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Abstract	13	
	14	
Over	the	last	several	years,	metagenomics	has	enabled	the	assembly	of	millions	of	new	viral	15	
sequences	that	have	vastly	expanded	our	knowledge	of	Earth’s	viral	diversity.	However,	these	16	
sequences	range	from	small	fragments	to	complete	genomes	and	no	tools	currently	exist	for	17	
estimating	their	quality.	To	address	this	problem,	we	developed	CheckV,	which	is	an	automated	18	
pipeline	for	estimating	the	completeness	of	viral	genomes	as	well	as	the	identification	and	19	
removal	of	non-viral	regions	found	on	integrated	proviruses.	After	validating	the	approach	on	20	
mock	datasets,	CheckV	was	applied	to	large	and	diverse	viral	genome	collections,	including	21	
IMG/VR	and	the	Global	Ocean	Virome,	revealing	that	the	majority	of	viral	sequences	were	small	22	
fragments,	with	just	3.6%	classified	as	high-quality	(i.e.	>	90%	completeness)	or	complete	23	
genomes.	Additionally,	we	found	that	removal	of	host	contamination	significantly	improved	24	
identification	of	auxiliary	metabolic	genes	and	interpretation	of	viral-encoded	functions.	We	25	
expect	CheckV	will	be	broadly	useful	for	all	researchers	studying	and	reporting	viral	genomes	26	
assembled	from	metagenomes.	CheckV	is	freely	available	at:	27	
http://bitbucket.org/berkeleylab/CheckV.	28	
	29	

Introduction	30	
	31	
Viruses	are	the	most	abundant	biological	entity	on	earth,	infect	every	domain	of	life,	and	are	32	
broadly	recognized	as	key	regulators	of	microbial	communities	and	processes	[1-4].	However,	it	33	
is	estimated	that	only	a	limited	fraction	of	the	viral	diversity	on	Earth	can	be	cultivated	and	34	
studied	under	laboratory	conditions	[5].	For	this	reason,	scientists	have	turned	to	metagenomic	35	
sequencing	to	recover	and	study	the	genomes	of	uncultivated	viruses	[6-8].	Typically,	DNA	or	36	
RNA	is	extracted	from	an	environmental	sample,	fragmented,	and	then	sequenced,	generating	37	
millions	of	short	reads	that	are	assembled	into	contigs.	Metagenomic	viral	contigs	are	then	38	
identified	using	computational	tools	and	algorithms	[9-11]	that	use	a	variety	of	viral-specific	39	
sequence	features	and	signatures.	In	contrast	to	bacteria	and	archaea,	most	viral	genomes	are	40	
small	enough	that	they	can	be	recovered	by	a	single	metagenomic	contig	and	do	not	require	41	
binning	(e.g.	shorter	than	100	kb),	with	notable	exceptions	such	as	the	giant	viruses	[12]	and	42	
megaphages	[13]	with	large	genomes,	or	segmented	viruses.	43	
	44	
Assembly	of	viruses	from	metagenomes	is	challenging	[14]	and	the	completeness	of	assembled	45	
contigs	can	vary	widely,	ranging	from	short	fragments	to	complete	or	near-complete	genomes	46	
[15].	Small	genome	fragments	may	adversely	affect	downstream	analyses	including	estimation	of	47	
viral	diversity,	host	prediction,	or	identification	of	core	genes	across	viral	taxa.	Viral	contigs	can	48	
also	be	derived	from	integrated	proviruses,	in	which	case	the	viral	sequence	may	be	flanked	on	49	
one	or	both	sides	by	regions	originating	from	the	host	genome.	This	type	of	host	contamination	50	
also	adversely	affects	downstream	analyses,	especially	the	estimation	of	viral	genome	size,	51	
characterization	of	viral	gene	content,	and	identification	of	viral-encoded	metabolic	genes	[16].	52	
	53	
For	bacteria	and	archaea,	genome	quality	can	now	be	readily	determined.	The	most	widely	54	
adopted	method,	CheckM,	estimates	genome	completeness	and	contamination	based	on	the	55	
