′ with all well-behaved members. Thus, the process

p′ will receive ready messages from q′, and delivers m.

Assume that a well-behaved process p0 has delivered m. We then want to show

that every well-behaved process in P also delivers m. To do this, we first claim that every

well-behaved process sends a ready message for m to its followers. It is easy to see that if

claim holds, then every process in P delivers m. Since every process in P has a complete

quorum q, if every well-behaved process sends a ready message for m, then so will every

member of q. Then, every process in P will receive a quorum of consistent ready messages,

namely q, and deliver m. Thus, it remains to prove the claim above.

107

For p0 to have delivered m, it must have received a quorum q0 of ready messages

for m. Now consider any well-behaved process pw ∈ W and any one of its quorums qw.

Quorums q0 and qw must intersect at a well-behaved process pi, by quorum intersection.

Let I be the union of these processes pi, for all quorums of pw. That is, I is the set of

processes that are in both q0 and a quorum of pw. By construction, we have (1) I ⊆ q0 and

(2) I is a blocking set for pw.

Since every member of q0 sent a ready message to its followers, every member of

I sent a ready message to pw. Thus, pw receives a blocking set of ready messages, meaning

it also sends a ready message to its followers, proving our claim.

Lemma 62 The BRB protocol guarantees no duplication.

Proof. Since a well-behaved process keeps the delivered boolean, it delivers at

most one message.

Lemma 63 The BRB protocol guarantees integrity.

Proof. We assume that a well-behaved process p delivers a message m from a well-

behaved sender process p′, and prove that the process p′ has broadcast m. We first prove

that a well-behaved process has received echo messages from at least one of its quorums.

Since the well-behaved process p delivered m, it has received a quorum qp of

ready messages. By the strong availability assumption, P is non-empty; therefore, there

exists a process with a quorum q that is well-behaved and quorum subsuming. By quorum

intersection, qp and q intersect at a well-behaved process pi. The process pi sent a ready

108

message (that p received). The well-behaved process pi sends a ready message only if it

either (1) receives echo messages from a quorum of pi, or (2) receives ready messages from

a pi-blocking set B. The first case is immediately the conclusion with the process pi. Let

us consider the second case. By quorum subsumption, since pi is in q, pi has a quorum qi

that is a subset of q. Since B is a blocking set of pi, B intersects with qi. Therefore, B

intersects with q. The processes in B sent ready messages. Thus, there are processes in q

that sent ready messages. Let pf be the first process in q that sent a ready message. All

members of q are well-behaved. A well-behaved process pf sends a ready message only if it

either (1) receives echo messages from a quorum of pf , or (2) receives ready messages from

a pf -blocking set B′. The first case is immediately the conclusion with the process pf . Let

us consider the second case. Applying the same reasoning as for pi to pf derives that B′

intersects with q. Thus, pf has received a ready message from a process in q. Therefore, pf is

not the first process in q to send a ready message. This is a contradiction with the definition

of pf above. We now use the fact that a well-behaved process has received echo messages

from at least one of its quorums. By quorum intersection at well-behaved processes, every

quorum of a well-behaved process includes a well-behaved process. Thus, a well-behaved

process pw has sent an echo message. A well-behaved process sends an echo message only

after receiving it from the sender p′. Since the sender p′ is well-behaved, and pw has received

the message m from it, by the integrity of point-to-point links, p′ has previously sent m to

pw. Since p′ is well-behaved, it has sent m to every process.

109

3.6.2 Byzantine Consensus Protocol

In this section, we show that quorum intersection and strong availability are suf-

ficient to implement Byzantine consensus. We first present the consensus protocol for

heterogeneous quorum systems, and then prove its correctness.

At a high level, the protocol proceeds in rounds with assigned leaders for each.

Ballots that carry proposal values are totally ordered. A leader tries to commit its own

candidate ballot only after aborting all lower ballots in the system. Leaders use the federated

voting abstraction (that we saw in section 3.4) to abort or commit ballots. There may be

multiple leaders or Byzantine leaders before GST who may broadcast contradicting abort

and commit messages for the same ballot. However, by the consistency property of federated

voting, processes agree on aborting or committing ballots.

A ballot b is a pair 〈r, v〉 of a round number r and a proposed value v. Ballots are

totally ordered by first their round numbers, and then their values: a ballot 〈r, v〉 is below

another 〈r′, v′〉, written as 〈r, v〉 < 〈r′, v′〉, if r < r′ or r = r′ ∧ v < v′. Two ballots b = 〈r, v〉

and b′ = 〈r′, v′〉 are compatible, b ∼ b′, if they have the same value, i.e., v = v′; otherwise,

they are incompatible, b 6∼ b′. We say that a ballot is below and incompatible with another,

b � b′, if b < b′ and b 6∼ b′. For message passing communication, we assume batched network

semantics (BNS), where messages issued in an event are sent as a batch, and the receiving

process delivers and processes the batch of messages together. (In particular, as we will see

later in the correctness proofs, if prepare messages that are sent together are not processed

together the validity property can be violated.)

110

The protocol is similar to SCP [334, 187] in structure; the important difference is

that this protocol uses leaders [311] and guarantees termination. Our protocol guarantees

termination regardless of Byzantine processes. On the other hand, the SCP protocol guar-

antees a liveness property called non-blocking which requires Byzantine processes to stop.

(More precisely, if a process p in the intact set [334, 185] has not yet decided in some exe-

cution, then for every continuation of that execution in which all the Byzantine processes

stop, the process p eventually decides.)

Algorithm 2: Byzantine Consensus

1 Implements: Consensus
2 request : propose(v)
3 response : decide(v)
4 Vars:
5 round : N+ ← 0 . Current round number
6 candidate, prepared : 〈N+, V 〉 ← 〈0,⊥〉
7 leader : P ← p0 . current leader
8 Uses:
9 fv : B 7→ ByzantineReliableBroadcast

10 le : EventualLeaderElection
11 upon request propose(v)
12 candidate ← 〈1, v〉
13 if self = leader then
14 fv(b′) request broadcast(A) for all

b′ � candidate

15 upon fv(b′) response deliver(p,A) for all
b′ � b where prepared < b

16 prepared ← b
17 if self = leader ∧ prepared = candidate

then
18 fv(candidate) request broadcast(C)

19 upon fv(b) response deliver(p,C),
b = prepared ∧ p = leader

20 response decide(b.v)

21 upon timeout triggered
22 le request Complain(round)

23 upon le response new -leader(p)
24 leader ← p
25 round ← round + 1
26 if self = leader then
27 Delay for time ∆

28 start-timer(round)
29 if prepared = 〈0,⊥〉 then
30 candidate ← 〈round ,
31 candidate.v〉
32 else
33 candidate ← 〈round ,
34 prepared .v〉
35 if self = leader then
36 fv(b′) request broadcast(A)

∀b′ � candidate

Each process stores four local variables: round is the current round number,

candidate is the ballot that the process tries to commit, prepared is the ballot that the

process is safe to discard any ballots lower and incompatible with, and leader is the current

leader. Each process uses an instance of federated voting for each ballot, and an eventual

111

leader election module. The latter issues new -leader events, and eventually elects a well-

behaved process as the leader. (Previous work [311] presented a probabilistic leader election

module.)

Upon receiving a proposal request (at line 11), a well-behaved process initializes

its candidate ballot to the pair of the first round and its own proposal (at line 12). If the

current process self is the leader, it tries to prepare its candidate by broadcasting abort A

messages for all ballots below and incompatible with candidate (at line 14). When a well-

behaved process delivers A messages from the leader for all ballots below and incompatible

with some ballot b, and its current prepared ballot is below b (at line 15), it sets prepared

to b (at line 16). If the current process self is the leader, and the prepared ballot is equal

to the candidate ballot, then it broadcasts a commit C message for its candidate ballot (at

line 18). When a well-behaved process delivers a C message for a ballot b from the leader,

and it has already prepared the same ballot (at line 19), it decides the value of that ballot

(at line 20).

To ensure liveness, a well-behaved process triggers a timeout if no value is decided

after a predefined time elapses in each round. The process then complains to the leader

election module (at line 22). When the leader election module issues a new leader (at

line 23), a well-behaved process updates its leader variable, and increments the round

number (at line 25). The leader itself then waits for a time ∆ (at line 27) which we will

further explain below. The process also resets the timer with a doubled timeout for the next

round (at line 28). It then updates the candidate ballot: if no value is prepared before, the

candidate ballot is updated to the new round number and the value of the current candidate

112

l1

l2

p3

p4

〈1, 3〉

〈1, 4〉

〈1, 4〉

〈1, 5〉

〈1, 4〉

〈1, 5〉

fv(b)
B
C
ast(C

)
fv(b)

E
cho(C

)

fv(b)
B
C
ast(A

) fv
(b

)
E
ch
o(
A)

fv
(b

)
E
ch
o(
A)

fv(b) Echo(A)

l1 l2 l1

Figure 3.3: Last Minute Attack. b = 〈1, 4〉. The candidate of well-behaved leader l2 is
b′ = 〈2, 3〉. The votes commit and abort are abbreviated as C and A. The new leader
events are triggered at the black dots at each process. Prepared ballots are shown below
the time line for each process.

(at line 31); otherwise, it is updated to the new round number and the value of the prepared

ballot (at line 34). Then, the leader tries to prepare the candidate by aborting below and

incompatible ballots similar to the steps above (at line 36).

Let us now explain why delay ∆ is needed for termination. Without this delay, a

Byzantine leader can perform a last minute attack that we illustrate in Figure 3.3. Consider

that we have four processes, one of them is Byzantine, and any set of three processes is a

quorum. Let the Byzantine process be the leader l1, and let the ballot b be prepared. The

leader l1 sends a commit for ballot b to one well-behaved process p3. Then, p3 echos commit

for b. Then, the timeout for l1 happens, and the next well-behaved leader l2 comes up.

Without the delay, l2 may have not prepared b yet (although other well-behaved processes

p3 and p4 prepared it). Therefore, the ballot b′ that l2 updates its candidate to (at line 34)

is not b, and may not be compatible with b. In order to prepare b′, the leader l2 tries to

abort b (at line 36) but b cannot be aborted: in order to abort b, a quorum of processes

should echo it. However, the well-behaved process p3 has already echoed commit, and if

113

the Byzantine process l1 remains silent, the remaining two well-behaved processes l2 and

p4 are not a quorum, and cannot abort b. Therefore, l2 cannot succeed, and the timeout

is triggered. Further, if the next leader is the Byzantine process l1 again, it can repeat the

above scenario: it can abort b to prepare a higher ballot b2, and make a well-behaved process

echo commit for b2, before passing the leadership. The attack can continue infinitely, and

delay termination. If the delay ∆ is larger than the bounded communication delay after

GST, it makes the leader l2 observe the highest prepared ballot b, and adopt its value as

the value of its candidate b′2 (at line 34). When it tries to commit b′2, since it is compatible

with b, it does not need abort it. Therefore, it can prepare and commit b′2, and decide. We

also note that instead of the delay ∆, the above attack can be avoided if the leader election

can provide two successive well-behaved leaders.

Theorem 64 Quorum intersection and strong availability are sufficient to implement con-

sensus.

This theorem follows from the following three lemmas where we consider a quorum

system with quorum intersection and strong availability for P . They prove that the protocol

satisfies the specification of Byzantine consensus that we defined in Theorem 54.

Lemma 65 (Agreement) The consensus protocol guarantees agreement.

Proof. We prove agreement by contradiction. Assume that there are two well-

behaved processes that decide two different values. A process decides a value at line 20 after

delivering a ballot with that value at line 19. Let process p deliver v in ballot b, and let

process p′ deliver v′ in ballot b′. Since ballots are totally ordered, without loss of generality,

114

we assume that b � b′. When the process p′ delivers v′ at line 19, it checks that b′ has been

prepared. A well-behaved process prepares a new ballot b′ at line 16 only after finding all the

ballots below and incompatible with b′ aborted at line 15. Since b � b′, the process p′ has

delivered the A message for b before preparing b′. However, since process p decides v with

b at line 20, it has delivered C message for b at line 19. Thus, two well-behaved processes

deliver conflicting values A and C for ballot b, which violates the consistency property of

federated voting, a contradiction.

Lemma 66 (Validity) The consensus protocol guarantees validity.

Proof. We assume that all processes are correct, and that a process has decided

a value v. We show that v is proposed by some process. When a well-behaved process

decides a value v at line 20, v was delivered in a C message for a ballot b at line 19. Since

all processes are well-behaved including the leader, by the integrity property of federated

voting, the leader has broadcast C for the ballot b at line 18. The ballot b is the leader’s

candidate by the condition at line 17.

We show that the value of every candidate ballot can be tracked back to the

proposal of a process. The value for the candidate ballot is set to either its initial proposal

at line 12 and line 31, or adopted from the value of prepared at line 34. We consider the

two cases in turn. For the first case, the value v is immediately the leader’s proposal at

line 11. For the second case, v is a value prepared before by the leader. A well-behaved

process updates its prepared value to b at line 16 when it delivers A for all b′ � b at line 15.

By the integrity of federated voting, and the assumption that all the processes are well-

behaved, leaders have broadcast to abort all ballots b′. Leaders abort ballots below and

115

incompatible with their candidate at line 14 and line 36. By the batched network semantics

assumption, all the messages sent by a process in one event to another process are delivered

and processed together. Therefore, the ballot b has been the candidate ballot of a previous

leader at line 14 or line 36. With the same reasoning as above, the candidate value can be

traced back to either a proposal, or the candidate value of a yet previous leader. Since the

number of leaders is finite, by a well-founded induction, the candidate value is tracked back

to the proposal of a process.

The protocol guarantees termination: all strongly available processes eventually

decide a value. The high-level idea is that by eventual election of a well-behaved leader,

and the totality property of federated voting, a well-behaved leader eventually adopts the

value of the highest prepared ballot in the system as its candidate Then, that leader can

proceed to prepare and commit its candidate.

Lemma 67 (Termination) The consensus protocol guarantees termination for P .

Proof. The proof will refer to the notions of locked for federated voting. We first

visit these notions, and then describe the proof of termination.

We saw in the explanation of the protocol that there are executions that Byzantine

processes can lock a federated voting instance for a certain value (such as commit). Let

us remember that example. Consider that we have 4 processes, one of them is Byzantine,

and any set of 3 processes is a quorum. Let the Byzantine process send a message m to

one well-behaved process. That well-behaved process echos m. If the Byzantine process

remains silent, the remaining 2 well-behaved processes are not a quorum, and even if both

echo another message m′, they cannot make the federated voting deliver m′. This execution

116

is shown in the first two rounds of messages in Figure 3.3. In this execution, the federated

voting instance of b is locked for m = C by l1 and p3, and although l2 and p4 try to make it

deliver m′ = A, it does not. However, if the Byzantine process echos m′ as well, then they

form a quorum, and can make m′ be delivered. Well-behaved processes alone cannot make

the instance deliver a different value, but well-behaved and Byzantine processes together

can. We call these states of the federated voting abstraction soft-locked.

We note that there are also states of a federated voting instance where even if well-

behaved and Byzantine processes work together, they cannot make the instance deliver a

different value. We call them hard-locked. As above, consider an execution with 4 processes,

and quorums of size 3. Let a Byzantine process send m to two well-behaved processes, and

make them echo m. By the protocol, in order to deliver a message, a process needs to receive

at least three ready messages. Further, in order to send a ready message, a process needs

to receive at least either three echo messages or two ready messages. Therefore, to deliver

any other message m′, at least 3 processes should echo m′. Since 2 well-behaved processes

out of 4 processes already echoed m, and well-behaved processes echo only once, there are

not 3 processes to echo m′, and make it delivered. The federated voting abstraction is

hard-locked for m.

We now consider the proof of termination. By the eventual leader election, there

will eventually be a well-behaved leader with a long enough timeout. Let b be the candidate

ballot of the leader. The leader tries to abort all ballots lower and incompatible with b at

line 14 and line 36. We consider three cases based on whether there is a ballot b′ � b that

is locked for commit.

117

Case 1: There is no such ballot b′. The leader can abort all ballots below and

incompatible with b at line 15, and broadcast commit for b at line 18. By the validity of

federated voting, all processes in P eventually deliver commit for b at line 19, and decide

its value at line 20.

Case 2: There is such a ballot b′ that is soft-locked for commit. In order to

prepare b, the leader tries to abort b′. If the Byzantine processes cooperate, it can abort b′

and prepare b at line 15, and broadcast commit for b at line 18. However, if the Byzantine

processes do not cooperate, the leader cannot abort b′. Therefore, the leader does not

succeed, and the timeout is triggered. Eventually, a well-behaved process l will be the

leader. Since the delay ∆ is larger than the bounded communication delay after GST, the

leader l observes the highest prepared ballot b at line 15, and adopts its value as the value

of its candidate b′ at line 17. We note that when it tries to prepare b′, since b′ is compatible

with b, it does not need to abort b. Therefore, it can prepare and broadcast commit for b′

at line 18. By the validity of federated voting, all processes in P eventually deliver commit

for b′ at line 19, and decide its value at line 20.

Case 3: There is such a ballot b′ that is hard-locked for commit. Ballot b′ cannot be

aborted. Therefore, no well-behaved process can prepare a ballot with a value incompatible

with b′. The current leader will eventually timeout. Further, all ballots b′′ � b′ should have

been aborted since processes accept commit for b′ only if b′ is prepared at line 19. By the

totality of federated voting, eventually a well-behaved leader that has delivered abort for

all ballots b′′ will be elected. Therefore, that leader finds b′ prepared at line 15-16, and

adopts its value as the value of its candidate ballot b′′2 at line 34. Thus, b′′2 is compatible

118

with b′. As we saw above, no ballot incompatible with b′ can be prepared. Thus, no ballot

incompatible with b′′2 can be prepared. Thus, the leader can successfully prepare b′′2 at

line 15, and broadcast commit for b′′2 at line 18-17. By the validity of federated voting, all

processes in P eventually deliver commit for b′′2 at line 19, and decide its value at line 20.

An example execution of the protocol is described in the appendix [290].

3.6.3 Practical Byzantine Consensus Protocol

Algorithm 3: Bunched voting (BV) prepare (1/2)

1 Implements: Bunchedvoting
2 request : prepare(b)
3 response : prepared(b)
4 Vars:
5 Q . Minimal quorums of self
6 F : Set[P] . The followers of self
7 MaxEchoedPrep,MaxReadiedPrep,MaxDeliveredPrep : 〈N+, V 〉 ← 〈0,⊥〉
8 SecondReadiedPrep : N+ ← 0 〈N+, V 〉 ← 〈0,⊥〉
9 E,R : messages← ∅

. Set of EchoPrep, ReadyPrep messages
10 Uses:
11 apl : PointToPointLink
12 upon request prepare(b) from sender
13 apl request send(p,Prepare(b)) for each p ∈ P
14 upon apl response deliver(p′,Prepare(b))
15 if MaxEchoedPrep < b ∧ ¬BEchoedCmt � b then
16 MaxEchoedPrep ← b apl request send(p,EchoPrep(b)) for each p ∈ F

In this section, we introduce bunched voting (Alg. 3) and practical Byzantine con-

sensus (Alg. 7) protocols, which are more feasible in the practical systems. They are inspired

by concrete stellar consensus protocols in [187]. Each process maintains finite states and

119

Algorithm 4: Bunched voting (BV) prepare (2/2)

1 upon apl response deliver(p′,EchoPrep(b))
2 E ← E ∪ {deliver(p′,EchoPrep(b))}
3 if ∃max(b′) = bmax s.t. MaxReadiedPrep < b′

∃q ∈ Q. ∀u ∈ q,∃deliver(u,EchoPrep(bu)) ∈ E ∧ b′′ � bu for every b′′ � b′ then
4 if MaxReadiedPrep = 〈rm, vm〉 ∧ vm 6= bmax.v then
5 SecondReadiedPrep ← rm
6 MaxReadiedPrep ← bmax
7 apl request send(p,ReadyPrep (SecondReadiedPrep, bmax)) for each p ∈ F
8 upon apl response deliver(p′,ReadyPrep(rs, b))
9 R← R ∪ {deliver(p′,ReadyPrep(rs, b))}

10 if ∃max(b′) = bmax s.t.MaxReadiedPrep < b′ ∃blocking(self) = bs. ∀u ∈ bs,
∃deliver(u,ReadyPrep(ru, bu)) ∈ R ∧(b′′ � bu ∨ b′′.r <= ru) for every b′′ � b′ then

11 if MaxReadiedPrep = 〈rm, vm〉 ∧ vm 6= bmax.v then
12 SecondReadiedPrep ← rm
13 MaxReadiedPrep ← bmax
14 apl request send(p,ReadyPrep (SecondReadiedPrep, bmax)) for each p ∈ F
15 if ∃max(b′) = bmax s.t.MaxDeliveredPrep < b′

∃q ∈ Q. ∀u ∈ q,∃deliver(u,ReadyPrep(bu)) ∈ R ∧ (b′′ � bu ∨ b′′.r <= ru) for every
b′′ � b′ then

16 MaxDeliveredPrep ← bmax
17 response prepared(MaxDeliveredPrep)

Algorithm 5: Bunched voting (BV) commit (1/2)

1 Implements: Bunchedvoting
2 request : commit(b)
3 response : committed(b)
4 Vars:
5 Q . Minimal quorums of self
6 F : Set[P] . The followers of self
7 BEchoedCmt ,BReadiedCmt ,BDeliveredCmt : 〈N+, V 〉 ← 〈0,⊥〉
8 EC,RC : messages← ∅

. Set of EchoCmt and ReadyCmt messages
9 Uses:

10 apl : PointToPointLink
11 upon request commit(b) from sender
12 apl request send(p,Commit(b)) for each p ∈ P
13 upon apl response deliver(p′,Commit(b))
14 if MaxDeliveredPrep = b then
15 BEchoedCmt ← b apl request send(p,EchoCmt(b)) for each p ∈ F

120

Algorithm 6: Bunched voting (BV) commit (2/2)

1 upon apl response deliver(p′,EchoCmt(b))
2 EC ← EC ∪ {deliver(p′,EchoCmt(b))}
3 if ∃q ∈ Q,∀u ∈ q,∃deliver(u,EchoCmt(b)) ∈ EC then
4 BReadiedCmt ← b apl request send(p,ReadyCmt(b)) for each p ∈ F
5 upon apl response deliver(p′,ReadyCmt(b))
6 RC ← RC ∪ {deliver(p′,ReadyCmt(b))}
7 if b 6= BReadiedCmt ∧ ∃blocking(self) = bs, ∀u ∈ bs,∃deliver(u,ReadyCmt(b)) ∈ RS

then
8 BReadiedCmt ← b
9 apl request send(p,ReadyCmt(b)) for each p ∈ F

10 if b 6= BDeliveredCmt ∧ ∃q ∈ Q, ∀u ∈ q,∃deliver(u,ReadyCmt(b)) ∈ RC then
11 BDeliveredCmt ← b
12 response committed(b)

Algorithm 7: Practical Byzantine Consensus (1/2)

1 Implements: Consensus
2 request : propose(v)
3 response : decide(v)
4 Vars:
5 round : N+ ← 0 . Current round number
6 candidate, prepared : 〈N+, V 〉 ← 〈0,⊥〉
7 leader : P ← p0 . current leader
8 Uses:
9 bv : BunchedVoting

10 le : EventualLeaderElection
11 apl : PointToPointLink
12 upon request propose(v)
13 candidate ← 〈1, v〉
14 if self = leader then
15 bv request prepare(candidate)

16 upon bv response prepared(b) where prepared < b
17 prepared ← b
18 if self = leader ∧ prepared = candidate then
19 bv request commit(candidate)

121

Algorithm 8: Practical Byzantine Consensus (2/2)

1 upon bv response committed(b) from p where b = prepared ∧ p = leader
2 response decide(b.v)

3 upon timeout triggered
4 le request Complain(round)

5 upon le response new -leader(p)
6 leader ← p
7 round ← round + 1
8 apl request send(p,ReadyPrep(SecondReadiedPrep, MaxReadiedPrep)) for each p ∈ F
9 if self = leader then

10 Delay for time ∆

11 start-timer(round)
12 if prepared = 〈0,⊥〉 then
13 candidate ← 〈round , candidate.v〉
14 else
15 candidate ← 〈round , prepared .v〉
16 if self = leader then
17 bv request prepare(candidate)

only sends and receives finite number of messages to provide liveness properties. Note that

instead of a relying on the assumption of partially synchronized network, where all the mes-

sages between correct processes will be delivered eventually, our protocols guarantee progress

even if messages sent before GST are dropped. Practical Byzantine consensus protocol uses

an instance of bunched voting to prepare and commit ballots, which generalizes and con-

tains potentially infinite instances of Byzantine reliable broadcast in Alg. 1. prepare(b) is

used to abort any ballots that is below and incompatible with b. commit(b) aims to commit

ballot b. In the bunched voting and practical Byzantine consensus, we redefine the below

and incompatible relation between two ballots b and b′: b � b′, b = 〈r, v〉, b′ = 〈r′, v′〉 iff and

only if r < r′ ∧ v 6= v′.

Alg. 3 introduces bunched voting. Each process p stores a set of its individual

minimal quorums Q, and its set of followers F . It also stores the highest ballot for which p

has echoed, readied or delivered a prepare statements in MaxEchoedPrep, MaxReadiedPrep

and MaxDeliveredPrep. It stores the highest ballots for which p has echoed, readied and

122

delivered a commit statement in BEchoedCmt , BReadiedCmt and BDeliveredCmt . All the

echo and ready messages for prepare and commit statements are stored in E,R,EC,RC

and wait to be processed when a quorum or blocking set of consistent messages are received.

After the fields of prepare and commit statements has advance to b, we can safely discard

messages with ballots smaller and incompatible with b in E,R,EC,RC. Each process also

keeps the second highest round number where it has sent ReadyPrep message for a ballot b

and b � MaxReadiedPrep.

Upon receiving a request to prepare a ballot b (at line 12), the sender broadcast

the ballot b to all the processes (at line 13). Upon receiving the message from the sender

(at line 14), a correct process echoes the message among its followers (at line 16) only if

two conditions are satisfied: it has not sent EchoCmt(b′) messages for any ballot b′ � b; b is

greater than any ballot b′′ that it has previously sent EchoPrep(b′′). The protocol proceed

with the similar stages of Byzantine reliable broadcast with the following modifications: for

prepare statements, at each stage the protocol only sends or delivers the maximum ballot

among the ballots which are allowed. For example, when a correct process p receives a

EchoPrep(b) message (at line 1), it checks whether there is a ballot b′ that is greater than

MaxReadiedPrep, and for a quorum q of p, p has received an EchoPrep(bu) message from

each member u of q, such that for all the ballots b′′ � b′, b′′ � bu. The correct process p

then select the maximum ballot bmax among the ballots b′ and update SecondReadiedPrep

(at line 5) and MaxReadiedPrep (at line 6). SecondReadiedPrep is used to keep the highest

round number of a ballot b′ such that p has sent ReadyPrep(r′, b′) message previously and b′

carries a different value compared to bmax. It is safe to express abort intention on behalf of

123

p for any ballot with a round number smaller or equal to such SecondReadiedPrep. Because

p previously agreed to abort any ballot bs � 〈SecondReadiedPrep, vs〉 and now agrees to

abort any ballot bm � bmax. Then if vs 6= bmax.v, p agrees to abort all ballots up to rounds

SecondReadiedPrep. For the ballots with a round number between SecondReadiedPrep and

bmax.r, p agrees to abort any ballot with a different value compared to bmax.v. With this

intuition, the correct process sends ReadyPrep(SecondReadiedPrep, bmax) to its follows (at

line 7). When a correct process receives ReadyPrep(rs, b) message (at line 8), it checks

similar conditions for blocking set (at line 10) and quorum (at line 15) to amplify (at

line 14) and deliver (at line 17) the prepare statement.

The commit statement follows directly from the Byzantine reliable broadcast with

one modification: correct process only sends EchoCmt(b) for ballot b = MaxDeliveredPrep

(at line 14). It means a correct process always prepares a ballot first then tries to commit

it.

The practical Byzantine consensus protocol (Alg. 7) follows the same structure

in Alg. 2 with one caveat in order to progress: all the correct processes resend ReadyPrep

messages at the beginning of each epoch (at line 8). This ensures that even if messages before

GST are dropped, in the first round after GST, all the correct processes can synchronize

their prepared ballot and a correct leader will adopt the highest prepared ballot as proposal.

124

3.7 Example Execution for Consensus

We demonstrate an execution of our consensus protocol, which illustrates its ability

to fulfill both safety and liveness properties. Let us assume P = {1, 2, 3, 4},B = {2},Q(1) =

{{1, 2, 3}},Q(3) = {{3, 4}, {1, 3}},Q(4) = {{3, 4}}. All the well-behaved processes are

initialized with a default ballot 〈0,⊥〉 for their prepared and candidate variable. The well-

behaved processes propose three different values: process 1 propose 3; process 3 propose 5;

process 4 propose 2.

In the first round, process 1 is the leader. Upon the proposal at line 11, all

the well-behaved process update their candidate with their own proposal value at line 12.

Process 1 aborts all the ballots below and incompatible with its candidate through reliable

broadcast: it BCastA for instances 〈0,⊥〉, 〈1, 1〉 and 〈1, 2〉 at line 14. Since the network

is partially synchronized, we let the process 4 be partitioned from the rest of processes

temporarily. Byzantine process 2 only send EchoA messages for ballot 〈0,⊥〉 and 〈1, 1〉.

Since process 1 has the individual minimal quorum {1, 2, 3}, it send ReadyA messages for

the aforementioned two ballots. Process 3 sends ReadyA messages for the two ballots, too.

We partition process 3 from process 1 and 2 from now on temporarily. Process 1 is able to

deliver the A for ballots 〈0,⊥〉 and 〈1, 1〉 through BRB at line 15 and update its prepared

variable as 〈1, 2〉 at line 16. Since the leader process 1’s prepared 6= candidate, it can not

broadcast commit for its candidate and the timer triggers.

In the second round, Byzantine process 2 is the leader. When the new leader

is elected for a new round, all the well-behaved process increase their round number and

update their candidate: process 1 updates its candidate value to its prepared value 2 at

125

line 34; process 3 and 4 has not prepared any ballot and update their candidate to their

original proposal at line 31. Then Byzantine leader tries to commit an arbitrary value 4,

which no well-behaved process will accept, since the well-behaved process only deliver C for

a BRB instance with the ballot same as its prepared at line 19. We recovery the connection

from process 3 and 4 to the rest of the network. Then both process 3 and 4 delivers A

message from previous round at line 15 and update their prepared ballot to 〈1, 2〉. No value

is decided and the timer trigger again.

In the third round, well-behaved process 3 is the leader. All the well-behaved pro-

cess now synchronized to the same highest prepared ballot 〈1, 2〉 and update their candidate

accordingly. Process 3 then abort the rest ballots that are less and incompatible with its

candidate = 〈3, 2〉 through BRB. Byzantine process 2 remain silent in this round to prevent

liveness for the weakly available process 1. However, process 3 and 4 are strongly available

and is able to successfully deliver the abort messages. Their prepared is updated to 〈3, 2〉

and process 3 commits this ballot through BRB at line 18. All the process 3 and 4 deliver

the commit message at line 19 and decide the value 2 in the committed ballot 〈3, 2〉 at

line 20.

126

1 2 3 4
p = 〈0,⊥〉 p = 〈0,⊥〉 p = 〈0,⊥〉
c = 〈0,⊥〉 c = 〈0,⊥〉 c = 〈0,⊥〉
Propose(3) Propose(5) Propose(2)
p = 〈0,⊥〉 p = 〈0,⊥〉 p = 〈0,⊥〉
c = 〈1, 3〉 c = 〈1, 5〉 c = 〈1, 2〉

BCast(〈0 ,⊥〉,Abort)
BCast(〈1 , 1 〉,Abort)
BCast(〈1 , 2 〉,Abort)
Echo(〈0 ,⊥〉,Abort) Echo(〈0 ,⊥〉,Abort) Echo(〈0 ,⊥〉,Abort) slow
Echo(〈1 , 1 〉,Abort) Echo(〈1 , 1 〉,Abort) Echo(〈1 , 1 〉,Abort)
Echo(〈1 , 2 〉,Abort) Echo(〈1 , 2 〉,Abort)
Ready(〈0 ,⊥〉,Abort) Ready(〈0 ,⊥〉,Abort) Ready(〈0 ,⊥〉,Abort) slow
Ready(〈1 , 1 〉,Abort) Ready(〈1 , 1 〉,Abort) Ready(〈1 , 1 〉,Abort)
Deliver(〈0 ,⊥〉,Abort) slow slow
Deliver(〈1 , 1 〉,Abort)

p = 〈1, 2〉 p = 〈0,⊥〉 p = 〈0,⊥〉
c = 〈1, 3〉 c = 〈0,⊥〉 c = 〈0,⊥〉
time out time out time out
p = 〈1, 2〉 p = 〈0,⊥〉 p = 〈0,⊥〉
c = 〈2, 2〉 c = 〈2, 5〉 c = 〈2, 2〉

BCast(〈2 , 4 〉,Commit)
Deliver(〈0 ,⊥〉,Abort) Echo(〈0 ,⊥〉,Abort)
Deliver(〈1 , 1 〉,Abort) Echo(〈1 , 1 〉,Abort)

Echo(〈1 , 2 〉,Abort)
Ready(〈0 ,⊥〉,Abort)
Ready(〈1 , 1 〉,Abort)

Delivery(〈0 ,⊥〉,Abort)
Delivery(〈1 , 1 〉,Abort)

p = 〈1, 2〉 p = 〈1, 2〉 p = 〈1, 2〉
c = 〈2, 2〉 c = 〈2, 5〉 c = 〈2, 2〉
time out time out time out
p = 〈1, 2〉 p = 〈1, 2〉 p = 〈1, 2〉
c = 〈3, 2〉 c = 〈3, 2〉 c = 〈3, 2〉

BCast(〈1 , 2 〉,Abort) ...
silent Deliver(〈1 , 2 〉,Abort)... Deliver(〈1 , 2 〉,Abort)...

p = 〈1, 2〉 p = 〈3, 2〉 p = 〈3, 2〉
c = 〈3, 2〉 c = 〈3, 2〉 c = 〈3, 2〉

BCast(〈3 , 2 〉,Commit)
silent Deliver(〈3 , 2 〉,Commit) Deliver(〈3 , 2 〉,Commit)
silent Decide(2) Decide(2)

Table 3.2: An execution for consensus protocol with leader switch

127

3.8 Discussion

When Byzantine processes don’t lie about their slices, an FBQS enjoys quorum

sharing [311]. Consider a quorum q of a process p, and a process p′ in it. Since a set is

recognized as a quorum only if it contains a slice for each of its members, the process p′

has a slice s in q. Processes receive the same set of slices from a given process even if it is

Byzantine. If p′ starts from s, it can find a quorum that grows no larger than q, i.e., it can

stop at q if not earlier. Therefore, q includes a quorum of p′.

However, when Byzantine processes lie about their slices, FBQS does not sat-

isfy quorum sharing. Consider an FBQS with five processes P = {1, 2, 3, 4, 5}, and one

Byzantine process B = {4}. The slices of well-behaved processes W = {1, 2, 3, 5} are the

following: S(1) = {{1, 2}}, S(2) = {{2, 3}, {2, 4}, {2, 5}}, S(3) = {{3, 4}}, S(5) = {{2, 5}}.

However, the Byzantine process 4 provides different quorum slices to different well-behaved

processes. The slices that it sends to each other process are the following: S(4)1 = {{1, 4}},

S(4)2 = {{3, 4}}, S(4)3 = {{2, 4}}, S(4)5 = {{4, 5}}. By the definition of quorums in

FBQS, we have the following individual minimal quorums for each well-behaved process:

Q(1) = {{1, 2, 4}, {1, 2, 5}}, Q(2) = {{2, 3, 4}, {2, 5}}, Q(3) = {{2, 3, 4}}, Q(5) = {{2, 5}}.

We can see that Q does not have quorum sharing, since the quorum {1, 2, 4} does not in-

clude any quorum for process 2. However, Q is strongly available for processes {1, 2, 5},

since they all have quorums that are well-behaved and quorum subsuming. Notice that

abstract quorums which are over-approximations of FBQS satisfy quorum-sharing [311]: A

set q is an abstract quorum of a process p if p is Byzantine, or p has a slice contained in

q and every well-behaved member of q has a slice contained in q. However, as shown in

128

our example, not all abstract quorums of a process can be observed by that process when

Byzantine processes lie about their quorum slices. For example, {1, 2, 4} is an abstract

quorum of process 2 but 2 does not observe it when the Byzantine process 4 lies. There-

fore, relaxation of the quorum sharing is necessary when analyzing quorum systems such as

FBQS when Byzantine processes lie.

Further, there are systems where a strongly available set exists but no guild set

(from ABQS) exists. Therefore, HQS can provide safety and liveness for those executions

but ABQS cannot. We show a quorum system that has an empty guild but has non-

empty strongly available set and quorum intersection. Let P = {1, 2, 3, 4}, and process 3

is Byzantine. Let the asymmetric failure prone system be F(1) = {{3, 4}, {2}}, F(2) =

{{3, 4}, {1}}, F(3) = {{1, 2}}, F(4) = {{2, 3}}. The canonical quorum systems are Q(1) =

{{1, 2}, {1, 3, 4}}, Q(2) = {{1, 2}, {2, 3, 4}}, Q(3) = {{3, 4}},Q(4) = {{1, 4}}. This HQS

has quorum intersection and a non-empty strongly available set: all the quorums of well-

behaved processes have at least one correct process in their intersection. The set {1, 2} is a

strongly available set for Q. However, it is not an ABQS with generalized B3 condition. For

processes 1 and 2, F1 = {2},F2 = {1} and F12 = {3, 4}, and we have P ⊆ {2}∪{1}∪{3, 4},

which violates generalized B3. Therefore this quorum system is not an ABQS. There is no

guild set.

3.9 Related Works

Quorum Systems with Heterogeneous Trust. Ripple [397] and Cobalt [319]

pioneered decentralized trust. They let each node specify a list, called the unique node list

129

(UNL), of processes that it trusts. However, they do not consider quorum availability or

subsumption.

Stellar [334, 307] presents federated Byzantine quorum systems (FBQS) [185, 187]

where quorums are iteratively calculated from quorums slices. Stellar also presents a fed-

erated voting and consensus protocol. In comparison, the assumptions of the protocols

presented in this paper are weaker, and their guarantees are stronger. The stellar consensus

protocol (SCP) guarantees termination when Byzantine processes stop. In contrast, the

consensus protocol in this paper guarantees termination regardless of Byzantine processes.

Further, abstract SCP [185] provides agreement only for intact processes. The intact set

for an FBQS is a subset of processes that have strong availability. On the other hand,

the consensus protocol in this paper provides agreement for all well-behaved processes. In

FBQS, the intersections of quorums should have a process in the intact set; however, in

HQS, they only need to have a well-behaved process. The validity and totality properties

for the reliable broadcast for FBQS are restricted to the intact set. On the other hand, the

reliable broadcast protocol in this paper provides totality for all processes that have weak

availability, and validity for all processes that have strong availability.

Personal Byzantine quorum systems (PBQS) [311] capture the quorum systems

that FBQSs derive form slices, and propose a responsiveness consensus protocol [445, 17,

367, 24]. They define a notion called quorum sharing which requires quorum subsumption

for every quorum. Stellar quorums have quorum sharing if and only if processes do not

lie about their slices. (The appendix [290] presents examples.) In this paper, we relax

quorum sharing to quorum subsumption, and capture quorums that FBQSs derive even

130

when Byzantine quorums lie about their slices, and show that even if a quorum system does

not satisfy quorum sharing, safety can be maintained for all processes, and liveness can be

maintained for the set of strongly available processes.

Asymmetric Byzantine quorum systems (ABQS) [104, 105, 25] allow each process

to define a subjective dissemination quorum system (DQS), in a globally known system.

The followup model [103] lets each process specify a subjective DQS for processes that

it knows, transitively relying on the assumptions of other processes. In contrast, HQS

lets each process specify its own set of quorums without knowing the quorums of other

processes. Further, it does not require the specification of a set of possible Byzantine sets.

Further, there are systems where a strongly available set (from HQS) exists but no guild set

(from ABQS) exists. (The appendix [290] presents examples.) Therefore, HQS can provide

safety and liveness for those executions but ABQS cannot. ABQS presents shared memory

and broadcast protocols, and further, rules to compose two ABQSs. On the other hand,

this paper proves impossibility results, and presents protocols for reliable broadcast and

consensus abstractions. HQS provides strictly stronger guarantees with weaker assumptions.

In ABQS, the properties of reliable broadcast are stated for wise processes and the guild.

However, this paper states these four properties for well-behaved processes and the strongly

available set. Well-behaved processes are a superset of wise processes, and as noted above,

in certain executions, the strongly available set is a superset of the guild.

Flexible BFT [325] allows different failure thresholds between learners. Heteroge-

neous Paxos [401, 402] further generalizes the separation between learners and acceptors

with different trust assumptions; it specifies quorums as sets rather than number of pro-

131

cesses. These two projects introduce a consensus protocol that guarantees safety or liveness

for learners with correct trust assumptions. However, they require the knowledge of all

processes in the system. In contrast, HQS only requires partial knowledge of the system,

and captures the properties of quorum systems where reliable broadcast and consensus pro-

tocols are impossible or possible. Multi-threshold reliable broadcast and consensus [223]

and MT-BFT [341] elaborate Bracha [86] to have different fault thresholds for different

properties, and different synchrony assumptions. However, they have cardinality-based or

uniform quorums across processes. In contrast, HQS supports heterogeneous quorums.

K-consistent reliable broadcast (K-CRB) [70] introduces a relaxed reliable broad-

cast abstraction where the correct processes can define their own quorum systems. Given

a quorum system, it focuses on delivering the smallest number k of different values. In

contrast, we propose the weakest condition to solve classical reliable broadcast and con-

sensus. Moreover, K-CRB’s relaxed liveness guarantee (accountability) requires public key

infrastructure. In contrast, all the results in this paper are for information-theoretic setting.

Our consensus protocol uses eventual leader election. Several other works present

view synchronization and eventual leader election for Byzantine replicated systems [88, 87],

and dynamic networks [344, 229]. It is interesting to see if their leader election modules can

be generalized to the heterogeneous setting, and support responsiveness [445, 40] for our

consensus protocol.

Impossibility Results. There are two categories of assumptions about the

computational power of Byzantine processes. In the information-theoretic setting, Byzan-

tine process have unlimited computational resources. While in the computational setting,

132

Byzantine processes can not break a polynomial-time bound [183]. In this work, our impos-

sibility results for reliable broadcast and consensus fall in the information-theoretic category.

Whether the same results hold in the computational setting is an interesting open question.

FLP [172] proved that consensus is not solvable in asynchronous networks even

with one crash failure. Many following works [198, 146, 20, 171, 267, 83] considered solvabil-

ity, and necessary and sufficient conditions for consensus and reliable broadcast to tolerate

f Byzantine failures in partially synchronous networks. The number of processes should

be more than 3f and the connectivity of the communication graph should be more than

2f . However, these results apply for cardinality-based quorums, which is a special instance

of HQS. We generalize the reliable broadcast and consensus abstractions to HQS which

supports non-uniform quorums, and prove impossibility results for them.

3.10 Conclusion

This paper presented a general model of heterogeneous quorum systems where

each process defines its own set of quorums, and captured their properties. Through in-

distinguishably arguments, it proved that no deterministic quorum-based protocol can im-

plement the consensus and Byzantine reliable broadcast abstractions on a heterogeneous

quorum system that provides only quorum intersection and availability. It introduced the

quorum subsumption property, and showed that the three conditions together are sufficient

to implement the two abstractions. It presented Byzantine broadcast and consensus proto-

cols for heterogeneous quorum systems, and proved their correctness when the underlying

quorum system maintain the three properties.

133

Chapter 4

Reconfigurable Heterogeneous

Quorum Systems

4.1 Introduction

Banks have been traditionally closed; only established institutions could hold ac-

counts and execute transactions. With regulations in place, this centralized model can

preserve the integrity of transactions. However, it makes transactions across these insti-

tutions costly and slow; further, it keeps the power in the hands of a few. In pursuit of

decentralization, Bitcoin [350] provided open membership: any node can join the Bitcoin

network, and validate and process transactions. It maintains a consistent replication of

an append-only ledger, called the blockchain, on a dynamic set of global hosts including

potentially malicious ones. However, it suffers from a few drawbacks: low throughput, high

energy consumption, and only probabilistic guarantees of commitment [281, 282].

134

Maintaining consistent replication in the presence of malicious processes has been

the topic of Byzantine replicated systems for decades. PBFT [116] and its numerous fol-

lowing variants [423, 338, 445, 410, 35, 411] can maintain consistent replication when the

network size is at least three times the size of potentially Byzantine coalitions, have higher

throughput than Bitcoin, have modest energy consumption, give participants equal power,

and provide deterministic liveness guarantees. Unfortunately, however, their quorums are

uniform and their membership is closed. Their trust preferences, i.e., the quorums of pro-

cesses are fixed and homogeneous across the network. Further, their set of participants are

fixed; thus, in contrast to proof-of-work replication that provides permissionless blockchains,

classical Byzantine replication only provides permissioned blockchains.

Can the best of both worlds come together? Can we keep the consistency, through-

put, modest energy consumption and equity of Byzantine replicated systems, and bring

heterogeneous trust [142, 105, 25] and open membership to it? Openness challenges classi-

cal assumptions. With global information about the processes and their quorums, classical

quorum systems could be configured at the outset to satisfy consistency and availability

properties. However, open quorum systems relinquish global information as processes spec-

ify their own quorums, and can further join, leave, and reconfigure their quorums. As

the other processes may be unaware of these changes, consistency and availability may be

violated after and even while these reconfigurations happen.

Projects such as Ripple [397] and Stellar [334] pioneered, and follow-up research

[311, 307, 187, 85] moved towards this goal, and presented quorum systems where nodes

can specify their own quorums, and can join and leave. In fact, the Stellar network has

135

a high churn. In previous works, the consistency of the network is either assumed to be

maintained by user preferences or a structured hierarchy of nodes, is provided only in divided

clusters of processes, or can be temporarily violated and is periodically checked across the

network. Reconfigurations can compromise the consistency or availability of the replicated

system. The loss of consistency can be the antecedent to a fork and double-spending. An

important open problem is reconfiguration protocols for heterogeneous quorum systems with

provable security guarantees. The protocols are expected to avoid external central oracles,

or downtime.

In this paper, we first present a general model of heterogeneous quorum systems

where each process declares its individual set of quorums, and then formally capture the

properties of these systems: consistency, availability and inclusion. We then consider the

reconfiguration of heterogeneous quorum systems: joining and leaving of a process, and

adding and removing of a quorum. To cater for the protocols such as broadcast and con-

sensus that use the quorum system, the reconfiguration protocols are expected to preserve

the above properties.

The safety of consensus naturally relies on the consistency (or quorum intersection)

property: every pair of quorums intersect at a well-behaved process. Intuitively, if an

operation communicates with a quorum, and a later operation communicates with another

quorum, only a well-behaved process in their intersection can make the second aware of the

first. A quorum system is available for a process if it has a well-behaved quorum for that

process. Intuitively, the quorum system is responsive to that process through that quorum.

The less known property is quorum inclusion. Roughly speaking, every quorum should

136

include a quorum of each of its members. This property trivially holds for homogeneous

quorum systems where every quorum is uniformly a quorum of all its members, but should

be explicitly maintained for heterogeneous quorum systems. We show that quorum inclusion

interestingly lets processes in the included quorum make local decisions while preserving

properties of the including quorum. We precisely capture and illustrate these properties.

We then present quorum graphs, a graph characterization of heterogeneous quorum

systems with the above properties. It is known that strongly connected components of a

graph form a directed acyclic graph (DAG). We prove that a quorum graph has only one

sink component, and preserving consistency reduces to preserving quorum intersections in

this component. This fact has an important implication for optimization of reconfiguration

protocols. Any change outside the sink component preserves consistency, and therefore, can

avoid synchronization with other processes. Thus, we present a decentralized sink discovery

protocol that can find whether a process is in the sink.

In addition to consistency, availability and inclusion, reconfiguration protocols are

expected to preserve policies. Each process declares its own trust policy: it specifies the

quorums that it trusts. In particular, it does not trust strict subsets of its individual

quorums. Thus, a policy-preserving reconfiguration should not shrink any quorum. We

present a join protocol that preserves all the above properties. We present trade-offs for

the properties that the leave, remove and add reconfiguration protocols can preserve. We

show that there is no leave or remove protocol that can preserve both the policies and

availability. Thus, we present two protocols: a protocol that preserves policies, and another

that preserves availability. Both preserve consistency and inclusion. Then, we show that

137

there is no add protocol that can preserve both the policies and consistency. Therefore, since

we never sacrifice consistency, we present a protocol that preserves all properties except the

policies.

We observe that under reconfiguration, quorum inclusion is critical to preserve

not only availability but also consistency. Sometimes, reconfigurations can only eventually

reconstruct inclusion, but can preserve weaker notions of inclusion that are sufficient to pre-

serve consistency and availability. We capture these notions, prove that they are preserved,

and use them to prove that the other properties are preserved.

4.2 Quorum Systems

Processes. A quorum system is hosted on a set of processes P. In each

execution, P is partitioned into Byzantine B and well-behaved W = P \ B processes. Well-

behaved processes follow the given protocols; however, Byzantine processes can deviate

from the protocols arbitrarily. Furthermore, a well-behaved process does not know the set

of well-behaved processes W or Byzantine processes B. The active processes A ⊆ P are

the current members of the system. As we will see in section 4.5, quorum systems can be

reconfigured, and the active set can change: processes can join and the active set grows,

and conversely, processes can leave, and the active set shrinks.

We consider partially synchronous networks [160], i.e., if both the sender and

receiver are well-behaved, the message will be eventually delivered within a bounded delay

after an unknown GST (Global stabilization Time). Processes can exchange messages on

authenticated point-to-point links.

138

P =W ∪ B, W = {1, 2, 3, 5}, B = {4}
Q = {1 7→ {{1, 2, 4}},

2 7→ {{1, 2}, {2, 3}, {2, 5}},
3 7→ {{2, 3}},
5 7→ {{2, 5}}}

Figure 4.1: Example Quorum System

Individual Quorums. Processes can have different trust assumptions: trust is

a subjective matter, and therefore, heterogeneous. We capture a heterogeneous model of

quorum systems where each process can specify its individual set of quorums.

An individual quorum q of a process p is a non-empty subset of processes in P

that p trusts to collectively perform an operation. Every quorum of a process p naturally

contains p itself. (However, this is not necessary for any theorem in this paper.) By the

above definition, any superset of a quorum of p is also a quorum of p. Thus, the set of

quorums of p is superset-closed and has minimal members. (Consider a set of sets S = {s}.

We say that S is superset-closed, if any superset s′ of any member s of S is a member of

S as well.) For example, let the minimal quorums of process 1 be the set {{1, 4}, {1, 3}}.

Then, the set {1, 3, 4} is a quorum of 1 but is not a minimal quorum of 1. A process p

doesn’t need to keep any quorum other than its minimal quorums: any of its other quorums

include extra processes that p can perform operations without. Thus, we consider only the

(individual) minimal quorums of p. Any superset of such a quorum is a quorum for p. We

denote a set of quorums as Q. We denote the union of a set of quorums Q as ∪Q.

Heterogeneous Quorum Systems. In a heterogeneous quorum system, the

set of individual quorums can be different across processes.

139

Definition 68 (Quorum System) A heterogeneous quorum system (HQS) Q maps each

active process to a non-empty set of individual minimal quorums.

The mapping models the fact that each process has only a local view of its own individual

minimal quorums. Consider the running example in Figure 4.1. The minimal quorums of

process 2 are {1, 2}, {2, 3} and {2, 5}. Further, since the behavior of Byzantine processes

can be arbitrary, we leave their individual quorums unspecified.

When obvious from the context, we say quorum systems to refer to heterogeneous

quorum systems, and say quorums of p to concisely refer to the individual minimal quorums

of p.

Quorums. Next, we consider quorums and their minimality across all processes

of a quorum system. Consider a quorum system Q. The set of (individual) quorums of Q

is the set of quorums in the range of the map Q. A quorum q is a minimal quorum of

Q iff q is an individual minimal quorum of a process in Q, and no proper subset of q is

an individual minimal quorum of any process in Q. (A minimal quorum is also called

elementary [311].) We denote the set of minimal quorums of Q as MQ(Q). In our running

example in Figure 4.1, MQ(Q) = {{1, 2}, {2, 3}, {2, 5}}. We note that although {1, 2, 4} is

a minimal quorum of 1, it is not a minimal quorum of Q since since 2 has the quorum {1, 2}

that is a strict subset of {1, 2, 4}.

Lemma 69 For all quorum systems Q, every minimal quorum of Q is an individual min-

imal quorum of some process in Q. Further, every quorum of Q is a superset of a minimal

quorum of Q.

140

4.3 Properties

The consistency, availability and inclusion properties are expected to be provided

by a quorum system, and maintained by a reconfiguration protocol. In this section, we

precisely define these notions. We adapt consistency and availability for HQS, and define

the new notion of inclusion. We then consider a few variants of HQS. The conditions are

parametric for a Byzantine attack, i.e., the set of Byzantine processes B (or equivalently the

set of well-behaved processes W). Each condition can be directly lifted for a set of attacks

{B} by requiring the condition for each B.

Consistency. A process stores and retrieves information from the quorum

system by communicating with one of its quorums. Therefore, to ensure that each operation

observes the previous one, the quorum system is expected to maintain an intersection for

any pair of quorums at well-behaved processes. A set of quorums have quorum intersection

at a set of well-behaved processes P ⊆ W iff every pair of them intersect in at least one

process in P .

Definition 70 (Consistency, Quorum Intersection) A quorum system Q is consistent

(i.e., has quorum intersection) at a set of well-behaved processes P iff the quorums of well-

behaved processes have quorum intersection at P , i.e., ∀p, p′ ∈ W. ∀q ∈ Q(p), q′ ∈ Q(p′). q∩

q′ ∩ P 6= ∅.

The set P is often implicitly the set of all well-behaved processes W.

For example, in Figure 4.1, the quorum system Q is consistent since any two quo-

rums have a well-behaved process (either 1 or 2) in their intersection. It is straightforward

that every minimal quorum of a consistent quorum system contains a well-behaved process.

141

Lemma 71 In every quorum system, minimal quorums have quorum intersection iff indi-

vidual minimal quorums have quorum intersection.

Immediate from Theorem 69. This has an important implication for preservation

of consistency.

Lemma 72 Every quorum system is consistent if its minimal quorums have quorum inter-

section.

Straightforward from Theorem 70 and Theorem 71.

Availability. To support progress for a process, the quorum system is expected

to provide at least one responsive quorum for that process.

Definition 73 (Availability) A quorum system is available for processes P at a set of

well-behaved processes P ′ iff every process in P has at least a quorum that is a subset of P ′.

We say that a quorum system is available for P iff it is available for P at the set

of active well-behaved processes. In our running example in Figure 4.1, the quorum system

Q is available for {2, 3, 5} since the processes 2 and 3 have the quorum {2, 3}, process 5 has

the quorum {2, 5}, and the members of the quorums, 2, 3 and 5, are well-behaved. We note

that Q is not available for 1 since its quorum intersects Byzantine processes B = {4}.

We say that a quorum system is available inside P iff it is available for P at P . The

set P has an interesting property that we will later use to maintain consistency. Consider a

process p in P . If a set of processes P ′ can block availability for p, then P ′ intersects P . In

our running example in Figure 4.1, the quorum system Q is available inside P = {2, 3, 5}.

142

The set P ′ = {1, 3, 5} intersects all quorums of process 2 and can block its availability. We

observe that the two sets P and P ′ intersect.

Let’s first see the notion of blocking set [311, 185] for quorums (rather than slices

[334]).

Definition 74 (Blocking Set) A set of processes P is a blocking set for a process p (or

is p-blocking) iff P intersects every quorum of p.

Lemma 75 In every quorum system that is available inside a set of processes P , every

blocking set of every process in P intersects P .

Proof. Consider a quorum system that is available inside P , a process p in P ,

and a set of processes P ′ that blocks p. By the definition of availability, there is at least

one quorum q of p that is a subset of P . By the definition of blocking, q intersects with P ′.

Hence, P intersects P ′ as well.

Quorum inclusion. Before defining the notion of quorum inclusion, let us

start with an intuitive example of how inclusion of quorums can support their intersection.

Consider a pair of quorums q1 and q2 that intersect at a well-behaved process p. Let a

quorum q′1 of p be included in q1, and a quorum q′2 of p be included in q2. Consider that

p wants to check whether it can leave without violating quorum intersection for q1 and

q2. It is sufficient that p locally checks if there is at least one well-behaved process in the

intersection of its own quorums q′1 and q′2.

Let us start with a simple example. The quorum system Q in Figure 4.1 is quorum

including (for W). For example, consider process p = 2, and the quorum q = {1, 2} of p.

The well-behaved processes p′ of q are 1 and 2. Process 1 has the quorum q′ = {1, 2, 4}

143

W
P

pq′ q

Figure 4.2: Quorum inclusion of q for P . Process p is a member of q that falls inside P ,
and q′ is a quorum of p. Well-behaved processes of q′ (shown as green) should be a subset
of q.

and its well-behaved subset is {1, 2} that is included in q. Process 2 has quorum q that is

trivially a subset of itself. Figure 4.2 illustrates the following definition of quorum inclusion.

Definition 76 (Quorum inclusion) Consider a quorum system Q, and a subset P of its

well-behaved processes.

A quorum q is quorum including for P iff for every process p in the intersection

of q and P , there is a quorum q′ of p such that well-behaved processes of q′ are a subset of

q, i.e., including(q, P) := ∀p ∈ q ∩ P. ∃q′ ∈ Q(p). q′ ∩W ⊆ q.

A quorum system Q is quorum including for P iff every quorum of well-behaved

processes of Q is quorum including for P , i.e., ∀p ∈ W. ∀q ∈ Q(p). including(q, P).

The set P is often implicitly the set of all well-behaved processes W.

Quorum inclusion was inspired by and weakens quorum sharing [311].

Definition 77 (Quorum sharing) A quorum q has quorum sharing iff for every process p

in q, there exists a quorum q′ of p that is a subset of q. A quorum system has quorum sharing

if all its quorums have quorum sharing, i.e., ∀p,∀q ∈ Q(p). ∀p′ ∈ q. ∃q′ ∈ Q(p′). q′ ⊆ q.

Quorum sharing requires conditions on the Byzantine processes in q and q′, and is too

144

strong to maintain. We presented quorum inclusion that is weaker than quorum sharing.

It requires a quorum q′ only for well-behaved processes of q, and requires only the well-

behaved subset of q′ to be a subset of q. We will see in section 4.6 that quorum inclusion

is sufficient to support quorum intersection.

Outlived. As we will see in our reconfiguration protocols, quorum inclusion and

quorum availability support quorum intersection. Thus, we tightly integrate these three

properties in the notion of outlived quorum systems.

Definition 78 (Outlived) A quorum system Q is outlived for a set of well-behaved pro-

cesses O iff (1) Q is consistent at O, (2) available inside O, and (3) quorum including for

O.

In an outlived quorum system, well-behaved processes enjoy safety (quorum in-

tersection) and outlived processes enjoy liveness (availability of a quorum with inclusion).

The safety and liveness properties of outlived processes outlive Byzantine attacks, hence

the name. For example, our running quorum system in Figure 4.1 is outlived for {2, 3, 5}.

We call O an outlived set for Q, and call a member of O an outlived process. We

call a quorum system that is outlived for a set, an outlived quorum system. Similarly, we

use the qualifier outlived for the properties (1)-(3) above. Quorum systems are initialized

to be outlived, and the reconfiguration protocols preserve this property.

HQS Instances. We now describe a few instances of HQS, and their properties.

Dissemination quorum systems (DQS). A DQS [327] (and the cardinality-based

quorum system as a a special case) declares a global set of quorums for all processes.

Processes have the same set of individual minimal quorums. DQS further declares a set

145

of possible Byzantine sets. A DQS is outlived for all well-behaved processes W. It is

consistent at W since the intersection of no pair of quorums falls completely in a Byzantine

set. It is available forW since there is at least one quorum that does not intersect with any

Byzantine set. It is quorum including for W: since the quorums are global, all the well-

behaved members of a quorum q recognize q as their own quorum. However, in general, an

HQS may be outlived for only a subset of well-behaved processes.

Personal Byzantine quorum systems (PBQS). A PBQS [311] is an HQS that

requires quorum sharing, and further quorum intersection and availability for subsets of

processes called clusters. A cluster is an outlived HQS.

Federated (Byzantine) quorum systems (FBQS). An FBQS [334, 185] lets each

process p specify its own quorum slices. A slice is a subset of processes that p trusts when

they state the same statement. A slice is only a part of a quorum. A quorum is a set of

processes that contains a slice for each of its members. A process can construct a quorum

starting from one of its own slices, and iteratively probing and including a slice of each

process in the set. As each process calculates its own quorums, an HQS is formed.

When Byzantine processes don’t lie about their slices, the resulting HQS enjoys

quorum sharing [311]. Consider a quorum q of a process p and a process p′ in it. Since a

set is recognized as a quorum only if it contains a slice for each of its members, there is a

slice s of process p′ in q. Since Byzantine processes don’t lie about their slices, processes

receive the same set of slices from a given process.

If p′ starts from s, it can gather the same slices for the processes s as p does,

and can assemble a quorum q′ that grows no larger than q. Therefore, q is a superset of a

146

quorum q′. However, if Byzantine processes lie about their slices, quorum sharing may not

hold.

4.4 Graph Characterization

We now define a graph characterization of heterogeneous quorum systems. We

show that the graphs for quorum systems with certain properties have a single sink com-

ponent that contains all the well-behaved processes in minimal quorums; therefore, by

Theorem 72, preserving consistency reduces to preserving quorum intersections in that

component.

Quorum graph. The quorum graph of a quorum system Q is a directed graph

G = (P, E), where vertices are the processes, and there is an edge from p to p′ if p′ is

a member of an individual minimal quorum of p, i.e., (p, p′) ∈ E iff ∃q ∈ Q(p). p′ ∈ q.

Intuitively, the edge (p, p′) represents the fact that p directly consults with p′. For example,

Figure 4.3 shows a quorum system and its graph representation. We refer to a quorum

system and its graph characterization interchangeably.

We now prove a few properties for quorum systems with consistency and quorum

sharing. (Quorum systems with these properties enable optimizations for reconfiguration;

however, the protocols in the next sections don’t require quorum sharing.)

Lemma 79 A quorum is a minimal quorum iff it is an individual minimal quorum for all

its well-behaved members.

147

P = {1, 2, 3, 4, 5, 6},B = {5},
Q(1) = {{1, 2}, {1, 3, 5}},
Q(2) = {{1, 2}},
Q(3) = {{1, 3, 5}},
Q(4) = {{1, 2, 4}},
Q(5) = {{1, 3, 5}},
Q(6) = {{1, 2, 6}}
MQ(Q) = {{1, 2}, {1, 3, 5}}

Figure 4.3: Quorum Graph Example

Proof. We first show the only-if direction. Consider a minimal quorum q. By the

quorum sharing property, each well-behaved process in q has an individual minimal quorum

q′ such that q′ ⊆ q. Since q is a minimal quorum, q′ = q. The proof of the if direction is by

contradiction. Assume the if condition: q is an individual minimal quorum for all its well-

behaved members. However, q is not a minimal quorum. Since q is an individual minimal

quorum but not a minimal quorum, by Theorem 69, there is a minimal quorum q′ such that

q′ (q. Let p be a well-behaved process in q′ (and therefore, q). By the if condition, q is

an individual minimal quorum of p. By the only if direction, q′ is an individual minimal

quorum of p. However, these two facts and q′ (q contradict the minimality assumption for

q.

We remember that a subset of vertices that are pair-wise connected are a clique.

Lemma 80 Well-behaved processes in a minimal quorum are a clique.

This is immediate from Theorem 79. For example, in Figure 4.3, the minimal

quorums are MQ(Q) = {{1, 2}, {1, 3, 5}}, and their well-behaved processes {1, 2} and

{1, 3} are cliques.

148

Lemma 81 Every well-behaved process is adjacent to all processes of a minimal quorum.

Proof. By Theorem 68, a well-behaved process p has at least one quorum q.

Process p has an edge to every member of q. By Theorem 69, q is a superset of a minimal

quorum q′. Therefore, p has an edge to every member of q′.

In Figure 4.3, process 4 is adjacent to all processes of {1, 2}.

Lemma 82 Well-behaved processes of minimal quorums induce a strongly connected graph.

Proof. Consider a pair of minimal quorums q1 and q2, and two well-behaved

processes p1 ∈ q1 and p2 ∈ q2. The consistency property states that there is at least a well-

behaved process p in the intersection of q1 and q2. By Theorem 80, the following edges are

in the quorum graph: (p1, p), (p, p2), (p2, p) and (p, p1). Therefore, p1 and p2 are strongly

connected.

In Figure 4.3, the processes {1, 2, 3} are strongly connected.

We remember that the condensation of a graph is the graph resulted from con-

tracting each of its strongly connected components to a single vertex. A condensation graph

is a directed acyclic graph (DAG). DAGs have sink and source vertices. A component of the

graph that is contracted to a sink vertex in the condensed graph is called a sink component.

Lemma 83 All well-behaved processes in minimal quorums are in a sink component.

Proof. By Theorem 82, the well-behaved processes of the minimal quorums are

a strongly connected subgraph. Therefore, they fall in a component C. By Theorem 81,

there are edges from the processes of every component to C. Therefore, C must be a sink

component.

149

For example, in Figure 4.3, processes {1, 2, 3} (shaded in green) are in the sink.

Lemma 84 There exists a minimal quorum in every sink component.

Proof. Consider a sink component S. By Theorem 81, there are edges from S to

all processes of a minimal quorum q. This quorum q should be inside S. Otherwise, the fact

that there are edges from S to q contradicts the assumption that S is a sink component.

Lemma 85 Every quorum graph has only one sink component.

Proof. The proof is by contradiction. If there are two sinks, by Theorem 84, each

contains a minimal quorum. By the quorum intersection property, the two minimal quorums

have an intersection; thus, the two sinks components intersect. However, components are

disjoint.

Theorem 86 All well-behaved processes of the minimal quorums are in the sink component.

This is straightforward from Theorem 83 and Theorem 85. For example, in Fig-

ure 4.3, the well-behaved processes {1, 2, 3} of the minimal quorums {1, 2} and {1, 3, 5} are

in the sink.

Consider a reconfiguration from a quorum system Q to another Q′, and a well-

behaved process p. A Leave operation by p removes p from the set of active processes A

i.e., p 6∈ dom(Q′). Let q be an individual minimal quorum of p, i.e., q ∈ Q(p). A Remove(q)

operation by p removes q from the individual minimal quorum of p, i.e., q 6∈ Q′(p).

Lemma 87 Any leave or remove operation by a process outside the sink component of the

quorum graph preserves consistency.

150

Proof. By Theorem 72, it is sufficient to prove that quorum intersection is pre-

served for minimal quorums. By Theorem 86, the well-behaved intersections of minimal

quorums fall in the sink component. Therefore, any leave or remove operation outside of

the sink component preserves their quorum intersection.

Inspired by this result, our leave and remove protocols will avoid coordination

when they are applied to a process that is outside of the sink component. (We will present

a sink discovery protocol in the appendix section 4.13).

4.5 Reconfiguration and Trade-offs

In this section, we consider reconfigurations, how they can endanger the properties

of a quorum system, and trade-off theorems for the properties that reconfiguration protocols

can preserve. These trade-offs inform the design of our protocols in the next sections.

A process can request to Join or Leave the quorum system. It can further request

to Add or Remove a quorum. However, a reconfiguration operation should not affect the

safety and liveness of the quorum system.

Reconfiguration Attacks. Let P = {1, 2, 3, 4} where the Byzantine set is

B = {4}. Let the quorums of process 1 be Q(1) = {{1, 2, 4}}. Similarly, let Q(2) = {{1, 2},

{2, 3}} and Q(3) = {{2, 3}}. This quorum system enjoys quorum intersection for well-

behaved processes since all pairs of quorums intersect at a well-behaved process. Let process

2 locally add a quorum q1 = {2, 4} its set of quorums Q(2). The quorum q1 intersects all

the existing quorums at the well-behaved process 2. Similarly, let process 3 locally add a

quorum q2 = {1, 3} into its set of quorums Q(3). The quorum q2 intersects all the existing

151

quorums at the well-behaved processes 1 or 3. Both reconfiguration requests seem safe,

and if they are requested concurrently, they may be both permitted. However, the two

new quorums do not intersect. An attacker can issue a transaction to spend some credit at

process 2 with q1, and another transaction to spend the same credit at process 3 with q2.

That leads to a double-spending and a fork. Even if processes 2 and 3 send their updated

quorums to other processes, the attack can be successful if the time to send and receive

updates is longer than the time to process a transaction. Similarly, a leave operation can

lead to double-spending. In our example, if process 2 leaves the system, quorum intersection

is lost. The reconfiguration protocols should preserve quorum intersection.

Trade-offs. We first formalize a few notions to state the trade-offs.

Reconfigurations. A reconfiguration changes a quorum system to another. We

remember that a quorum system is a mapping from active well-behaved processes A∩W to

their quorums. Consider a reconfiguration by a well-behaved process p that updatesQ toQ′.

We consider four reconfiguration operations. The reconfiguration applies a Join operation

by p iff p 6∈ dom(Q) and p ∈ dom(Q′) (i.e., p is added to the active set A). It applies an

Add(q) operation by p iff q ∈ Q′(p). It applies a Leave operation by p iff p ∈ dom(Q) and

p 6∈ dom(Q′) (i.e., p is removed from the active set A). It applies a Remove(q) operation

by p where q ∈ Q(p) (i.e., q is an individual minimal quorum of p) iff q 6∈ Q′(p).

Terminating. A reconfiguration protocol is terminating iff every operation by a

well-behaved process eventually completes.

Each process declares its trust policy as its individual minimal quorums. A quorum

should appear in the individual minimal quorums of a process only if that process has

152

Q1(1) =
Q1(2) = {{2, 3}, {1, 2, 4}}
Q1(3) = {{2, 3}, {1, 3, 4}}
Q1(4) = {{1, 3, 4}}

Q2(1) =
Q2(2) = {{2, 3}, {1, 2}}
Q2(3) = {{2, 3}, {3, 4}}
Q2(4) = {{1, 3, 4}}

Figure 4.4: Example Quorum Systems for Trade-offs

explicitly declared it as its quorum, during either the initialization or an add reconfiguration.

Policy-preservation. A Leave or Remove operation is policy-preserving iff it

only removes individual minimal quorums. A Join operation is policy-preserving iff it does

not change existing individual minimal quorums. An Add(q) operation by a process p is

policy-preserving iff it only adds q to individual minimal quorums of p.

Consistency-preservation. A reconfiguration is consistency-preserving iff it trans-

forms a consistent quorum system to only a consistent one.

Availability-preservation. A reconfiguration is availability-preserving iff it only

affects the availability of a process that is requesting Leave, or requesting Remove for its

last quorum.

Theorem 88 There is no Leave or Remove reconfiguration protocol that is policy-preserving,

availability-preserving and terminating.

Proof. The proof is by contradiction. We consider the Leave and Remove protocols

in turn.

The Leave protocol: Consider the quorum system Q1 in Figure 4.4. Process 1 is

Byzantine. Q1(2) = {{2, 3}}. (We will later reuse this example for the Remove protocol

after adding the quorum {1, 2, 4} for process 2, as the figure shows in color.) Q1 is available

for {2, 3}. Process 2 requests to leave. Since the protocol is terminating, 2 eventually leaves,

153

and the quorum system is updated to Q′1. The quorum {2, 3} makes 3 available in Q1 but

not Q′1. If the protocol leaves the quorum {2, 3} unchanged, then it includes the inactive

process 2. The other quorum {1, 3, 4} of 3 includes the Byzantine process 1. Thus, Q′1 does

not preserve availability for 3. If the protocol removes 2 from the quorum {2, 3}, then Q′1

preserves availability for 3 but does not preserve policies.

The Remove protocol: We reuse the example above with a small change: Q1(2) =

{{2, 3}, {1, 2, 4}}. Let process 2 remove quorum {2, 3} and result in quorum system Q′1.

Now, Q′1 loses availability for 2 unless process 2 removes 1 from its quorum {1, 2, 4}. How-

ever, that violates policies.

Theorem 89 There is no Add reconfiguration protocol that is policy-preserving, consistency-

preserving, and terminating.

Proof. Consider the quorum system Q2 in Figure 4.4. Process 1 is Byzantine.

Process 2 requests to add a new quorum {1, 2} that is shown in color. Since the protocol

is terminating, it will eventually add {1, 2} to the quorums of 2, and result in the updated

quorum system Q′2. The quorum system Q2 is consistent for {2, 3, 4}. However, in Q′2, the

quorum {1, 2} of process 2, and the quorum {1, 3, 4} of the process 4 intersect at only the

Byzantine process 1. Therefore, to preserve consistency, there are two cases. In the first

case, {1, 3, 4} is removed from the quorums of 4. Then, the well-behaved active process

4 has no quorums which violates the definition of heterogeneous quorum systems. In the

second case, 2 is added to {1, 3, 4}. However, this violates policies for 4.

154

Algorithm 9: AC Leave and Remove (1/2)

1 Implements: Leave and Remove
2 request : Leave | Remove(q)
3 response : LeaveComplete | LeaveFail
4 RemoveComplete | RemoveFail
5 Variables:
6 Q

7 tomb : 2P ← ∅
8 in-sink : Boolean, F : 2P ← Discovery(Q)
9 Uses:

10 tob : TotalOrderBroadcast
11 apl : (∪Q) ∪ F 7→ AuthPPoint2PointLink
12 upon request Leave
13 if in-sink then
14 if ∀q1, q2 ∈ Q, (q1 ∩ q2)\{self} is self -blocking then
15 tob request Check(self , Q)

16 else
17 response LeaveFail

18 else
19 response LeaveComplete
20 apl(p) request Left(self) for each p ∈ F

Algorithm 10: AC Leave and Remove (2/2)

1 upon response tob,Check(p′, Q′)
2 if ∃q1, q2 ∈ Q′. (q1 ∩ q2) \ ({p′} ∪ tomb) is not p′-blocking then
3 if p′ = self then
4 response LeaveFail

5 else
6 tomb ← tomb ∪ {p′}
7 if p′ = self then
8 response LeaveComplete
9 apl(p) request Left(self) for each p ∈ F

10 upon response apl(p),Left(p)
11 Q← {q \ {p} | q ∈ Q}
12 upon request Remove(q)

.Handlers for Remove are similar to Leave except: The quorum q that should be removed is
passed in the Check message (instead of Q) at line line 15, and the handler Check at line 1
takes q as a parameter (instead of Q′). The update Q← Q \ {q} is added after line 8.

155

4.6 Leave and Remove

In the light of these trade-offs, we next consider reconfiguration protocols. The

protocols reconfigure an outlived quorum system into another. They assume that the given

quorum system is outlived, i.e., it has an outlived set of processes O. In particular, they only

require quorum inclusion (and not quorum sharing) inside O. Let’s now consider Leave and

Remove protocols. (The Join protocol is straightforward and presented in section 4.9.) The

client can issue a Leave request to leave the quorum system, and in return receives either a

LeaveComplete or LeaveFail response. It can also issue the Remove(q) request to remove its

quorum q, and in return receives either a RemoveComplete or RemoveFail response. Based

on the trade-offs that we saw in Theorem 88, we present the availability-preserving and

consistency-preserving protocols (AC protocols) in this section, and the policy-preserving

and consistency-preserving protocols (PC protocols) in the appendix section 4.12.

Leave Protocol. We first consider the Leave protocol presented in Alg. 9, and

then intuitively explain how it preserves the properties of the quorum system.

Variables and sub-protocols. Each process keeps its own set of individual minimal

quorums Q. It also keeps the set tomb that records the processes that might have left. We

saw that Theorem 87 presented an optimization opportunity for the coordination needed to

preserve consistency: when the quorum system has quorum sharing, only processes in the

sink component need coordination.

Therefore, each process stores whether it is in the sink component as the in-sink

boolean, and its follower processes (i.e., processes that have this process in their quorums)

as the set F . (Processes can use a sink discovery protocol such as the one we present in

156

the appendix section 4.13. The sink information is just used for an optimization, and the

protocol can execute without it.)

The protocol uses a total-order broadcast tob, and authenticated point-to-point

links apl (to processes in the quorums Q and followers F). Total-order broadcast provides a

broadcast interface on top of consensus [334, 311, 187, 289]. The consensus and total-order

broadcast abstractions [289] require quorum intersection for safety, and quorum availability

and inclusion for liveness. As we will show, the reconfiguration protocols preserve both

of these properties for outlived quorum systems. The total-order broadcast ensures the

following safety property: for every pair of messages m and m′, and well-behaved processes

p and p′, if m is delivered before m′ at p, then at p′, the message m′ is either not delivered

or delivered after m. Further, it ensures the following liveness property: every outlived

process will eventually deliver every message that a well-behaved process sends. We note

that if a protocol naively uses tob to globally order and process reconfigurations, then since

each process only knows its own quorums, it cannot independently check if the properties

of the quorum system are preserved.

Protocol. When a process requests to leave (at line 12), it first checks whether

it is in the sink component (at line 13). If it is not in the sink, then by Theorem 87, it can

apply the optimizations that are shown with the blue color. The process can simply leave

without synchronization (at line 19); it only needs to inform its follower set so that they

can preserve their quorum availability. It sends a Left message to its followers (at line 20).

Every well-behaved process that receives the message (at line 10) removes the sender from

its quorums (at line 11). If the quorum system does not have quorum sharing or the sink

157

p∗p1 p2
q∗1 q∗2

q1 q2

Figure 4.5: The Leave and Remove Protocols, Preserving Quorum Intersection.

information is not available, the protocol can be conservative (remove the blue lines) and

always perform the coordination that we will consider next.

On the other hand, when the requesting process is in the sink component, its

absence can put quorum intersection in danger. Therefore, it first locally checks a condition

(at line 14). The check is just an optimization not to attempt leave requests that are

locally known to fail. We will consider this condition in the next subsection. If the check

fails, the leave request fails (at line 17). If the local check passes, the process broadcasts

a Check request together with its quorums (at line 15). If processes receive and check

concurrent leave requests in different orders, they may concurrently approve leave requests

for all processes in a quorum intersection. Therefore, a total-order broadcast tob is used to

enforce a total order for processing of Check messages. When a process receives a Check

request with a set of quorums Q, it locally checks a condition for Q (at line 2). This check

is similar to the check above but is repeated in the total order of deliveries by the tob. If

the condition fails, the leave request fails (at line 4). If it passes, the leaving process is

added to the tomb set (at line 6), and the leaving process informs its followers, and leaves

(at lines 8 and 9).

Intuition. Let’s now consider the checked condition and see how it preserves

quorum intersection and inclusion.

158

Quorum Intersection. Let us first see an intuitive explanation of the condition,

and why it preserves quorum intersection. We assume that the quorum system is outlived:

there is a set of processes O such that the quorum system has quorum intersection at O,

quorum inclusion for O, and quorum availability inside O. As shown in Figure 4.5, consider

well-behaved processes p1 and p2 with quorums q1 and q2 respectively, and let p∗ be a

process at the intersection of q1 and q2 in O. The goal is to allow p∗ to leave only if the

intersection of q1 and q2 contains another process in O. By the quorum inclusion property,

p∗ should have quorums q∗1 and q∗2 such that their well-behaved processes are included inside

q1 and q2 respectively. Each process adds to its tomb set every process whose Check request

passes. The total-order-broadcast tob delivers the Check requests in the same order across

processes. Therefore, the result of the check and the updated tomb set is the same across

processes after processing each request. Consider a Check request of a process p′ which is

ordered before that of p∗. If the check for p′ is passed and it leaves, then the tomb set of p∗

contains p′. Consider when the Check request of p∗ is processed. The check ensures that

p∗ is approved to leave only if the intersection of q∗1 and q∗2 modulo the tomb set and p∗

is p∗-blocking. By Theorem 75, since the quorum system is available inside O, this means

that the intersection of q∗1 and q∗2 after both p′ and p∗ leave still intersects O. A process p

in O remains in the intersection of q∗1 and q∗2. Therefore, by quorum inclusion, p remains in

the intersection of q1 and q2. Thus, outlived quorum intersection is preserved for q1 and q2.

Once the tob delivers the Check message of the leaving process p∗ to p∗ itself,

it can locally decide whether it is safe to leave. We note that the local check ensures a

global property: quorum intersection for the whole quorum system. We also note that

159

both quorum inclusion and quorum availability are needed to preserve quorum intersection.

Further, we note that outlived quorum intersection is not affected if a Byzantine process

leaves: the outlived processes where quorums intersect are by definition a subset of well-

behaved processes.

Quorum inclusion. Now let us elaborate on the quorum inclusion property that

we just used. When a process p′ leaves, it sends Left messages to its followers (at either

line 20 or line 9). The followers later remove p′ from their quorums (at line 10-line 11).

These updates are not atomic and happen over time. Therefore, there might be a window

when a process p′ is removed from the quorum q1 (that we saw above), but not yet removed

from q∗1. Therefore, quorum inclusion only eventually holds. However, we observe that in

the meanwhile, a weaker notion of quorum inclusion, that we call active quorum inclusion,

is preserved. It considers inclusion only for the active set of processes A = P \ L, i.e., it

excludes the subset L of processes that have already left. It requires the quorum q∗1 to be

a subset of q1 modulo L. More precisely, it requires q∗1 ∩W \L ⊆ q1. This weaker notion is

enough to preserve quorum intersection. In the above discussion for quorum intersection,

the process p that remains in the intersection is not in the tomb set; therefore, it is an active

process. Since it is in q∗1 and q∗2, by active quorum inclusion, it will be in q1 and q2 as well.

Remove Protocol. Let us now consider the Remove protocol. Removing a

quorum can endanger all the three properties of the quorum system: inclusion, availability,

and even intersection. Consider a process p that removes a quorum q. (1) Let p be an

outlived process, and let p′ be a well-behaved process with quorum q′ that includes p and q,

but no other quorum of p. The removal of q, violates outlived quorum inclusion for q′. (2)

160

If q is the only quorum of p in the outlived set, the removal of q violates outlived availability

for p. (3) As we saw above, p can lose outlived availability, and fall out of the outlived set.

Consider a pair of quorums whose intersection includes only p from the outlived set. The

removal of q violates outlived quorum intersection for these pair of quorums. Therefore,

similar to a leaving process, a process that removes a quorum should coordinate, check the

safety of its reconfiguration, and update others’ quorums. As shown in Alg. 9, the Remove

protocol is, thus, similar to the Leave protocol. The difference is that when a request to

remove a quorum q is successful, q is removed from the quorums of the requesting process

(after line 8).

Correctness. The Leave and Remove protocols maintain the properties of the

quorum system. We prove that they preserve quorum intersection, and eventually provide

quorum availability and quorum inclusion.