presence	and	copy	number	of	widely	distributed,	single	copy	marker	genes	[17].	Because	viruses	56	
lack	widely	distributed	marker	genes,	the	most	commonly	used	approach	with	regard	to	57	
completeness	is	to	apply	a	uniform	length	threshold	(e.g.	5	or	10	kb)	and	analyze	all	viral	contigs	58	
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longer	than	this	length.	However,	this	"one-size-fits	all"	approach	fails	to	account	for	the	large	59	
variability	in	viral	genome	sizes,	which	range	from	2	kb	in	Circoviridae	[18]	up	to	2.5	Mbp	in	60	
Megaviridae	[12],	and	thus	gathers	sequences	representing	a	broad	range	of	genome	61	
completeness.	Complete,	circular	genomes	are	commonly	identified	from	the	presence	of	direct	62	
terminal	repeats	[5-7],	and	sometimes	from	mapping	paired-end	sequencing	reads	[19],	but	tend	63	
to	be	rare.	VIBRANT	[11]	is	a	recently	published	tool	that	categorizes	sequences	into	high-,	64	
medium-,	or	low-quality	tiers	based	on	circularity	and	the	presence	of	viral	hallmark	proteins,	65	
but	does	not	estimate	genome	completeness	per	se.		66	
	67	
With	regard	to	contamination,	existing	approaches	either	remove	viral	contigs	containing	a	high	68	
fraction	of	microbial	genes	[5]	or	predict	host-virus	boundaries	on	proviruses	[10,	11,	20,	21].	69	
The	former	approach	allows	for	a	small	number	of	microbial	genes	while	the	latter	approach	70	
may	misidentify	the	true	host-virus	boundary.	Other	approaches	detect	viral	signatures,	but	do	71	
not	account	for	the	presence	of	microbial	regions	whatsoever	[9].	With	the	diversity	of	available	72	
viral	prediction	pipelines	and	protocols,	there	is	a	need	for	a	standalone	tool	to	ensure	that	viral	73	
contigs	are	free	of	host	contamination,	and	to	remove	it	when	present.	74	
	75	
Here,	we	present	CheckV,	a	new	tool	to	automatically	estimate	completeness	and	contamination	76	
for	metagenome-assembled	viral	genomes.	By	collecting	an	extended	database	of	complete	viral	77	
genomes	from	both	isolates	and	environmental	samples,	CheckV	was	able	to	estimate	the	78	
completeness	for	the	vast	majority	of	contigs	in	the	IMG/VR	database,	illustrating	its	broad	79	
applicability	to	newly	assembled	genomes	across	viral	taxa	and	Earth’s	biomes.	In	addition,	80	
CheckV	uses	a	new	approach	comparing	the	gene	content	between	contiguous	sliding	windows	81	
along	each	sequence	to	identify	putative	host	contamination	on	contig’s	edges	stemming	from	82	
the	assembly	of	integrated	proviruses.	Application	to	the	IMG/VR	database	revealed	that	this	83	
type	of	contamination	was	rare	but	could	easily	lead	to	wrongful	interpretation	of	viral	genome	84	
size	and	viral-encoded	metabolic	genes.	85	
	86	

Results		87	
	88	
A	framework	for	assessing	viral	genome	quality	89	
	90	
CheckV	is	a	fully	automated,	command-line	tool	for	assessing	the	quality	of	metagenome-91	
assembled	viral	genomes.	It	is	organized	into	three	modules	which	identify	and	remove	host	92	
contamination	on	proviruses	(Figure	1A),	estimate	completeness	for	genome	fragments	(Figure	93	
1B),	and	predict	closed	genomes	based	on	terminal	repeats	and	provirus	integration	sites	94	
(Figure	1C).	Based	on	these	results,	the	program	classifies	each	sequence	into	one	of	five	quality	95	
tiers	(Figure	1D)	-	complete,	high-quality	(>90%	completeness),	medium-quality	(50-90%	96	
completeness),	low-quality	(0-50%	completeness),	or	undetermined-quality	(no	completeness	97	