Let L denote the set of processes that receive a LeaveComplete or RemoveComplete

response. As we saw before, processes in L may fall out of the outlived set. Starting

from a quorum system that is outlived for O, the protocols only eventually result in an

outlived quorum system for O\L. However, they preserve strong enough notions of quorum

inclusion and availability, called active quorum inclusion and active quorum availability,

which support quorum intersection to be constantly preserved. Consider a quorum q of p,

and a process p′ of q that falls in L. Intuitively, active quorum inclusion for q does not

require the inclusion of a quorum of p′ in q, and active availability for p does not require p′ to

be well-behaved. We first capture these weaker notions and prove that they are preserved,

and further, prove that quorum inclusion and availability eventually hold. We then use the

161

popw

p′

p

qo q′
qw

qc

Figure 4.6: The Add protocol, Preserving Quorum Intersection.

above two preserved properties to prove that the protocols preserve quorum intersection

at O \ L. The correctness theorems and proofs are available in section section 4.10 and

section 4.14.

4.7 Add

We saw the trade-off for the add operation in Theorem 89. Since we never sacrifice

consistency, we present an Add protocol that preserves consistency and availability. For

brevity, we present an intuition and summary of the protocol in this section.

Example. Let us first see how adding a quorum for a process can violate the

quorum inclusion and quorum intersection properties. Consider our running example from

Figure 4.1. As we saw before, the outlive set is O = {2, 3, 5}. If 3 adds a new quorum {3, 5}

to its set of quorums, it violates quorum inclusion for O. The new quorum includes process

5 that is outlive. However, process 5 has only one quorum {2, 5} that is not a subset of

{3, 5}. Further, quorum intersection is violated since the quorum {1, 2, 4} of 1 does not

have a well-behaved intersection with {3, 5}.

Consider a quorum system that is outlive for a set of well-behaved processes O,

and a well-behaved process p that wants to add a new quorum qn. (If the requesting process

162

p is Byzantine, it can trivially add any quorum. Further, we consider new quorums qn that

have at least one well-behaved process. Otherwise, no operation by the quorum is credible.

For example, p itself can be a member of qn.)

Intuition. Now, we explain the intuition of how the quorum inclusion and

quorum intersection properties are preserved, and then an overview of the protocol.

Quorum inclusion. In order to preserve quorum inclusion, process p first asks

each process in qn whether it already has a quorum that is included in qn. It gathers the

processes that respond negatively in a set qc. (In this overview, we consider the main case

where there is at least one well-behaved process in qc. The other cases are straightforward,

and discussed in the proof of Theorem 103.) To ensure quorum inclusion, the protocol adds

qc as a quorum to every process p′ in qc. Since these additions do not happen atomically,

quorum inclusion is only eventually restored. In order to preserve a weak notion of quorum

inclusion called tentative quorum inclusion, each process stores a tentative set of quorums,

in addition to its set of quorums. The protocol performs the following actions in order. It

first adds qc to the tentative quorums of every process in qc, then adds qn to the quorums

of p, then adds qc to the quorums of every process in qc, and finally garbage-collects qc

from the tentative sets. Thus, the protocol preserves tentative quorum inclusion: for every

quorum q, and outlive process p in q, there is either a quorum or a tentative quorum q′ of

p such that well-behaved processes of q′ are included in q. We will see that when a process

performs safety checks, it considers its tentative quorums in addition to its quorums.

Quorum Intersection. Existing quorums in the system have outlive quorum

intersection, i.e., quorum intersection at O. We saw that when a process p wants to add

163

a new quorum qn, a quorum qc ⊆ qn may be added as well. We need to ensure that qc is

added only if outlive quorum intersection is preserved. We first present the design intuition,

and then an overview of the steps of the protocol.

The goal is to approve adding qc as a quorum only if it has an outlive intersection

with every other quorum qw in the system. Theorem 75 presents an interesting opportunity

to check this condition locally. It states that if an outlive process finds a set self-blocking,

then that set has an outlive process. Thus, if we can pass the quorum qc to an outlive

process po, and have it check that qc∩qw is self-blocking, then we have that the intersection

of qc and qw has an outlive process. However, no outlive process is aware of all quorums qw

in the system. Tentative quorum inclusion can help here. If the outlive process po is inside

pw, then by outlive quorum inclusion, po has a quorum or tentative quorum qo (whose well-

behaved processes are) included in pw. The involved quorums are illustrated in Figure 4.7.

If the outlive process po check for all its own quorums or tentative quorums q (including qo),

that qc ∩ q is self-blocking then, by Theorem 75, the intersection of qc and qo has an outlive

process. Since qo is included in qw, we get the desire result that the intersection of qc and

qw has an outlive process. However, how do we reach from the requesting process p to an

outlive process po in every quorum qw in the system? Process p that is requesting to add the

quorum qc doesn’t know whether it is outlive itself. There is at least a well-behaved process

p′ in the quorum qc. By outlive quorum intersection, every quorum q′ of p′ intersects with

every other quorum qw at an outlive process po. Therefore, the protocol takes two hops to

reach to the outlive process po: process p asks the processes p′ of qc, and then p′ asks the

processes po in its quorums q′.

164

Based on the intuition above, we now consider an overview of the protocol. Before

adding qc as a quorum for each process in qc, the protocol goes through two hops. In the

first hop, process p asks each process p′ in qc to perform a check. In the second hop, process

p′ asks its quorums q′ to perform a check. A process po in q′ checks for every quorum qo in

its set of quorums and tentative quorums that qo ∩ qc is self-blocking. If the check passes,

po sends an Ack to p′; otherwise, it sends a Nack. Process p′ waits for an Ack from at least

one of its quorums q′ before sending a commit message back to p. Once p receives a commit

message from each process in qc, it safely adds qn to its own set of quorums, and requests

each process in qc to add qc as a quorum.

In the limited space, we presented an overview of the add protocol. The details

of the protocol and its correctness proofs are available in the appendix section 4.11 and

section 4.15.

4.8 Sink Discovery

Following the graph characterization that we saw in section 4.4, we now present a

decentralized protocol that can find whether each process is in the sink component of the

quorum graph. We first describe the protocol and then its properties.

Protocol. Consider a quorum system with quorum intersection, availability and

sharing. The sink discovery protocol in Alg. 17 finds whether each well-behaved process

is in the sink. It also finds the set of its followers. A process p is a follower of process

p′ iff p has a quorum that includes p′. The protocol has two phases. In the first, it finds

the well-behaved minimal quorums, i.e., every minimal quorum that is a subset of well-

165

behaved processes. Since well-behaved minimal quorums are inside the sink, the second

phase extends the discovery to other processes in the same strongly connected component.

Variables and sub-protocols. In the quorum system Q, each process self stores

its own set of individual minimal quorums Q = Q(self), a map qmap from other processes

to their quorums which is populated as processes communicate, the in-sink boolean that

stores whether the process is in the sink, and the set of follower processes F . The protocol

uses authenticated point-to-point links apl . They provide the following safety and liveness

properties. If the sender and receiver are both well-behaved, then the message will be even-

tually delivered. Every message that a well-behaved process delivers from a well-behaved

process is sent by the later, i.e., the identity of a well-behaved process cannot be forged.

Protocol. When processes receive a Discover request (at line 9), they exchange

their quorums with each other. In this first phase, each process sends an Exchange message

with its quorums Q to all processes in its quorums. When a process receives an Exchange

message (at line 11), it adds the sender to the follower set F , and stores the received

quorums in its qmap. As qmap is populated, when a process finds that one of its quorums

q is a quorum of every other process in q as well (at line 14), by Theorem 79, it finds that

its quorum q is a minimal quorum, and by Theorem 86, it finds itself in the sink. Thus, it

sets its in-sink variable to true in the first phase (at line 15).

The process then sends an Extend message with the quorum q to all processes of

its own quorums Q (at line 16). The Extend messages are processed in the second phase.

The processes of every well-behaved minimal quorum are found in this phase. In Figure 4.3,

since the quorum {1, 2} is a quorum for both of 1 and 2, they find themselves in the sink.

166

However, process 3 might receive misleading quorums from process 5, and hence, may not

find itself in the sink in this phase.

The processes P1 of every well-behaved minimal quorum find themselves to be

in the sink in the first phase. Let P2 be the well-behaved processes of the remaining

minimal quorums. A pair of minimal quorums have at least a well-behaved process in

their intersection. In Figure 4.3, the two minimal quorums P1 = {1, 2} and P2 = {1, 3, 5}

intersect at 1. Therefore, by Theorem 80, every process in P2 is a neighbor of a process in

P1. Thus, in the second phase, the processes P1 can send Extend messages to processes in

P2, and inform them that they are in the sink. In Figure 4.3, process 1 can inform process 3.

The protocol lets a process accept an Extend message containing a quorum q only when the

same message comes from the intersection of q and one of its own quorums q′ (at line 17).

Let us see why a process in P2 cannot accept an Extend message from a single process. A

minimal quorum q that is found in phase 1 can have a Byzantine process p1. Process p1

can send an Extend(q) message (even with signatures from members of q) to a process p2

even if p2 is not a neighbor of p1, and make p2 believe that it is in the sink. In Figure 4.3,

the Byzantine process 5 can collect the quorum {1, 3, 5} from 1 and 3, and then send an

Extend message to 4 to make 4 believe that it is inside the sink. Therefore, a process p2

in P2 accepts an Extend(q) message only when it is received from the intersection of q and

one of its own quorums. Since there is a well-behaved process in the intersection of the two

quorums, process p2 can then trust the Extend message. When the check passes, p2 finds

itself to be in the sink, and sets the in-sink variable to true in the second phase (at line 18).

In Figure 4.3, when process 3 receives an Extend message with quorum {1, 2} from 1, since

167

{1} is the intersection of the quorum {1, 3, 5} of 3, and the received quorum {1, 2}, process

3 accepts the message.

Algorithm 11: Sink Discovery Protocol

1 Variables:
2 Q . The individual minimal quorums of self
3

4 qmap : P 7→ Set[2P]
5 in-sink : Boolean← false
6 F : 2P

7 Uses:
8 apl : P 7→ AuthPerfectPointToPointLink
9 upon request Discover

10 apl(p) request Exchange(Q) for each p ∈ ∪Q
11 upon response apl(p), Exchange(Q′)
12 F ← F ∪ {p}
13 qmap(p)← Q′

14 upon ∃q ∈ Q. ∀p ∈ q. q ∈ qmap(p)
15 in-sink ← true
16 apl(p) request Extend(q) for each p ∈ ∪Q
17 upon response apl(p),Extend(q) s.t.∃q′ ∈ Q. {p} = q ∩ q′
18 in-sink ← true

Let ProtoSink denote the set of well-behaved processes where the protocol sets the

in-sink variable to true. The discovery protocol is complete: all the well-behaved processes

of minimal quorums will eventually know that they are in the sink (i.e., set their in-sink

to true).

Lemma 90 (Completeness) For all q ∈MQ(Q), eventually q ∩W ⊆ ProtoSink.

This result brings an optimization opportunity: the leave and remove protocols

can coordinate only when a process inside ProtoSink is updated. Although, completeness

is sufficient for safety of the optimizations, in the appendix section 4.16, we prove both the

168

completeness and accuracy of the two phases in turn. The accuracy property states that

ProtoSink is a subset of the sink component.

4.9 Join

Algorithm 12: Join

1 Implements: Join
2 request : Join(ps)
3 response : JoinComplete
4 Variables:

5 Q : Set[2P] . Individual minimal quorums of self
6

7 S : Set[2P]
8 F : Set[P]. Followers
9

10 qmap : P 7→ Set[2P]
11 Uses:
12 apl : P 7→ AuthPerfectPointToPointLink
13 upon request Join(ps)
14 S ← {{q}}, qmap ← ∅
15 upon ∃q ∈ S, ∃p ∈ q, s.t. qmap(p) = ∅
16 apl(p) request Prob

17 upon response apl(p′), Prob
18 F ← F ∪ {p′}
19 apl(p′) request Quorums(Q)

20 upon response apl(p′) Quorums(Q′)
21 qmap ← qmap[p′ 7→ Q′]
22 for each q ∈ S s.t. p′ ∈ q
23 for each q′ ∈ Q′
24 S ← S \ {q} ∪ {q ∪ q′}
25 upon ∀q ∈ S. ∀p ∈ q. ∃q′ ∈ qmap(p). q′ ⊆ q
26 Q← S
27 response JoinComplete

We now consider the Join protocol which is presented in Alg. 12. When a process

p wants to join the system, it issues a Join request with an initial set of processes ps, which

is a set of processes that it trusts (at line 13). In order to maintain the quorum inclusion

property, the requesting process starts with ps as a tentative quorum and probes these

169

processes for their quorums (at line 15-line 16). When a process receives a probe request, it

sends back it’s quorums, and adds the sender to its follower set (at line 17-line 19). When a

quorum from a process p is received, it is added to each tentative quorum that contains p (at

line 20-line 24). The tentative quorums grow and probing continues for the new members.

It stops when the tentative quorums are quorum including (at line 25).

Correctness. We now show that the Join protocol preserves all the three

properties of the quorum system.

Lemma 91 For every quorum system and well-behaved set of processes O, the Join protocol

preserves quorum intersection at O, quorum availability for O, and quorum inclusion for

O. Therefore, it preserves every outlived set for the quorum system. Further, newly joined

processes have quorum inclusion.

Proof. Quorum intersection at O is preserved since the existing quorums have

intersection at O, and the new quorums are supersets of existing quorums. Quorum avail-

ability and quorum inclusion for O are preserved since the quorums of existing processes

do not change. Therefore, by the three properties above, it preserves every outlived set

O. Further, a newly joined process has quorum inclusion, since the new quorums pass the

condition at line 25 which is sufficient for quorum inclusion.

We add that for adding a quorum, if adding a superset of the given quorum is

considered policy-preserving, then the add protocol can be similar to the join protocol

above.

170

4.10 AC Leave and Remove

4.10.1 Correctness

We now state that Leave and Remove protocols maintain the properties of the

quorum system. We prove that they preserve quorum intersection, and eventually provide

quorum availability and quorum inclusion.

Starting from an outlived quorum system, the protocols only eventually result

in an outlived quorum system. However, they preserve strong enough notions of quorum

inclusion and availability, called active quorum inclusion and active quorum availability,

which support quorum intersection to be constantly preserved. We first capture these

weaker notions and prove that they are preserved, and further, prove that quorum inclusion

and availability eventually hold. We then use the above two preserved properties to prove

that quorum intersection is preserved. All in all, we show that the protocols maintain

quorum intersection as a safety property, and quorum availability and inclusion as liveness

properties.

Let L denote the set of processes that have received a LeaveComplete or RemoveComplete

response. As we saw before, processes in L may fall out of the outlived set.

Quorum inclusion. Active quorum inclusion captures inclusion modulo the

set L.

Definition 92 (Active quorum inclusion) A quorum system Q has active quorum in-

clusion for P iff for all well-behaved processes p and quorums q of p, if a process p′ in q is

inside P , then there is a quorum q′ of p′ such that well-behaved and active processes of q′

are a subset of q i.e., ∀p ∈ W. ∀q ∈ Q(p). ∀p′ ∈ q ∩ P. ∃q′ ∈ Q(p′). q′ ∩W \ L ⊆ q.

171

It is obvious that quorum inclusion implies active quorum inclusion. We now state

that active quorum inclusion is preserved, and quorum inclusion is eventually reconstructed.

Lemma 93 (Preservation of Quorum inclusion) The AC Leave and Remove protocols

preserve active quorum inclusion. Further, starting from a quorum system that has quorum

inclusion for processes O, the protocols eventually result in a quorum system with quorum

inclusion for O \ L.

Quorum Availability. Let’s define the notions of active availability and active

blocking sets.

Definition 94 (Active Availability) A quorum system has active availability inside a

set of processes P iff every process p in P \ L has at least a quorum q such that q \ L is in

P .

It is obvious that availability implies active availability.

Definition 95 (Active Blocking Set) A set of processes P is an active blocking set for

a process p iff for every quorum q of p, the set q \ L intersects P .

Lemma 96 For every quorum system that has active availability inside P , every active

blocking set of every process in P intersects P \ L.

The proof is similar to the proof of Theorem 75. We use this lemma to show that

active availability is preserved, and availability is eventually reconstructed.

Lemma 97 (Preservation of Availability) The AC Leave and Remove protocols pre-

serve active availability. Further, starting from a quorum system that has availability inside

processes O, the protocols eventually result in a quorum system with availability inside O\L.

172

Quorum Intersection. We saw that the protocols preserve active availability

and active quorum inclusion. We use these two properties to show that they preserve

quorum intersection.

Lemma 98 (Preservation of Quorum Intersection) If a quorum system has quorum

intersection at processes O, active availability inside O, and active quorum inclusion for O,

then the AC Leave and Remove protocols preserve quorum intersection at O \ L.

Outlive. The three lemmas that we saw show that an outlived quorum system

is eventually reconstructed.

Lemma 99 (Preservation of Outlived set) Starting from a quorum system that is out-

lived for processes O, the AC Leave and Remove protocols eventually result in a quorum

system that is outlived for O \ L.

Immediate from Theorem 98, Theorem 93, and Theorem 97.

The proofs are available in the appendix section 4.14.

4.11 Add

We saw the trade-off for the add operation in Theorem 89. Since we never sacrifice

consistency, we present an Add protocol that preserves consistency and availability.

Example. Let us first see how adding a quorum for a process can violate the

quorum inclusion and quorum intersection properties. Consider our running example from

Figure 4.1. As we saw before, the outlived set is O = {2, 3, 5}. If 3 adds a new quorum

{3, 5} to its set of quorums, it violates quorum inclusion for O. The new quorum includes

173

popw

p′

p

qo q′
qw

qc

Figure 4.7: The Add protocol, Preserving Quorum Intersection.

process 5 that is outlive. However, process 5 has only one quorum {2, 5} that is not a subset

of {3, 5}. Further, quorum intersection is violated since the quorum {1, 2, 4} of 1 does not

have a well-behaved intersection with {3, 5}.

Consider a quorum system that is outlived for a set of well-behaved processes O,

and a well-behaved process p that wants to add a new quorum qn. (If the requesting process

p is Byzantine, it can trivially add any quorum. Further, we consider new quorums qn that

have at least one well-behaved process. Otherwise, no operation by the quorum is credible.

For example, p itself can be a member of qn.)

Intuition. Now, we explain the intuition of how the quorum inclusion and

quorum intersection properties are preserved, and then an overview of the protocol.

Quorum inclusion. In order to preserve quorum inclusion, process p first asks

each process in qn whether it already has a quorum that is included in qn. It gathers the

processes that respond negatively in a set qc. (In this overview, we consider the main case

where there is at least one well-behaved process in qc. The other cases are straightforward,

and discussed in the proof of Theorem 103.) To ensure quorum inclusion, the protocol adds

qc as a quorum to every process p′ in qc. Since these additions do not happen atomically,

quorum inclusion is only eventually restored. In order to preserve a weak notion of quorum

174

inclusion called tentative quorum inclusion, each process stores a tentative set of quorums,

in addition to its set of quorums. The protocol performs the following actions in order. It

first adds qc to the tentative quorums of every process in qc, then adds qn to the quorums

of p, then adds qc to the quorums of every process in qc, and finally garbage-collects qc

from the tentative sets. Thus, the protocol preserves tentative quorum inclusion: for every

quorum q, and outlived process p in q, there is either a quorum or a tentative quorum q′ of

p such that well-behaved processes of q′ are included in q. We will see that when a process

performs safety checks, it considers its tentative quorums in addition to its quorums.

Quorum Intersection. Existing quorums in the system have outlived quorum

intersection, i.e., quorum intersection at O. We saw that when a process p wants to add a

new quorum qn, a quorum qc ⊆ qn may be added as well. We need to ensure that qc is added

only if outlived quorum intersection is preserved. We first present the design intuition, and

then an overview of the steps of the protocol.

The goal is to approve adding qc as a quorum only if it has an outlived intersection

with every other quorum qw in the system. Theorem 75 presents an interesting opportunity

to check this condition locally. It states that if an outlived process finds a set self-blocking,

then that set has an outlived process. Thus, if we can pass the quorum qc to an outlived

process po, and have it check that qc∩qw is self-blocking, then we have that the intersection

of qc and qw has an outlived process. However, no outlived process is aware of all quorums

qw in the system. Tentative quorum inclusion can help here. If the outlived process po

is inside pw, then by outlived quorum inclusion, po has a quorum or tentative quorum qo

(whose well-behaved processes are) included in pw. The involved quorums are illustrated in

175

Figure 4.7. If the outlived process po check for all its own quorums or tentative quorums

q (including qo), that qc ∩ q is self-blocking then, by Theorem 75, the intersection of qc

and qo has an outlived process. Since qo is included in qw, we get the desire result that

the intersection of qc and qw has an outlived process. However, how do we reach from the

requesting process p to an outlived process po in every quorum qw in the system? Process p

that is requesting to add the quorum qc doesn’t know whether it is outlived itself. There is

at least a well-behaved process p′ in the quorum qc. By outlived quorum intersection, every

quorum q′ of p′ intersects with every other quorum qw at an outlived process po. Therefore,

the protocol takes two hops to reach to the outlived process po: process p asks the processes

p′ of the quorum qc, and then p′ asks the processes po in its quorums q′.

Based on the intuition above, we now consider an overview of the protocol. Before

adding qc as a quorum for each process in qc, the protocol goes through two hops. In the

first hop, process p asks each process p′ in qc to perform a check. In the second hop, process

p′ asks its quorums q′ to perform a check. A process po in q′ checks for every quorum qo in

its set of quorums and tentative quorums that qo ∩ qc is self-blocking. If the check passes,

po sends an Ack to p′; otherwise, it sends a Nack. Process p′ waits for an Ack from at least

one of its quorums q′ before sending a commit message back to p. Once p receives a commit

message from each process in qc, it safely adds qn to its own set of quorums, and requests

each process in qc to add qc as a quorum.

Protocol Summary. We now present a summary of the protocol. (The details

of the protocol are available in section 4.11). A process p issues an Add(qn) request in

order to add the quorum qn to its set of individual minimal quorums, and receives either

176

p

p′

po

C
heckA

dd

C
heck

(a) Phase 2: Inter-
section Check

p

p′1

p′2

po

C
he
ck
A
ck

C
om

m
itC
om

m
it

S
uccess

Su
cc
es
s

(b) Phase 3: Update, Success

p

p′1

p′2

po C
he
ck
N
ac
k

C
om

m
it

A
bo
rt

Fail

Fail

Fa
il

(c) Phase 3: Update, Failure

Figure 4.8: Phase 2: Intersection Check, and Phase 3: Update

an AddComplete or AddFail response. The protocol has three phases: inclusion check,

intersection check and update.

Phase 1: Inclusion Check. In phase 1, upon an Add(qn) request, the request-

ing process p first checks if quorum inclusion would be preserved for qn. It sends out

Inclusion(qn) messages to processes in qn. When a process p′ receives the message, it

checks whether it already has a quorum which is a subset of qn, and accordingly sends

either AckInclusion or NackInclusion. Upon receiving these responses, the requesting pro-

cess p adds the sender p′ to the ack or nack sets respectively. The set nack is the set

of processes that do not have quorum inclusion. Upon receiving acknowledgment from all

processes in qn, if nack is empty, then p simply adds qn to its set of quorums before issuing

the AddComplete response. Otherwise, the set qc = nack is the quorum that should be

added to the set of quorums for each process in qc. To make sure this addition preserves

quorum intersection, process p starts phase 2 by sending CheckAdd(qc) to processes in qc.

Phase 2: Intersection Check. In phase 2 (Figure 4.8a), when a CheckAdd(qc)

request is received at a process p′, it adds qc to its tentative set, and sends out a Check mes-

sage to all its quorums. When a process qo delivers a Check , it checks that the intersection

of the new quorum qc with each of its own quorums and tentative quorums is self-blocking.

177

As we saw in the intuition part, this check ensures that there is an outlived process in the

intersection. If the checks pass, po sends a CheckAck message back to p′. Otherwise, it

sends a CheckNack .

Phase 3: Update. In phase 3 (Figure 4.8b and Figure 4.8c), once a process p′

receives CheckAck messages from one of its quorums, it sends a Commit message to the

requesting process p. On the other hand, if it receives CheckNack from one of its blocking

sets, then there is no hope of receiving CheckAck from a quorum, and it sends an Abort

message to p. The requesting process p succeeds if it receives a Commit message from every

process in the quorum qc. It fails if it receives an Abort message from at least one of them.

On the success path, process p adds qn to its own set of quorums, and sends a Success

message to processes in qc before issuing the AddComplete response. The Success message

includes a signature from each process in qc. On the failure path, process p sends a Fail

message together with a signature to each process in qc before issuing an AddFail response.

Attack scenarios. Let us consider attack scenarios that motivate the design

decisions, and then we get back to the protocol. If the requesting process p is Byzantine, it

may send a Success message to some processes in qc, and a Fail message to others. Then,

a process that receives Success adds qc to its quorums, and another process that receives

Fail removes qc from its tentative quorums. This would break tentative quorum inclusion.

To prevent this, every process p′ that receives a Fail message echos it to other processes

in qc, and accepts a Fail message only when it has received an echo from every process in

qc. Further, a process that accepts a Success does not later accept a Fail and vice versa.

Therefore, we will have the safety invariant that once a process accepts a Fail , no other

178

process accepts a Success, and vice versa. Another attack scenario is that the requesting

process p just sends a Success message to some processes in qc and not others. This attack

does not break any of the properties; however, inhibits the progress of other processes.

Therefore, every process p′ that receives a Success message echos it to other processes in qc.

Success. A process p′ accepts a Success message to add qc only if it has not

already accepted a Success or Fail message, and the message comes with valid signatures

from all processes in qc. The signatures are needed to prevent receiving a fake Success

message from a Byzantine process. Process p′ first echos the Success message to other

processes in qc. It then adds qc to its set of quorums, and removes qc from its tentative

quorums.

Failure. A process p′ receives a Fail message for qc only if it has not already

accepted a Success or Fail message, and the message comes with a valid signature from the

requesting process p. This signature prevents receiving fake Fail messages from Byzantine

processes. Process p′ echos the message, and adds the sender to a set. Once this sender

set contains all the processes of qc, it accepts the Fail message, and removes qc from its

tentative quorums.

4.11.1 Protocol

We present the protocol in three parts: Alg. 13, Alg. 14, and Alg. 15. A well-

behaved process p issues an Add(qn) request in order to add the quorum qn to its set of

individual minimal quorums, and receives either an AddComplete or AddFail response.

Variables and sub-protocols. (1) Each process stores its own set of quorums

Q, (2) two sets of processes ack and nack , (3) a set tentative that stores the set of tuples

179

〈p, qc〉 where qc is a quorum that process p has asked to add, (4) a map failed that maps

pairs 〈p, qc〉 of the requesting process p and the quorum qc that p wants to add, to the

set of processes that a fail message is received from, and (5) a map succeeded from the

same domain to boolean. The protocol uses a total-order broadcast tob, and authenticated

point-to-point links apl .

The protocol is executed in three phases: inclusion check, intersection check and

update.

Phase 1: Inclusion Check. In phase 1 (Alg. 13 and Figure 4.9), upon an Add(qn)

request (at line 13), the requesting process p first checks if quorum inclusion would be

preserved for qn. It sends out Inclusion(qn) messages to processes in qn (at line 14). When

a process p′ receives the message (at line 15), it checks whether it already has a quorum which

is a subset of qn (at line 16), and accordingly sends either AckInclusion or NackInclusion

(at line 17 and line 19). Upon receiving these responses, the requesting process p adds the

sender p′ to the ack or nack sets respectively (at line 21 and line 23). The set nack is the

set of processes that do not have quorum inclusion. Upon receiving acknowledgment from

all processes in qn (at line 24), if nack is empty (at line 25), then qn is simply added to

the set of quorums before issuing the AddComplete response. Otherwise, the set nack is

p

p′1

p′2

line 14

line 17

line 17

line 27
AddComplete

Inclusion

Ac
kI
nc
lu
sio

n

In
clu

sio
n

A
ck
In
cl
us
io
n

p

p′1

p′2

line 14

line 19

line 17

line 29
CheckAdd

Inclusion

In
clu

sion

Na
ck
In
clu

sio
n

A
ck
In
cl
us
io
n

Figure 4.9: Phase1: Inclusion Check

180

Algorithm 13: Add quorum (Phase 1: Inclusion check)

1 Implements: Add
2 request : Add(qn)
3 response : AddComplete | AddFail
4 Variables:
5 Q . The individual minimal quorums of self
6

7 ack ,nack : 2P ← ∅
8 tentative : Set[P, 2P]← ∅
9 failed : 〈P, 2P〉 7→ 2P ← ∅

10 succeeded : 〈P, 2P〉 7→ Boolean← false
11 Uses:
12 apl : (∪Q) ∪ qn 7→ AuthPerfectPointToPointLink
13 upon request Add(qn)
14 apl(p) request Inclusion(qn) for each p ∈ qn
15 upon response apl(p), Inclusion(qn)
16 if ∃q ∈ Q. q ⊆ qn then
17 apl(p) request AckInclusion

18 else
19 apl(p) request NackInclusion

20 upon response apl(p), AckInclusion
21 ack ← ack ∪ {p}
22 upon response apl(p), NackInclusion
23 nack ← nack ∪ {p}
24 upon ack ∪ nack = qn
25 if nack = ∅ then
26 Q← Q ∪ {qn}
27 response AddComplete

28 else
29 apl(p′) request CheckAdd(nack) for each p′ ∈ nack

181

the quorum qc that should be added to the set of quorums for each of its members. To

make sure this addition preserves quorum intersection, process p starts phase 2 by sending

CheckAdd(nack) to processes in nack (at line 29).

Algorithm 14: Add quorum (Phase 2: Intersection check)

29 upon response apl(p), CheckAdd(qc)
30 tentative ← tentative ∪ 〈p, qc〉
31 apl(po) request Check(self , qc) for each po ∈ ∪Q
32 upon response apl(p′),Check(p, p′, qc)

33 let 〈 , q′c〉 := tentative in

34 if ∀q ∈ ∪{q′c} ∪Q. qc ∩ q is self -blocking then
35 apl(p′) request CheckAck(p, qc)

36 else
37 apl(p′) request CheckNack(p, qc)

Phase 2: Intersection Check. In phase 2 (Alg. 14 and Figure 4.8a), when a

CheckAdd(qc) request is received at a process p′ (at line 29), it adds qc to its tentative set

(at line 30), and it sends out a Check message to all its quorums (at line 31). When a

process qo delivers a Check (at line 32), it checks that the intersection of the new quorum

qc with each of its own quorums in Q and its tentative quorums in tentative is self -blocking

(at line 33-line 34). As we saw in the overview part of this section, this check ensures that

there is an outlived process in the intersection. Then, the process po sends a CheckAck

message back to p′ (at line 35). Otherwise, it sends a CheckNack message (at line 37).

Phase 3: Update. In phase 3 (Alg. 15, Figure 4.8b and Figure 4.8c), once a

process p′ receives CheckAck messages from one of its quorums (at line 38), it sends a

Commit message to the requesting process p (at line 39). On the other hand, if it receives

CheckNack from one of its blocking sets (at line 40), then there is no hope of receiving

CheckAck from a quorum, and it sends an Abort message to the requesting process p (at

182

line 41). The requesting process p succeeds if it receives a Commit message from every

process in the quorum qc. It fails if it receives an Abort message from at least one of them.

On the success path (at line 42), process p adds qn to its own set of quorums (at line 43),

and sends a Success message to processes in qc (at line 44) before issuing the AddComplete

response. The Success message includes a signature from each process in qc. On the failure

path (at line 51), process p sends a Fail message together with a signature to each process

in qc before issuing an AddFail response.

Attack scenarios. Let us consider attack scenarios that motivate the design

decisions, and then we get back to the protocol. If the requesting process p is Byzantine, it

may send a Success message to some processes in qc, and a Fail message to others. Then,

a process that receives Success adds qc to its quorums, and another process that receives

Fail removes qc from its tentative set. This would break tentative quorum inclusion. To

prevent this, every process p′ that receives a Fail message echos it to other processes in

qc, and processes a Fail message only when it has received its echo from every process in

qc. Further, a process that receives a Success does not later accept a Fail . Therefore, we

will have the safety invariant that once a process accepts a Fail , no other process accepts a

Success, and vice versa. Another attack scenario is that the requesting process p just sends

a Success message to some processes in qc and not others. This attack does not break any of

the properties; however, inhibits the progress of other processes. Therefore, every process

p′ that receives a Success message echos it to other processes in qc.

Success. A process p′ accepts a Success message to add qc (at line 46) only if the

succeeded is not set (i.e., p′ has not already received a Success message, as an optimization),

183

and the message comes with valid signatures from all processes in qc. The signatures are

needed to prevent receiving a fake Success message from a Byzantine process. Process p′

first echos the Success message to other processes in qc (at line 48). It then adds qc to its

set of quorums (at line 49), sets succeeded to true (at line 47), and removes qc from the

tentative set (at line 50).

Failure. A process p′ accepts a Fail message for qc (at line 54) only if succeeded

is not set (i.e., p′ has not received a Success message), and the message comes with a

valid signature from the requesting process p. This signature prevents receiving fake Fail

messages from Byzantine processes. Process p′ echos the message when it comes from the

requesting process p (at line 55-line 56), and adds the sender to the set failed(p, qc) (at

line 57). Once this set contains all the processes of qc, it removes qc from its tentative set

(at line 58).

4.11.2 Correctness

We now show that the Add protocol preserves consistency and availability. First

we show that although it preserves quorum inclusion only eventually, it does preserve a weak

notion of quorum inclusion. We later show that this notion is strong enough to preserve

quorum intersection.

Quorum inclusion. In order to preserve quorum inclusion, when qn is in the

system, qc should be in the system as well. The protocol adds the new quorum qn for a

process p only after qc is added to the tentative set of each process p′ in qc. It then removes

qc from the tentative set of p′ only after qc is added to the set of quorums Q of p′. Therefore,

184

Algorithm 15: Add quorum (Phase 3: Update)

38 upon response apl(po),CheckAck(p, qc) s.t. {po} ∈ Q
39 apl(p) request Commit(qc)

sig

40 upon response apl(po),CheckNack(p, qc) s.t. {po} is self -blocking
41 apl(p) request Abort(qc)

42 upon response apl(p′),Commit(q)σ s.t. {p′} = qc ∧ q = qc and

σ is a valid signature of p′

43 Q← Q ∪ {qn}
44 apl(p′′) request Success(qc)

{σ} for each p′′ ∈ qc
45 response AddComplete

46 upon response apl(p), Success(qc)
{σ} s.t. ¬succeeded(p, qc) and {σ} are valid

signatures of all processes in qc
47 succeeded(p, qc)← true

48 apl(p′′) request Success(qc)
{σ} for each p′′ ∈ qc

49 Q← Q ∪ {qc}
50 tentative ← tentative \ 〈p, qc〉
51 upon response apl(p′),Abort(q) s.t. q = qc ∧ p′ ∈ qc
52 apl(p′′) request Fail(self , qc)

sig for each p′′ ∈ qc
53 response AddFail

54 upon response apl(p∗), Fail(p, qc)
σ s.t. ¬succeeded(p, qc) and σ is a valid signature

of p
55 if p∗ = p then
56 apl(p′′) request Fail(p, qc)

σ for each p′′ ∈ qc
57 failed(p, qc)← failed(p, qc) ∪ {p∗}
58 if qc ⊆ failed(p, qc) then
59 tentative ← tentative \ 〈p, qc〉

185

when qn is a quorum of p, qc is either a quorum or a tentative quorum of each process in

qc. We now capture this weak notion as tentative quorum inclusion. As we will see, this

weaker notion is sufficient to preserve outlived quorum intersection.

Definition 100 (Tentative Quorum inclusion) A quorum system has tentative quo-

rum inclusion for P iff for all well-behaved processes p and quorums q of p, if a process

p′ in q is inside P , then there is a quorum q′ such that well-behaved processes of q′ are a

subset of q, and q′ is in either the quorums set Q or the tentative set of p′.

We now show that the protocol preserves tentative quorum inclusion for the out-

lived set O, and eventually restores quorum inclusion for O.

Lemma 101 The Add protocol preserves tentative quorum inclusion. Further, starting

from a quorum system that has quorum inclusion for processes O, it eventually results in a

quorum system with quorum inclusion for O.

Availability. Since the protocol does not remove any quorums, it is straight-

forward that it preserves availability.

Lemma 102 For every set of processes O, the Add protocol preserves quorum availability

inside O.

Quorum Intersection. Now we use the two above properties to show the

preservation of quorum intersection.

Lemma 103 If a quorum system has tentative quorum inclusion for processes O, and

availability inside O, then the Add protocol preserves quorum intersection at O.

186

Outlive. Similar to the Leave and Remove protocols, the three above lemmas

show that the Add protocol eventually restores an outlived quorum system, while it always

maintains outlived quorum intersection.

Lemma 104 (Preservation of Outlived set) Starting from a quorum system that is

outlived for processes O, the Add protocol preserves quorum intersection at O, and eventu-

ally results in a quorum system that is outlived for O.

Immediate from Theorem 103, Theorem 101, and Theorem 102.

Theorem 105 Starting from a quorum system that is outlived for processes O, the Add

protocol preserves quorum intersection at O, and eventually provides quorum inclusion for

O, and availability inside O.

Remove and Add. Finally, we note that the Leave and Remove protocols (that we

saw at section 4.6) and the Add protocol can be adapted to execute concurrently. The checks

for a blocking set are performed in the Leave and Remove protocols (Alg. 9), at line 14 and

line 2, and are performed in the Add protocol (Alg. 14) at line 34. The former check considers

the tomb set and the latter check considers the pending set. When the protocols are executed

concurrently, both of these sets should be considered. In particular, when the pending set is

{q′c}, the check for the former should be that “∃q1, q2 ∈ ∪{q′c} ∪Q′. (q1 ∩ q2) \ ({p′} ∪ tomb)

is not p′-blocking”, and the check for the latter should be that “∀q ∈ ∪{q′c}∪Q. qc∩q\ tomb

is self -blocking”.

187

4.12 PC Leave and Remove

In this section, we present the Leave and Remove protocols that preserve both

consistency and policies. We first consider the protocols before the correctness theorems.

Algorithm 16: PC Leave and Remove a quorum

1 Implements: Leave and Remove
2 request : Leave | Remove(q)
3 response : LeaveComplete | RemoveComplete
4 Variables:
5 Q . The individual minimal quorums of self
6

7 F : Set[P]
8 Uses:
9 apl : (∪Q) ∪ F 7→ AuthPerfectPointToPointLink

10 upon request Leave
11 apl(p) request Left(self) for each p ∈ F
12 response LeaveComplete

13 upon response apl(p),Left(p)
14 Q← Q \ {q ∈ Q | p ∈ q}
15 upon request Remove(q)
16 Q← Q \ {q}
17 response RemoveComplete

The Leave and Remove protocols that preserve the policies are shown in Alg. 16.

Variables and sub-protocols. Each process keeps its own set of individual minimal

quorums Q. It also stores its follower processes (i.e., processes that have this process in

their quorums) as the set F .

The protocol uses authenticated point-to-point links apl (to each quorum member

and follower).

Protocol. A process that requests a Leave informs its follower set by sending

a Left message (at line 11). Every well-behaved process that receives a Left message (at

188

line 13) removes any quorum that contains the sender (at line 14) so that quorum inter-

section is not lost in case the intersection is the leaving process. A process that requests a

Remove(q) simply removes q locally from its quorums Q.

Correctness. The protocols are both consistency- and policy-preserving.

Lemma 106 The PC Leave and Remove protocols are consistency-preserving.

This is immediate from the fact that the protocols only remove quorums, and

further for the leave protocol, the remaining quorums do not include the leaving process.

Therefore, quorum intersection persists.

Lemma 107 The PC Leave and Remove protocols are policy-preserving.

This is straightforward as the protocols remove but do not shrink quorums.

4.13 Sink Discovery

Following the graph characterization that we saw in section 4.4, we now present a

decentralized protocol that can find whether each process is in the sink component of the

quorum graph. We first describe the protocol and then its properties.

Protocol. Consider a quorum system with quorum intersection, availability and

sharing. The sink discovery protocol in Alg. 17 finds whether each well-behaved process

is in the sink. It also finds the set of its followers. A process p is a follower of process

p′ iff p has a quorum that includes p′. The protocol has two phases. In the first, it finds

the well-behaved minimal quorums, i.e., every minimal quorum that is a subset of well-

189

behaved processes. Since well-behaved minimal quorums are inside the sink, the second

phase extends the discovery to other processes in the same strongly connected component.

Variables and sub-protocols. In the quorum system Q, each process self stores

its own set of individual minimal quorums Q = Q(self), a map qmap from other processes

to their quorums which is populated as processes communicate, the in-sink boolean that

stores whether the process is in the sink, and the set of follower processes F . The protocol

uses authenticated point-to-point links apl . They provide the following safety and liveness

properties. If the sender and receiver are both well-behaved, then the message will be even-

tually delivered. Every message that a well-behaved process delivers from a well-behaved

process is sent by the later, i.e., the identity of a well-behaved process cannot be forged.

Protocol. When processes receive a Discover request (at line 9), they exchange

their quorums with each other. In this first phase, each process sends an Exchange message

with its quorums Q to all processes in its quorums. When a process receives an Exchange

message (at line 11), it adds the sender to the follower set F , and stores the received

quorums in its qmap. As qmap is populated, when a process finds that one of its quorums

q is a quorum of every other process in q as well (at line 14), by Theorem 79, it finds that

its quorum q is a minimal quorum, and by Theorem 86, it finds itself in the sink. Thus, it

sets its in-sink variable to true in the first phase (at line 15).

The process then sends an Extend message with the quorum q to all processes of

its own quorums Q (at line 16). The Extend messages are processed in the second phase.

The processes of every well-behaved minimal quorum are found in this phase. In Figure 4.3,

since the quorum {1, 2} is a quorum for both of 1 and 2, they find themselves in the sink.

190

However, process 3 might receive misleading quorums from process 5, and hence, may not

find itself in the sink in this phase.

The processes P1 of every well-behaved minimal quorum find themselves to be

in the sink in the first phase. Let P2 be the well-behaved processes of the remaining

minimal quorums. A pair of minimal quorums have at least a well-behaved process in

their intersection. In Figure 4.3, the two minimal quorums P1 = {1, 2} and P2 = {1, 3, 5}

intersect at 1. Therefore, by Theorem 80, every process in P2 is a neighbor of a process in

P1. Thus, in the second phase, the processes P1 can send Extend messages to processes in

P2, and inform them that they are in the sink. In Figure 4.3, process 1 can inform process 3.

The protocol lets a process accept an Extend message containing a quorum q only when the

same message comes from the intersection of q and one of its own quorums q′ (at line 17).

Let us see why a process in P2 cannot accept an Extend message from a single process. A

minimal quorum q that is found in phase 1 can have a Byzantine process p1. Process p1

can send an Extend(q) message (even with signatures from members of q) to a process p2

even if p2 is not a neighbor of p1, and make p2 believe that it is in the sink. In Figure 4.3,

the Byzantine process 5 can collect the quorum {1, 3, 5} from 1 and 3, and then send an

Extend message to 4 to make 4 believe that it is inside the sink. Therefore, a process p2

in P2 accepts an Extend(q) message only when it is received from the intersection of q and

one of its own quorums. Since there is a well-behaved process in the intersection of the two

quorums, process p2 can then trust the Extend message. When the check passes, p2 finds

itself to be in the sink, and sets the in-sink variable to true in the second phase (at line 18).

In Figure 4.3, when process 3 receives an Extend message with quorum {1, 2} from 1, since

191

{1} is the intersection of the quorum {1, 3, 5} of 3, and the received quorum {1, 2}, process

3 accepts the message.

Algorithm 17: Sink Discovery Protocol

1 Variables:
2 Q . The individual minimal quorums of self
3

4 qmap : P 7→ Set[2P]
5 in-sink : Boolean← false
6 F : 2P

7 Uses:
8 apl : P 7→ AuthPerfectPointToPointLink
9 upon request Discover

10 apl(p) request Exchange(Q) for each p ∈ ∪Q
11 upon response apl(p), Exchange(Q′)
12 F ← F ∪ {p}
13 qmap(p)← Q′

14 upon ∃q ∈ Q. ∀p ∈ q. q ∈ qmap(p)
15 in-sink ← true
16 apl(p) request Extend(q) for each p ∈ ∪Q
17 upon response apl(p),Extend(q) s.t.∃q′ ∈ Q. {p} = q ∩ q′
18 in-sink ← true

Let ProtoSink denote the set of well-behaved processes where the protocol sets the

in-sink variable to true. The discovery protocol is complete: all the well-behaved processes

of minimal quorums will eventually know that they are in the sink (i.e., set their in-sink

to true).

Lemma 108 (Completeness) For all q ∈MQ(Q), eventually q ∩W ⊆ ProtoSink.

This result brings an optimization opportunity: the leave and remove protocols

can coordinate only when a process inside ProtoSink is updated. Although, completeness

is sufficient for safety of the optimizations, in the appendix section 4.16, we prove both the

192

completeness and accuracy of the two phases in turn. The accuracy property states that

ProtoSink is a subset of the sink component.

4.14 AC Leave and Remove Proofs

4.14.1 Remove, Inclusion-preservation

Theorem 93. The AC Leave and Remove protocols preserve active quorum inclu-

sion. Further, starting from a quorum system that has quorum inclusion for processes O,

the protocols eventually result in a quorum system with quorum inclusion for O \ L.

Proof. Consider a quorum system Q with the set of well-behaved processes W.

We assume that Q has quorum inclusion for a set of processes O. Consider a well-behaved

process p1 ∈ W and its quorum q1 ∈ Q(p1), and a process p2 ∈ q1 ∩ O with a quorum

q2 ∈ Q(p2). For active quorum inclusion, we assume q2∩W \L ⊆ q1∩W \L, and show that

while a process p is leaving or removing a quorum, this property is preserved. For quorum

inclusion, we assume q2 ∩ W ⊆ q1 ∩ W, and show that this properly will be eventually

reconstructed.

Consider a process p that receives the response LeaveComplete or RemoveComplete.

Let L′ = L∪{p} and O′ = O\L′. We consider four cases. (1) The requesting process is p1.

We consider two cases. (1.a) If p1 leaves, then it has no quorums. (1.b) If p1 removes q1, no

obligation for q1 remains. (2) If the requesting process is p2, then p2 6∈ O′ and the property

trivially holds. (3) If the requesting process is a process p in q2 such that p 6= p2, then the

two processes p1 and p2 will receive Left messages (at line 10) and will eventually remove

p from q1 and q2 and result in q′1 = q1 \ {p} and q′2 = q2 \ {p} respectively. To show active

193

quorum inclusion, consider that before the two updates, we have q2 ∩W \ L ⊆ q1 ∩W \ L.

Depending on the order of the two updates, we should show either q′2∩W \L′ ⊆ q1∩W \L′

or q2 ∩W \ L′ ⊆ q′1 ∩W \ L′ for the intermediate states, and both trivially hold. After the

two updates, we trivially have q′2 ∩W ′ \ L′ ⊆ q′1 ∩W \ L′. For eventual quorum inclusion,

consider the fact that a message from a well-behaved sender is eventually delivered to a

well-behaved receiver. Therefore, the quorums q1 and q2 will be eventually updated to the

eventual states q′1 and q′2 above. Therefore, if q2 ∩ W ⊆ q1 ∩ W, then we trivially have

q′2 ∩ W ⊆ q′1 ∩ W. (4) The requesting process p 6= p1 and is in q1 \ q2. The reasoning is

similar to the previous case.

4.14.2 Remove, Availability-preservation

Theorem 97. The AC Leave and Remove protocols preserve active availability.

Further, starting from a quorum system that has availability inside processes O, the protocols

eventually result in a quorum system with availability inside O \ L.

Proof. Consider an initial quorum system Q. First, we show that if Q has active

availability inside O, the protocols preserve it. Changes to the quorums of processes in L

does not affect active availability inside O. Other processes can only remove processes in L

from their quorums (at line 11). Therefore, the inclusion of their quorum inside P modulo

L persists. Second, we show that as processes L leave or remove quorums, the resulting

quorum system Q′ will eventually have availability inside O \ L. Consider a process p that

is in O and not L. We show that there will be a quorum q′ ∈ Q′(p) such that q′ ⊆ O \ L.

We have that Q has availability inside O. Thus, O are well-behaved, and there is a quorum

q ∈ Q(p) such that q ⊆ O. Let L be the set of well-behaved processes in L. We show

194

that every p′ in L that is in q will be eventually removed from q. Since both p and p′ are

well-behaved, the Left message that p′ sends to p (at line 20 or line 9) is eventually delivered

to p, and p will remove p′ from q (at line 11). Therefore, eventually q′ = q \ L. Thus, since

q ⊆ W, q′ = q \ L. Thus, since q ⊆ O, we have q′ ⊆ O \ L

4.14.3 Remove, Intersection-preservation

Theorem 98. If a quorum system has quorum intersection at processes O, active

availability inside O, and active quorum inclusion for O, then the AC Leave and Remove

protocols preserve quorum intersection at O \ L.

Proof.

Assume that a quorum system Q has quorum intersection at processes O, avail-

ability inside O and active quorum inclusion for O. We have two cases for the requesting

process self : it is either in O or not. In the latter case, it cannot affect the assumed

intersection at O.

Now let us consider the case where the leaving process self is in O. Consider

two well-behaved processes p1 and p2 with quorums q1 ∈ Q(p1) and q2 ∈ Q(p2). Let I

be the intersection of q1 and q2 in O, i.e., I = q1 ∩ q2 ∩ O. Assume that self is in the

intersection of q1 and q2, i.e., self ∈ I. We assume that self receives a LeaveComplete or

RemoveComplete response. We show that the intersection of the two quorums has another

process in O. Let L be the subset of processes in I that have received a LeaveComplete

or or RemoveComplete response before self receives hers. After the processes L and self

receive a response, the quorums will incrementally shrink (at line 11) where the final smallest

195

quorums are q′1 = q1\(L∪{self}) and q′2 = q2\(L∪{self}) respectively. Let L′ = L∪{self}

and O′ = O \ L′. We show that even the smallest quorums have intersection in O′, i.e.,

q′1 ∩ q′2 ∩ O′ 6= ∅.

A LeaveComplete or RemoveComplete response is issued (at line 8) when process-

ing a Check request. The total-order broadcast tob totally orders the Check deliveries. Let

p∗ be the process in (L ∪ {self}) that is ordered last in the total order. By Theorem 93,

active quorum inclusion is preserved. Therefore, since p∗ is in q1 and O, there is a quo-

rum q∗1 ∈ Q(p∗) such that q∗1 ∩ W \ L ⊆ q1 ∩ W \ L. Similarly, we have that there is a

quorum q∗2 ∈ Q(p∗) such that q∗2 ∩W \ L ⊆ q2 ∩W \ L. Since p∗ has received a complete

response, q∗1 ∩ q∗2 \ ({p∗}∪ tomb) is p∗-blocking (by the condition at line 2). The total-order

broadcast tob ordered the Check deliveries for every process in the set L ∪ {self} \ {p∗}

before the Check delivery for p∗. Therefore, since every process that gets a complete re-

sponse is added to the tomb set (at line 6), the tomb set of p∗ includes these processes, i.e.,

L∪{self} \ {p∗} ⊆ tomb. Therefore, by substitution of tomb, we have q∗1 ∩ q∗2 \ (L∪{self})

is a blocking set for p∗. By the definition of L above, we have that the processes L \ L are

not in the intersection of q1, q2 and O. Therefore, q∗1 ∩ q∗2 \ (L∪{self}) is a blocking set for

p∗. Therefore, q∗1 ∩ q∗2 \ {self} is an active blocking set for p∗. By Theorem 96, there is a

process p ∈ O\L such that p ∈ q∗1 ∩ q∗2 \ ({self}). We have (q∗1 ∩ q∗2 \ ({self}))∩ (O\L) 6= ∅.

Distribution of \ give us (q∗1 \L∪{self})∩ (q∗2 \L∪{self})∩ (O\L∪{self}) 6= ∅. By active

quorum inclusion, we have q∗1 ∩W \ L ⊆ q1 ∩W \ L and q∗2 ∩W \ L ⊆ q2 ∩W \ L. Thus,

we have (q1 \ L ∪ {self}) ∩ (q2 \ L ∪ {self}) ∩ (O \ L ∪ {self}) 6= ∅. Thus, q′1 ∩ q′2 ∩O′ 6= ∅.

196

4.15 Add Proofs

4.15.1 Add, Inclusion-preservation

Theorem 101. The Add protocol preserves tentative quorum inclusion. Further,

starting from a quorum system that has quorum inclusion for processes O, it eventually

results in a quorum system with quorum inclusion for O.

Proof. Consider a quorum system Q with the set of well-behaved processes W.

Consider a set of well-behaved processes O, a well-behaved process p1 ∈ W and its quorum

q1 ∈ Q(p1), and a process p2 ∈ q1 ∩ O with a quorum q2 ∈ Q(p2). For tentative quorum

inclusion, we assume q2 ∩W ⊆ q1 ∩W, and that q2 is in either Q(p2) or the tentative set of

p2, and show that while a process p is adding a quorum, this property is preserved.

We consider a case for each such line where a quorum is added.

Case (1): The quorum qn is added at line 26. By line 22-line 23, and line 25, the

process p has received the AckInclusion message from every process p′ ∈ qn. Since before

sending AckInclusion, a well-behaved p′ makes sure it has a quorum inside qn (at line 16)

and O ⊆ W, we have ∀p′ ∈ qn ∩ O. ∃q′ ∈ Q(p′). q′ ⊆ qn. This is sufficient for quorum

inclusion that is stronger than tentative quorum inclusion.

Case (2): The quorum qn is added at line 43: The sets qn \ qc and qc are the

processes in qn which, respectively, do and do not satisfy quorum inclusion with their

existing quorums (line 16-19 and line 22-23). Further, qc ⊆ qn. Therefore, we only need

to show tentative quorum inclusion for processes p′ in qc. Before adding qn, the process p

receives the Commit message from every process p′ ∈ qc (at line 42). Before sending the

Commit message, every well-behaved process p′ ∈ qc receives CheckAck messages from all

197

the processes of one of its quorums including itself (at line 38). po only send CheckAck

message after receives Check message from p′ at line 31, which is after qc has been added

to tentative of p′ Therefore, (a) before qn is added as a quorum of p, every well-behaved

process p′ in qc adds qc to its tentative set. We will show below that (b) every well-behaved

process p′ in qc, removes qc from the tentative set only after it is already added to its set of

quorums. Since O ⊆ W, (a) and (b) above show tentative quorum inclusion for O.

We now show the assertion (b) above. p′ removes qc from its tentative set only

after it receives Success or Fail messages. We consider a case for each Case (2.1): qc is

removed from tentative at line 50. qc is removed from tentative only after qc is added to the

set of quorums Q. Case (2.2): qc is removed at line 59, which is after process p′ receiving

Fail messages from every member of qc (at line 58) and verifying the signature from p (at

line 54). However, the process p has sent a Success message (at line 44) after qn is added. If

a well-behaved process sends a Success message, then it returns the response AddComplete

and the add process finishes. Therefore, since p is a well-behaved process, it does not send

a Fail message and this case does not happen.

Case (3): The quorum qc is added at line 49. This add happens only after the

current process p′ receives a Success message (at line 46) . Upon delivery of a Success

message, p′ validates a signature from every process in qc for Commit . Therefore, by an

argument similar to Case (2), we have that (a) before a process adds qc to its quorums, every

well-behaved process in qc has added qc to its tentative set. We will show below that (b)

every well-behaved process in qc removes qc from the tentative set only after it is already

added to its set of quorums. Since O ⊆ W, (a) and (b) above show tentative quorum

198

inclusion for O. We now show the assertion (b) above. A process p′′ removes qc from its

tentative set only after delivery of Success or Fail messages and we consider a case for each.

Case (3.1): qc is removed at line 50. The argument is similar to Case (2.1). Case (3.2): qc

is removed at line 59, which is after receiving the Fail messages from all the members of

qc including p′. However, before qc is added to the quorums of p′, p′ set succeeded to true

at line 47. The condition ¬succeeded(p, qc) at line 54 prevents it from sending Fail after

receiving Success. Therefore, since p′ has received a Success message, then it does not send

a Fail message. Therefore, p′′ can not remove qc from its tentative at line 59.

For eventual quorum inclusion, consider the requesting process p that adds qn to

its quorums. The argument is similar to the Case (1) and Case (2) above for tentative

quorum inclusion. In the second case, before adding qn (at line 43), the process p sends the

Success message to processes in qc (at line 44). Therefore, all the well-behaved processes in

qc eventually add qc to their set of quorums (at line 49). Therefore, qc and qn will eventually

have quorum inclusion.

4.15.2 Add, Availability-preservation

Theorem 102. For every set of processes O, the Add protocol preserves quorum

availability inside O.

Proof. The Add protocol does not explicitly remove any quorums. An implicit

removal can happen when a process has a quorum that is a subset of another. We show

that if the addition of quorum qc leads to an implicit removal of a quorum, availability is

preserved.

199

If qc is a subset of an existing quorum, then even if either of the quorums is removed,

availability is preserved. Further, qc is not a superset of any quorum q of a process p in qc.

Otherwise, q is a subset of qn and the process p would not be included in qc.

4.15.3 Add, Intersection-preservation

Theorem 103. If a quorum system has tentative quorum inclusion for processes

O, and availability inside O, then the Add protocol preserves quorum intersection at O.

Proof. Consider well behaved processes O, and a quorum system Q with tentative

quorum inclusion for O, availability inside O, and quorum intersection at O. Consider a

well-behaved process p that requests Add(qn). The new quorums that are added to the

quorum system are qc and its superset qn. Consider a well-behaved process pw with a

quorum qw that is either an existing quorum or a tentative quorum that passed the all the

checks. We should show that both qc and qn intersect qw at O.

We assumed that there is a well-behaved process p′ in qn. We consider two cases:

Case (1) The well-behaved process p′ is in qc. A process adds qc (at line 49) only after receiv-

ing a Success message (at line 46). The process p sends a Success message (at line 44) only

after receiving the Commit message form every process in qc (at line 42). The well-behaved

process p′ sends a Commit message (at line 39) only after receiving a CheckAck message

from one of its quorums q′ (at line 38). By quorum intersection at O, the intersection of q′

and qw has a process po in O. By tentative quorum inclusion for O, there is a quorum qo of

po such that qo ∩W ⊆ qw ∩W and either qo is a quorum of po or a member of its tentative

set. Since po has sent an CheckAck message (at line 35), it has passed the check that qo∩ qc

is po-blocking (at line 33-line 34). Since O is available and po is in O, then by Theorem 75,

200

we have that qo ∩ qc ∩ O 6= ∅. Since qo ∩W ⊆ qw ∩W, and O ⊆ W, then qw ∩ qc ∩ O 6= ∅.

Since qc ⊆ qn, we have qw ∩ qn ∩ O 6= ∅.

Case (2) The well-behaved process p′ is in qn \ qc. A process in qn is not in qc

only if it already satisfies quorum inclusion. (line 16-19 and line 22-23). Therefore, p′ has a

quorum q such that q ⊆ qn. Thus, the quorum intersection for q implies quorum intersection

for qn. If qc has a well-behaved process, the proof follows the previous case. Otherwise,

it has no well-behaved process, and quorum intersection is only required for well-behaved

processes.

201

4.16 Sink Discovery Proofs

4.16.1 Sink Discovery, Completeness

Let the set ProtoSink partition into ProtoSink1 and ProtoSink2 that denote the

set of well-behaved processes at which the protocol sets the in-sink variable to true in phase

1 (at line 15), and in phase 2 (at line 18) respectively.

Well-behaved minimal quorums will eventually be in ProtoSink1.

Lemma 109 (Completeness for Phase 1) ./C4/ProtoSink1Completeness

Proof. Consider a well-behaved minimal quorum q. By Theorem 79, every process in q is

in a quorum of every other process in q. Since all processes in q are well-behaved, they send

out Exchange messages to all the other processes in q (at line 10). Since these processes

are well-behaved, they will eventually receive each other’s messages, and record each other

quorums (at line 11). Therefore, each of them will eventually satisfy the condition, and set

in-sink to true (at line 15-line 14).

Well-behaved processes in the minimal quorums will eventually be in either ProtoSink1

or ProtoSink2.

Lemma 110 (Completeness for Phase 2) Forall q ∈ MQ(Q), eventually q ∩ W ⊆

ProtoSink1 or q ∩W ⊆ ProtoSink2.

Proof. Consider a minimal quorum q which is not found in phase 1, i.e., it is not

added to ProtoSink1. Since the quorum system is available (for a set of processes), there

exists a well-behaved quorum q′. By the consistency property, q and q′ have an intersection

202

{p}. Since q′ is well-behaved, {p} are well-behaved. Since each process p in {p} is in q′,

by Theorem 109, p sets its in-sink variable to true (at line 15), and then sends out Extend

messages to its neighbors: all processes of its individual minimal quorums (at line 16).

Since each process p is in q, by Theorem 80, every well-behaved process of q is a neighbor

of p. Therefore, all well-behaved processes in q will receive the Extend messages from the

intersection {p}, and set their in-sink variable to true.

4.16.2 Sink Discovery, Accuracy

We saw above that completeness is sufficient for safety of the optimizations. We

now consider the accuracy property: every well-behaved process that sets its in-sink variable

to true is in the sink component. Let us consider an attack scenario for accuracy. A group

of Byzantine processes fake to be a quorum and send an Extend message to make a process

that it is outside the sink believe that it is in the sink. This can violate accuracy. Therefore,

a check validq is needed (at line 17) to ensure that the processes in q are a valid quorum

in the system. For example, the heterogeneous quorum systems of both Stellar [307] and

Ripple [397] use hierarchies of processes and size thresholds to recognize quorums. We prove

the accuracy of the two phases in turn that results in the following lemma. Let Sink(Q)

denote processes in the sink component of Q.

Lemma 111 (Accuracy) ProtoSink ⊆ Sink(Q).

Lemma 112 (Accuracy of Phase 1) ProtoSink1 ⊆ Sink(Q)

Proof. Processes in ProtoSink1 set in-sink to true (at line 15) after they check

203

(at line 14) that one of their quorums q in an individual minimal quorum of all its members.

By Theorem 79, q is a minimal quorum, and by Theorem 86, q is in the sink.

Lemma 113 (Accuracy for Phase 2) ProtoSink2 ⊆ Sink(Q)

Proof. Consider a process p∗ in ProtoSink2. It sets in-sink to true (at line 18)

only after receiving an Extend message containing a quorum q from a set of processes

P ′ = {p′} such that P ′ is the intersection of q and a quorum of p∗ (at line 17). Further,

the validq check ensures that q has at least one well-behaved process pw (at line 17). Since

well-behaved processes only send Extend messages with a minimal quorum, q is a minimal

quorum. Since p∗ receives a message from pw, there is an edge from pw to p∗ in the quorum

graph. We show that there is a path from p∗ to pw. By Theorem 81, there are edges from

p∗ to all members of at least one minimal quorum q′. By consistency, there is at least one

well-behaved process p′w in the intersection of q′ and q. There is an edge from p∗ to p′w. By

Theorem 82, there is an edge from p′w to pw. Thus, there is a path from p∗ to pw though

p′w. Therefore, they are strongly connected. By Theorem 112, pw is in the sink, Therefore,

p∗ is in the sink as well.

204

4.17 Discussion

We contrast HQS from ABQS on the following two aspects: 1) ABQS is based

on asymmetric failure prone sets Fi from each process pi. The notions of consistency and

availability are dependent on the Fi sets . In contrast, HQS, and its consistency and

availability properties are not dependent on failure prone sets. 2) We say that a set of

processes is strongly available if there is a well-behaved quorum with inclusion for each

process in that set. A maximal strongly available set (from HQS) is a strict superset of a

maximal guild (from ABQS): all the maximal guilds in ABQS are strongly available in HQS

with quorum intersection; however, the opposite is not true. We show a quorum system

that has an empty guild but has non-empty strongly available set, and quorum intersection.

Let P = {1, 2, 3, 4}, and process 3 is Byzantine. Let the asymmetric failure prone system

be F(1) = {{3, 4}, {2}}, F(2) = {{3, 4}, {1}}, F(3) = {{1, 2}}, F(4) = {{2, 3}}. The

canonical quorum system is Q(1) = {{1, 2}, {1, 3, 4}}, Q(2) = {{1, 2}, {2, 3, 4}}, Q(3) =

{{3, 4}},Q(4) = {{1, 4}}. This HQS has quorum intersection and a non-empty strongly

available set: all the quorums of well-behaved processes have at least one correct process

in their intersection. The set {1, 2} is a strongly available set for Q. However, it is not

an ABQS with generalized B3 condition. For processes 1 and 2, F1 = {2},F2 = {1} and

F12 = {3, 4}, and we have P ⊆ {2} ∪ {1} ∪ {3, 4}, which violates generalized B3. Therefore

this quorum system is not an ABQS. There is no guild set.

205

4.18 Related Works

Quorum Systems with Heterogeneous Trust. We described a few instances

of heterogeneous quorum systems in section 4.3. The blockchain technology raised the

interest in quorum systems that allow non-uniform trust preferences for participants, and

support open admission and release of participants. Ripple [397] and Cobalt [319] pioneered

decentralized admission. They let each node specify a list, called the unique node list

(UNL), of processes that it trusts. However, they assume that 60-90% of every pair of lists

overlap. It has been shown that violation of this assumption can compromise the security

of the network [32, 434], further highlighting the importance of formal models and proofs

[218, 78].

Stellar [334] provides a consensus protocol for federated Byzantine quorum systems

(FBQS) [185, 187] where nodes are allowed to specify sets of processes, called slices, that

they trust. The Stellar system [307] uses hierarchies and thresholds to specify quorum

slices and provides open membership. Since each process calculates its own quorums from

slices separately, the resulting quorums do not necessarily intersect, and after independent

reconfigurations “the remaining sets may not overlap, which could cause network splits”

[148]. Therefore, to prevent forks, a global intersection check is continually executed over

the network. Follow-up research analyzed the decentralization extent of Stellar [85, 244],

and discussed [180] reconfiguration for the uniform quorums of the top tier nodes. This

paper presents reconfiguration protocols that preserve the safety of heterogeneous quorum

systems.

206

Personal Byzantine quorum systems (PBQS) [311] capture the quorum systems

that FBQSs derive from slices, require quorum intersection only inside subsets of processes

called clusters, and propose a consensus protocol. It defines the notion of quorum sharing.

As we saw in section 4.3, this paper presents quorum inclusion that is weaker than quorum

sharing; therefore, a cluster is outlived but not vice versa. This paper showed that quorum

inclusion is weak enough to be preserved during reconfiguration, and strong enough to

support preserving consistency and availability.

Flexible BFT [325] allows different failure thresholds between learners. Heteroge-

neous Paxos [401, 402] further generalizes the separation between learners and acceptors

with different trust assumptions. Further, it specifies quorums as sets rather than number

of processes. These two projects introduce consensus protocols. However, they require the

knowledge of all processes in the system. In contrast, this paper presents HQSs that requires

only local knowledge, captures their properties, and presents reconfiguration protocols for

them.

Asymmetric trust [142] lets each process specify the sets of processes that its

doesn’t trust, and considers broadcast, secret-sharing, and multi-party computation prob-

lems. Similarly, in asymmetric Byzantine quorum systems (ABQS) [104, 105, 25] each

process defines its subjective dissemination quorum system (DQS): in addition to its sets

of quorums, each process specifies sets of processes that it believes may mount Byzantine

attacks. This work presents shared memory and broadcast protocols, and further, rules

to compose two ABQSs. The followup model [103] lets each process specify a subjective

DQS for processes that it knows, transitively relying on the assumptions of other processes.

207

On the other hand, this paper presents decentralized reconfiguration protocols to add and

remove processes and quorums. Further, it lets each process specify only its own set of

quorums, and captures the properties of the resulting quorum systems.

Multi-threshold [223] and MT-BFT [341] broadcast protocols elaborate Bracha

[86] to have different fault thresholds for different properties and for different synchrony

assumptions but have uniform quorums. K-CRB [70] supports non-uniform quorums and

delivers up to k different messages.

Quorum subsumption [289] adopted and cited HQS from the arXiv version of this

paper, and presented a generalization of quorum sharing called quorum subsumption. This

paper focuses on maintaining the properties of HQS when processes perform reconfigura-

tions. We found quorum inclusion as a flavor of quorum sharing that is weak enough to

be maintained during reconfiguration, and strong enough to support the consistency and

availability properties. In fact, quorum inclusion is weaker than quorum subsumption: for

a quorum q, it requires only the processes of q that are in P to have a quorum q′, and only

the well-behaved part of q′ to be a subset of q.

Open Membership. We consider three categories.

Group Membership. As processes leave and join, group membership protocols

[128] keep the same global view of members across the system (although the set of all pro-

cesses may be fixed). Pioneering work, Rambo [317] provides atomic memory, and supports

join and leave reconfigurations. It uses Paxos [263] to totally order reconfiguration requests,

and tolerates crash faults. Rambo II [195] improves latency by garbage collecting in parallel.

Recently, multi-shard atomic commit protocols [89] reduce the number of replicas for each

208

shard and reconfigure the system upon failures. Since accurate membership is as strong as

consensus [121, 128], classical [383] and recent Byzantine group membership protocols such

as Cogsworth [351] and later works [191] use consensus to reach an agreement on member-

ship and adjust quorums accordingly. Recent works present more abstractions on top of

group membership: DBRB [205] provides reliable broadcast, DBQS [29] preserves consis-

tent read and write quorums, and further adjusts the cardinality of quorums according to

the frequency of failures, Dyno [158] provides replication, and SmartMerge [233] provides

replication, and uses a commutative merge function on reconfiguration requests to avoid

consensus. Existing protocols consider only cardinality-based or symmetric quorum sys-

tems where quorums are uniform across processes. On the other hand, this paper presents

reconfiguration protocols for heterogeneous quorum systems.

Hybrid Open Membership. Solida [15], Hybrid Consensus [366], Tendermint

[94, 33], Casper [100], OmniLedger [247], and RapidChain [449] blockchains combine per-

missionless and permissioned replication [323] to provide both consistency and open mem-

bership [55]. They use permissionless consensus to dynamically choose validators for per-

missioned consensus.

Unknown participants and network topology. BCUP and BFT-CUP [117, 23, 22]

consider consensus in environments with unknown participants. They assume properties

about the topology and connectivity of the network, and consider only uniform quorums.

Later, [354] presents necessary and sufficient conditions for network connectivity and syn-

chrony for consensus in the presence of crash failures and flaky channels. In contrast,

209

this paper considers reconfiguration for Heterogeneous Byzantine quorums, and presents

optimizations based on the quorum topology.

4.19 Conclusion

This paper presents a model of heterogeneous quorum systems, their properties,

and their graph characterization. In order to make them open, it addresses their recon-

figuration. It proves trade-offs for the properties that reconfigurations can preserve, and

presents reconfiguration protocols with provable guarantees, We hope that this work fur-

ther motivates the incorporation of open membership and heterogeneous trust into quorum

systems, and helps blockchains avoid high energy consumption, and centralization at nodes

with high computational power or stake.

210

Chapter 5

Reconfigurable Clustered

Byzantine Replication

5.1 Introduction

Blockchains such as Bitcoin [350] and Ethereum [435] maintain a global replicated

ledger on untrusted hosts. However, they suffer from a few drawbacks including high energy

consumption, partitions [416, 192, 391], and stake and vote centralization [428]. Byzantine

replicated systems such as PBFT [116] and its numerous following variants [338, 445, 410,

35, 411] can maintain consistent replications in the presence of malicious nodes. More

interestingly, these techniques require nodes to use a modest amount of energy. Therefore,

they are an appealing technology to serve as the global financial infrastructure. Thus, several

projects such as Hyperledger [35], Solida [15], Tendermint [94], Casper [100], Algorand [194],

211

OmniLedger [247] and RapidChain [449] deployed Byzantine replication protocols to manage

blockchains.

However, Byzantine replication protocols need to be improved on two fronts: scale

and openness. They often require rounds of message-passing between nodes; therefore, they

tend not to scale on many or distant nodes. Further, their membership is often closed. In

fact, the resulting blockchains are called permissioned since their set of nodes is fixed and

initially known.

To scale Byzantine replication across the globe, projects such as Steward [30]

and ResilientDB [212] try to use global communication judiciously, and decrease global

in favor of local communication. In contrast to monolithic replicated systems, they let

adjacent nodes form clusters, and let each cluster locally order transactions, and then only

briefly communicate the orders globally to maintain agreement. Since the communication

between members of a cluster is local, clusters can maintain high throughput and low

latency. Further, coordination is divided between clusters, and they can order transactions

in parallel.

However, existing clustered replication protocols are homogeneous and closed. The

number of nodes is the same across clusters. Further, nodes cannot join or leave clusters.

A global financial system needs to be heterogeneous: different regions might have different

number of active nodes. More importantly, decentralization promised openness: active

nodes should be able to churn. This is the property that proof-of-work blockchains such as

Bitcoin live on: unknown incentivized servers can join and keep it running. Reconfiguration

has been studied for monolithic replication [158, 233, 156, 266, 262, 204] but is an open

212

problem for clustered replication. Can we have the best of both worlds? Can we have the

energy efficiency, equity and scalability of clustered Byzantine replication, and the openness

of proof-of-work? Can we have reconfigurable clustered replication?

Reconfiguring a clustered replication system without compromising security is a

challenging task. If the reconfigurations are not propagated uniformly to all clusters, correct

processes might accept fake messages or miss genuine ones. Thus, inconsistent views of

membership may lead to violation of both safety and liveness. Byzantine replicated systems

can often tolerate one-third of processes to be Byzantine. Thus, if a message is received from

more than one-third of processes, at least one correct process must have sent it; therefore,

the message can be trusted. Consider a cluster C that is not informed of new additions to

another cluster C ′. The cluster C’s record of one-third is less than the actual one-third for

C ′. Therefore, the Byzantine processes in C ′ can form a group that is larger than the old

one-third, and can make C accept a fake message. On the flip side, C ′ might miss messages

from C. Since C thinks that C ′ is smaller, in order to communicate a message, C might

send a message to an insufficient number of processes in C ′. Thus, the Byzantine processes

in C ′ can censor the message for other processes in that cluster, and endanger liveness.

Uniform propagation of reconfigurations is particularly challenging when the leader of the

cluster simultaneously changes.

In this paper, we present reconfigurable clustered Byzantine replication: we de-

scribe a Byzantine replication protocol that allows nodes to be divided into multiple het-

erogeneous clusters, and further join and leave clusters. Before a brief communication with

other clusters in each round, each cluster orders transactions independently of other clus-

213

ters, and further accepts join and leave requests. Reconfigurations are processed efficiently

in parallel to transactions. Since the reconfigurations received in a round take effect for

the next round, they do not need to be ordered in a round. Thus, instead of processing

them through consensus in sequence, they are aggregated as a set, and processed together.

We will present the reconfiguration protocol and formally state and prove its safety and

liveness.

Heterogeneity that reconfiguration brings to clusters complicates the processing

of transactions. In particular, the protocols that broadcast across clusters, and remotely

change leaders, have to keep a consistent record of the size of the local and remote clusters,

and send messages accordingly. In addition to reconfiguration, the clustered replication

protocol that we present in this paper maintains replication across heterogeneous clusters.

The reconfigurable clustered replication protocol is parametric in terms of the

local replication protocol. We implement the protocol for HotStuff [445] in C++, and for

BFT-SMaRt [67] in Java. We deployed the resulting systems on geo-distributed clusters

in multiple regions of Google cloud. The experimental results show that heterogeneous

geo-distributed deployments significantly improve throughput, can be reconfigured without

affecting transaction processing, and can gracefully tolerate Byzantine failures.

In short, this paper makes the following contributions:

• Reconfiguration protocol for clustered replication. The protocol allows processes to

join and leave clusters safely and efficiently.

• Heterogeneous clustered replication. Clusters can have different sizes, and the inter-

cluster broadcast, and remote leader change protocols adapt to different sizes.

214

• Statement and proof of safety and liveness properties for the reconfiguration protocol.

• Implementation and empirical results. The protocol is parametric for the local replica-

tion protocol, and we instantiated it for both HotStuff and BFT-SMaRt. Experiments

show that heterogeneity improves performance, and the resulting replicated system

are reconfigurable and fault-tolerant.

We start with an overview.

5.2 Overview

In this section, we describe the system and threat model, and illustrate the protocol

with diagrams and representative executions.

System and Threat Model. A replicated system consists of a set P of

processes that are partitioned into clusters C = {C1, .., CN}. Clients can send requests to

any process to execute operations of two different types: transactions and reconfigurations.

The state is replicated at each process. (In contrast to sharding, the state is not partitioned.)

A process can be correct or Byzantine. A Byzantine process can fail arbitrarily including

but not limited to crash failures, sending conflicting messages, dropping messages, and

impersonating other Byzantine processes. We assume that at any time in each cluster, at

most one-third of processes can be Byzantine, i.e., at most f out of 3f + 1 processes can be

Byzantine. (This paper does not consider problems orthogonal to Byzantine fault tolerance

such as access control or sybil resistance [378, 417, 454].) We further assume that each

process can be identified by its public key, and that processes are computationally bound,

215

tx1 tx2 tx3

Collection Dissemination

tx1 tx2 tx4tx3

C1

C2

Local Ordering

Local Ordering

Reconfiguration

Reconfiguration

Phase 1:
Intra-cluster
Replication

Phase 2:
Inter-cluster

Communication

Phase 3:
Execution

Heterogeneous
Remote Leader

Change

Heterogeneous
Remote Leader

Change

Execution

Execution

Collection Dissemination

Inter-cluster
Broadcast

Inter-cluster
Broadcast

Figure 5.1: Overview of Phases and Sub-protocols

216

and cannot subvert standard cryptographic primitives. Thus, processes can communicate

with authenticated links. We consider a partially synchronous network [160]: after an

unknown global stabilization time, messages between any pair of correct processes will be

eventually delivered within a bounded delay. Processes communicate with authenticated

perfect links apl , and authenticated best-effort broadcast abeb which simply abstracts apl

to send a message to all processes. Each message mσ delivered from an authenticated link

comes with a signature σ of the sender. (We elide the signature when it is not needed in a

context.)

Each cluster has a leader that coordinates the replication of both transactions and

reconfigurations. Each process stores the leader of its cluster and its associated timestamp

ts. The protocol proceeds in consecutive rounds r. A leader might continue to serve for

multiple rounds. On the other hand, several leaders might change within a round until a

correct leader properly replicates transactions and reconfigurations.

Phases. Each round has three phases. In each round, a batch of transactions

from each cluster is executed. Figure 5.1 shows an overview of the phases and sub-protocols

in a round that we elaborate in this and next sections. The processes are split into clusters.

The figure shows two clusters C1 and C2 that chronologically make progress from left to

right through the phases. The first phase is intra-cluster replication where each cluster

coordinates replication locally and independently of other clusters. The first phase has two

parts that are executed in parallel: local ordering, and reconfiguration. The local ordering

protocol orders a batch of transactions uniformly across the processes of the cluster. The

protocol is parametric in terms of the local ordering sub-protocol; any monolithic replication

217

protocol can be used. The second part, the reconfiguration protocol, collects and uniformly

disseminates the reconfiguration requests across the cluster, even if the leader is Byzantine

or changes simultaneously. After the first phase finishes intra-cluster replication, the second

phase performs inter-cluster communication: the leader of each cluster broadcasts to other

clusters the transactions and reconfigurations that it has locally replicated. Each cluster

waits to receive these messages from every other cluster. If a remote leader is Byzantine,

it may refrain from sending these messages. Therefore, to ensure progress, if the processes

of a cluster don’t receive the message from a remote cluster, they trigger the remote leader

change protocol to eventually change the leader of that remote cluster. Finally, in the third

phase, each process orders the transactions and reconfigurations that it has received from all

clusters by a predefined order for the clusters, executes them in order, and issues responses.

This predefined order yields a total-order for operations across replicas. Processes converge

to the same state at the end of the round.

p1

p2

p3

p4

p1

p2

p3

p4

p5

p6

p7

Local

f2 + 1
Inter

LocalC1

C2

f1 + 1
Inter

(a) Inter-cluster Broadcast

p1

p2

p3

p4

p1

p2

p3

p4

p5

p6

p7
Phase 1 Phase 2

Phase 2

LComplain LComplain

f1 + 1
RComplain

ComplainC1

C2

f2 + 1

Amplification

(b) Remote Leader Change

Figure 5.2: Phase 2: Inter-cluster Communication. f1 = 1, f2 = 2.

Inter-cluster Communication. Let us consider the inter-cluster communi-

218

cation phase (i.e., phase 2). Figure 5.2 shows example executions of this phase for two

heterogeneous clusters C1 and C2 with 4 and 7 processes respectively. In Figure 5.2a, the

leaders of C1 and C2 are the green processes p2 and p4 respectively. The Byzantine processes

of C1 and C2 are the red processes {p3} and {p1, p2} respectively. We note that in both

clusters, the number of Byzantine processes is less than one-third of the size of the cluster:

f < |C|/3 that is f1 = 1 < 4/3 and f2 = 2 < 7/3.

Inter-cluster Broadcast. Figure 5.2a shows an execution of the inter-cluster

broadcast protocol. Each cluster has already locally replicated operations; each operation

is paired with a certificate of replication which is approval signatures from a quorum of

processes in that cluster. The leader of each cluster sends its operations together with their

certificates to other clusters as inter-cluster messages Inter . To ensure that at least one

correct process in the remote cluster receives the message, the leader sends the message to

f + 1 processes in the remote cluster. In our heterogeneous clusters example, the leader

p2 of C1 sends the message to 2 + 1 = 3 processes in C2, and the leader p4 of C2 sends

the message to 1 + 1 = 2 processes in C1. In the remote cluster, the correct process that

receives the Inter message then broadcasts the operations as Local messages to processes

in its own cluster. Thus, if the leaders are correct, all correct processes eventually receive

operations from all clusters.

Clustered replication reduces the number of rounds and message complexity for

global communication. We just considered the inter-cluster broadcast of phase 2 above. Let

us compare the complexity of classical monolithic replication such as PBFT with clustered

replication. Consider n1 = |C1|, n2 = |C2|, and the total number n = n1 + n2 processes. To

219

process a single transaction, monolithic replication requires 2 global rounds with message

complexity O((n1 + n2)2). To process 2 transactions in parallel in C1 and C2, clustered

replication executes phase 1 with 2 local rounds with message complexity O(n2
1 + n2

2), and

then phase 2 with 1 global round with message complexity (f1 + 1) + (f2 + 1) = O(n1 +n2),

and finally, 1 local round with message complexity (f1 +1)×n1 +(f2 +1)×n2 = O(n2
1 +n2

2).

Therefore, global communication is reduced from 2 rounds of complexity O((n1 + n2)2) to

1 round of complexity O(n1 + n2).

Remote Leader Change. A Byzantine leader may behave locally, but skip sending

Inter messages to other clusters. Let us now consider how the processes of a cluster can

change the leader of a remote cluster if they do not receive the expected message from it.