estimate	available)	-	which	are	consistent	with	and	expand	upon	the	MIUViG	standards	[15].	98	
Because	host	contamination	is	easily	removed,	it	is	not	factored	into	these	quality	tiers.	99	
	100	
In	the	first	step,	CheckV	identifies	and	removes	non-viral	genes	on	the	edges	of	contigs,	which	101	
can	occur	for	assembled	proviruses	(Figure	1A	and	Methods).	Genes	are	first	annotated	as	either	102	
viral	or	microbial	(i.e.	from	bacteria	or	archaea)	based	on	comparison	to	a	large	database	of	103	
15,958	profile	hidden	markov	models	(HMMs)	(Figure	S1	and	Table	S1).	We	selected	these	104	
HMMs	from	seven	reference	databases	using	three	main	criteria:	high	specificity	to	either	viral	or	105	
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microbial	proteins,	commonly	occurring	in	either	viral	or	microbial	genomes,	and	non-106	
redundant	compared	other	HMMs.	Starting	at	the	5'	edge	of	the	contig,	CheckV	compares	these	107	
gene	annotations	as	well	as	GC	content	between	a	pair	of	sliding	windows	that	each	contain	up	to	108	
40	genes.	This	information	is	then	used	to	compute	a	score	at	each	intergenic	position	and	109	
identify	host-virus	boundaries.	We	optimized	this	approach	to	sensitively	and	specifically	detect	110	
flanking	host	regions,	even	those	containing	just	a	single	gene.	111	
	112	

	113	
	114	
Figure	1.	A	framework	for	assessing	the	quality	of	metagenome-assembled	viral	genomes.	CheckV	estimates	115	
the	quality	of	viral	contigs	from	metagenomes	in	three	main	steps.	A)	First,	CheckV	identifies	and	removes	non-viral	116	
regions	on	proviruses	using	an	algorithm	that	leverages	gene	annotations	and	GC	content.	B)	CheckV	estimates	the	117	
genome	completeness	based	on	AAI	to	a	large	database	of	complete	viral	genomes	derived	from	NCBI	GenBank	and	118	
environmental	samples	and	reports	a	confidence	level	for	the	estimate.	C)	Closed	genomes	are	identified	based	119	
either	on	direct	terminal	repeats,	prophage	integration	sites,	or	inverted	terminal	repeats.	When	possible,	these	120	
predictions	are	validated	based	on	the	estimated	completeness	obtained	in	B.	D)	Finally,	sequences	are	assigned	to	121	
one	of	five	different	quality	tiers	based	on	their	estimated	completeness.	(ANI:	average	nucleotide	identity;	AF:	122	
alignment	fraction;	AAI:	average	amino	acid	identity).	123	
	124	
In	the	second	step,	CheckV	estimates	the	expected	genome	length	of	contigs	based	on	the	125	
average	amino	acid	identity	(AAI)	to	a	database	of	complete	viral	genomes	from	NCBI	and	126	
environmental	samples	(Figure	1B	and	Methods).	The	expected	genome	length	is	then	used	to	127	
estimate	completeness	as	a	simple	ratio	of	lengths.	In	contrast	to	bacteria	and	archaea,	genome	128	
size	is	relatively	conserved	among	related	viruses,	particularly	at	the	family	or	genus	ranks	[15],	129	
which	enables	CheckV	to	infer	the	expected	genome	length	of	a	new	virus	based	on	its	hits	to	the	130	
genome	database.	For	example,	genome	lengths	differed	by	only	12.5%	on	average	(IQR	=	4.2%	131	
to	16.7%)	for	viruses	displaying	just	30-40%	AAI	over	at	least	10%	of	their	genes	(Figure	S2).	132	
Rather	than	set	an	arbitrary	threshold,	we	empirically	derived	the	relationship	between	genome	133	
similarity	and	genome	size	variation,	which	is	stored	as	a	lookup	table	in	the	database.	Using	this	134	
table,	together	with	the	observed	similarity	and	contig	length,	CheckV	reports	the	confidence	of	135	