Figure 5.2b shows an execution of the remote leader change protocol. The current leader

p2 of the cluster C1 is Byzantine, and will be changed to the correct process p3. In cluster

C2, the processes p3, p4 and p5 have not received the operations of C1, and their timers

expire; thus, they broadcast a local complaint LComplaint in C2 about C1. The processes

p6 and p7 in C2 have not already complained, but receive f2 + 1 = 3 complaints from the

three processes above. Since at least 1 out of 3 is from a correct process, they amplify

the complaint by broadcasting an LComplaint message locally. A process accepts the local

complain only when it receive it from 2 × f2 + 1 = 5 processes. It can be shown that

this prevents a coalition of Byzantine processes from forcing a leader change, and ensures

that all local correct processes eventually deliver the complaint. When the first f2 + 1 = 3

processes accept the local complaint, they send a remote complaint RComplaint . To make

sure that the message is sent to the remote cluster, it is sent by f2 + 1 processes which

220

contain at least one correct process. In the first three processes, p3 is correct and sends the

remote complaint. The complaint should reach at least one correct process in C1; thus, p3

sends it to f1 + 1 = 2 processes in C1. The process p1 in C1 is correct, and receives the

remote complaint. It accepts the complain if it carries 2 × f2 + 1 signatures from C2. It

then broadcasts a Complaint message locally in C1. When the correct processes receive the

local complaint (at green circles), they move to the next leader p3. The protocol should

deal with complaint replay attacks, and multiple simultaneous change requests, that we will

describe in the next section.

p1

p2

p3

p4

pnew RequestJoin 2f + 1 Ack

p′ new
RequestJoin 2f + 1 Ack

(a) Collection

p1

p2

p3

p4
Phase 2

Valid

Agg Echo Ready

Recs

2f + 1

Agg Echo Ready

Recs

Recs

2f + 1

(b) Dissemination

Figure 5.3: Phase 1: Reconfiguration

Reconfiguration. Let’s now consider reconfiguration. Reconfiguration not

only allows processes to freely join and leave but also supports rebalancing the system

to maintain the proximity of processes in a cluster, and similarity of performance across

clusters.

Attacks. The reconfiguration requests should be uniformly propagated across

clusters, i.e., the configurations that every pair of correct processes (possibly from different

clusters) execute in a round should be the same. When they are not, the following Byzantine

attacks may arise. Consider two clusters C1 and C2 with 4 and 7 processes, and the failure

221

thresholds f1 = 1 and f2 = 2 respectively. Assume that 3 new processes join C1 and one

of them is Byzantine. The updated C1 now has 7 processes, and the failure threshold is

f ′1 = 2. However, assume that the correct processes in C2 are unaware of the newly joined

processes in C1; they keep the stale failure threshold f1 = 1, and will accept any operations

with 2× f1 + 1 = 3 signatures. If C1 has a Byzantine leader, it can forge a certificate for a

set of operations ops1: it can get a signature from only one correct process for ops1. Then,

it can also have signatures from itself and the other Byzantine process, to have a total of

3 signatures. It can then make the processes in C2 accept ops1 with the forged certificate.

However, it can lead the correct processes in C1 to eventually replicate a different set of

operations. Thus, the correct processes in C1 and C2 diverge.

Let us now consider another attack in the same setting. Since the correct leader of

C2 has a stale failure threshold f1 = 1, it sends f1 + 1 = 2 inter-cluster broadcast messages

to C1. The receiver processes in C1 can be both Byzantine, and may drop the message.

Then, the timers of the correct processes in C1 will eventually trigger, and they complain

about the leader of C2. The remote leader change eventually replaces the correct leader in

C2. Unfortunately, the Byzantine processes in C1 can repeat changing the leader until a

Byzantine processes is in control in C2.

Let’s consider the reconfiguration protocol. Processes can request join and leave

reconfigurations in phase 1. Clusters communicate only in phase 2. Thus, if the reconfigura-

tions requested in a cluster in phase 1 are processed as they are requested, remote clusters

will have an inconsistent view of membership for the local cluster. We explained above

that these inconsistencies are unsafe. Therefore, the reconfigurations requested in a round

222

are locally collected and disseminated in phase 1, are remotely communicated in phase 2,

and applied in phase 3 to uniformly update membership for the next round. Thus, in each

round, they can be collected as a set, and the order that they are processed in is immaterial.

Therefore, collecting them can be taken off the critical path that orders transactions. Thus,

as Figure 5.1 shows, reconfigurations are collected and disseminated as a separate workflow

in parallel to transaction processing. Figure 5.3 shows example executions for both parts

of the reconfiguration protocol, collection and dissemination, which we will describe next.

Collection. In Figure 5.3a, two processes pnew and p′new request to join the cluster.

Each broadcasts a RequestJoin message. When a correct process delivers a RequestJoin

message, it adds the join request to its set of reconfiguration requests, and responds back

by a Ack message. A joining process periodically keeps sending RequestJoin messages until

it receives the Ack message with the same configuration from a quorum of 2 × f + 1 = 3

processes. It stops then as it learns that Byzantine processes cannot censor the request.

Dissemination. The reconfigurations should be uniformly disseminated to all

correct processes in the cluster. Otherwise, as we discussed in the introduction, an incon-

sistent view of members can lead to accepting fake, or discarding genuine messages. We

describe an execution where the leader is Byzantine and is changed; nonetheless, the same

set of reconfigurations are uniformly delivered to all well-behaved processes.

As Figure 5.3b shows, later in the first phase, each correct process sends the set

of reconfiguration requests that it has collected as Recs messages to the leader process p2.

When the leader p2 receives messages from a quorum, it aggregates the received sets of

reconfigurations, and the accompanying signatures, and then starts disseminating them.

223

Since there is a correct process in the intersection of every pair of quorums, the leader does

not miss the requests. In Figure 5.3a and 5.3b, the quorum {p1, p2, p3} that p′new receives the

state from, and the quorum {p2, p3, p4} that the leader p2 receives requests from intersect

in the correct process p3.

The leader broadcasts the aggregation of the reconfiguration requests that it col-

lected. Upon delivery from the leader, a correct process checks whether the received re-

configurations are valid: they should be accompanied by at least a quorum of signatures

for Recs messages. As we saw in the collection part, a requesting process makes a quorum

of processes store the reconfiguration request. Therefore, the leader cannot drop requested

reconfigurations: if the leader drops a request, and hence, any signature from the quorum

of processes that stored it, then the remaining processes will be smaller than a quorum, and

the leader cannot collect a quorum of signatures. In Figure 5.3b, although the leader p2 is

Byzantine, it has to send the complete aggregated set. However, it only sends it to a subset

of processes {p1, p4}. The correct processes p1 and p4 that receive a message from the leader

echo it. The Byzantine process p2 echos to them but not p3. Thus, p1 and p4 receive a

quorum of 3 Echo messages, and broadcast a Ready message. The Byzantine process p2

sends a Ready message to only p1. Thus, only p1 receives a quorum of 3 Ready messages,

and delivers the reconfigurations (at the black circle).

The correct processes p3 and p4 don’t receive enough Ready messages, eventually

complain about the leader p2, and change the leader to the correct process p3 (at the red

circles). To preserve uniformity, the new leader p3 should retrieve the set of reconfigurations

that p1 previously delivered. We will describe later in section 5.4, how the leader retrieves

224

that set, and makes the remaining correct processes p3 and p4 eventually deliver the same

set (at black circles).

We note that the classical Byzantine reliable broadcast (BRB) and Byzantine con-

sensus would be inadequate for reconfiguration dissemination. First, in contrast to BRB

that guarantees termination only when the sender is correct, the reconfigurations are ex-

pected to be eventually delivered in each round even if the initial leader is Byzantine. Thus,

to ensure termination, the leader might be changed during dissemination. The challenge

is to keep uniformity across leaders. Further, in contrast to BRB where a message from a

designated sender is broadcast, and in contrast to consensus where a proposal from one pro-

cess is decided, this protocol should aggregate and broadcast a collection of reconfigurations

from a quorum of processes.

In this section, we saw an overview of the phases (Figure 5.1 and the accompanying

description). Next, we first consider the two more important sub-protocols: inter-cluster

communication (section 5.3), and reconfiguration (section 5.4). We then revisit the phases,

and their sub-protocols (section 5.5).

5.3 Inter-cluster Communication

We will now present the inter-cluster broadcast protocol that propagates opera-

tions between clusters, and the heterogeneous remote leader change protocol that detects

and changes Byzantine leaders for remote clusters.

State. Each process keeps the set of processes Cj for each cluster. (We use

the index i only for the current cluster, and the index j for clusters in general.) The set

225

Ci keeps track of membership within the current cluster i , and is used for intra-cluster

communication. The sets Cj that keep track of the members of remote clusters j are used

for inter-cluster broadcast. Accordingly, a process has the failure threshold fj for each

cluster Cj as one-third of the size of Cj . Each process also keeps the current round r.

Further, it stores the operations operationsj that it receives from each cluster Cj . Each

process keeps a set of certificates certs for its local operations operations i . A certificate for

an operation contains at least 2 × fi + 1 signatures, and is sent to other clusters together

with the operation. The protocol uses authenticated perfect links apl , and authenticated

best-effort broadcast abeb (that were described in section 5.2). Each message mσ delivered

from an authenticated link comes with a signature σ of the sender. (We elide the signature

when it is not needed in a context.)

Inter-cluster Broadcast. At the end of phase 1, the local ordering phase,

the leader calls the function inter -broadcast (Alg. 18) to start the second phase. Each

cluster broadcasts its locally ordered operations to remote clusters. As Figure 5.2a shows,

this function sends out the batch of operations ops of the local cluster together with their

certificates certs as Inter messages to other clusters (at line 11-14). For each remote cluster

j, the Inter messages are sent to fj + 1 distinct processes. Therefore, at least one correct

process at cluster Cj eventually receives the Inter message (at line 15). It checks that the

certificates are valid: a certificate for an operation from cluster Cj′ is valid if it contains

at least 2 × fj′ + 1 signatures from the cluster Cj′ . The receiving process then broadcasts

the operations as Local messages to other processes in its own cluster (at line 16). Upon

receiving a Local message containing operations ops from a remote cluster j′ with valid

226

certificates (at line 17), the process maps j′ to ops in its operations map. It also stops

a timer that watches the leader of cluster j. (We will consider remote leader change in

the next paragraph). When operations from all clusters are received, the process calls the

function execute to enter phase 3, the ordering and execution phase (at line 21).

Algorithm 18: Inter-cluster Broadcast

1 vars:
2 Cj : Set[P] . Processes of each cluster Cj
3 i . The number of the current cluster
4 fj : N . Failure threshold for Cj
5 r . The current round
6 operationsj ← ∅ . Operations from each cluster Cj
7 certs . Certificates for operations i of Ci

8 Uses:
9 apl : AuthenticatedPoint2PointLink

10 abeb : AuthenticatedBestEffortBroadcast in Ci

11 function inter -broadcast(r, ops, certs)
12 foreach Cj , j 6= i
13 foreach p ∈ P where P ⊆ Cj ∧ |P | = fj + 1
14 apl request send(p, Inter(r, i , ops, certs))

15 upon apl response deliver(p, Inter(r′, j, ops,Σ)) where r′ = r ∧ Σ is valid (i.e., Σ
has at least 2× fj + 1 signatures from Cj for each op ∈ ops)

16 abeb request broadcast(Local(r, j, ops,Σ))

17 upon abeb response deliver(p,Local(r′, j, ops,Σ)) where r′ = r ∧ Σ is valid
18 operationsj ← ops

19 stop timer j
20 if |dom(operations)| = N .N is # of clusters then
21 call execute(operations)

Heterogeneous Remote Leader Change. Each process waits until it receives

operations from other clusters. Therefore, if the leader of a cluster is Byzantine, and avoids

sending operations to other clusters, it can stall progress. Consider a system where cluster

Cj has a Byzantine leader l. For example in Figure 5.2b, the leader p2 of C1 is Byzantine. It

acts as a correct leader internally in Cj for the local ordering phase. The correct processes

in Cj cannot identify l as a Byzantine leader to replace it. However, l does not follow the

227

protocol to send its operations to a remote cluster Cj′ . Thus, processes of the cluster Cj′

cannot proceed to the ordering and execution phase.

Intuition. Let us briefly describe how the local cluster can trigger leader change

in a remote cluster. Each process keeps a timer timer j for the leader of each cluster Cj .

It resets the timers for all clusters at the beginning of each round. When a local process

does not receive the operations of a remote cluster, and the timer expires, it broadcasts

a complaint in its local cluster. When enough local processes complain, the complaint

is eventually accepted locally. A subset of local processes that accept a complaint send

complaints to remote processes which in turn broadcast it in the remote cluster. Once

remote processes receive the remote complaint, they change the remote leader.

A remote process accepts a remote complaint only if it comes with a quorum of

signatures from the complaining cluster. This prevents any coalition of Byzantine processes

in the complaining cluster to force a remote leader change. However, a Byzantine process

in the remote cluster can keep a valid complaint and its accompanying signatures, and

launch a replay attack: it can resend the valid complaint to repeatedly change the leader.

To prevent this attack, the complaining cluster maintains a complaint number cnj for each

remote cluster Cj , which is incremented on every remote complaint sent to Cj . A remote

process maintains the number of complaints received rcnj′ from each other cluster Cj′ , and

only accepts a complaint with the next expected number, and then increments the number.

Therefore, a remote process accepts each remote complaint only once.

Protocol. As Alg. 19 presents, if a local process finds that the timer timer j for a

remote cluster Cj is expired (at line 7), it broadcasts a local complaint LComplaint message

228

Algorithm 19: Heterogeneous Remote Leader Change 1/2

1 vars:
2 self . The current process
3 timer j ← ∆ . A timer for each cluster Cj
4 cnj ← rcnj ← 0 . # of complaints sent to & received from Cj
5 csj ← ∅ . Complaint signatures for each cluster Cj
6 complained j ← false . If complained about each cluster Cj
7 upon timer j for remote Cj expires
8 abeb request broadcast(LComplaint(j, cnj , r))
9 complained j ← true

10 upon abeb response deliver(p, LComplaint(j, c, r′)
σ
) where r′ = r ∧

c = cnj ∧ operationsj = ⊥
11 csj ← csj ∪ {σ}
12 if |csj | ≥ fi + 1 ∧ ¬complained j then
13 complained j ← true

14 abeb request broadcast(LComplaint(j, c, r))

15 if |csj | ≥ 2× fi + 1 then
16 let S := first fi + 1 processes of Ci in
17 if self ∈ S then
18 apl request send(p,RComplaint(cnj , i, csj , r)), for each p ∈ S′ in a set

S′ such that S′ ⊆ Cj ∧ |S′| = fj + 1

19 cnj ← cnj + 1
20 csj ← ∅; complained j ← false; reset timer j

Algorithm 20: Heterogeneous Remote Leader Change 2/2

1 upon apl response deliver(p,RComplaint(c, j′, Σ, r)) where r = r′ ∧ c = rcnj′ ∧ Σ
contains 2× fj′ + 1 signatures from Cj′

2 abeb request broadcast(Complaint(c, j′,Σ))

3 upon abeb response deliver(p,Complaint(c, j′, Σ)) where c = rcnj′ ∧ Σ contains
2× fj′ + 1 signatures from Cj′

4 rcnj′ ← rcnj′ + 1
5 if ∆− timeri > ε then
6 le request next-leader

229

about Cj to processes in its own local cluster (at line 8). In Figure 5.2b, the processes

{p3, p4, p5} in C2 send LComplaint messages. The message includes the current complaint

number cnj . Once a local process receives a local complaint for a remote cluster Cj with

the expected complaint number cnj , and it has not received operations from that cluster

(at line 10), it records the accompanying signature σ in the set of complaint signatures csj

(at line 11). If the process receives fi + 1 complaint signatures, since at least one is from a

correct process, the process amplifies the complaint locally if it has not already complained

(at line 12-14). In Figure 5.2b, the processes {p6, p7} in C2 amplify the LComplaint message.

Once a process receives 2 × fi + 1 complaint signatures (at line 15), it accepts

the local complaint. Since there is at least one correct process in the senders, Byzantine

processes cannot force a leader change. Further, since the complaint is received from 2×fi +1

processes, it can be shown that all correct processes in the local cluster eventually deliver

the complaint. The complaint should reach at least one correct process in the remote cluster

Cj . Therefore, the remote complaint message RComplaint should be sent to at least fj + 1

remote processes.

Further, at least one correct process should send these messages. Therefore, at

least fi + 1 processes should send it. The first fi + 1 processes of the local cluster (by a

predefined order) send the complaint (at line 16); we call them the sender set. In Figure 5.2b,

the sender set is {p1, p2, p3}. The two processes p1 and p2 are Byzantine but p3 is correct and

sends the message. If the current process is in the sender set, it sends a remote complaint

RComplaint message to a subset of Cj of size fj + 1 (at line 17-18). The remote complaint

message includes the complaint number cnj and the collected signatures csj . Finally, the

230

local process increments the complaint number, and resets the state for the next complaint

(at line 19-20).

Once a process receives the remote complaint message (at line 1), if the message

has the next expected complaint number rcnj′ , and it carries 2×fj′+ 1 signatures from the

complaining cluster Cj′ , it broadcasts a Complaint message in its own cluster (at line 2).

When a process receives the complaint message from its local cluster (at line 3), it performs

similar checks to accept it. It then increments the received complaint number rcnj′ for

the complaining cluster Cj′ , and unless the leader is recently changed, it requests the local

leader election module le to move to the next leader (at line 4-6). (We will consider the local

leader election module le in section 5.5.) If the leader is changed recently (i.e., only a small

amount of time ε is passed since the timer i is reset to ∆), the protocol avoids requesting to

change the leader again so that the new leader is not disrupted. In particular, this happens

when multiple remote clusters complain about the same leader at almost the same time.

5.4 Reconfiguration

A process p can issue a join or leave request to join or leave. Later, it receives a

joined or left response (when the reconfiguration is executed in phase 3). As we showed

in Figure 5.1 and briefly described in the overview section 5.2, reconfiguration requests are

collected, and then disseminated locally in phase 1. We now consider these two steps.

Collection. As Alg. 21 presents, when a client process p receives a join request

(at line 6), it broadcasts RequestJoin messages in the local cluster (at line 7). In Figure 5.3a,

231

Algorithm 21: Reconfiguration (Collection)

1 request : join, leave
2 response : joined , left
3 vars:
4 recs ← ∅ . Set of reconfigurations
5 client-timer ← ∆
6 upon request join
7 abeb request broadcast(RequestJoin(r))

8 upon request leave
9 abeb request broadcast(RequestLeave(r))

10 upon client-timer expires
11 if requested join then
12 abeb request broadcast(RequestJoin(r))

13 else if requested leave then
14 abeb request broadcast(RequestLeave(r))

15 reset client-timer to a longer period

16 upon abeb response deliver(p,RequestJoinσ(r′)) where r = r′

17 recs ← recs ∪ {join(p)σ}
18 apl request send(p,Ack(Ci , r))

19 upon abeb response deliver(p,RequestLeaveσ(r′)) where r = r′

20 recs ← recs ∪ {leave(p)σ}
21 apl request send(p,Ack(Ci , r))

22 upon apl response deliver(p,Ack(C ′, r′)) where |{p}| ≥ 2× fi + 1 where r = r′

23 stop client-timer

Algorithm 22: Reconfiguration (Dissemination)

1 Uses:
2 brd : ByzantineReliableDissemination in Ci

3 function send -recs
. Called by each process before the end of phase 1.

4 brd request broadcast(Recs(r, recs))

5 upon brd response deliver(Recs(r′, recs),Σ)
Σ′

where r′ = r ∧ Σ and Σ′ are valid.
6 append Reconfig(∪ recs) to operations i

7 add Σ, Σ′ to certs

8 upon brd response complain(p)
9 call complain(p)

232

two processes pnew and p′new request to join. Similarly, when a correct process p receives

a leave request, it sends out RequestLeave messages. The client uses the client-timer to

track progress while it waits for a response. If the timer expires (at line 10), it resends

the messages, and resets the timer to a larger period. When a correct process delivers the

RequestJoin message from p (at line 16), it adds the reconfiguration request join(p) to its set

of collected reconfigurations recs, and sends back an Ack message (at line 17-18). The steps

are similar for the RequestLeave. When the requesting process receives Ack messages with

the same cluster members, and round from a quorum (at line 22), it learns that the request

cannot be censored by Byzantine processes; therefore, it stops the timer. In Figure 5.3a,

the two joining processes stop the timer when they receive Ack from 3 processes.

Dissemination. Before completing the first phase, a correct process calls

send -recs (Alg. 22 at line 3) that sends a Recs message containing the set of reconfiguration

requests recs that it has collected to the Byzantine Reliable Dissemination (BRD) module

(at line 4).

BRD collects messages and disseminates them. It eventually issues a response

with a set of collected reconfigurations recs (at line 5). The delivery is accompanied by

two certificates. The certificate Σ attests that recs are collected from at least a quorum of

processes. In the collection part, a reconfiguration request was stored in at least a quorum

of processes. If Σ is valid, then BRD has collected reconfigurations from at least a quorum

of processes. Since there is a correct process in the intersection of two quorums, a Byzantine

leader cannot censor the reconfiguration request. The certificate Σ′ attests that a quorum

of processes voted to deliver the set; therefore, correct processes will eventually deliver the

233

same set. If the certificates are valid, the receiving process appends the union of recs to

operations i , and the certificates to certs (at line 5-7). The BRD module may complain if the

leader does not lead delivery in a timely manner (at line 8-9). The complaint is forwarded

to the local leader election module le.

Byzantine Reliable Dissemination. In this section, we present the Byzantine

Reliable Dissemination (BRD) protocol that we just used. We present it as a general

reusable module, that is of independent interest.

Module. BRD accepts a broadcast(m) request from each process. It then collects

and disseminates messages m. It issues a response deliver(M,Σ)Σ′ where M is a set of

messages, and Σ and Σ′ are two sets of signatures. The certificate Σ attests that M is a set

of messages from a quorum of processes, and the certificate Σ′ attests that M is the only

delivered set, and every correct process will eventually deliver it. In our reconfiguration

protocol, these certificate are sent to other clusters as a proof of these properties for the

dissemination in the current cluster. Further, the component may issue a complain(p)

event to complain about the current leader p, and accepts a new -leader(p, ts) request to set

a new leader p with a timestamp ts. Leaders are assumed to have monotonically increasing

timestamps. BRD guarantees the following properties. Integrity: A correct process may

only deliver messages from at least a quorum of processes. No duplication: Every correct

process delivers at most one set of messages. Uniformity: No two correct processes deliver

different set of messages. Termination: If all correct processes broadcast messages, then

every correct process eventually delivers a set of messages. Totality: If a correct process

delivers a set of messages, then all correct processes deliver a set of messages. Validity: If

234

a correct process delivers a set of messages containing m from a correct sender p, then m

was broadcast by p.

Protocol. As Alg. 23 presents, when a process broadcasts a message (at line 13),

it stores it and sends it to the leader (at line 14-15). It also resets the timer to watch

the leader (at line 16). The leader adds messages and the accompanying signatures that

it receives (at line 17) to the set of messages M and signatures Σ (at line 18-20). Once

it collects messages from a quorum (at line 21), it broadcasts an aggregation message Agg

containing M and Σ (at line 22). Massages carry the timestamp ts of the current leader as

well; any message with a stale timestamp is ignored. Upon delivery of the aggregation (at

line 1), a correct process accepts it if M is attested by accompanying signatures Σ. The

signatures Σ attest M if they include at least a quorum of signatures for the messages M .

The signatures serve as a proof that the leader has genuinely collected messages from at

least a quorum. Therefore, the leader cannot drop the reconfiguration request of a process

that has reached out to at least a quorum. For example in Figure 5.3a and 5.3b, the quorum

that p′new stored the request at, and the quorum that the leader p2 receives requests from

intersect in the correct process p3. Even though the leader p2 is Byzantine, and sends the

aggregated set to only a subset of processes {p1, p4}, it cannot drop reconfigurations from

the aggregated set.

If the accepting process hasn’t sent the Echo message, it records (in the variable

echoed) that it is sending it, and broadcasts the Echo message (at line 2-3). In Figure 5.3b,

the correct processes p1 and p4 that receive an attested set of messages from the leader echo

it. Upon delivery of an Echo message from a quorum, if the receiving process has not sent

235

Ready messages (at line 4), it records (in the variable readied) that it is sending it, and

then broadcasts a Ready message (at line 5-6). In Figure 5.3b, processes p1 and p4 receive

a quorum of 3 Echo messages, and broadcast Ready .

Algorithm 23: Byzantine Reliable Dissemination (1/3)

1 request : broadcast(m), new -leader(p, ts)
2 response : deliver({m},Σ), complain(p)
3 Uses:
4 apl : AuthenticatedPoint2PointLink
5 abeb : AuthenticatedBestEffortBroadcast
6 vars:
7 (leader , ts)← (p0, 0)
8 my-m ← ⊥
9 echoed , readied , delivered ← false . Tracking reliable delivery

10 valid , high-valid ← ⊥ . Validated set of requests
11 q,M,Σ← ∅ . Collected senders, messages, and signatures
12 timer ← ∆
13 upon request broadcast(m)
14 my-m ← m
15 apl request send(leader , 〈m, ts〉)
16 reset timer

17 upon apl response deliver(p, 〈m, t〉σ) where self = leader ∧ t = ts
18 q ← q ∪ {p}
19 M ←M ∪ {m}
20 Σ← Σ ∪ {σ}
21 upon |q| ≥ 2× f + 1 ∧ high-valid = ⊥
22 abeb request broadcast(Agg(M,Σ, ts))

If the leader changes during the broadcast, some correct processes might have

delivered the aggregated messages while others may have not. Thus, to preserve the unifor-

mity of delivered messages across processes, the new leader should retrieve the previously

delivered messages, and rebroadcast them. Thus, when a process accepts a sufficiently

echoed set, it stores it together with its accompanying signatures, as valid (at line 7), and

later forwards it to a new leader. In Figure 5.3b, p1 and p4 record a valid set at the end of

the Echo step.

236

Algorithm 24: Byzantine Reliable Dissemination (2/3)

1 upon abeb response deliver(p,Agg(M,Σ, t)) where p = leader ∧ t = ts ∧ ¬echoed ∧
Σ attests M (i.e., Σ has either at least 2× f + 1 signatures for M , at least 2× f + 1
Echo(M) messages, or f + 1 Ready(M) messages)

2 echoed ← true
3 abeb request broadcast(Echo(M, ts))

4 upon abeb response deliver(p,Echo(M, t)
σ
) where |{p}| ≥ 2× f + 1 ∧ t = ts ∧

¬readied
5 readied ← true
6 abeb request broadcast(Ready(M, ts))
7 valid ← 〈M,σ, ts〉
8 upon abeb response deliver(p,Ready(M, t)

σ
) where |{p}| ≥ f + 1 ∧ t = ts ∧

¬readied
9 readied ← true

10 abeb request broadcast(Ready(M, ts))
11 valid ← 〈M,σ, ts〉
12 upon abeb response deliver(p,Ready(M, t)

σ
) where |{p}| ≥ 2× f + 1 ∧ t = ts ∧

¬delivered
13 delivered ← true
14 response deliver(M,Σ)σ

15 stop timer

Algorithm 25: Byzantine Reliable Dissemination (3/3)

1 upon timer expires
2 response complain(leader)

3 upon request new -leader(p, t)
4 (leader , ts)← (p, t)
5 echoed , readied ← false
6 valid , high-valid ← ⊥
7 q,M,Σ← ∅
8 reset timer
9 if valid 6= ⊥ then

10 apl request send(leader ,Valid(valid))

11 else
12 if my-m 6= ⊥ then
13 apl request send(leader , 〈my-m, ts〉)

14 upon apl response deliver(p,Valid(M,Σ, t)) where self = leader ∧ Σ attests M
(i.e., Σ has at least 2× f + 1 Echo(M) messages or f + 1 Ready(M) messages)

15 let 〈 , , ht〉 := high-valid in
16 if t > ht then high-valid ← 〈M,Σ, t〉
17 q ← q ∪ {p}
18 upon |q| ≥ 2× f + 1 ∧ high-valid 6= ⊥
19 let 〈M,Σ, 〉 := high-valid in
20 abeb request broadcast(Agg(M,Σ, ts))

237

When a process receives at least f + 1 Ready messages (at line 8), at least one of

them is correct and has received at least a quorum of Echo messages. Therefore, the process

trusts the Ready message and amplified it: it records that it is sending it, and broadcasts

a Ready message (at line 9-10). It also records the received messages M and signatures of

the received Ready messages as valid (at line 11), and later forwards it to a new leader.

Finally, when a process receives a quorum of Ready messages, and it has not

delivered the aggregated messages yet (at line 12), it records (in the variable delivered) that

it is delivering, delivers the aggregated messages M , and stops the timer (at line 13-15). If

a process does not deliver the aggregated messages before the timer times out, it complains

about the current leader (at line 1-2). In Figure 5.3b, the correct process p1 receives

a quorum of 3 Ready messages, and delivers the reconfigurations (at the black circle).

However, the other correct processes do not receive enough Ready messages, complain about

the leader, and eventually change the leader to the correct process p3 (at the red circles).

To preserve uniformity, the new leader should retrieve the set of reconfigurations

that have been previously delivered. When a process is informed of a new leader (at line 3), it

records the new leader and timestamp, resets the state and the timer (at line 4-8), and then

sends a message to the new leader to inform him about the current state of dissemination.

If a valid set of messages is recorded during the execution with the previous leaders,

the process sends it to the new leader (at line 10). Otherwise, it sends the message that it

originally broadcast (line 13-15) to the current leader (at line 13). In Figure 5.3b, the two

processes p2 and p3 send to the new leader the set of reconfigurations that they had collected

and sent to the previous leader. However, process p4 has a valid set of reconfigurations.

238

Let l be the latest leader with the timestamp ts that has guided the system to

delivery of a set M at a correct process. Consider the next leader l′ with the timestamp ts ′.

To preserve uniformity, l′ should adopt M . In order to find M , l′ waits to receive messages

from a quorum of processes, and then picks the valid set with the largest timestamp. Let us

explain why. The set M was delivered only after a quorum of Ready messages was received.

At least f+1 of the senders are correct. A correct process sends a Ready message only after

receiving 2 × f + 1 Echo messages, or f + 1 Ready messages. In both of those cases, the

receiving process stores M with ts as valid. Thus, at least f + 1 correct processes P have

stored M with ts as valid. Therefore, if l′ receives messages from a quorum (2× f + 1) of

processes, and retrieves any valid sets, then M with the largest timestamp ts is retrieved

from at least one process in P . The leader l′ adopts and broadcasts M . Even if it does not

lead to any new delivery of M , any valid set that is stored under his leadership will have

the same set M with now the larger timestamp ts ′.

When the leader receives a valid set (at line 14), it checks that the accompanying

signatures attest its validity: there are at least 2 × f + 1 signatures of Echo messages,

or f + 1 signatures of Ready messages. The leader keeps the valid set with the highest

timestamp as high-valid (at line 15-16). Finally, when the leader has collected messages

from a quorum, if it has received a valid set (at line 18), it broadcasts high-valid (at line 20).

Otherwise, similar to the first leader (at line 21), it broadcasts the aggregated messages.

In Figure 5.3b, the new correct leader p3 waits for 3 messages, adopts the valid set that p4

sends, goes through the Echo and Ready steps, and makes the remaining correct processes

p3 and p4 deliver the same set (at black circles).

239

5.5 Protocol Phases

In the overview section 5.2, we explained the structure and the three phases of

the protocol. as shown in Figure 5.1. We presented two sub-protocols in section 5.3 and

section 5.4. In this section, we describe the other sub-protocols. (Full protocols are available

in the appendix section 5.8.)

Phase 1: Intra-cluster Replication. Phase 1 has two parallel parts: local

ordering and reconfiguration. We considered reconfiguration in section 5.4. We now consider

local ordering and leader change.

Local ordering. In order to process a transaction t, clients can issue a request

process(t) at any process of any cluster and will receive a return(t, v) response later in

phase 3. Each cluster uses a total-order broadcast instance tob to propagate transactions

to its processes in a uniform order. The protocol is parametric for the total-order broadcast

that abstracts the classical monolithic Byzantine replication protocols. Upon delivery of

a transaction t from the tob the process appends t to operations i that are received from

the local cluster Ci The tob delivers a transaction t with a commit certificate σ that is

the set of signatures of the quorum that voted to commit t. Each process keeps the set of

certificates certs for the transactions committed in its local cluster In phase 2, the leader

sends the transactions together with their certificates to other clusters. The certificates

prevent Byzantine leaders from sending forged transactions to remote clusters.

As we described in section 5.4, a process collects a set of reconfiguration requests

recs, and then calls the function send -recs (Alg. 21, line 3) to send them to the leader who

aggregates and uniformly replicates them. A process calls this function towards the end of

240

phase 1, i.e., when a large fraction of the transaction batch is already ordered. This leaves

ample time in the beginning of phase 1 to collect reconfiguration requests, and also leaves

enough time at the end of phase 1 to disseminate reconfigurations. Finally, at the end of

phase 1, when operations i contains the batch of both transactions and reconfigurations, the

leader calls the function inter -broadcast to start phase 2: inter-cluster broadcast (Alg. 18,

line 11).

Leader Change. A leader orchestrates both the ordering of transactions in

the total-order broadcast tob component, and the delivery of the reconfigurations in the

Byzantine reliable dissemination brd component. However, a leader may be Byzantine, and

may not properly lead the cluster. When the delivery of transactions or reconfigurations is

not timely, tob and brd complain. The complains are forwarded as requests to the leader

election module le. Once le receives complaints from a quorum of processes, it eventually

issues a response new -leader(p, ts) at all correct processes to elect a new leader p with the

timestamp ts. Further, we saw in remote leader change (Alg. 19) that when a process

receives a Complaint message with a quorum of signatures from a remote cluster, it issues

a a next-leader request to le (line 6). Then, le issues a response new -leader(p, ts) at the

process to set the next leader. The module le guarantees that the leader for each timestamp

is uniform across processes, the timestamps are monotonically increasing, and eventually a

correct leader is elected. When a process receives a new -leader(p, ts) response, it records

the new leader and timestamp, and forwards the new leader event to tob and brd modules

as well. Further, the new leader sends operations of the previous in addition to the current

round to remote clusters in case they are behind.

241

Phase 2: Inter-cluster Communication. We considered this phase in

section 5.3.

Phase 3: Execution. At the end of phase 2, a process receives the batches

of operations from each other cluster, and calls the execute function (Alg. 18 at line 21)

that performs the last phase: execution. Processes uniformly order the batches of opera-

tions: first, they process the transactions, and then join reconfigurations, and finally leave

reconfigurations. Further, they use a predefined order of clusters to order transactions.

They then apply each transaction and reconfiguration. If a transaction has been issued by

the current process, a return response is issued. The process adds joining processes, and

removes leaving processes from the local record of processes for the requesting cluster, and

if the current process is the leaving process, it issues a left response. To kick-start a joining

process p, the members of its local cluster send their current state to p. When the joining

process receives these messages from a quorum, it sets its current state and configuration,

and then issues a joined response. The process further updates the failure threshold fj for

each cluster j to less than one-third of the new cluster size. Finally, in order to prepare for

the next round, the timers and variables are reset and the round number is incremented.

5.5.1 Correctness

We now state the correctness properties of the sub-protocols and then the end-to-

end protocol. The proofs are available in the appendix section 5.9.

Remote Leader Change. The remote leader change protocol satisfies the

eventual succession, eventual agreement, and putsch (overthrow) resistance properties. We

242

say that a process trusts a leader p when it receives the event new -leader(p, ts) for a times-

tamp ts.

Lemma 114 (Eventual Succession) Let ops be the locally replicated operations of a clus-

ter C in a round. Either ops are eventually delivered to all correct processes of every other

cluster in that round, or correct processes in C eventually trust a new leader.

Lemma 115 (Eventual Agreement) All correct processes in the same cluster eventually

trust the same leader.

Lemma 116 (Putsch Resistance) A correct process does not trust a new leader unless

at least one correct process complains about the previous leader.

Inter-cluster Broadcast. In each round, each cluster sends its replicated

operations to other clusters as Inter messages, that are then propagated there as Local

messages. Using the above properties for remote leader change, we can prove the following

properties for inter-cluster broadcast.

Lemma 117 (Termination) In every round, every correct process eventually receives op-

erations from each other cluster.

Lemma 118 (Agreement) In every round, the operations that every pair of correct pro-

cesses receive from a cluster are the same.

Reconfiguration. Each correct process keeps a map C from the cluster iden-

tifiers to the set of processes in that cluster. In the execution phase of each round, each

correct process applies reconfigurations to C for the next round. The reconfiguration pro-

tocol satisfies the following properties.

243

Lemma 119 (Completeness) If a correct process p requests to join (or leave) cluster i,

then every correct process will eventually have a configuration C such that p ∈ C (or p 6∈ C).

Lemma 120 (Accuracy) Consider a correct process p that has a configuration C in a

round, and then another configuration C ′ in a later round. If a correct process p ∈ C ′i \Ci,

then p requested to join the cluster i. Similarly, if a correct process p ∈ Ci \ C ′i, then p

requested to leave the cluster i.

Lemma 121 (Uniformity) In every round, the configurations that every pair of correct

processes execute are the same.

This means that the protocol prevents inconsistent and unsafe configurations that we de-

scribed in the overview section 5.2. These lemmas use the properties of Byzantine reliable

dissemination component that we proved in the appendix subsection 5.9.3.

Replicated System. The replicated system satisfied the following end-to-end

safety and liveness properties.

Theorem 122 (Validity) Every operation that a correct process requests is eventually ex-

ecuted by a correct process.

Theorem 123 (Agreement) If a correct process executes an operation in a round then

every correct process executes that operation in the same round.

Theorem 124 (Total-order) For every pair of operations o and o′, if a correct process

executes only o, or executes o before o′, then every correct process executes o′ only after o.

244

5.6 Related Work

Classical Replication. Since PBFT [116], the first practical Byzantine repli-

cation protocol, the followup works [250, 445, 16, 438, 207, 157, 453, 431, 209, 208] improve

different aspects of Byzantine consensus not only for partially synchronous but also asyn-

chronous networks. However, these protocols can only work with closed membership: the

set of participants is fixed and known to all participants at the outset. In contrast, our paper

proposes a clustered replication protocol whose members can be reconfigured at runtime.

Clustered Replication. Clustered replication systems divide processes into

small clusters, and perform consensus within local clusters in parallel. Compared to mono-

lithic replication, clustered replication has fewer number of processes in each cluster; there-

fore, it exhibits improved performance and scalability. Steward [30] implements a replica-

tion protocol where processes are partitioned into multiple sites. A leader site is responsible

for driving an inter-site coordination protocol similar to Paxos [263], which may become

the bottleneck. ResilientDB [212] alleviates the need for a leader site, and enables higher

throughput by letting clusters process their own transactions, and then propagate them.

However, it is designed for closed homogeneous clusters. Our clustered replication protocol

supports heterogeneity and reconfiguration across clusters which allows more flexible and

efficient setups.

In ResilientDB, in order to change a remote Byzantine leader in cluster C1, each

correct process in C2 sends a complaint message to a corresponding process in C1. When

a process in C1 delivers a complaint message, it broadcasts it to all processes in C1. Upon

delivering f1 + 1 complain messages, a correct process in C1 detects leader failure, and

245

invokes the view-change protocol, which involves two rounds of message-passing. In our

protocol, since a complaint message carries enough signatures, once a process in C1 receives

a complaint message, it immediately changes the leader without additional message-passing

rounds. Further, only f2 + 1 processes in C2 (the sender set) send out remote complaint

messages to f1 + 1 processes in C1.

Another line of work is sharding-based consensus. Elastico [316] presents a sharding-

based consensus protocol for permissionless blockchains. Further, OmniLedger [247] and

RapidChain [449] support reconfiguration for sharding-based consensus. In order to process

cross-shard transactions, OmniLedger allows clients to run a two-phase commit protocol to

atomically commit or abort a transaction. However, the transactions needs to be gossiped

across the network. RapidChain proposes an inter-committee routing protocol and a P2P

gossiping protocol to reduce communication. OmniLedger and RapidChain are linearly

scalable; however, they suffer from replay attacks in cross-shard commit protocols [407].

In contrast, our protocol provides full replication and avoids complications of cross-shard

synchronization. However, any node in the system needs to store all the state, and process

every transaction.

Group and Open Membership. A group membership service maintains the

set of active processes by installing new views. Since accurate membership is as strong as

consensus [121, 128], classical [383, 266, 262, 204] group membership and reconfiguration

protocols use consensus to reach an agreement on membership and adjust quorums accord-

ingly. There are two categories of membership services: primary partition, and partitionable

[128]. In a primary partition service, as processes leave and join, correct processes install

246

totally ordered views. In contrast, a partitionable service allows partially ordered views.

Our protocol batches reconfigurations in rounds, and totally orders batches by the round

number.

Recent works present communication and shared memory abstractions on top of

group membership. DBRB [205] provides Byzantine reliable broadcast while processes leave

and join. Cogsworth [351] provides Byzantine view-synchronization with linear communi-

cation complexity. DBQS [29] preserves consistent read and write quorums for shared

memory, and further adjusts the cardinality of quorums according to frequency of failures.

In contrast, this paper presents reconfiguration protocols that maintain clustered replication

systems as processes leave and join.

SmartMerge [233] provides replication, and uses a commutative, associative and

idempotent merge function on reconfiguration requests to avoid consensus. It ensures that

all processes eventual perform the merge of all the reconfiguration requests. Dyno [158] pro-

vides replication and group membership in the primary partition model. Similar to [309],

it uses an instance of consensus to order reconfiguration requests. This paper Ava provides

replication as well. However, in contrast to SmartMerge and Dyno that consider monolithic

replication systems, Ava presents reconfiguration for clustered replication systems, which

enables parallelism and scalability. In addition to uniform configurations in each cluster,

it needs to keep the configurations uniform across clusters; otherwise, as we explained in

the overview section, safety and liveness properties can be violated. Thus, SmartMerge’s

eventual consistency is insufficient. Therefore, Ava presents Byzantine Reliable Dissemi-

nation to uniformly deliver reconfigurations locally in each cluster, and then inter-cluster

247

communication to uniformly deliver them across clusters in each round. Further, in contrast

to Dyno and [383], Ava ensures that processes that request to join in a round receive the

latest state and configurations in that round. This guarantee excludes the need to keep

a dedicated configuration history or a sync function. Further, in contrast to Dyno that

processes reconfigurations as transactions, Ava takes reconfiguration off the transaction

processing pipeline, and instead of multiple consensus instances, uses only one instance of

Byzantine Reliable Dissemination for all reconfigurations of a cluster in each round. As the

experiments showed, this reduces throughput degradation for transactions processing while

processes join and leave.

Solida [15], Hybird Consensus [366], Tendermint [94, 33], Casper [100], Algo-

rand [194], RapidChain [449], and OmniLedeger [247] blockchains combine permissionless

and permissioned (Byzantine) consensus to provide both efficiency and open membership

[55]. They use permissionless consensus, computational puzzles or verifiable random func-

tions to dynamically choose validators for permissioned consensus. Related works further

provide reconfiguration for crash fault-tolerant consensus protocols [309, 403], and recon-

figuration protocols for random beacons [72, 71]. In contrast, this paper presents a recon-

figuration protocol for Byzantine clustered replication.

5.7 Conclusion

This paper presented heterogeneous and reconfigurable clustered replication. It

presented a protocol that adapts to different cluster sizes, and allows processes to join and

leave clusters efficiently. Further, it stated and proved the safety and liveness properties of

248

the protocol. We hope that this project further motivates incorporation of open membership

into Byzantine replicated systems, and helps blockchains avoid centralization at nodes with

high computational power or stake.

5.8 Protocol Phases

In the overview section 5.2 and Figure 5.1, we explained the structure and the

three phases of the protocol. We presented two sub-protocols in section 5.3 and section 5.4.

In this section, we elaborate the other sub-protocols.

Phase 1: Phase 1 has two parallel parts. We saw the reconfiguration part in

section 5.4. We now consider local ordering and leader change.

Local ordering. We consider local replication for transactions.

In order to process a transaction t, clients can issue a request process(t) at any

process of any cluster (at line 15), and will later receive a return(t, v) response. Each

cluster uses a total-order broadcast instance tob to propagate transactions to its processes

in a uniform order. In addition to broadcast requests and deliver responses, the total-order

broadcast abstraction can accept new -leader(p, ts) requests to install the new leader p with

the timestamp ts, and can issue complain(p) responses to complain about the leader p. The

protocol is parametric for the total-order broadcast. The total-order broadcast abstracts

the classical monolithic Byzantine replication protocols. If a complaint is received from tob,

(at line 25), it is forwarded to the leader election module le (in Alg. 27).

Upon receiving a process(t) request (at line 15), the process uses the tob to broad-

cast the transaction in its own cluster (at line 16). Each process stores the operations

249

operationsj that it receives from each cluster Cj . Upon delivery of a transaction t from

the tob (at line 17), the process appends t to operations i received from this cluster Ci (at

line 18). Each process keeps the number i of the current cluster Ci that it is a member

of. (We use the index i only for the current cluster, and the index j for other clusters.)

The tob delivers a transaction t with a commit certificate σ that is the set of signatures

of the quorum that committed t. Each process keeps the set of certificates certs for the

transactions committed in its local cluster (at line 19). In the next phase, the leader sends

the transactions together with their certificates to other clusters. The certificates prevent

Byzantine leaders from sending forged transactions.

In parallel to receiving process(t) requests and ordering transactions t, processes

can receive and propagate join and leave reconfiguration requests. We will describe the

reconfiguration protocol in the next subsection. In each round, the processes of each cluster

should agree on the reconfigurations before the end of the intra-cluster replication phase

(phase 1). The reconfigurations are then propagated to other clusters in the inter-cluster

broadcast phase (phase 2). In phase 1, a process collects the set of reconfiguration requests

recs. It then calls the function send -recs (at line 21) to send the set of reconfigurations it

has collected to the leader who aggregates and uniformly replicates them. In section 5.4,

we presented the Byzantine Reliable Dissemination component that collects and sends re-

configurations to the leader. A process calls this function towards the end of phase 1, i.e.,

when a large fraction α of the transaction batch is already ordered (at line 20). This leaves

ample time in the beginning of phase 1 to accept reconfiguration requests, and also leaves

enough time at the end of phase 1 to reach agreement for the reconfigurations. Finally,

250

at the end of phase 1, when operations i contains both the batch of transactions and the

reconfigurations (line 22), if the current process (denoted as self) is the leader (line 23),

it calls the function inter -broadcast (at line 24) to start the inter-cluster broadcast phase

(phase 2).

Algorithm 26: Local Ordering

1 request : process(t)
2 response : return(t, v)
3 Uses:
4 tob : TotalOrderBroadcast
5 request : broadcast(t), new -leader(p, ts)
6 response : deliver(p, t), complain(p)
7 vars:
8 r . The current round
9 i . The number of the current cluster

10 self . The current process

11 leader : P ← pi
0 . The leader of current cluster Ci

12 ts← 0 . Timestamp for leader
13 operationsj ← ∅ . Operations from each cluster Cj
14 certs . Certificates for operations i of Ci

15 upon request process(t)
16 tob request broadcast(t)

17 upon tob response deliver(p, tσ)
18 append Trans(p, t) to operations i

19 add σ to certs
20 if |operations i| = batch-size × α then
21 call send-recs()

22 else if |operations i| = batch-size + 1 then
. batch-size transactions + 1 reconfiguration set

23 if self = leader then
24 inter -broadcast(r, operations i , certs)

25 upon tob response complain(p)
26 call complain(p)

Leader Change. A leader orchestrates both the ordering of transactions in the

total-order broadcast, and the delivery of the reconfigurations. However, a leader may

be Byzantine, and may not properly lead the cluster. Therefore, as presented in Alg. 27,

the protocol monitors and changes leaders. As we described, the total-order broadcast tob

(Alg. 26 at line 26) and the Byzantine reliable dissemination brd (Alg. 21 at line 9) complain

251

when the delivery of transactions or reconfigurations is not timely. The complains are sent

to the leader election module le (at line 7-8).

The protocol uses the classical leader election module le. The implementation of

this module is presented in Alg. 29. Once a quorum of processes send complain requests

to le, it eventually issues a response new -leader(p, ts) at all correct processes to elect a

new leader p with the timestamp ts. Further, if the current process sends a next-leader

request to the module, it issues a response new -leader at the current process. This module

guarantees that the leader for each timestamp is uniform across processes, the timestamps

are monotonically increasing, and eventually a correct leader is elected.

When a process receives a new -leader(p, ts) response (at line 9), it records the

new leader and timestamp (at line 10), and forwards the new leader event to the total-

order broadcast tob and Byzantine reliable dissemination brd modules as well (at line 11-

12). Further, the previous leader might have failed to communicate the operations of the

previous round to other clusters. As we will describe next, clusters wait for the operations

of each other in each round; therefore, a remote cluster can fall behind by at most one

round. Thus, the new leader sends operations of the previous in addition to the current

round (at line 14-18).

Phase 2: We already considered this phase in section 5.3.

Phase 3: Execution. At the end of the inter-cluster communication phase, a

process receives the batches of operations from each other cluster. It then calls the execute

function (Alg. 18 at line 21) that performs the last phase: execution (at Alg. 31). Processes

252

Algorithm 27: Leader Change

1 Uses:
2 le : LeaderElection
3 request : complain(p), next-leader
4 response : new -leader(p, ts)
5 vars:
6 p-ops, p-certs . ops and certs of the previous round
7 function complain(p)
8 le request complain(p)

9 upon le response new -leader(p, ts ′)
10 〈leader , ts〉 ← 〈p, ts ′〉
11 tob request new -leader(leader , ts)
12 brd request new -leader(leader , ts)
13 reset timer i

14 if leader = self then
15 if |operations i| = batch-size then
16 call inter -broadcast(r, operations i , certs)

17 if r > 1 then
18 call inter -broadcast(r − 1, p-ops, p-certs)

Algorithm 28: Leader Election (1/2)

1 Implements: Leader Election
2 request : complain(p)
3 response : new -leader(p, ts)
4 request : next-leader
5 Uses:
6 abeb : AuthenticatedBestEffortBroadcast
7 vars:
8 ts ← 1
9 C ← ∅ . Set of complaining processes

10 c← false . Complained
11 upon request complain(p)
12 if ¬c then
13 call send -complain()

14 function send -complain()
15 c← true
16 abeb request broadcast(Complaint(ts))

17 upon abeb response deliver(p,Complaint(ts ′)) where ts = ts ′

18 C ← C ∪ {p}
19 if |C| ≥ f + 1 ∧ ¬c then
20 call send -complain()

21 if |C| ≥ 2× f(i) + 1 then
22 call change()

253

Algorithm 29: Leader Election (2/2)

1 function change()
2 ts ← ts + 1
3 C ← ∅
4 c← false
5 response new -leader(pts mod N , ts)

. Choose leaders in a round robin order.
. N is the number of processes.

6 upon request next-leader
7 call change()

uniformly order the batches of operations: first, they process the transactions, and then the

reconfigurations, and further, use a predefined order of clusters to order transactions (at

line 4). Then, they process each operation: they apply each transaction and reconfiguration

(at line 6-13). If a transaction has been issued by the current process, a return response is

issued (at line 9). Finally, in order to prepare for the next round, the timers and variables

are reset and the round number is incremented (at line 15-20).

Application of Reconfigurations. The function reconfigure is called for each set of

reconfigurations rc from a cluster j (at line 1). First, the process adds joining processes, and

removes leaving processes from the set of processes Cj of cluster j (at line 5 and 7). Then

the function kickstart is called on the reconfigurations of the local cluster irc (at line 14).

The function kickstart (at line 1) processes all the joins before the leave reconfigurations.

We keep this specific order since leaving processes may still need to send additional messages

for the new processes. If they leave first, then the new processes will not be able to collect

enough states to start the execution. If the leave is for the current process, it issues a left

response (at line 15). To kick-start a new process p, the members of its local cluster send

a CurrState message to p (at line 13). The message contains the local state, the current

round number r, and the cluster members C. Further, the process resets its echoed , readied ,

254

delivered , and valid variables. When a correct process receives CurrState messages with the

same state s′, cluster members C ′, and round r′ from a quorum (at line 19), the process sets

its state, cluster C, and round r to the received values. It then issues a joined response (at

line 21). After an addition or a removal, the process further updates the failure threshold

fj for the cluster j to less than one-third of the new cluster size (at line 8).

Algorithm 30: Phase 3: Execution (1/2)

1 vars:
2 state . Process state
3 function execute(operations)
4 foreach operationsj ∈ order(operations)
5 foreach o ∈ operationsj
6 match o
7 case Trans(p, t) ⇒
8 〈state, v〉 ← t(state)
9 if p = self then response return(t, v)

10 case Reconfig(rc) ⇒
11 call reconfigure(j, rc)
12 if j = i then
13 irc ← rc

14 call kickstart(irc)
15 p-ops ← operationsj ; p-certs ← certs

16 foreach cluster Cj
17 reset timer j
18 operationsj ← ∅; certs ← ∅
19 cnj ← rcnj ← 0

20 r ← r + 1

255

Algorithm 31: Phase 3: Execution (2/2)

1 function reconfigure(j, rc)
. Function reconfigure is called in Phase 3.

2 foreach o ∈ rc
3 match o
4 case join(p) ⇒
5 Cj ← Cj ∪ {p}
6 case leave(p) ⇒
7 Cj ← Cj \ {p}
8 fj = b(|Cj | − 1)/3c
9 function kickstart(rc)

10 foreach o ∈ rc . First joins and then leaves.
11 match o
12 case join(p) ⇒
13 apl request send(p,CurrState(state, C, r))

14 case leave(p) ⇒
15 if p = self then response left

16 recs ← recs \ {rc}
17 echoed ← readied ← delivered ← false
18 valid ← ⊥
19 upon apl response deliver(p,CurrState(s′, C ′, r′)) where |{p}| ≥ 2× fi + 1
20 state ← s′; r ← r′; C ← C ′

21 response joined

256

5.9 Proofs

5.9.1 Remote Leader Change

Lemma 114 (Eventual Succession). Let ops be the locally replicated operations

of a cluster C in a round. Either ops are eventually delivered to all correct processes of

every other cluster in that round, or correct processes in C eventually trust a new leader.

Proof. Let C2 be any other cluster in the system except C. There are two cases

regarding the delivery of m in cluster C2.

In the first case, at least one correct process p in C2 delivers m. Then, it uses rb to

broadcasts m to all members of the local cluster at Alg. 18, line 16. By validity of reliable

broadcast, all the correct processes in C2 deliver m.

In the second case, none of the correct processes in C2 delivers m. We prove that

processes in C2 will invoke a remote leader change for C and finally correct processes in

C trust a new leader. If none of the correct processes of C2 delivers m, then their timers

will eventually be triggered at Alg. 19, line 7 and all of the correct processes broadcast

LComplaint at line 8. Thus, the signatures of all of them are stored in cs1 variable at

line 11. Since there are at least 2 × f2 + 1 correct processes in cluster C2, all the correct

processes eventually receive enough LComplaint messages, and cs1 will be large enough.

Thus, f2 + 1 processes in C2 send RComplaint messages, and each send it to f + 1 distinct

processes in C at line 18. Thus, at least one correct process in C eventually delivers the

RComplaint message at line 1 and verifies the validity of the accompanying signatures Σ.

Then, it broadcasts the Complaint message locally at line 2. By validity of abeb, all the

correct processes in C deliver the complain at line 3, and request the leader election module

257

to move to the next leader at line 6. Thus, the leader election module will eventually

choose a new leader. Thus, all the correct processes in C will eventually trust a new leader

at Alg. 27 line 9-10.

Lemma 125 (Local Complaint Synchronization) If a correct process in cluster Ci in-

stalls cnj = k, then all the correct processes in Ci eventually install cnj = k.

Proof. We prove this lemma by induction.

For cnj = 0, all the correct processes assign cnj to be the same value 0 at initial-

ization.

The induction hypothesis is that if a correct process installs cnj = k, then all the

correct processes eventually install cnj = k.

We prove that if a correct process in cluster Ci installs cnj = k + 1, then all the

correct processes in Ci eventually install cnj = k + 1

A correct process p increments cnj to k + 1 at line 19 after verifying 2fi + 1

LComplaint messages has been delivered for the same cnj = k at line 15. Thus at least

fi + 1 correct processes have broadcast LComplaint messages for cnj = k. By the validity

of abeb, all the correct processes eventually delivers at least fi + 1 consistent LComplaint

messages at line 12 and verify the complaint counter: by induction hypothesis and p installed

cnj = k, all the correct processes eventually install cnj = k. Then correct processes amplify

the complain by broadcasting LComplaint messages for cnj = k at line 14. There are at

least 2fi+1 correct processes in cluster Ci. By the validity of abeb, eventually at least 2fi+1

LComplaint messages are delivered to all correct processes at line 15 and they increment

258

cnj to k + 1 at line 19. Therefore, all the correct processes install cnj = k + 1.

We conclude the induction proof: for k ≥ 0, if a correct process install cnj = k,

then all the correct processes install cnj = k.

Lemma 126 (Remote Complaint Synchronization) If a correct process in cluster Ci

installs rcnj = k, then all the correct processes in Ci eventually install rcnj = k.

Proof. We prove this lemma by induction.

For rcnj = 0, all the correct processes assign rcnj to be the same value 0 at

initialization.

The induction hypothesis is that if a correct process in cluster Ci installs rcnj = k,

then all the correct processes eventually install rcnj = k.

We prove that if a correct process p in cluster Ci installs rcnj = k + 1, then all

the correct processes in Ci eventually install rcnj = k + 1

A correct process p increments rcnj to k + 1 at line 4 after verifying 2fj + 1

LComplaint messages was in Σ for the same rcnj = k at line 15. Thus by Theorem 125

and Σ verifies that a correct process in Cj installed cnj = k + 1, all the correct processes

in Cj eventually install cnj = k + 1 at line 19. There are at most fj Byzantine processes

in cluster Cj and S contains fj + 1 processes, therefore at least one correct process in S

sends RComplaint(k, j,Σ, r) messages to fi + 1 processes in Ci. By the validity of apl , at

least one correct process in Ci receives the RComplaint message at line 1 and broadcasts

Complaint(k, j,Σ) message at line 2. By the validity of abeb, all the correct processes in

Ci eventually delivers Complaint messages at line 3 and verify the complaint counter: by

induction hypothesis and p installed rcnj = k, all the correct processes eventually install

259

rcnj = k. They increment the remote complaint counter rcnj to k+ 1 line 4. Therefore, all

the correct processes install rcnj = k + 1.

We conclude the induction proof: for k ≥ 0, if a correct process install rcnj = k,

then all the correct processes install rcnj = k.

Lemma 115 (Eventual Agreement). All correct processes in the same cluster

eventually trust the same leader.

Proof. We prove this lemma in three steps. Firstly, we prove if a correct process in

Ci issue response new -leader for ts, then eventually all correct process in Ci issue response

new -leader for ts. Secondly, we prove that eventually all the correct process stop changing

leader and stay in the same timestamp. Finally, since the leader is deterministically chosen

according to the timestamp and cluster membership, we prove that eventually all the correct

process eventually trust the same leader.

For the first statement, le issue response for two type of requests: complain and

next-leader . For complain request, we directly use the eventual agreement property of

underlying module. For next-leader request, a correct process p in cluster Ci requests a

next-leader at line 6. Let us assume that p installs rcnj = n before the next-leader request

at line 4. By Theorem 126, all the correct processes in Ci eventually install rcnj = n.

By assumption, this request is apart from the previous remote leader change events and

∆−timer i > ε. Then all the correct process request the next-leader for the same Complaint

message. Therefore the ts at all correct processes are eventually the same.

For the second statement, correct processes eventually wait long enough for a cor-

rect leader to complete inter-broadcast phase: the timer for remote leader change increases

260

exponentially and eventually, all the messages are delivered within a bounded delay after

GST. When all Complaint messages have been received, all the correct processes in the

same cluster do not issue new complains and by Theorem 116, they stay in the same ts.

For the third statement, by Theorem 121, all the correct processes in the same

cluster maintain a consistent group membership for each round. Then all of them deter-

ministically choose the same process as leader based on group member and timestamp.

Lemma 116 (Putsch resistance). A correct process does not trust a new leader

unless at least one correct process complains about the previous leader.

Proof. The correct process requests the leader election module to trust the next

leader at Alg. 19, line 6. This request is after receiving a Complaint message at line 3 with

the following checks: (1) the expected next complaint counter rcnj is equal to the received

complain number c, and (2) the signatures Σ include at least 2 × fj + 1 signatures from

Cj . The first check prevents replay attacks; thus, no complaints about previous leaders

can be reused. Therefore, all the signatures in Σ are complaints for the current leader.

The second one implies that a correct process in Cj sent the RComplaint message after

receiving 2× fj + 1 LComplaint messages at line 15. Thus, at least fj + 1 correct processes

sent LComplaint messages. A correct process sends a LComplaint message at two places:

(1) the timer triggers at line 7; (2) the process amplifies the received complaints at line 12.

The first case reached the conclusion. In the second case, a correct process only amplifies

after receiving fj + 1 LComplaint messages. Thus, at least one correct process sent a

LComplaint message with the same two cases as above. This second case is the inductive

261

case, and the first case is the base case. Since the number of processes is finite, by induction,

this case is reduced to the first case in a finite number of steps.

5.9.2 Inter-cluster Broadcast

Lemma 117 (Inter Broadcast Termination). In every round, every correct process

eventually receives operations from each other cluster.

Proof. We prove the termination property for inter-cluster broadcast with the

help of Theorem 114. A leader of cluster i should send Inter message to fj + 1 processes

in cluster j for all i 6= j at line 14. By the validity of remote leader change, either this

Inter message was delivered to all correct processes in cluster j or all the correct processes

in cluster i change a leader. In the first case we conclude the proof. In the second case,

eventually the correct processes in cluster i trust a correct leader. The correct leader sends

Inter messages to fj + 1 processes in cluster j. By the validity of apl , at least one correct

process p in cluster j delivers the Inter message at line 15. Then p broadcasts the received

content in Local message at line 16. By the validity of abeb, all the correct processes in

cluster j eventually deliver the Local message at line 17. We generalize the same reasoning

for all the other cluster and conclude the proof.

Lemma 118 (Inter Broadcast Agreement). In every round, the operations that

every pair of correct processes receive from a cluster are the same.

Proof. Let process p receives Local(r, j, ops,Σ) and p′ receives Local(r, j, ops′,Σ′).

Correct processes only delivery valid Local messages, which means Σ attests ops and Σ′

attests ops ′. Then Σ and Σ′ both contains 2f + 1 commit signatures for each operation

in ops and ops ′. By the agreement property of TOB in the first phase and |ops| = |ops ′|,

262

ops and ops ′ contains the same set of operations. By the total order property of the TOB,

operations in ops and ops ′ have the same order. Thus, ops = ops ′.

5.9.3 Byzantine Reliable Dissemination

Lemma 127 (Integrity) The delivered set contains at least a quorum of messages from

distinct processes.

Proof. A set of messages is delivered at line 14 which is after the delivery of

2fi+1 of Ready messages (at line 12). At least fi+1 correct processes sent Ready messages

since there are only fi Byzantine processes in a cluster i. A correct process only sends

Ready message when it receives 2fi + 1 Echo messages or fi + 1 Ready messages. Then by

induction, at least 2fi + 1 Echo messages were received by a correct process. Then at least

fi + 1 correct processes sent Echo messages. A correct process only sends Echo messages

when it verifies M is valid (at line 1). A M is valid if and only if Σ includes 2fi + 1 distinct

signatures and M is the union of all the m sets in those messages; Or M is adopted from

the valid and Σ contains 2fi + 1 Echo or fi + 1 Ready messages. In the first case, the

delivered M contains at least a quorum of m. In the second case, by induction M was in

2fi + 1 of Echo messages and the correct processes who sent the Echo message verify that

M originally was a union of 2fi + 1 m.

Lemma 128 (Termination) If all correct processes broadcast messages then every correct

process eventually delivers a set of messages.

Proof. We consider two cases based on whether there is a correct process delivered

a set of messages.

263

Case 1: If there is a correct process that delivers, then eventually all the correct

processes deliver. A correct process delivers M after receiving 2fi + 1 Ready message at

line 12. Then at least fi+1 correct processes broadcast the Ready message at line 6. By the

validity of abeb, eventually all the correct processes deliver fi + 1 Ready message at line 8

and broadcast the same message at line 10. Eventually, all the correct processes deliver

2fi + 1 Ready messages and issue delivery response (at line 14).

Otherwise, Case 2: if no correct process delivers, then each correct process com-

plains about the current leader. Then by the eventual agreement property of the Byzantine

leader election, all the correct processes eventually trust the same correct leader. Upon the

last leader election delivered at line 3, all the correct processes send Valid or my-m to the

correct leader at line 10 or line 13. Since the set of correct processes is a quorum, then the

correct leader either delivers a quorum of my-m messages at line 21 or a Valid message at

line 14. Then we have two cases, either there is a valid valid or not. In the first case, the

correct leader adopts M from valid . In the second case, the correct leader composes a new

set of reconfiguration requests. Both cases can be verified and accepted by correct processes

at line 1. Then all the correct processes send Echo message at line 3 and eventually 2fi + 1

Echo messages are delivered to all the correct processes. Then all the correct processes send

Ready message at line 6 and eventually 2fi + 1 Ready message are delivered to all correct

processes. Then all the correct processes issue delivery response at line 14 and we conclude

the proof.

Lemma 129 (Uniformity) No correct processes deliver different set of messages

Proof. There are two cases regarding the delivery of messages for p1 and p2:

264

either they deliver messages with the same ts or different ts.

In the first case, since any pair of quorums has a correct process in the intersection,

if p1 delivers M1 and p2 delivers M2, M1 = M2. Otherwise, the correct process sends

different Ready messages for the same round and ts, which is not permitted by the protocol

(at line 6, line 10).

In the second case, let us assume that p1 delivers first with timestamp ts1 and

then p2 delivers with another timestamp ts2. Without losing generality, let us assume that

ts1 < ts2. If p1 delivers M1 with ts1, then p1 receives at least a quorum of Ready messages.

A correct process set its valid before sending Ready messages (at line 7, line 11). Therefore,

at least fi + 1 correct processes set their valid variable with M1. For the next timestamp

ts1 < ts ilets2, it collects a quorum of my-m messages or at least one Valid message. By

assumption, cluster i has 3fi + 1 members in total, then at most 2fi processes have not

set valid and can send my-m message, which is not a quorum. Therefore, the leader for ts i

waits for the Valid message and adopts its value. Valid valid requires either 2fi + 1 Echo

messages or fi + 1 Ready messages for the same ts. By induction, since there are only fi

Byzantine processes, a correct process receives 2fi + 1 Echo messages before sending out

Ready messages and triggering the amplification. Since any pair of quorums has a correct

process in the intersection, there is only one M that can be echoed by a quorum of processes

and appears in valid . The leader for ts i can only propose M1 that will be accepted by correct

processes at line 1. From ts i to ts2, the valid can only be updated to the same M1. Then

when p2 delivers M2 in ts2, M2 = M1.

Lemma 130 (No duplication) Every correct process delivers at most one set of messages

265

Proof. This lemma follows directly from the condition (at line 12) before the

delivery response is issued at line 14.

Lemma 131 (Validity) If a correct process delivers a set of messages containing m from

a correct sender p, then m was broadcast by p

Proof. If a correct process delivers a set of messages, then it receives a quorum

of Ready messages. A ready message is send by a correct process if it receives a quorum of

Echo messages or f+1 ready messages. Since there are only f Byzantine processes, then by

induction, the first ready message sent by a correct process is because of receiving a quorum

of echo messages. A correct process only send echo message if delivers the Agg from the

leader with valid certificate. A valid Agg message states that M is either collected from

a quorum of distinct processes through apl or adopted from the previous leader. For the

first case, by the validity of apl , if the sender of m is correct, then it sends m to the leader.

For the second case, M can be adopted only if it carries a certificate with a quorum of

Echo messages for M or f + 1 Ready messages for m. By the same induction, the messages

contained in M is broadcast by its sender p if p is correct.

5.9.4 Reconfiguration

Lemma 119 (Completeness). If a correct process p requests to join (or leave)

cluster i, then every correct process will eventually have a configuration C such that p ∈ C

(or p 6∈ C).

Proof. We prove the completeness in two steps: first we prove that all the recon-

figuration requests will be in a prepared state which we will formally define later; then we

266

prove that all the prepared reconfiguration requests will be delivered within one round.

We define that a new process prepares a join request when it receives at least a

quorum of replies from the existing replicas. Our protocol guarantees that a new process

officially joins the system in the round it is prepared. Similarly, we define a leaving process

that prepares a leave request when its RequestLeave message has been delivered to a quorum

of existing replicas. Our protocol guarantees that a leaving process officially leaves the

system in the round it is prepared.

For the first statement, when a correct process p requests to join (or leave) the

cluster Ci , it sends out RequestJoin (or RequestLeave) messages to all the existing processes

at line 7 (or at line 9). If p’s request is not installed in a long time line 10, it resends

the RequestJoin (or RequestLeave) message and doubles the timer at line 12 (or line 14).

Therefore RequestJoin (or RequestLeave) messages sent out by p at line 7 will be delivered

at all the correct processes in Ci in the first phase at line 16 after GST. Upon receiving the

RequestJoin and RequestLeave message at line 17 and line 20, correct processes in the system

add the reconfiguration request into their recs variable. Since all the correct processes in a

cluster is a quorum, p’s reconfiguration request is eventually prepared.

We prove the second statement in two steps. First, we prove that any set of

installed reconfiguration requests at round r includes p’s reconfiguration request. Second,

we prove that eventually, all correct processes install a set of reconfiguration requests in

round r.

For the first step, at the end of the local ordering phase of each round at line 4,

correct processes use Byzantine reliable dissemination module to deliver the reconfiguration

267

requests recs that they have collected. Assume that p’s reconfiguration request is prepared

in round r. By the integrity of BRD, the delivered set contains a quorum of messages send

by distinct processes. Since every pair of quorums have at least one correct process in their

intersection, at round r, there is always a correct process which sends p’s reconfiguration

request in the BRD message and the message is included in the delivered set.

For the second step, we consider the delivery of reconfiguration requests for both

local and remote clusters.

For the remote clusters, by Theorem 117 all the correct processes in the remote

cluster deliver Local message, which is verified to contain reconfiguration requests at line 17.

Correct processes eventually receives all the Local message at line 20 and install reconfigu-

ration at line 21.

For the local cluster, by the termination property of BRD, all the correct nodes in

the local cluster eventually deliver a set of reconfiguration requests through BRD at line 5.

They insert the reconfiguration requests at line 6. By Theorem 117, all the correct processes

receive enough Local message and install the reconfiguration requests at line 1.

In conclusion, a set of reconfiguration requests is eventually installed at all the

correct processes and we conclude the second step.

Lemma 121 (Uniformity). In every round, the configurations that every pair of

correct processes execute are the same.

Proof. Let us assume that two correct processes p1 and p2 installed new configu-

rations. The correct process installs new group membership at line 1, which is at the order

268

and execution phase. We prove agreement for correct processes in both local and remote

clusters.

For the local cluster, a correct process installs a reconfiguration request from

operations i at line 11. operations i is updated at line 6, which is after the delivery of

an instance of BRD at line 5. By the uniformity property of BRD, all the correct processes

deliver the same set of messages. Since the installation of new membership is deterministic

and only dependent on the set of reconfiguration requests, we have C = C ′.

For remote cluster reconfiguration, a correct process in cluster i installs the recon-

figuration requests for cluster j at the order and execution phase at line 1. operationsj is

updated after verifying the σ at line 17. σ is valid if and only if for each reconfiguration re-

quest in T , it contains a quorum of signatures from cluster j in round r. By Theorem 118,

the reconfiguration requests installed at cluster j are the same. Therefore, we conclude

C = C ′.

Lemma 120 (Accuracy). Consider a correct process p that has a configuration

C in a round, and then another configuration C ′ in a later round. If a correct process

p ∈ C ′i \Ci, then p requested to join the cluster i. Similarly, if a correct process p ∈ Ci \C ′i,

then p requested to leave the cluster i.

Proof. Since we have pn ∈ C2 \ C1 ∧ r2 > r1, pn is not originally a member of

this cluster. The cluster membership is updated at line 5, which is after verifying each

reconfiguration request is valid: each reconfiguration request is delivered after a quorum

of Ready messages. At line 1, every correct process checks the validity of rc, including its

269

signatures from pn. By the authenticity of apl , if pn is correct, then it is the sender of

the RequestJoin messages and thus requested to join. The same reasoning applies to leave

requests.

5.9.5 Replication System

By Theorem 121, at the beginning of each round, all the correct processes have

the same configuration. Thus during the execution of each round, all the correct processes

maintain a static membership and we prove termination and total order properties for each

round. We prove validity for eventual progress.

Theorem 122 (Validity). Every operation that a correct process requests is

eventually executed by a correct process.

Proof. Based on the validity of the underlying TOB protocol in the first phase,

if a valid operation o is submitted to a cluster i (at line 15), then o is eventually delivered

at a correct process p in Ci at line 17 and included in operations i (at line 18). By the

Theorem 117, each correct process receives Local message from each other cluster and call

execute function (at line 3). Since o was included in operations i, it is executed at line 8 and

we conclude the proof.

Theorem 123 (Agreement). If a correct process executes an operation in a round

then every correct process executes that operation in the same round.

Proof. A correct process deliver a operation in the execution phase (at Alg. 31),

which is stored in operations. operations are updated in the inter-cluster phase (at Alg. 18)

for remote clusters and in the local ordering phase (at line 18) for the local cluster. Based

270

on whether o is an operation from the local cluster, we prove the termination in two cases.

Case 1: o is from the local cluster. Then we prove that o will be delivered locally

and remotely in round r. For the local cluster, we can directly use the termination property

provided by the underlying TOB protocol: all the correct processes eventually deliver o.

Since correct processes in the local cluster are waiting for a fixed number of operations to

be delivered in a batch for each round, they will not move to the next round before they

deliver o in round r. Then we proved that o will be delivered locally in round r.

For the remote delivery of o, by the total order and termination property of un-

derlying TOB protocol, o will be delivered at the leader and included in the Local message.

Then by the Theorem 117, all the other remote clusters will receive a Local message for

each cluster, including the current one. Thus, o will be delivered in the Local message and

inserted to operations. Finally, after all the Local messages are delivered, o will be executed

in the execution phase.

Case 2: o is from a remote cluster. Then we prove that o will be delivered at all

the other clusters.

If o is from a remote cluster, then operations is only updated if Σ is valid and

the deliver is for the same round. Σ is valid if it contains a quorum of commit certificate

for each operation in ops: a quorum of commit messages certify the delivery in the local

order protocol. operations is updated when receiving a valid Local message. Then by the

Theorem 118 and Theorem 117, o will be delivered at all the other clusters through the

same Local message.

271

Theorem 124 (Total order). For every pair of operations o and o′, if a correct

process executes only o, or executes o before o′, then every correct process executes o′ only

after o.

Proof. We prove the total order property in two steps.

First we prove that if a pair of processes p1 and p2 both execute o and o′, then

they execute o and o′ in the same order. Without loss of generality, let us assume that

o is executed in p1 before o′ By Theorem 123, all the correct processes deliver the same

operations for each cluster. Then they combine the operations in the predefined order based

on the cluster identifier. Within each cluster, ops have been ordered across all the correct

processes by the total order property of the underlying TOB protocol. Thus the combined

operations keeps a total order across all the operations from all the clusters for round r: o

is executed before o′ at all correct processes including p2.

In the second step, we prove by contradiction. Assume that process p′ executed

operation o′ before operation o. The process p executed only o, or executed o before o′. In

the case that it has executed only o and not o′, then, by the Theorem 123, it will eventually

execute o′ after o. Thus, we will reach a state where p and p′ have a different order for the

two operations o and o′, which contradicts the first statement.

272

Chapter 6

Conclusions

This dissertation explores the heterogeneity and openness of Byzantine replicated

systems. More specifically, in the first thrust, I explore the research problem of how to par-

tition and replicate data and computations so that end-to-end trustworthiness policies are

guaranteed. In the second thrust, I investigate heterogeneous quorum systems where each

process can declare its own quorums. I proved impossibility results for heterogeneous quo-

rum systems, establish new sufficient conditions and propose abstract and concrete reliable

broadcast and consensus protocols. Further, I design reconfiguration protocols that helps

to maintain critical properties that are required for consensus. Lastly, I designed recon-

figuration protocols for clustered replication system to enable heterogeneous and dynamic

clustered replication.

In chapter 2, we introduce Hampa, a theoretical framework and a system for trust-

worthy distributed systems. We define a lattice model of resiliency, a security-typed object-

based language to capture end-to-end type polices for the three aspects of trustworthiness

273

including confidentiality, integrity and availability. Further, we present a partitioning trans-

formation, operational semantics, an information flow type inference system, and quorum

constraint solving to automatically construct partitioned and replicated systems that guar-

antee non-interference and resiliency properties even in the face of Byzantine failures. Our

experiments show that inferred distributed systems can gracefully tolerate attacks that are

as strong as the specified policies.

In chapter 3, we dive into the formal definitions and specifications of heteroge-

neous quorum systems. We present a general model of heterogeneous quorum systems

where each process defines its own set of quorums, and captured their properties. Through

indistinguishably arguments, we proved that no deterministic quorum-based protocol can

implement the consensus and Byzantine reliable broadcast abstractions on a heterogeneous

quorum system that provides only quorum intersection and availability, which was previ-

ously proved to be necessary and sufficient for existing dissemination quorum systems. We

introduce the quorum subsumption property, and show that the three conditions together

are sufficient to implement the two abstractions. In order to show sufficiency, we present

both abstract and concrete Byzantine broadcast and consensus protocols for heterogeneous

quorum systems, and prove their correctness when the underlying quorum system maintain

the three properties.

In chapter 4, we further investigate reconfiguration protocols and conditions for

heterogeneous quorum systems. We revisit the model of heterogeneous quorum systems

and present their graph characterization. In order to make them open, we addresses their

reconfiguration. We prove trade-offs for the properties that reconfigurations can preserve,

274

and presents reconfiguration protocols with provable guarantees. We hope that this work

further motivates the incorporation of open membership and heterogeneous trust into quo-

rum systems, and helps blockchains avoid high energy consumption, and centralization at

nodes with high computational power or stake.

In chapter 5, we examine heterogeneous clustered replicated system and their

reconfiguration protocols. We present a protocol that adapts to different cluster sizes, and

allows processes to join and leave clusters efficiently. Further, we state and prove the safety

and liveness properties of the protocol.

275

Bibliography

[1] The coq proof assistant. https://coq.inria.fr/.

[2] Elc: Spacex lessons learned. https://lwn.net/Articles/540368/.

[3] Horizon api. https://developers.stellar.org/api. Accessed: 2023-05-01.

[4] LinkedIn’s Voldemort. http://www.project-voldemort.com/.

[5] Memcached. http://memcached.org/.

[6] Pvs specification and verification system. http://pvs.csl.sri.com/.

[7] Stellarbeat.io. https://stellarbeat.io. Accessed: 2023-05-01.

[8] Stellarcore. https://github.com/stellar/stellar-core. Accessed: 2023-05-01.

[9] Stellardashboard. https://dashboard.stellar.org/. Accessed: 2023-05-01.

[10] grammer-v4. https://github.com/antlr/grammars-v4, 2017.

[11] Netty project. https://netty.io/, 2021.

[12] Daniel Abadi. Consistency tradeoffs in modern distributed database system design.
Computer, 45(2), 2012.

[13] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter,
and Jay J. Wylie. Fault-scalable byzantine fault-tolerant services. In Proceedings of
the Twentieth ACM Symposium on Operating Systems Principles, SOSP ’05, pages
59–74, New York, NY, USA, 2005. ACM.

[14] Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson, Michael K Reiter, and
Jay J Wylie. Fault-scalable byzantine fault-tolerant services. ACM SIGOPS Operating
Systems Review, 39(5):59–74, 2005.

[15] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman.
Solida: A blockchain protocol based on reconfigurable byzantine consensus. arXiv
preprint arXiv:1612.02916, 2016.

276

https://coq.inria.fr/
https://lwn.net/Articles/540368/
https://developers.stellar.org/api
http://www.project-voldemort.com/
http://memcached.org/
http://pvs.csl.sri.com/
https://stellarbeat.io
https://github.com/stellar/stellar-core
https://dashboard.stellar.org/
https://github.com/antlr/grammars-v4
https://netty.io/

[16] Ittai Abraham, Kartik Nayak, and Nibesh Shrestha. Optimal good-case latency for
rotating leader synchronous bft. Cryptology ePrint Archive, 2021.

[17] Ittai Abraham and Gilad Stern. Information theoretic hotstuff. arXiv preprint
arXiv:2009.12828, 2020.

[18] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak, Ronnie Chaiken,
John R. Douceur, Jon Howell, Jacob R. Lorch, Marvin Theimer, and Roger P. Wat-
tenhofer. Farsite: Federated, available, and reliable storage for an incompletely trusted
environment. SIGOPS Oper. Syst. Rev., 36(SI):1–14, December 2002.

[19] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. MIT
Press, 1986.

[20] Marcos Kawazoe Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam
Toueg. Consensus with byzantine failures and little system synchrony. In Inter-
national Conference on Dependable Systems and Networks (DSN’06), pages 147–155.
IEEE, 2006.

[21] Mustaque Ahamad, Gil Neiger, James E Burns, Prince Kohli, and Phillip W Hutto.
Causal memory: Definitions, implementation, and programming. Distributed Com-
puting, 9(1), 1995.

[22] Eduardo Adilio Pelinson Alchieri, Alysson Bessani, Fabiola Greve, and Joni
da Silva Fraga. Knowledge connectivity requirements for solving byzantine consensus
with unknown participants. IEEE Transactions on Dependable and Secure Comput-
ing, 15(2):246–259, 2016.

[23] Eduardo AP Alchieri, Alysson Neves Bessani, Joni da Silva Fraga, and Fab´iola
Greve. Byzantine consensus with unknown participants. In International Conference
On Principles Of Distributed Systems, pages 22–40. Springer, 2008.

[24] Dan Alistarh, James Aspnes, Faith Ellen, Rati Gelashvili, and Leqi Zhu. Why
extension-based proofs fail. In Proceedings of the 51st Annual ACM SIGACT Sym-
posium on Theory of Computing, pages 986–996, 2019.

[25] Orestis Alpos, Christian Cachin, and Luca Zanolini. How to trust strangers: Com-
position of byzantine quorum systems. In 2021 40th International Symposium on
Reliable Distributed Systems (SRDS), pages 120–131. IEEE, 2021.

[26] Peter Alvaro, Tyson Condie, Neil Conway, Joseph M. Hellerstein, and Russell Sears.
I do declare: Consensus in a logic language. SIGOPS Oper. Syst. Rev., 43(4):25–30,
January 2010.

[27] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and David Maier. Blazes: Coordi-
nation analysis and placement for distributed programs. ACM Trans. Database Syst.,
42(4):23:1–23:31, October 2017.