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each	estimate:	high-confidence	(0-5%	error),	medium-confidence	(5-10%	error),	or	low-136	
confidence	(>10%	error).		137	
	138	
Highly	novel	viruses	can	be	too	diverged	from	CheckV	genomes	to	obtain	a	high-	or	medium-139	
confidence	completeness	estimate	based	on	AAI.	In	these	cases,	CheckV	uses	a	more	sensitive	140	
HMM-based	approach.	After	annotation	with	the	viral	HMMs	(Figure	1A),	CheckV	compares	the	141	
length	of	the	viral	contig	to	the	lengths	of	CheckV	reference	genomes	that	are	annotated	by	the	142	
same	HMMs.	Using	this	information,	CheckV	is	able	to	obtain	a	conservative	estimate	of	genome	143	
completeness	(i.e.	maximum	completeness	value	that	can	be	ascertained	with	>95%	probability).	144	
	145	
In	the	last	step,	CheckV	predicts	closed	genomes	based	on	direct	terminal	repeats	(DTRs),	146	
inverted	terminal	repeats	(ITRs),	and	provirus	integration	sites.	CheckV	identifies	DTRs	and	ITRs	147	
based	on	a	repeated	sequence	of	at	least	20-bp	at	the	start	and	end	of	a	contig.	While	DTRs	can	148	
play	a	role	in	genome	integration	[22],	they	largely	result	from	assembling	short	reads	from	a	149	
circular	genome	[23]	or	a	linear	genome	that	has	been	circularly	permuted	by	a	replication	150	
mechanism	involving	a	concatemer	intermediary	[24].	Inverted	terminal	repeats	(ITRs)	are	a	151	
hallmark	of	transposons	[25]	but	have	also	been	observed	in	complete	viral	genomes	[26]	and	152	
phages	[27].	Complete	proviruses	are	identified	by	a	viral	region	flanked	by	host	DNA	on	both	153	
sides,	which	is	a	commonly	used	approach	[10,	11,	20,	21].	154	
	155	
An	expanded	database	of	complete	viral	genomes	from	metagenomes	156	
	157	
We	initially	formed	the	CheckV	genome	database	using	24,834	viral	genomes	from	NCBI	158	
GenBank	[28]	(Table	S2).	However,	uncultivated	identified	viruses	commonly	display	little	to	no	159	
similarity	to	reference	databases	[5].	To	mitigate	this	issue	and	expand	the	diversity	of	the	160	
database,	we	used	CheckV	to	perform	a	systematic	search	for	metagenomic	viral	contigs	with	161	
DTRs	(DTR	contigs)	from	over	14.4	billion	contigs	(9.7	Tb)	derived	from	publicly	available	and	162	
environmentally	diverse	metagenomes,	metatranscriptomes,	and	metaviromes	downloaded	163	
from:	IMG/M	[29],	MGnify	[30],	and	recently	published	studies	of	the	human	microbiome	[31-33]	164	
and	ocean	virome	[6]	(Figure	2	and	Methods).	We	exclusively	used	DTRs	to	identify	complete	165	
genomes	as	this	is	the	most	well-established	approach	[5-7]. 166	
	167	
Using	this	approach,	we	identified	76,262	DTR	contigs	after	carefully	filtering	out	potential	false	168	
positives	and	verifying	completeness	(Figure	S3	and	Table	S3).	These	were	subsequently	de-169	
replicated	to	39,117	sequences	at	95%	ANI	(average	nucleotide	identity)	over	85%	of	the	length	170	
of	both	sequences	(Table	S4).	DTR	contigs	were	found	in	diverse	environments	including	human	171	
gut	(35.8%),	marine	(19.7%),	freshwater	(9.7%),	and	soils	(7.0%)	and	were	derived	from	major	172	
clades	of	DNA	viruses,	including	Caudovirales	(69.1%),	Microviridae	(11.4%),	and	CRESS	viruses	173	
(2.3%)	(Figure	2A-B).	DTR	contigs	were	also	identified	for	RNA	viruses	(i.e.	Riboviria,	N=83)	and	174	
retroviruses	(i.e.	Retrovirales,	N=1,698),	which	were	further	confirmed	through	identification	of	175	
marker	genes	(e.g.	RdRp)	and	association	to	known	viral	families	(Supplementary	Information).		176	
	177	