277

[28] Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak. Con-
sistency analysis in bloom: A calm and collected approach. In In Proceedings 5th
Biennial Conference on Innovative Data Systems Research, pages 249–260, 2011.

[29] Lorenzo Alvisi, Dahlia Malkhi, Evelyn Pierce, Michael K Reiter, and Rebecca N
Wright. Dynamic byzantine quorum systems. In Proceeding International Conference
on Dependable Systems and Networks. DSN 2000, pages 283–292. IEEE, 2000.

[30] Yair Amir, Claudiu Danilov, Danny Dolev, Jonathan Kirsch, John Lane, Cristina
Nita-Rotaru, Josh Olsen, and David Zage. Steward: Scaling byzantine fault-tolerant
replication to wide area networks. IEEE Transactions on Dependable and Secure
Computing, 7(1):80–93, 2008.

[31] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. Sharper: Sharding
permissioned blockchains over network clusters. In Proceedings of the 2021 interna-
tional conference on management of data, pages 76–88, 2021.

[32] Ignacio Amores-Sesar, Christian Cachin, and Jovana Mićić. Security analysis of ripple
consensus. arXiv preprint arXiv:2011.14816, 2020.

[33] Yackolley Amoussou-Guenou, Antonella Del Pozzo, Maria Potop-Butucaru, and Sara
Tucci-Piergiovanni. Correctness of tendermint-core blockchains. In 22nd International
Conference on Principles of Distributed Systems (OPODIS 2018). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2018.

[34] Zachary R. Anderson, David Gay, and Mayur Naik. Lightweight annotations for
controlling sharing in concurrent data structures. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2009, Dublin, Ireland, June 15-21, 2009, pages 98–109, 2009.

[35] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos
Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady Lavent-
man, Yacov Manevich, et al. Hyperledger fabric: a distributed operating system for
permissioned blockchains. In Proceedings of the thirteenth EuroSys conference, pages
1–15, 2018.

[36] Appendix. Appendix. https://www.cs.ucr.edu/~lesani/companion/popl19/

Appendix.pdf, 2018.

[37] Joe Armstrong. The development of erlang. In Proceedings of the Second ACM
SIGPLAN International Conference on Functional Programming, ICFP ’97, pages
196–203, New York, NY, USA, 1997. ACM.

[38] M. P. Ashley-Rollman, S. C. Goldstein, P. Lee, T. C. Mowry, and Padmanabhan
Pillai. Meld: A declarative approach to programming ensembles. In 2007 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2794–2800, Oct
2007.

278

https://www.cs.ucr.edu/~lesani/companion/popl19/Appendix.pdf
https://www.cs.ucr.edu/~lesani/companion/popl19/Appendix.pdf

[39] Michael P. Ashley-Rollman, Peter Lee, Seth Copen Goldstein, Padmanabhan Pillai,
and Jason D. Campbell. A language for large ensembles of independently executing
nodes. In Proceedings of the 25th International Conference on Logic Programming,
ICLP ’09, pages 265–280, Berlin, Heidelberg, 2009. Springer-Verlag.

[40] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Bounds on the
time to reach agreement in the presence of timing uncertainty. Journal of the ACM
(JACM), 41(1):122–152, 1994.

[41] Hagit Attiya and Jennifer L. Welch. Sequential consistency versus linearizability.
ACM Trans. Comput. Syst., 12(2), 1994.

[42] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knezevic, Vivien Quema, and Marko
Vukolic. The next 700 bft protocols. ACM Trans. Comput. Syst., 32(4):12:1–12:45,
January 2015.

[43] John Augustine, Valerie King, Anisur Rahaman Molla, Gopal Pandurangan, and
Jared Saia. Scalable and Secure Computation Among Strangers: Message-
Competitive Byzantine Protocols. In Hagit Attiya, editor, 34th International Sympo-
sium on Distributed Computing (DISC 2020), volume 179 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 31:1–31:19, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[44] John Augustine, Gopal Pandurangan, and Peter Robinson. Fast byzantine leader
election in dynamic networks. In International Symposium on Distributed Computing,
pages 276–291. Springer, 2015.

[45] Michael Backes, Boris Köpf, and Andrey Rybalchenko. Automatic discovery and
quantification of information leaks. In 2009 30th IEEE Symposium on Security and
Privacy, S&P ’09, pages 141–153. IEEE, 2009.

[46] Michael Backes, Matteo Maffei, and Kim Pecina. Automated synthesis of privacy-
preserving distributed applications. In Proc. of ISOC NDSS, NDSS ’12, 2012.

[47] Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein,
and Ion Stoica. Coordination avoidance in database systems. Proc. VLDB Endow.,
8(3):185–196, November 2014.

[48] Peter Bailis, Alan Fekete, Michael J Franklin, Ali Ghodsi, Joseph M Hellerstein, and
Ion Stoica. Feral concurrency control: An empirical investigation of modern applica-
tion integrity. In Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pages 1327–1342. ACM, 2015.

[49] Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M Hellerstein, and Ion Stoica. The
potential dangers of causal consistency and an explicit solution. In Proceedings of the
Third ACM Symposium on Cloud Computing, page 22. ACM, 2012.

[50] Peter Bailis and Ali Ghodsi. Eventual consistency today: limitations, extensions, and
beyond. Communications of the ACM, 56(5):55–63, 2013.

279

[51] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Bolt-on causal con-
sistency. In Proc. SIGMOD, 2013.

[52] Peter Bailis, Shivaram Venkataraman, Michael J Franklin, Joseph M Hellerstein, and
Ion Stoica. Probabilistically bounded staleness for practical partial quorums. Pro-
ceedings of the VLDB Endowment, 5(8):776–787, 2012.

[53] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguica,
Mahsa Najafzadeh, and Marc Shapiro. Putting consistency back into eventual con-
sistency. In Proceedings of the Tenth European Conference on Computer Systems,
EuroSys ’15, pages 6:1–6:16, New York, NY, USA, 2015. ACM.

[54] Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, Nuno Preguica,
Mahsa Najafzadeh, and Marc Shapiro. Towards fast invariant preservation in geo-
replicated systems. SIGOPS Oper. Syst. Rev., 49(1):121–125, January 2015.

[55] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry,
Sarah Meiklejohn, and George Danezis. Sok: Consensus in the age of blockchains. In
Proceedings of the 1st ACM Conference on Advances in Financial Technologies, pages
183–198, 2019.

[56] Kshitij Bansal, Andrew Reynolds, Clark Barrett, and Cesare Tinelli. A new decision
procedure for finite sets and cardinality constraints in smt. In International Joint
Conference on Automated Reasoning, pages 82–98. Springer, 2016.

[57] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jo-
vanovi’c, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh
Gopalakrishnan and Shaz Qadeer, editors, Proceedings of the 23rd International Con-
ference on Computer Aided Verification (CAV ’11), volume 6806 of Lecture Notes in
Computer Science, pages 171–177. Springer, July 2011. Snowbird, Utah.

[58] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB Standard: Version
2.0. In A. Gupta and D. Kroening, editors, Proceedings of the 8th International
Workshop on Satisfiability Modulo Theories (Edinburgh, UK), 2010.

[59] Gilles Barthe, Pedro R D’argenio, and Tamara Rezk. Secure information flow by self-
composition. Mathematical Structures in Computer Science, 21(6):1207–1252, 2011.

[60] Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis, Francois Garillot,
Zekun Li, Dahlia Malkhi, Oded Naor, Dmitri Perelman, and Alberto Sonnino. State
machine replication in the libra blockchain. The Libra Assn., Tech. Rep, 7, 2019.

[61] Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani,
Praveen Yalagandula, and Jiandan Zheng. PRACTI replication. In Proc. NSDI,
2006.

[62] John Bender, Mohsen Lesani, and Jens Palsberg. Declarative fence insertion. In
Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented

280

Programming, Systems, Languages, and Applications, OOPSLA 2015, pages 367–385,
New York, NY, USA, 2015. ACM.

[63] Giovanni Bernardi and Alexey Gotsman. Robustness against consistency models with
atomic visibility. In LIPIcs-Leibniz International Proceedings in Informatics, vol-
ume 59. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[64] A. Bessani and P. Sousa. Smart — high-performance byzantine-fault-tolerant state
machine replication. http://code.google.com/p/bft-smart/, 2009.

[65] Alysson Bessani, Marcel Santos, João Felix, Nuno Neves, and Miguel Correia. On the
efficiency of durable state machine replication. In Proceedings of the 2013 USENIX
Conference on Annual Technical Conference, USENIX ATC’13, pages 169–180, Berke-
ley, CA, USA, 2013. USENIX Association.

[66] Alysson Bessani, João Sousa, and Eduardo E. P. Alchieri. State machine replication
for the masses with bft-smart. In Proceedings of the 2014 44th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks, DSN ’14, page 355–362,
USA, 2014. IEEE Computer Society.

[67] Alysson Bessani, João Sousa, and Eduardo EP Alchieri. State machine replication for
the masses with bft-smart. In 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pages 355–362. IEEE, 2014.

[68] Alysson Neves Bessani, Eduardo Pelison Alchieri, Miguel Correia, and Joni Silva
Fraga. Depspace: A byzantine fault-tolerant coordination service. In Proceedings of
the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems 2008,
Eurosys ’08, pages 163–176, New York, NY, USA, 2008. ACM.

[69] João Paulo Bezerra, Petr Kuznetsov, and Alice Koroleva. Relaxed reliable broadcast
for decentralized trust. arXiv preprint arXiv:2109.08611, 2021.

[70] João Paulo Bezerra, Petr Kuznetsov, and Alice Koroleva. Relaxed reliable broadcast
for decentralized trust. In Networked Systems: 10th International Conference, NETYS
2022, Virtual Event, May 17–19, 2022, Proceedings, pages 104–118. Springer, 2022.

[71] Adithya Bhat, Nibesh Shrestha, Aniket Kate, and Kartik Nayak. Optrand: Opti-
mistically responsive reconfigurable distributed randomness. In NDSS, 2023.

[72] Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik Nayak.
Randpiper–reconfiguration-friendly random beacons with quadratic communication.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communica-
tions Security, pages 3502–3524, 2021.

[73] Mark Bickford. Component specification using event classes. In Component-Based
Software Engineering, volume 5582 of Lecture Notes in Computer Science. 2009.

281

http://code.google.com/p/bft-smart/

[74] M. Biely, P. Delgado, Z. Milosevic, and A. Schiper. Distal: A framework for im-
plementing fault-tolerant distributed algorithms. In 2013 43rd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pages 1–8,
June 2013.

[75] Kenneth P. Birman. Replication and fault-tolerance in the ISIS system. In Proc.
SOSP, 1985.

[76] Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence
of failures. ACM Trans. Comput. Syst., 5(1), 1987.

[77] Steve Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith,
and Keith Wansbrough. Engineering with logic: HOL specification and symbolic-
evaluation testing for TCP implementations. In Proc. POPL, 2006.

[78] Ranadeep Biswas, Michael Emmi, and Constantin Enea. On the complexity of check-
ing consistency for replicated data types. In Computer Aided Verification: 31st In-
ternational Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019,
Proceedings, Part II 31, pages 324–343. Springer, 2019.

[79] S. Biswas, J. Huang, Sengupta A., , and Bond M. D. Doublechecker: Efficient sound
and precise atomicity checking. In Proc. PLDI, 2014.

[80] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S.
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B.
Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dinck-
lage, and Ben Wiedermann. The dacapo benchmarks: Java benchmarking develop-
ment and analysis. In Proc. OOPSLA, 2006.

[81] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming
reflection: Aiding static analysis in the presence of reflection and custom class loaders.
In Proc. ICSE, 2011.

[82] William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Norbert P. Kusters,
and Peng Li. Paxos replicated state machines as the basis of a high-performance data
store. In Proceedings of the 8th USENIX Conference on Networked Systems Design
and Implementation, NSDI’11, pages 141–154, Berkeley, CA, USA, 2011. USENIX
Association.

[83] Malte Borcherding. Levels of authentication in distributed agreement. In International
Workshop on Distributed Algorithms, pages 40–55. Springer, 1996.

[84] A. Bouajjani, C. Enea, and J. Hamza. Verifying eventual consistency of optimistic
replication systems. In Proc. POPL, 2014.

[85] Andrea Bracciali, Davide Grossi, and Ronald de Haan. Decentralization in open
quorum systems: Limitative results for ripple and stellar. In 2nd International Con-
ference on Blockchain Economics, Security and Protocols (Tokenomics 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

282

[86] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols.
Journal of the ACM (JACM), 32(4):824–840, 1985.

[87] Manuel Bravo, Gregory Chockler, and Alexey Gotsman. Liveness and latency of
byzantine state-machine replication. In 36th International Symposium on Distributed
Computing (DISC 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[88] Manuel Bravo, Gregory Chockler, and Alexey Gotsman. Making byzantine consensus
live. Distributed Computing, 35(6):503–532, 2022.

[89] Manuel Bravo and Alexey Gotsman. Reconfigurable atomic transaction commit. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing,
pages 399–408, 2019.

[90] Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an undirected
graph. Commun. ACM, 16(9):575–577, September 1973.

[91] Stephen Brookes and Peter W. O’Hearn. Concurrent separation logic. ACM SIGLOG
News, 3(3):47–65, August 2016.

[92] David Brumley and Dawn Song. Privtrans: Automatically partitioning programs for
privilege separation. In USENIX Security Symposium, volume 57, 2004.

[93] Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev. Serializability
for eventual consistency: Criterion, analysis, and applications. In Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, pages 458–472, New York, NY, USA, 2017. ACM.

[94] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains.
PhD thesis, University of Guelph, 2016.

[95] Ethan Buchman, Rachid Guerraoui, Jovan Komatovic, Zarko Milosevic, Dragos-
Adrian Seredinschi, and Josef Widder. Revisiting tendermint: Design tradeoffs, ac-
countability, and practical use. In 2022 52nd Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks-Supplemental Volume (DSN-S), pages
11–14. IEEE, 2022.

[96] Sebastian Burckhardt. Principles of Eventual Consistency. Foundations and Trends
in Programming Languages. 2014.

[97] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Repli-
cated data types: Specification, verification, optimality. In Proc. POPL, 2014.

[98] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In Proc. ASE,
2008.

[99] Mike Burrows. The chubby lock service for loosely-coupled distributed systems. In
Proceedings of the 7th Symposium on Operating Systems Design and Implementation,
OSDI ’06, pages 335–350, Berkeley, CA, USA, 2006. USENIX Association.

283

[100] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint
arXiv:1710.09437, 2017.

[101] Christian Cachin, Rachid Guerraoui, and Lu´is Rodrigues. Introduction to reliable
and secure distributed programming. Springer Science & Business Media, 2011.

[102] Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. Introduction to Reliable and
Secure Distributed Programming. Springer Publishing Company, Incorporated, 2nd
edition, 2011.

[103] Christian Cachin, Giuliano Losa, and Luca Zanolini. Quorum systems in permission-
less network. arXiv preprint arXiv:2211.05630, 2022.

[104] Christian Cachin and Björn Tackmann. Asymmetric distributed trust. In 23rd In-
ternational Conference on Principles of Distributed Systems (OPODIS 2019). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[105] Christian Cachin and Luca Zanolini. From symmetric to asymmetric asynchronous
byzantine consensus. arXiv preprint arXiv:2005.08795, 2020.

[106] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. Exe: Automatically generating inputs of death. In Proc. CCS, 2006.

[107] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam Mck-
elvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev Haridas,
Chakravarthy Uddaraju, Hemal Khatri, Marvin Mcnett, Sriram Sankaran, Kavitha
Manivannan, and Leonidas Rigas. Windows azure storage: a highly available cloud
storage service with strong consistency. In In SOSP ’11, pages 143–157, 2011.

[108] Domenico Cantone, Eugenio Omodeo, and Alberto Policriti. Set theory for computing:
from decision procedures to declarative programming with sets. Springer Science &
Business Media, 2013.

[109] Domenico Cantone and Calogero G Zarba. A new fast tableau-based decision proce-
dure for an unquantified fragment of set theory. In Automated Deduction in Classical
and Non-Classical Logics, pages 126–136. Springer, 2000.

[110] Harold Carr, Christa Jenkins, Mark Moir, Victor Cacciari Miraldo, and Lisandra
Silva. Towards formal verification of hotstuff-based byzantine fault tolerant consensus
in agda. In NASA Formal Methods: 14th International Symposium, NFM 2022,
Pasadena, CA, USA, May 24–27, 2022, Proceedings, pages 616–635. Springer, 2022.

[111] Nuno Carvalho and et. al. Appia framework. http://appia.di.fc.ul.pt/wiki/

index.php?title=Main_Page, 2011. Accessed: 2018-06-23.

[112] Darion Cassel, Yan Huang, and Limin Jia. Flownotation: An annotation system for
statically enforcing information flow policies in c. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’18, pages
2207–2209, 2018.

284

http://appia.di.fc.ul.pt/wiki/index.php?title=Main_Page
http://appia.di.fc.ul.pt/wiki/index.php?title=Main_Page

[113] M. Castro and B. Liskov. A correctness proof for a practical byzantine-fault-tolerant
replication algorithm. Technical report, Cambridge, MA, USA, 1999.

[114] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings
of the Third Symposium on Operating Systems Design and Implementation, OSDI ’99,
pages 173–186, Berkeley, CA, USA, 1999. USENIX Association.

[115] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive
recovery. ACM Trans. Comput. Syst., 20(4):398–461, November 2002.

[116] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI,
volume 99, pages 173–186, 1999.

[117] David Cavin, Yoav Sasson, and André Schiper. Consensus with unknown participants
or fundamental self-organization. In International Conference on Ad-Hoc Networks
and Wireless, pages 135–148. Springer, 2004.

[118] Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. A framework for trans-
actional consistency models with atomic visibility. In LIPIcs-Leibniz International
Proceedings in Informatics, volume 42. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik, 2015.

[119] Saksham Chand, Yanhong A Liu, and Scott D Stoller. Formal verification of multi-
paxos for distributed consensus. In International Symposium on Formal Methods,
pages 119–136. Springer, 2016.

[120] Tushar Deepak Chandra, Vassos Hadzilacos, and Sam Toueg. The weakest failure
detector for solving consensus. Journal of the ACM (JACM), 43(4):685–722, 1996.

[121] Tushar Deepak Chandra, Vassos Hadzilacos, Sam Toueg, and Bernadette Charron-
Bost. On the impossibility of group membership. In Proceedings of the fifteenth annual
ACM symposium on Principles of distributed computing, pages 322–330, 1996.

[122] Feng Chen and Grigore Rosu. Parametric and sliced causality. In Proc. CAV, 2007.

[123] Feng Chen, Traian Florin Serbanuta, and Grigore Rosu. jpredictor: A predictive
runtime analysis tool for java. In Proc. ICSE, 2008.

[124] Qichang Chen, Liqiang Wang, Zijiang Yang, and ScottD. Stoller. Have: Detecting
atomicity violations via integrated dynamic and static analysis. In Marsha Chechik
and Martin Wirsing, editors, Fundamental Approaches to Software Engineering, vol-
ume 5503 of LNCS, pages 425–439. Springer Berlin Heidelberg, 2009.

[125] Alvin Cheung, Owen Arden, Samuel Madden, and Andrew C Myers. Automatic
partitioning of database applications. Proceedings of the VLDB Endowment, 5(11),
2012.

[126] Alvin Cheung, Owen Arden, Samuel Madden, Armando Solar-Lezama, and Andrew C
Myers. Statusquo: Making familiar abstractions perform using program analysis. In
CIDR, 2013.

285

[127] Adam Chlipala. Mostly-automated verification of low-level programs in computa-
tional separation logic. In Proceedings of the 32Nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’11, pages 234–245, New
York, NY, USA, 2011. ACM.

[128] Gregory V Chockler, Idit Keidar, and Roman Vitenberg. Group communication spec-
ifications: a comprehensive study. ACM Computing Surveys (CSUR), 33(4):427–469,
2001.

[129] Stephen Chong, Jed Liu, Andrew C Myers, Xin Qi, Krishnaprasad Vikram, Lantian
Zheng, and Xin Zheng. Secure web applications via automatic partitioning. ACM
SIGOPS Operating Systems Review, 41(6):31–44, 2007.

[130] Kevin Clancy and Heather Miller. Monotonicity types for distributed dataflow. In
Proceedings of the Programming Models and Languages for Distributed Computing,
page 2. ACM, 2017.

[131] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo Alvisi, Mike
Dahlin, and Taylor Riche. Upright cluster services. In Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09, pages 277–
290, New York, NY, USA, 2009. ACM.

[132] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo Alvisi, Mike
Dahlin, and Taylor Riche. Upright cluster services. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles, pages 277–290, 2009.

[133] Allen Clement, Edmund Wong, Lorenzo Alvisi, Mike Dahlin, and Mirco Marchetti.
Making byzantine fault tolerant systems tolerate byzantine faults. In Proceedings
of the 6th USENIX Symposium on Networked Systems Design and Implementation,
NSDI’09, pages 153–168, Berkeley, CA, USA, 2009. USENIX Association.

[134] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael Dahlin, and Mirco
Marchetti. Making byzantine fault tolerant systems tolerate byzantine faults. In
NSDI, volume 9, pages 153–168, 2009.

[135] Shir Cohen, Idit Keidar, and Oded Naor. Byzantine agreement with less communica-
tion: Recent advances. ACM SIGACT News, 52(1):71–80, 2021.

[136] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, J. F. Cremer, R. W.
Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panangaden, J. T. Sasaki, and
S. F. Smith. Implementing Mathematics with the Nuprl Proof Development System.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1986.

[137] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip
Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni.
PNUTS: Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1(2), 2008.

286

[138] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM
symposium on Cloud computing, pages 143–154, 2010.

[139] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexan-
der Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao,
Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang,
and Dale Woodford. Spanner: Google’s globally distributed database. ACM Trans.
Comput. Syst., 31(3):8:1–8:22, August 2013.

[140] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba Shrira.
Hq replication: A hybrid quorum protocol for byzantine fault tolerance. In Proceedings
of the 7th Symposium on Operating Systems Design and Implementation, OSDI ’06,
pages 177–190, Berkeley, CA, USA, 2006. USENIX Association.

[141] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba Shrira.
Hq replication: A hybrid quorum protocol for byzantine fault tolerance. In Proceedings
of the 7th symposium on Operating systems design and implementation, pages 177–
190, 2006.

[142] Ivan Damg̊ard, Yvo Desmedt, Matthias Fitzi, and Jesper Buus Nielsen. Secure pro-
tocols with asymmetric trust. In Advances in Cryptology–ASIACRYPT 2007: 13th
International Conference on the Theory and Application of Cryptology and Informa-
tion Security, Kuching, Malaysia, December 2-6, 2007. Proceedings 13, pages 357–375.
Springer, 2007.

[143] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin, and
Beng Chin Ooi. Towards scaling blockchain systems via sharding. In Proceedings of
the 2019 international conference on management of data, pages 123–140, 2019.

[144] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 337–340. Springer, 2008.

[145] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly available key-value store. In Proc.
SOSP, 2007.

[146] Carole Delporte-Gallet, Hugues Fauconnier, Rachid Guerraoui, Vassos Hadzilacos,
Petr Kouznetsov, and Sam Toueg. The weakest failure detectors to solve certain
fundamental problems in distributed computing. In Proceedings of the twenty-third
annual ACM symposium on Principles of distributed computing, pages 338–346, 2004.

[147] Dorothy E Denning and Peter J Denning. Certification of programs for secure infor-
mation flow. Communications of the ACM, 20(7):504–513, 1977.

287

[148] Stellar Developer. Stellar configuring. https://developers.stellar.org/docs/run-core-
node/configuring, 2022.

[149] Dominique Devriese and Frank Piessens. Noninterference through secure multi-
execution. In 2010 IEEE Symposium on Security and Privacy, pages 109–124. IEEE,
2010.

[150] Colin Dixon, Hardeep Uppal, Vjekoslav Brajkovic, Dane Brandon, Thomas Ander-
son, and Arvind Krishnamurthy. Ettm: A scalable fault tolerant network manager.
In Proceedings of the 8th USENIX Conference on Networked Systems Design and Im-
plementation, NSDI’11, pages 85–98, Berkeley, CA, USA, 2011. USENIX Association.

[151] Cezara Dragoi, Thomas A Henzinger, and Damien Zufferey. PSYNC : A partially
synchronous language for fault-tolerant distributed algorithms. Popl, pages 1–16,
2016.

[152] Cezara Drăgoi, Thomas A Henzinger, and Damien Zufferey. Psync: a partially syn-
chronous language for fault-tolerant distributed algorithms. ACM SIGPLAN Notices,
51(1):400–415, 2016.

[153] K. Driscoll, B. Hall, M. Paulitsch, P. Zumsteg, and H. Sivencrona. The real byzan-
tine generals. In Digital Avionics Systems Conference, 2004. DASC 04. The 23rd,
volume 2, pages 6.D.4–61–11 Vol.2, Oct 2004.

[154] Kevin Driscoll, Brendan Hall, H̊akan Sivencrona, and Phil Zumsteg. Byzantine Fault
Tolerance, from Theory to Reality, pages 235–248. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2003.

[155] Kevin R Driscoll. Murphy Was an Optimist, pages 481–482. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2010.

[156] Sisi Duan, Hein Meling, Sean Peisert, and Haibin Zhang. Bchain: Byzantine replica-
tion with high throughput and embedded reconfiguration. In Principles of Distributed
Systems: 18th International Conference, OPODIS 2014, Cortina d’Ampezzo, Italy,
December 16-19, 2014. Proceedings 18, pages 91–106. Springer, 2014.

[157] Sisi Duan, Michael K Reiter, and Haibin Zhang. Beat: Asynchronous bft made
practical. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, pages 2028–2041, 2018.

[158] Sisi Duan and Haibin Zhang. Foundations of dynamic bft. In 2022 IEEE Symposium
on Security and Privacy (SP), pages 1546–1546. IEEE Computer Society, 2022.

[159] Bruno Dutertre. Yices 2.2. In Proc. CAV, 2014.

[160] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of
partial synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

288

[161] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database replication using general-
ized snapshot isolation. In 24th IEEE Symposium on Reliable Distributed Systems
(SRDS’05), pages 73–84, Oct 2005.

[162] Michael Emmi and Constantin Enea. Monitoring weak consistency. In Proc. CAV,
2018.

[163] Mahdi Eslamimehr and Jens Palsberg. Race directed scheduling of concurrent pro-
grams. In Proc. PPoPP, 2014.

[164] Azadeh Farzan and P. Madhusudan. Causal atomicity. In Thomas Ball and RobertB.
Jones, editors, Computer Aided Verification, volume 4144 of LNCS, pages 315–328.
Springer Berlin Heidelberg, 2006.

[165] Azadeh Farzan and P. Madhusudan. Monitoring atomicity in concurrent programs.
In Proc. CAV, 2008.

[166] Azadeh Farzan and P. Madhusudan. The complexity of predicting atomicity viola-
tions. In Proc. TACAS, 2009.

[167] Azadeh Farzan, P. Madhusudan, and Francesco Sorrentino. Meta-analysis for atom-
icity violations under nested locking. In Proc. CAV, 2009.

[168] Alan Fekete. Allocating isolation levels to transactions. In Proceedings of the Twenty-
fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Sys-
tems, PODS ’05, pages 206–215, New York, NY, USA, 2005. ACM.

[169] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Den-
nis Shasha. Making snapshot isolation serializable. ACM Trans. Database Syst.,
30(2):492–528, June 2005.

[170] C. J. Fidge. Timestamps in message-passing systems that preserve the partial order-
ing. Proceedings of the 11th Australian Computer Science Conference, 10(1), 1988.

[171] Michael J Fischer, Nancy A Lynch, and Michael Merritt. Easy impossibility proofs
for distributed consensus problems. Distributed Computing, 1(1):26–39, 1986.

[172] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM (JACM), 32(2):374–
382, 1985.

[173] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. J. ACM, 32(2):374–382, April 1985.

[174] Cormac Flanagan. Verifying commit-atomicity using model-checking. In Susanne
Graf and Laurent Mounier, editors, Model Checking Software, volume 2989 of LNCS,
pages 252–266. Springer Berlin Heidelberg, 2004.

[175] Cormac Flanagan and Stephen N Freund. Atomizer: A dynamic atomicity checker
for multithreaded programs. In Proc. POPL, 2004.

289

[176] Cormac Flanagan, Stephen N. Freund, Marina Lifshin, and Shaz Qadeer. Types for
atomicity: Static checking and inference for java. ACM Trans. Program. Lang. Syst.,
30(4):20:1–20:53, August 2008.

[177] Cormac Flanagan, Stephen N. Freund, and Jaeheon Yi. Velodrome: A sound and
complete dynamic atomicity checker for multithreaded programs. In Proc. PLDI,
2008.

[178] Cormac Flanagan and Shaz Qadeer. A type and effect system for atomicity. In Proc.
PLDI, 2003.

[179] Mitch Fletcher. Progression of an open architecture: from orion to altair and lss.
Technical Report White paper S65- 5000-20-0, Honeywell International, Glendale,
2009.

[180] Martin Florian, Sebastian Henningsen, Charmaine Ndolo, and Björn Scheuermann.
The sum of its parts: Analysis of federated byzantine agreement systems. Distributed
Computing, pages 1–19, 2022.

[181] Cédric Fournet, Gurvan Le Guernic, and Tamara Rezk. A security-preserving com-
piler for distributed programs: From information-flow policies to cryptographic mech-
anisms. In Proceedings of the 16th ACM conference on Computer and communications
security, pages 432–441, 2009.

[182] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.
Dumbo-ng: Fast asynchronous bft consensus with throughput-oblivious latency. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, pages 1187–1201, 2022.

[183] Juan Garay and Aggelos Kiayias. Sok: A consensus taxonomy in the blockchain era.
In Cryptographers’ track at the RSA conference, pages 284–318. Springer, 2020.

[184] Rui Garcia, Rodrigo Rodrigues, and Nuno Preguica. Efficient middleware for byzan-
tine fault tolerant database replication. In Proceedings of the Sixth Conference on
Computer Systems, EuroSys ’11, pages 107–122, New York, NY, USA, 2011. ACM.

[185] Álvaro Garc´ia-Pérez and Alexey Gotsman. Federated byzantine quorum systems. In
22nd International Conference on Principles of Distributed Systems (OPODIS 2018).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[186] Álvaro Garc´ia-Pérez, Alexey Gotsman, Yuri Meshman, and Ilya Sergey. Paxos con-
sensus, deconstructed and abstracted. In European Symposium on Programming,
pages 912–939. Springer, Cham, 2018.

[187] Álvaro Garc´ia-Pérez and Maria A Schett. Deconstructing stellar consensus (ex-
tended version). arXiv preprint arXiv:1911.05145, 2019.

[188] Adria Gascón and Ashish Tiwari. Synthesis of a simple self-stabilizing system. In
Proc. 3rd Workshop on Synthesis (SYNT), 2014.

290

[189] André Gaul, Ismail Khoffi, Jörg Liesen, and Torsten Stüber. Mathematical anal-
ysis and algorithms for federated byzantine agreement systems. arXiv preprint
arXiv:1912.01365, 2019.

[190] Dennis Geels, Gautam Altekar, Petros Maniatis, Timothy Roscoe, and Ion Stoica. Fri-
day: Global comprehension for distributed replay. In Proceedings of the 4th USENIX
Conference on Networked Systems Design & Implementation, NSDI’07, pages
21–21, Berkeley, CA, USA, 2007. USENIX Association.

[191] Rati Gelashvili, Lefteris Kokoris-Kogias, Alexander Spiegelman, and Zhuolun Xiang.
Brief announcement: Be prepared when network goes bad: An asynchronous view-
change protocol. In Proceedings of the 2021 ACM Symposium on Principles of Dis-
tributed Computing, pages 187–190, 2021.

[192] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert Ritz-
dorf, and Srdjan Capkun. On the security and performance of proof of work
blockchains. In Proceedings of the 2016 ACM SIGSAC conference on computer and
communications security, pages 3–16, 2016.

[193] David K Gifford. Weighted voting for replicated data. In Proceedings of the seventh
ACM symposium on Operating systems principles, pages 150–162. ACM, 1979.

[194] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.
Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the
26th symposium on operating systems principles, pages 51–68, 2017.

[195] Seth Gilbert. RAMBO II: Rapidly reconfigurable atomic memory for dynamic net-
works. PhD thesis, Massachusetts Institute of Technology, 2003.

[196] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2), June 2002.

[197] Seth Gilbert and Nancy A. Lynch. Perspectives on the CAP theorem. IEEE Com-
puter, 45(2):30–36, 2012.

[198] Guy Goren, Yoram Moses, and Alexander Spiegelman. Probabilistic indistin-
guishability and the quality of validity in byzantine agreement. arXiv preprint
arXiv:2011.04719, 2020.

[199] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc
Shapiro. ’cause i’m strong enough: Reasoning about consistency choices in distributed
systems. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’16, pages 371–384, New York, NY,
USA, 2016. ACM.

[200] Mike Graf, Ralf Küsters, and Daniel Rausch. Accountability in a permissioned
blockchain: Formal analysis of hyperledger fabric. In 2020 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pages 236–255. IEEE, 2020.

291

[201] Mike Graf, Daniel Rausch, Viktoria Ronge, Christoph Egger, Ralf Küsters, and Do-
minique Schröder. A security framework for distributed ledgers. In Proceedings of the
2021 ACM SIGSAC Conference on Computer and Communications Security, pages
1043–1064, 2021.

[202] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan (New-
man) Wu, Shu-Chun Weng, Haozhong Zhang, and Yu Guo. Deep specifications and
certified abstraction layers. In Proceedings of the 42Nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’15, pages
595–608, New York, NY, USA, 2015. ACM.

[203] Marco Guarnieri, Musard Balliu, Daniel Schoepe, David Basin, and Andrei Sabelfeld.
Information-flow control for database-backed applications. In 2019 IEEE European
Symposium on Security and Privacy (EuroS&P), pages 79–94. IEEE, 2019.

[204] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. The next 700
bft protocols. In Proceedings of the 5th European conference on Computer systems,
pages 363–376, 2010.

[205] Rachid Guerraoui, Jovan Komatovic, Petr Kuznetsov, Yvonne-Anne Pignolet,
Dragos-Adrian Seredinschi, and Andrei Tonkikh. Dynamic byzantine reliable broad-
cast [technical report]. arXiv preprint arXiv:2001.06271, 2020.

[206] Rachid Guerraoui, Matej Pavlovic, and Dragos-Adrian Seredinschi. Incremental con-
sistency guarantees for replicated objects. In OSDI, pages 169–184, 2016.

[207] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. Sbft:
A scalable and decentralized trust infrastructure. In 2019 49th Annual IEEE/IFIP
international conference on dependable systems and networks (DSN), pages 568–580.
IEEE, 2019.

[208] Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang.
Speeding dumbo: Pushing asynchronous bft closer to practice. Cryptology ePrint
Archive, 2022.

[209] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng Zhang. Dumbo:
Faster asynchronous bft protocols. In Proceedings of the 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security, pages 803–818, 2020.

[210] Zhenyu Guo, Chuntao Hong, Mao Yang, Dong Zhou, Lidong Zhou, and Li Zhuang.
Rex: replication at the speed of multi-core. In Proc. Eurosys, 2014.

[211] Zhenyu Guo, Sean McDirmid, Mao Yang, Li Zhuang, Pu Zhang, Yingwei Luo, Tom
Bergan, Peter Bodik, Madan Musuvathi, Zheng Zhang, and Lidong Zhou. Failure
recovery: When the cure is worse than the disease. In Proc. HotOS, 2013.

[212] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. Resilientdb:
Global scale resilient blockchain fabric. Proceedings of the VLDB Endowment, 13(6).

292

[213] Philipp Haller and Martin Odersky. Scala actors: Unifying thread-based and event-
based programming. Theor. Comput. Sci., 410(2-3):202–220, February 2009.

[214] Md. E. Haque, Yong Hun Eom, Yuxiong He, Sameh Elnikety, Ricardo Bianchini, and
Kathryn S. McKinley. Few-to-many: Incremental parallelism for reducing tail latency
in interactive services. In Proc. ASPLOS, 2015.

[215] John Hatcliff, Robby, and MatthewB. Dwyer. Verifying atomicity specifications for
concurrent object-oriented software using model-checking. In Bernhard Steffen and
Giorgio Levi, editors, Verification, Model Checking, and Abstract Interpretation, vol-
ume 2937 of LNCS, pages 175–190. Springer Berlin Heidelberg, 2004.

[216] Klaus Havelund and Thomas Pressburger. Model checking java programs using
java pathfinder. International Journal on Software Tools for Technology Transfer,
2(4):366–381, 2000.

[217] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath Setty, and Brian Zill. Ironfleet: Proving practical dis-
tributed systems correct. In Proceedings of the 25th Symposium on Operating Systems
Principles, SOSP ’15, pages 1–17, New York, NY, USA, 2015. ACM.

[218] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R Lorch, Bryan Parno,
Michael L Roberts, Srinath Setty, and Brian Zill. Ironfleet: proving practical dis-
tributed systems correct. In Proceedings of the 25th Symposium on Operating Systems
Principles, pages 1–17, 2015.

[219] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno, Dan-
feng Zhang, and Brian Zill. Ironclad apps: End-to-end security via automated full-
system verification. In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI’14, pages 165–181, Berkeley, CA, USA,
2014. USENIX Association.

[220] Jifeng He, C. A. R. Hoare, and Jeff W. Sanders. Data refinement refined. In Proc.
ESOP, 1986.

[221] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support
for lock-free data structures. In Proc. ISCA, 1993.

[222] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor formalism
for artificial intelligence. In Proceedings of the 3rd International Joint Conference
on Artificial Intelligence, IJCAI’73, pages 235–245, San Francisco, CA, USA, 1973.
Morgan Kaufmann Publishers Inc.

[223] Martin Hirt, Ard Kastrati, and Chen-Da Liu-Zhang. Multi-threshold asynchronous
reliable broadcast and consensus. Cryptology ePrint Archive, 2020.

[224] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677,
August 1978.

293

[225] Jan Hoffmann, Michael Marmar, and Zhong Shao. Quantitative reasoning for proving
lock-freedom. In Proceedings of the 2013 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, pages 124–133. IEEE Computer Society, 2013.

[226] Brandon Holt, James Bornholt, Irene Zhang, Dan Ports, Mark Oskin, and Luis Ceze.
Disciplined inconsistency with consistency types. In Proceedings of the Seventh ACM
Symposium on Cloud Computing, SoCC ’16, pages 279–293, New York, NY, USA,
2016. ACM.

[227] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In Proceedings of the 2010 USENIX
Conference on USENIX Annual Technical Conference, USENIXATC’10, pages 11–11,
Berkeley, CA, USA, 2010. USENIX Association.

[228] Phillip W. Hutto and Mustaque Ahamad. Slow memory: Weakening consistency to
enchance concurrency in distributed shared memories. In ICDCS, 1990.

[229] Rebecca Ingram, Patrick Shields, Jennifer E Walter, and Jennifer L Welch. An asyn-
chronous leader election algorithm for dynamic networks. In 2009 IEEE International
Symposium on Parallel & Distributed Processing, pages 1–12. IEEE, 2009.

[230] Sushil Jajodia and Catherine A Meadows. Mutual consistency in decentralized dis-
tributed systems. In 1987 IEEE Third International Conference on Data Engineering,
pages 396–404. IEEE, 1987.

[231] Mauro Jaskelioff and Stephan Merz. Proving the correctness of disk paxos. Archive
of Formal Proofs, 2005, 2005.

[232] Chamikara Jayalath and Patrick Eugster. Efficient geo-distributed data processing
with rout. In Proc. ICDCS, 2013.

[233] Leander Jehl, Roman Vitenberg, and Hein Meling. Smartmerge: A new approach
to reconfiguration for atomic storage. In International Symposium on Distributed
Computing, pages 154–169. Springer, 2015.

[234] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soule,
Changhoon Kim, and Ion Stoica. Netchain: Scale-free sub-rtt coordination. In 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 18).
USENIX Association, 2018.

[235] Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder. Param-
eterized model checking of fault-tolerant distributed algorithms by abstraction. In
Proc. FMCAD, 2013.

[236] Cliff B. Jones. Tentative steps toward a development method for interfering programs.
ACM Transactions on Programming Languages and Systems (TOPLAS), 5(4):596–
619, 1983.

294

[237] Gowtham Kaki, Kartik Nagar, Mahsa Najafzadeh, and Suresh Jagannathan. Alone
together: Compositional reasoning and inference for weak isolation. Proc. ACM Pro-
gram. Lang., 2(POPL):27:1–27:34, December 2017.

[238] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle,
Seyed Vahid Mohammadi, Wolfgang Schröder-Preikschat, and Klaus Stengel. Cheap-
bft: Resource-efficient byzantine fault tolerance. In Proceedings of the 7th ACM
European Conference on Computer Systems, EuroSys ’12, pages 295–308, New York,
NY, USA, 2012. ACM.

[239] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander Spiegelman. All
you need is dag. In Proceedings of the 2021 ACM Symposium on Principles of Dis-
tributed Computing, pages 165–175, 2021.

[240] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for
byzantine consensus. In Advances in Cryptology–CRYPTO 2020: 40th Annual Inter-
national Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August
17–21, 2020, Proceedings, Part III 40, pages 451–480. Springer, 2020.

[241] Pertti Kellomäki. An annotated specification of the consensus protocol of paxos using
superposition in pvs. Technical report, Technical report 36, Tampere University of
Technology, Institute of Software . . . , 2004.

[242] Christoph Kerschbaumer, Eric Hennigan, Per Larsen, Stefan Brunthaler, and Michael
Franz. Crowdflow: Efficient information flow security. In Information Security, pages
321–337. Springer, 2015.

[243] Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin M.
Vahdat. Mace: Language support for building distributed systems. In Proceedings of
the 28th ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’07, pages 179–188, New York, NY, USA, 2007. ACM.

[244] Minjeong Kim, Yujin Kwon, and Yongdae Kim. Is stellar as secure as you think? In
2019 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW),
pages 377–385. IEEE, 2019.

[245] J. Kirsch, S. Goose, Y. Amir, D. Wei, and P. Skare. Survivable scada via intrusion-
tolerant replication. IEEE Transactions on Smart Grid, 5(1):60–70, Jan 2014.

[246] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray, Thomas Sewell,
Rafal Kolanski, and Gernot Heiser. Comprehensive formal verification of an os mi-
crokernel. ACM Trans. Comput. Syst., 32(1):2:1–2:70, February 2014.

[247] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta,
and Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via sharding.
In 2018 IEEE Symposium on Security and Privacy (SP), pages 583–598. IEEE, 2018.

295

[248] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski,
Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and
Scott Shenker. Onix: A distributed control platform for large-scale production net-
works. In Proceedings of the 9th USENIX Conference on Operating Systems Design
and Implementation, OSDI’10, pages 351–364, Berkeley, CA, USA, 2010. USENIX
Association.

[249] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong.
Zyzzyva: Speculative byzantine fault tolerance. In Proceedings of Twenty-first ACM
SIGOPS Symposium on Operating Systems Principles, SOSP ’07, pages 45–58, New
York, NY, USA, 2007. ACM.

[250] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund Wong.
Zyzzyva: speculative byzantine fault tolerance. In Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles, pages 45–58, 2007.

[251] Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann. Consistency
rationing in the cloud: Pay only when it matters. Proc. VLDB Endow., 2(1):253–264,
August 2009.

[252] Philipp Kufner, Uwe Nestmann, and Christina Rickmann. Formal verification of
distributed algorithms. In Theoretical Computer Science, volume 7604 of LNCS. 2012.

[253] Viktor Kuncak, Huu Hai Nguyen, and Martin Rinard. Deciding boolean algebra with
presburger arithmetic. Journal of Automated Reasoning, 36(3):213–239, 2006.

[254] Viktor Kuncak and Martin Rinard. Towards efficient satisfiability checking for boolean
algebra with presburger arithmetic. In International Conference on Automated De-
duction, pages 215–230. Springer, 2007.

[255] Lukasz Lachowski. Complexity of the quorum intersection property of the federated
byzantine agreement system. arXiv preprint arXiv:1902.06493, 2019.

[256] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Providing high
availability using lazy replication. ACM Trans. Comput. Syst., 10(4), 1992.

[257] Ori Lahav and Viktor Vafeiadis. Owicki-gries reasoning for weak memory models. In
International Colloquium on Automata, Languages, and Programming, pages 311–323.
Springer, 2015.

[258] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized structured stor-
age system. SIGOPS Oper. Syst. Rev., 44(2), 2010.

[259] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7), 1978.

[260] Leslie Lamport. Introduction to TLA. Technical report, 1994.

[261] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2), 1998.

296

[262] LESLIE LAMPORT. The part-time parliament. ACM Transactions on Computer
Systems, 16(2):133–169, 1998.

[263] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing
Column) 32, 4 (Whole Number 121, December 2001), pages 51–58, 2001.

[264] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

[265] Leslie Lamport. Lower bounds for asynchronous consensus. Distributed Computing,
19:104–125, 2006.

[266] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Reconfiguring a state machine.
ACM SIGACT News, 41(1):63–73, 2010.

[267] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems, pages 382–401, 1982.

[268] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[269] Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–
115, July 2009.

[270] Mohsen Lesani. Tm testing tool source code. http://people.csail.mit.edu/

lesani/companion/disc13/index.html, 2013.

[271] Mohsen Lesani. Pvs proofs of tl2 transactional memory algorithm based on sol logic.
http://people.csail.mit.edu/lesani/companion/dissertation/, 2014.

[272] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar: Certified causally
consistent distributed key-value stores. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’16,
pages 357–370, New York, NY, USA, 2016. ACM.

[273] Mohsen Lesani, Victor Luchangco, and Mark Moir. A framework for formally verifying
software transactional memory algorithms. In Proceedings of the 23rd International
Conference on Concurrency Theory, CONCUR’12, pages 516–530, Berlin, Heidelberg,
2012. Springer-Verlag.

[274] Mohsen Lesani, Victor Luchangco, and Mark Moir. Pvs framework for transac-
tional memory verification. http://people.csail.mit.edu/lesani/companion/

concur12/index.html, 2014.

[275] Mohsen Lesani, Todd Millstein, and Jens Palsberg. Chapar verification frame-
work source code. http://people.csail.mit.edu/lesani/companion/popl16/

artifact/index.html, 2014.

[276] Mohsen Lesani, Todd Millstein, and Jens Palsberg. Snowflake verification tool source
code. http://people.csail.mit.edu/lesani/companion/cav14/, 2014.

297

http://people.csail.mit.edu/lesani/companion/disc13/index.html
http://people.csail.mit.edu/lesani/companion/disc13/index.html
http://people.csail.mit.edu/lesani/companion/dissertation/
http://people.csail.mit.edu/lesani/companion/concur12/index.html
http://people.csail.mit.edu/lesani/companion/concur12/index.html
http://people.csail.mit.edu/lesani/companion/popl16/artifact/index.html
http://people.csail.mit.edu/lesani/companion/popl16/artifact/index.html
http://people.csail.mit.edu/lesani/companion/cav14/

[277] Mohsen Lesani, Todd D. Millstein, and Jens Palsberg. Automatic atomicity verifica-
tion for clients of concurrent data structures. In Computer Aided Verification - 26th
International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings, pages 550–567, 2014.

[278] Mohsen Lesani and Jens Palsberg. Communicating memory transactions. In Proceed-
ings of the 16th ACM Symposium on Principles and Practice of Parallel Programming,
PPoPP ’11, pages 157–168, New York, NY, USA, 2011. ACM.

[279] Mohsen Lesani and Jens Palsberg. Proving Non-opacity, pages 106–120. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[280] Mohsen Lesani and Jens Palsberg. Decomposing Opacity, pages 391–405. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2014.

[281] Andrew Lewis-Pye and Tim Roughgarden. Byzantine generals in the permissionless
setting. arXiv preprint arXiv:2101.07095, 2021.

[282] Andrew Lewis-Pye and Tim Roughgarden. Permissionless consensus. arXiv preprint
arXiv:2304.14701, 2023.

[283] Cheng Li, João Leitão, Allen Clement, Nuno Preguica, Rodrigo Rodrigues, and Viktor
Vafeiadis. Automating the choice of consistency levels in replicated systems. In Pro-
ceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference,
USENIX ATC’14, pages 281–292, Berkeley, CA, USA, 2014. USENIX Association.

[284] Cheng Li, João Leitão, Allen Clement, Nuno Preguica, and Rodrigo Rodrigues. Min-
imizing coordination in replicated systems. In Proceedings of the First Workshop on
Principles and Practice of Consistency for Distributed Data, page 8. ACM, 2015.

[285] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguica, and Ro-
drigo Rodrigues. Making geo-replicated systems fast as possible, consistent when nec-
essary. In Proceedings of the 10th USENIX Conference on Operating Systems Design
and Implementation, OSDI’12, pages 265–278, Berkeley, CA, USA, 2012. USENIX
Association.

[286] Jinyuan Li and David Maziéres. Beyond one-third faulty replicas in byzantine fault
tolerant systems. In Proceedings of the 4th USENIX Conference on Networked Systems
Design & Implementation, NSDI’07, pages 10–10, Berkeley, CA, USA, 2007.
USENIX Association.

[287] Jinyuan Li and David Mazieres. Beyond one-third faulty replicas in byzantine fault
tolerant systems. In NSDI, pages 10–10, 2007.

[288] Peixuan Li and Danfeng Zhang. A derivation framework for dependent security label
inference. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–26,
2018.

298

[289] Xiao Li, Eric Chan, and Mohsen Lesani. Quorum subsumption for heterogeneous
quorum systems. In 37th International Symposium on Distributed Computing (DISC
2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023.

[290] Xiao Li, Eric Chan, and Mohsen Lesani. Quorum subsumption for heterogeneous quo-
rum systems. technical report. In International Symposium on Distributed Computing
(DISC 2023), 2023.

[291] Xiao Li, Farzin Houshmand, and Mohsen Lesani. Hampa: Solver-aided recency-aware
replication. In International Conference on Computer Aided Verification, pages 324–
349. Springer, 2020.

[292] Xiao Li, Farzin Houshmand, and Mohsen Lesani. Hamraz: Resilient partitioning and
replication. In 2022 IEEE Symposium on Security and Privacy (SP), pages 2267–2284.
IEEE, 2022.

[293] Xiao Li and Mohsen Lesani. Reconfigurable heterogeneous quorum systems. https:

//mohsenlesani.github.io/companion/disc24/FullPaper.pdf.

[294] Xiao Li and Mohsen Lesani. Open heterogeneous quorum systems, 2023.

[295] Xiao Li and Mohsen Lesani. Reconfigurable heterogeneous quorum systems. arXiv
preprint: arXiv: 2304.02156, 2024.

[296] Richard J. Lipton. Reduction: A method of proving properties of parallel programs.
Commun. ACM, 18(12):717–721, December 1975.

[297] Barbara Liskov, Sanjay Ghemawat, Robert Gruber, Paul Johnson, Liuba Shrira, and
Michael Williams. Replication in the harp file system. In Proceedings of the Thirteenth
ACM Symposium on Operating Systems Principles, SOSP ’91, pages 226–238, New
York, NY, USA, 1991. ACM.

[298] Mark C Little and Daniel L McCue. The replica management system: a scheme for
flexible and dynamic replication. In Proceedings of 2nd International Workshop on
Configurable Distributed Systems, pages 46–57. IEEE, 1994.

[299] Jed Liu, Owen Arden, Michael D George, and Andrew C Myers. Fabric: Building
open distributed systems securely by construction. Journal of Computer Security,
25(4-5):367–426, 2017.

[300] Jed Liu, Tom Magrino, Owen Arden, Michael D. George, and Andrew C. Myers.
Warranties for faster strong consistency. In Proceedings of the 11th USENIX Con-
ference on Networked Systems Design and Implementation, NSDI’14, pages 503–517,
Berkeley, CA, USA, 2014. USENIX Association.

[301] Shen Liu, Gang Tan, and Trent Jaeger. Ptrsplit: Supporting general pointers in
automatic program partitioning. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17, pages 2359–2371, 2017.

299

https://mohsenlesani.github.io/companion/disc24/FullPaper.pdf
https://mohsenlesani.github.io/companion/disc24/FullPaper.pdf

[302] Xuezheng Liu, Zhenyu Guo, Xi Wang, Feibo Chen, Xiaochen Lian, Jian Tang, Ming
Wu, M. Frans Kaashoek, and Zheng Zhang. D3s: Debugging deployed distributed
systems. In Proceedings of the 5th USENIX Symposium on Networked Systems Design
and Implementation, NSDI’08, pages 423–437, Berkeley, CA, USA, 2008. USENIX
Association.

[303] Yanhong A. Liu, Scott D. Stoller, Bo Lin, and Michael Gorbovitski. From clarity
to efficiency for distributed algorithms. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages and Applications,
OOPSLA ’12, pages 395–410, New York, NY, USA, 2012. ACM.

[304] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t
settle for eventual: Scalable causal consistency for wide-area storage with COPS. In
Proc. SOSP, 2011.

[305] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Stronger semantics for low-latency geo-replicated storage. In Proc. NSDI, 2013.

[306] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen. Don’t
settle for eventual consistency. Communications of the ACM, 57(5):61–68, 2014.

[307] Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nicolas Barry, Eli
Gafni, Jonathan Jove, Rafa l Malinowsky, and Jed McCaleb. Fast and secure global
payments with stellar. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles, pages 80–96, 2019.

[308] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. STOC ’14,
pages 1219–1234, 2012.

[309] Jacob R Lorch, Atul Adya, William J Bolosky, Ronnie Chaiken, John R Douceur,
and Jon Howell. The smart way to migrate replicated stateful services. In Proceedings
of the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems 2006,
pages 103–115, 2006.

[310] Jacob R. Lorch, Atul Adya, William J. Bolosky, Ronnie Chaiken, John R. Douceur,
and Jon Howell. The smart way to migrate replicated stateful services. In Proceedings
of the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems 2006,
EuroSys ’06, pages 103–115, New York, NY, USA, 2006. ACM.

[311] Giuliano Losa, Eli Gafni, and David Mazières. Stellar consensus by instantiation.
In 33rd International Symposium on Distributed Computing (DISC 2019). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[312] Donghang Lu, Thomas Yurek, Samarth Kulshreshtha, Rahul Govind, Aniket Kate,
and Andrew Miller. Honeybadgermpc and asynchromix: Practical asynchronous mpc
and its application to anonymous communication. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 887–903,
2019.

300

[313] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics. In Proc. ASPLOS,
2008.

[314] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. Avio: Detecting atomicity
violations via access interleaving invariants. In Proc. ASPLOS, 2006.

[315] Shiyong Lu, Arthur Bernstein, and Philip Lewis. Correct execution of transactions
at different isolation levels. IEEE Transactions on Knowledge and Data Engineering,
16(9):1070–1081, 2004.

[316] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. A secure sharding protocol for open blockchains. In Proceedings of
the 2016 ACM SIGSAC conference on computer and communications security, pages
17–30, 2016.

[317] Nancy Lynch and Alex A Shvartsman. Rambo: A reconfigurable atomic memory ser-
vice for dynamic networks. In Distributed Computing: 16th International Conference,
DISC 2002 Toulouse, France, October 28–30, 2002 Proceedings 16, pages 173–190.
Springer, 2002.

[318] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.
CWI Quarterly, 2, 1989.

[319] Ethan MacBrough. Cobalt: Bft governance in open networks. arXiv preprint
arXiv:1802.07240, 2018.

[320] P. Madhusudan and P.S. Thiagarajan. Distributed controller synthesis for local spec-
ifications. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors,
Automata, Languages and Programming, pages 396–407, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg.

[321] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. Consistency, availability, and
convergence. Technical Report UTCS TR-11-22, The University of Texas at Austin,
2011.

[322] Haohui Mai, Edgar Pek, Hui Xue, Samuel Talmadge King, and Parthasarathy Mad-
husudan. Verifying security invariants in expressos. In Proceedings of the Eighteenth
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS ’13, pages 293–304, New York, NY, USA, 2013. ACM.

[323] Ivan Malakhov, Andrea Marin, Sabina Rossi, and Daria Smuseva. On the use of proof-
of-work in permissioned blockchains: Security and fairness. IEEE Access, 10:1305–
1316, 2021.

[324] Dahlia Malkhi and Kartik Nayak. Hotstuff-2: Optimal two-phase responsive bft.
Cryptology ePrint Archive, 2023.

301

[325] Dahlia Malkhi, Kartik Nayak, and Ling Ren. Flexible byzantine fault tolerance. In
Proceedings of the 2019 ACM SIGSAC conference on computer and communications
security, pages 1041–1053, 2019.

[326] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed Comput-
ing, 11(4):203–213, 1998.

[327] Dahlia Malkhi and Michael Reiter. Byzantine quorum systems. Distributed computing,
11(4):203–213, 1998.

[328] Mohammad Hossein Manshaei, Murtuza Jadliwala, Anindya Maiti, and Mahdi
Fooladgar. A game-theoretic analysis of shard-based permissionless blockchains. IEEE
Access, 6:78100–78112, 2018.

[329] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: Building efficient
replicated state machines for wans. In Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation, OSDI’08, pages 369–384, Berkeley,
CA, USA, 2008. USENIX Association.

[330] Parisa Jalili Marandi, Samuel Benz, Fernando Pedone, and Kenneth P. Birman. The
performance of Paxos in the cloud. In Proc. SRDS, 2014.

[331] Parisa Jalili Marandi, M. Primi, N. Schiper, and F. Pedone. Ring paxos: A high-
throughput atomic broadcast protocol. In 2010 IEEE/IFIP International Conference
on Dependable Systems Networks (DSN), pages 527–536, June 2010.

[332] Giorgia Azzurra Marson, Sebastien Andreina, Lorenzo Alluminio, Konstantin Mu-
nichev, and Ghassan Karame. Mitosis: practically scaling permissioned blockchains.
In Annual Computer Security Applications Conference, pages 773–783, 2021.

[333] Friedemann Mattern. Virtual time and global states of distributed systems. In Parallel
and Distributed Algorithms, 1989.

[334] David Mazieres. The stellar consensus protocol: A federated model for internet-level
consensus. Stellar Development Foundation, 32:1–45, 2015.

[335] Baoluo Meng, Andrew Reynolds, Cesare Tinelli, and Clark Barrett. Relational con-
straint solving in smt. In International Conference on Automated Deduction, pages
148–165. Springer, 2017.

[336] Matthew Milano and Andrew C Myers. Mixt: A language for mixing consistency in
geodistributed transactions. 2018.

[337] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger
of bft protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, page 31–42, New York, NY, USA, 2016.
Association for Computing Machinery.

302

[338] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger
of bft protocols. In Proceedings of the 2016 ACM SIGSAC conference on computer
and communications security, pages 31–42, 2016.

[339] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, i.
Inf. Comput., 100(1):1–40, September 1992.

[340] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, ii.
Inf. Comput., 100(1):41–77, September 1992.

[341] Atsuki Momose and Ling Ren. Multi-threshold byzantine fault tolerance. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, pages 1686–1699, 2021.

[342] Atsuki Momose and Ling Ren. Constant latency in sleepy consensus. Cryptology
ePrint Archive, 2022.

[343] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more consensus
in egalitarian parliaments. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 358–372, New York, NY, USA, 2013.
ACM.

[344] Achour Mostefaoui, Michel Raynal, Corentin Travers, Stacy Patterson, Divyakant
Agrawal, and Amr EL Abbadi. From static distributed systems to dynamic systems.
In 24th IEEE Symposium on Reliable Distributed Systems (SRDS’05), pages 109–118.
IEEE, 2005.

[345] Toby Murray, Daniel Matichuk, Matthew Brassil, Peter Gammie, and Gerwin Klein.
Noninterference for operating system kernels. In International Conference on Certified
Programs and Proofs, pages 126–142. Springer, 2012.

[346] Madanlal Musuvathi and Dawson R. Engler. Model checking large network protocol
implementations. In Proc. NSDI, 2004.

[347] Andrew C Myers. Jflow: Practical mostly-static information flow control. In Proceed-
ings of the 26th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 228–241, 1999.

[348] Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira, and Marc
Shapiro. The cise tool: Proving weakly-consistent applications correct. In Proceedings
of the 2Nd Workshop on the Principles and Practice of Consistency for Distributed
Data, PaPoC ’16, pages 2:1–2:3, New York, NY, USA, 2016. ACM.

[349] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.

[350] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. White paper, 2008.

[351] Oded Naor, Mathieu Baudet, Dahlia Malkhi, and Alexander Spiegelman. Cogsworth:
Byzantine view synchronization. arXiv preprint arXiv:1909.05204, 2019.

303

[352] Sri Hari Krishna Narayanan, Mahmut Kandemir, and R Brooks. Performance aware
secure code partitioning. In 2007 Design, Automation & Test in Europe Conference
& Exhibition, pages 1–6. IEEE, 2007.

[353] Francesco Zappa Nardelli, Peter Sewell, Jaroslav Sevcik, Susmit Sarkar, Scott Owens,
Luc Maranget, Mark Batty, and Jade Alglave. Relaxed memory models must be
rigorous. In Exploiting Concurrency Efficiently and Correctly Workshop, 2009.

[354] Alejandro Naser-Pastoriza, Gregory Chockler, and Alexey Gotsman. Fault-tolerant
computing with unreliable channels. In 27th International Conference on Principles
of Distributed Systems (OPODIS 2023). Schloss-Dagstuhl-Leibniz Zentrum für Infor-
matik, 2024.

[355] Joachim Neu, Ertem Nusret Tas, and David Tse. Ebb-and-flow protocols: A resolution
of the availability-finality dilemma. In 2021 IEEE Symposium on Security and Privacy
(SP), pages 446–465. IEEE, 2021.

[356] Matthias Neubauer and Peter Thiemann. From sequential programs to multi-tier
applications by program transformation. In Proceedings of the 32nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 221–232, 2005.

[357] Peter W. OHearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci.,
375(1-3):271–307, 2007.

[358] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary copy
method to support highly-available distributed systems. In Proceedings of the Seventh
Annual ACM Symposium on Principles of Distributed Computing, PODC ’88, pages
8–17, New York, NY, USA, 1988. ACM.

[359] Diego Ongaro and John Ousterhout. In search of an understandable consensus al-
gorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC 14), pages
305–319, 2014.

[360] Diego Ongaro and John Ousterhout. In search of an understandable consensus algo-
rithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical
Conference, USENIX ATC’14, pages 305–320, Berkeley, CA, USA, 2014. USENIX
Association.

[361] Susan Owicki and David Gries. An axiomatic proof technique for parallel programs
i. Acta Informatica, 6(4):319–340, 1976.

[362] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos made epr:
decidable reasoning about distributed protocols. Proceedings of the ACM on Pro-
gramming Languages, 1(OOPSLA):1–31, 2017.

[363] Chang-Seo Park and Koushik Sen. Randomized active atomicity violation detection
in concurrent programs. In Proc. FSE, 2008.

304

[364] James Parker, Niki Vazou, and Michael Hicks. Lweb: Information flow security for
multi-tier web applications. volume 3 of POPL ’19, pages 1–30. ACM New York, NY,
USA, 2019.

[365] Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2nd edition,
2013.

[366] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permission-
less model. Cryptology ePrint Archive, 2016.

[367] Rafael Pass and Elaine Shi. Thunderella: Blockchains with optimistic instant confir-
mation. In Advances in Cryptology–EUROCRYPT 2018: 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29-May 3, 2018 Proceedings, Part II 37, pages 3–33. Springer, 2018.

[368] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Greenberg,
David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu, Changhoon
Kim, and Naveen Karri. Ananta: Cloud scale load balancing. In Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM, SIGCOMM ’13, pages 207–218,
New York, NY, USA, 2013. ACM.

[369] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer, and Alan J.
Demers. Flexible update propagation for weakly consistent replication. In Proc. SOSP,
1997.

[370] James L. Peterson. Petri nets. ACM Comput. Surv., 9(3):223–252, September 1977.

[371] F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proc. PLDI, 1988.

[372] Frank Pfenning and Robert J. Simmons. Substructural operational semantics as or-
dered logic programming. In Proc. LICS, 2009.

[373] Gordon D. Plotkin. The origins of structural operational semantics. In Proc. Journal
of Logic and Algebraic Programming, pages 60–61, 2004.

[374] Francois Pottier and Vincent Simonet. Information flow inference for ml. In Proceed-
ings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 319–330, 2002.

[375] Vincent Rahli. Interfacing with proof assistants for domain specific programming
using EventML. 10th International Workshop on User Interfaces for Theorem Provers,
2012.

[376] Vincent Rahli, David Guaspari, Mark Bickford, and Robert L Constable. Formal
specification, verification, and implementation of fault-tolerant systems using eventml.
Electronic Communications of the EASST, 72, 2015.

[377] Vincent Rahli, Ivana Vukotic, Marcus Völp, and Paulo Esteves-Verissimo. Velisar-
ios: Byzantine fault-tolerant protocols powered by coq. In European Symposium on
Programming, pages 619–650. Springer, 2018.

305

[378] Tayebeh Rajabi, Alvi Ataur Khalil, Mohammad Hossein Manshaei, Moham-
mad Ashiqur Rahman, Mohammad Dakhilalian, Maurice Ngouen, Murtuza Jadliwala,
and A Selcuk Uluagac. Feasibility analysis for sybil attacks in shard-based permission-
less blockchains. Distributed Ledger Technologies: Research and Practice, 2(4):1–21,
2023.

[379] Vineet Rajani and Deepak Garg. On the expressiveness and semantics of information
flow types. Journal of Computer Security, (Preprint):1–28, 2020.

[380] Krithi Ramamritham and Calton Pu. A formal characterization of epsilon serial-
izability. IEEE Transactions on Knowledge and Data Engineering, 7(6):997–1007,
1995.

[381] Aseem Rastogi, Matthew A Hammer, and Michael Hicks. Wysteria: A programming
language for generic, mixed-mode multiparty computations. In 2014 IEEE Symposium
on Security and Privacy, pages 655–670. IEEE, 2014.

[382] Michel Raynal and André Schiper. From causal consistency to sequential consistency
in shared memory systems. volume 1026 of LNCS. 1995.

[383] Michael K Reiter. A secure group membership protocol. IEEE Transactions on
Software Engineering, 22(1):31–42, 1996.

[384] Daniel Ricketts, Valentin Robert, Dongseok Jang, Zachary Tatlock, and Sorin Lerner.
Automating formal proofs for reactive systems. In Proceedings of the 35th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’14, pages 452–462, New York, NY, USA, 2014. ACM.

[385] Tom Ridge. Verifying distributed systems: the operational approach. In Proc. POPL,
2009.

[386] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. Replicated ab-
stract data types: Building blocks for collaborative applications. J. Parallel Distrib.
Comput., 71(3), 2011.

[387] Sudip Roy, Lucja Kot, Gabriel Bender, Bailu Ding, Hossein Hojjat, Christoph Koch,
Nate Foster, and Johannes Gehrke. The homeostasis protocol: Avoiding transaction
coordination through program analysis. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’15, pages 1311–1326,
New York, NY, USA, 2015. ACM.

[388] John Rushby. Bus Architectures for Safety-Critical Embedded Systems, pages 306–323.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

[389] Muhammad Saad, Songqing Chen, and David Mohaisen. Syncattack: Double-
spending in bitcoin without mining power. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pages 1668–1685, 2021.

306

[390] Muhammad Saad and David Mohaisen. Three birds with one stone: Efficient parti-
tioning attacks on interdependent cryptocurrency networks. In 2023 IEEE Symposium
on Security and Privacy (SP), pages 1404–1418. IEEE Computer Society, 2022.

[391] Muhammad Saad and David Mohaisen. Three birds with one stone: Efficient parti-
tioning attacks on interdependent cryptocurrency networks. In 2023 IEEE Symposium
on Security and Privacy (SP), pages 111–125. IEEE, 2023.

[392] Andrei Sabelfeld and Heiko Mantel. Static confidentiality enforcement for distributed
programs. In International Static Analysis Symposium, pages 376–394. Springer, 2002.

[393] Andrei Sabelfeld and Andrew C Myers. Language-based information-flow security.
IEEE Journal on selected areas in communications, 21(1):5–19, 2003.

[394] Caitlin Sadowski, Stephen N. Freund, and Cormac Flanagan. Singletrack: A dynamic
determinism checker for multithreaded programs. In Proc. ESOP, 2009.

[395] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas An-
derson. Eraser: A dynamic data race detector for multithreaded programs. ACM
Trans. Comput. Syst., 15(4):391–411, November 1997.

[396] N. Schiper, V. Rahli, R. van Renesse, M. Bickford, and R.L. Constable. Developing
correctly replicated databases using formal tools. In Proc. DSN, 2014.

[397] David Schwartz, Noah Youngs, and Arthur Britto. The ripple protocol consensus
algorithm. Ripple Labs Inc White Paper, 5(8):151, 2014.

[398] Alessandro Sforzin, Matteo Maso, Claudio Soriente, and Ghassan Karame. On the
storage overhead of proof-of-work blockchains. In 2022 IEEE International Conference
on Blockchain (Blockchain), pages 258–265. IEEE, 2022.

[399] Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. A comprehensive
study of Convergent and Commutative Replicated Data Types. Technical Report RR-
7506, INRIA, 2011.

[400] Isaac Sheff, Tom Magrino, Jed Liu, Andrew C Myers, and Robbert Van Renesse. Safe
serializable secure scheduling: Transactions and the trade-off between security and
consistency. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 229–241, 2016.

[401] Isaac Sheff, Xinwen Wang, Robbert van Renesse, and Andrew C Myers. Heterogeneous
paxos. In OPODIS: International Conference on Principles of Distributed Systems,
number 2020 in OPODIS, 2021.

[402] Isaac C Sheff, Robbert van Renesse, and Andrew C Myers. Distributed protocols and
heterogeneous trust: Technical report. arXiv preprint arXiv:1412.3136, 2014.

[403] Alexander Shraer, Benjamin Reed, Dahlia Malkhi, and Flavio P Junqueira. Dynamic
{Reconfiguration} of {Primary/Backup} clusters. In 2012 USENIX Annual Technical
Conference (USENIX ATC 12), pages 425–437, 2012.

307

[404] A Sinha, S. Malik, Chao Wang, and A Gupta. Predictive analysis for detecting
serializability violations through trace segmentation. In MEMOCODE, 2011.

[405] KC Sivaramakrishnan, Gowtham Kaki, and Suresh Jagannathan. Declarative pro-
gramming over eventually consistent data stores. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
’15, pages 413–424, New York, NY, USA, 2015. ACM.

[406] Geoffrey Smith and Dennis Volpano. Secure information flow in a multi-threaded
imperative language. In Proceedings of the 25th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pages 355–364, 1998.

[407] Alberto Sonnino, Shehar Bano, Mustafa Al-Bassam, and George Danezis. Replay
attacks and defenses against cross-shard consensus in sharded distributed ledgers. In
2020 IEEE European Symposium on Security and Privacy (EuroS&P), pages 294–308.
IEEE, 2020.

[408] Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan. Penelope: Weaving
threads to expose atomicity violations. In Proc. FSE, 2010.

[409] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional stor-
age for geo-replicated systems. In Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, SOSP ’11, pages 385–400, New York, NY, USA,
2011. ACM.

[410] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lefteris Kokoris-
Kogias. Bullshark: Dag bft protocols made practical. In Proceedings of the 2022
ACM SIGSAC Conference on Computer and Communications Security, pages 2705–
2718, 2022.

[411] Chrysoula Stathakopoulou, Tudor David, and Marko Vukolic. Mir-bft: High-
throughput bft for blockchains. arXiv preprint arXiv:1906.05552, page 92, 2019.

[412] Philippe Suter, Robin Steiger, and Viktor Kuncak. Sets with cardinality constraints
in satisfiability modulo theories. In International Workshop on Verification, Model
Checking, and Abstract Interpretation, pages 403–418. Springer, 2011.

[413] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer, and C. H.
Hauser. Managing update conflicts in Bayou, a weakly connected replicated storage
system. In Proc. SOSP, 1995.

[414] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan,
Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based service level agree-
ments for cloud storage. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, SOSP ’13, pages 309–324, New York, NY, USA, 2013.
ACM.

308

[415] Robert H Thomas. A majority consensus approach to concurrency control for multiple
copy databases. ACM Transactions on Database Systems (TODS), 4(2):180–209,
1979.

[416] Muoi Tran, Inho Choi, Gi Jun Moon, Anh V Vu, and Min Suk Kang. A stealthier
partitioning attack against bitcoin peer-to-peer network. In 2020 IEEE symposium
on security and privacy (SP), pages 894–909. IEEE, 2020.

[417] Nguyen Tran, Jinyang Li, Lakshminarayanan Subramanian, and Sherman SM Chow.
Optimal sybil-resilient node admission control. In 2011 Proceedings IEEE INFOCOM,
pages 3218–3226. IEEE, 2011.

[418] Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. A New Algorithm
for Generating All the Maximal Independent Sets. SIAM Journal on Computing,
6(3):505–517, 1977.

[419] Klaus v. Gleissenthall, Rami Gökhan Kici , Alexander Bakst, Deian Stefan, and Ran-
jit Jhala. Pretend synchrony: synchronous verification of asynchronous distributed
programs. Proceedings of the ACM on Programming Languages, 3(POPL):1–30, 2019.

[420] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pominville,
and Vijay Sundaresan. Optimizing java bytecode using the soot framework: Is it
feasible? In DavidA. Watt, editor, Compiler Construction, volume 1781 of LNCS,
pages 18–34. Springer Berlin Heidelberg, 2000.

[421] Marco Vassena, Alejandro Russo, Deepak Garg, Vineet Rajani, and Deian Stefan.
From fine-to coarse-grained dynamic information flow control and back. Proceedings
of the ACM on Programming Languages, 3(POPL):1–31, 2019.

[422] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo. Efficient
byzantine fault-tolerance. IEEE Transactions on Computers, 62(1):16–30, Jan 2013.

[423] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung,
and Paulo Verissimo. Efficient byzantine fault-tolerance. IEEE Transactions on Com-
puters, 62(1):16–30, 2011.

[424] K Vikram, Abhishek Prateek, and Benjamin Livshits. Ripley: automatically securing
web 2.0 applications through replicated execution. In Proceedings of the 16th ACM
conference on Computer and communications security, pages 173–186, 2009.

[425] Werner Vogels. Eventually consistent. ACM Queue, 6(6), 2008.

[426] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system for secure
flow analysis. Journal of computer security, 4(2-3):167–187, 1996.

[427] C. von Praun. Detecting Synchronization Defects in Multi-Threaded Object-Oriented
Programs. PhD thesis, Swiss Federal Institute of Technology, Zurich, 2004.

309

[428] Anton Wahrstätter, Jens Ernstberger, Aviv Yaish, Liyi Zhou, Kaihua Qin, Taro
Tsuchiya, Sebastian Steinhorst, Davor Svetinovic, Nicolas Christin, Mikolaj Barczen-
tewicz, et al. Blockchain censorship. In Proceedings of the ACM on Web Conference
2024, pages 1632–1643, 2024.

[429] Liqiang Wang and Scott D. Stoller. Accurate and efficient runtime detection of atom-
icity errors in concurrent programs. In Proc. PPoPP, 2006.

[430] Liqiang Wang and Scott D. Stoller. Runtime analysis of atomicity for multithreaded
programs. IEEE Trans. Softw. Eng., 32(2):93–110, February 2006.

[431] Xin Wang, Haochen Wang, Haibin Zhang, and Sisi Duan. Pando: Extremely scalable
bft based on committee sampling. Cryptology ePrint Archive, 2024.

[432] Yang Wang, Lorenzo Alvisi, and Mike Dahlin. Gnothi: Separating data and metadata
for efficient and available storage replication. In Proceedings of the 2012 USENIX
Conference on Annual Technical Conference, USENIX ATC’12, pages 38–38, Berkeley,
CA, USA, 2012. USENIX Association.

[433] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas Anderson. Verdi: A framework for implementing
and formally verifying distributed system. In Proc. PLDI, 2015.

[434] Levin N Winter, Florena Buse, Daan De Graaf, Klaus Von Gleissenthall, and Burcu
Kulahcioglu Ozkan. Randomized testing of byzantine fault tolerant algorithms. Pro-
ceedings of the ACM on Programming Languages, 7(OOPSLA1):757–788, 2023.

[435] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper, 151(2014):1–32, 2014.

[436] Timothy Wood, Rahul Singh, Arun Venkataramani, Prashant Shenoy, and Emmanuel
Cecchet. Zz and the art of practical bft execution. In Proceedings of the Sixth Confer-
ence on Computer Systems, EuroSys ’11, pages 123–138, New York, NY, USA, 2011.
ACM.

[437] Timothy Wood, Rahul Singh, Arun Venkataramani, Prashant Shenoy, and Emmanuel
Cecchet. Zz and the art of practical bft execution. In Proceedings of the sixth confer-
ence on Computer systems, pages 123–138, 2011.

[438] Zhuolun Xiang, Dahlia Malkhi, Kartik Nayak, and Ling Ren. Strengthened fault
tolerance in byzantine fault tolerant replication. In 2021 IEEE 41st International
Conference on Distributed Computing Systems (ICDCS), pages 205–215. IEEE, 2021.

[439] Min Xu, Rastislav Bod´ik, and Mark D. Hill. A serializability violation detector for
shared-memory server programs. In Proc. PLDI, 2005.

[440] Maysam Yabandeh, Nikola Knezevic, Dejan Kostic, and Viktor Kuncak. CrystalBall:
Predicting and preventing inconsistencies in deployed distributed systems. In Proc.
NSDI, 2009.

310

[441] Junfeng Yang, Tisheng Chen, Ming Wu, Zhilei Xu, Xuezheng Liu, Haoxiang Lin,
Mao Yang, Fan Long, Lintao Zhang, and Lidong Zhou. Modist: Transparent model
checking of unmodified distributed systems. In Proc. NSDI, 2009.

[442] Y. C. Yeh. Safety critical avionics for the 777 primary flight controls system. In
Digital Avionics Systems, 2001. DASC. 20th Conference, volume 1, pages 1C2/1–
1C2/11 vol.1, Oct 2001.

[443] Jaeheon Yi, Caitlin Sadowski, and Cormac Flanagan. Sidetrack: Generalizing dy-
namic atomicity analysis. In Proc. PADTAD, 2009.

[444] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, and Mike
Dahlin. Separating agreement from execution for byzantine fault tolerant services.
In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles,
SOSP ’03, pages 253–267, New York, NY, USA, 2003. ACM.

[445] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham.
Hotstuff: BFT consensus with linearity and responsiveness. In Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing, pages 347–356, 2019.

[446] Haifeng Yu and Amin Vahdat. Design and evaluation of a continuous consistency
model for replicated services. In Proceedings of the 4th Conference on Symposium on
Operating System Design & Implementation-Volume 4, page 21. USENIX Association,
2000.

[447] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking tla+ specifica-
tions. In Advanced Research Working Conference on Correct Hardware Design and
Verification Methods, pages 54–66. Springer, 1999.

[448] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu Zhao, Yongle
Zhang, Pranay U. Jain, and Michael Stumm. Simple testing can prevent most critical
failures: An analysis of production failures in distributed data-intensive systems. In
Proc. OSDI, 2014.

[449] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: A fast
blockchain protocol via full sharding. IACR Cryptol. ePrint Arch., 2018:460, 2018.

[450] Pamela Zave. Using lightweight modeling to understand chord. SIGCOMM Comput.
Commun. Rev., 42(2):49–57, March 2012.

[451] Steve Zdancewic, Lantian Zheng, Nathaniel Nystrom, and Andrew C Myers. Secure
program partitioning. ACM Transactions on Computer Systems (TOCS), 20(3):283–
328, 2002.

[452] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. Formal specification and
verification of CRDTs. volume 8461 of LNCS. 2014.

[453] Haibin Zhang and Sisi Duan. Pace: Fully parallelizable bft from reproposable byzan-
tine agreement. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, pages 3151–3164, 2022.

311

[454] Xiaokuan Zhang, Haizhong Zheng, Xiaolong Li, Suguo Du, and Haojin Zhu. You are
where you have been: Sybil detection via geo-location analysis in osns. In 2014 IEEE
Global Communications Conference, pages 698–703. IEEE, 2014.

[455] Lantian Zheng, Stephen Chong, Andrew C Myers, and Steve Zdancewic. Using repli-
cation and partitioning to build secure distributed systems. In 2003 Symposium on
Security and Privacy, 2003., pages 236–250. IEEE, 2003.

[456] Lantian Zheng and Andrew C Myers. End-to-end availability policies and noninter-
ference. In 18th IEEE Computer Security Foundations Workshop (CSFW’05), pages
272–286. IEEE, 2005.

[457] Lantian Zheng and Andrew C Myers. A language-based approach to secure quorum
replication. In Proceedings of the Ninth Workshop on Programming Languages and
Analysis for Security (PLAS), pages 27–39, 2014.

312

	List of Figures
	List of Tables
	Introduction
	Overview of Contributions
	Resilient Partitioning and Replication
	Quorum Subsumption for Heterogeneous Quorum Systems
	Reconfigurable Heterogeneous Quorum Systems
	Reconfigurable Clustered Byzantine Replication

	Resilient Partitioning and Replication
	Introduction
	Overview
	Classes and Security Types
	Partitioning
	Operational Semantics
	Information Flow Type System
	Security and Resiliency Guarantees
	Constraint Solving
	Implementation and Experiments
	Related Works
	Conclusion
	Constraint Solving
	Security Guarantees
	Confidentiality Non-Interference
	Integrity Non-Interference
	Availability Non-Interference
	Integrity Resilience
	Availability Resilience
	Helper Lemmas

	Quorum Subsumption for Heterogeneous Quorum Systems
	Introduction
	Heterogeneous Quorum Systems
	Processes and Quorums
	Properties

	Protocol Implementation
	Protocol Specification
	Impossibility
	Consensus
	Byzantine Reliable Broadcast

	Protocols
	Reliable Broadcast Protocol
	Byzantine Consensus Protocol
	Practical Byzantine Consensus Protocol

	Example Execution for Consensus
	Discussion
	Related Works
	Conclusion

	Reconfigurable Heterogeneous Quorum Systems
	Introduction
	Quorum Systems
	Properties
	Graph Characterization
	Reconfiguration and Trade-offs
	Leave and Remove
	Add
	Sink Discovery
	Join
	AC Leave and Remove
	Correctness

	Add
	Protocol
	Correctness

	PC Leave and Remove
	Sink Discovery
	AC Leave and Remove Proofs
	Remove, Inclusion-preservation
	Remove, Availability-preservation
	Remove, Intersection-preservation

	Add Proofs
	Add, Inclusion-preservation
	Add, Availability-preservation
	Add, Intersection-preservation

	Sink Discovery Proofs
	Sink Discovery, Completeness
	Sink Discovery, Accuracy

	Discussion
	Related Works
	Conclusion

	Reconfigurable Clustered Byzantine Replication
	Introduction
	Overview
	Inter-cluster Communication
	Reconfiguration
	Protocol Phases
	Correctness

	Related Work
	Conclusion
	Protocol Phases
	Proofs
	Remote Leader Change
	Inter-cluster Broadcast
	Byzantine Reliable Dissemination
	Reconfiguration
	Replication System

	Conclusions
	Bibliography