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	178	
Figure	2.	An	expanded	reference	database	of	environmentally	diverse	genomes.	76,262	DTR	contigs	were	179	
identified	from	publicly	available	metagenomes,	metatranscriptomes,	and	viromes	and	were	clustered	into	39,117	180	
non-redundant	genomes	at	95%	ANI.	A)	The	non-redundant	genomes	are	derived	from	diverse	human-associated	181	
and	environmental	habitats.	Habitats	are	based	on	the	GOLD	(Genomes	OnLine	Database)	ontology	[34]	and	182	
visualization	was	made	using	RAWgraphs	[35].	B)	The	39,117	genomes	were	taxonomically	annotated	based	on	183	
clade-specific	marker	genes	from	the	VOG	database.	C)	Comparison	between	GenBank	genomes	and	DTR	contigs	for	184	
different	viral	clades.	 185	
	186	
Next,	we	compared	the	76,262	DTR	contigs	to	the	24,834	GenBank	references	and	de-replicated	187	
all	sequences	again	at	95%	ANI	resulting	in	52,141	clusters.	Overall,	the	addition	of	DTR	contigs	188	
resulted	in	a	3.9-fold	increase	in	the	number	of	clusters	(Figure	1B),	which	was	particularly	189	
pronounced	for	the	Caudovirales	order	(7.1-fold	increase)	(Figure	2B).	In	contrast,	GenBank	190	
genomes	had	improved	representation	of	other	viral	clades,	including	RNA	viruses	from	the	191	
Riboviria	realm	(Table	S5).	For	most	viral	clades,	the	sizes	of	DTR	contigs	and	GenBank	genomes	192	
were	consistent,	indicating	no	systematic	artifacts	in	our	data	(Figure	2B).	One	interesting	193	
exception	was	for	segmented	RNA	viruses	(Riboviria	and	Retrovirales),	in	which	the	DTR	contigs	194	
tended	to	be	smaller	than	the	GenBank	references,	suggesting	they	represent	a	single	genome	195	
segment	or	may	only	cover	a	subset	of	the	diversity	within	these	large	groups.		196	
	197	
Accurate	estimation	of	completeness	and	contamination	198	
	199	
Having	developed	the	CheckV	pipeline	and	databases,	we	next	benchmarked	its	accuracy.	To	200	
evaluate	genome	completeness,	we	generated	a	mock	dataset	containing	fragments	from	382	201	
bacteriophages	not	included	in	the	CheckV	database	(Table	S6).	Using	a	combination	of	the	AAI-	202	
and	HMM-based	approaches,	CheckV	estimated	completeness	with	a	median	unsigned	error	203	
(MUE)	of	only	0.91%	(Figure	3A-B).	Several	of	the	genomes	in	the	mock	dataset	were	closely	204	
related	to	a	CheckV	reference,	which	may	be	unrealistic	when	analyzing	real	metagenomes.	To	205	
simulate	novel	viruses,	we	reran	the	program	using	only	reference	genomes	that	displayed	low	206	
similarity	to	genomes	in	the	mock	dataset	(Table	S7).	As	similarity	decreased,	CheckV	207	
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automatically	switched	from	using	the	AAI-based	approach	to	the	more	sensitive,	but	less	208	
accurate	HMM-based	approach.	As	a	result,	the	MUE	increased	from	0.91%	when	using	the	full	209	
CheckV	database	to	5.5%	when	using	only	highly	diverged	references	(e.g.	<30%	AAI	compared	210	
to	the	mock	dataset),	but	enabled	CheckV	to	estimate	completeness	for	>96%	of	all	fragments.		211	
	212	
For	comparison,	we	applied	VIBRANT	to	the	mock	dataset,	which	is	currently	the	only	available	213	
tool	to	assess	viral	genome	completeness	(Figure	3C).	VIBRANT	does	not	estimate	completeness,	214	
per	se,	but	it	assigns	fragments	to	four	quality	tiers.	Compared	to	the	true	completeness	values,	215	
VIBRANT’s	quality	tiers	displayed	lower	correlations	(R2	=	0.35)	than	CheckV’s	estimated	216	
completeness	(R2	=	0.96)	or	CheckV's	quality	tiers	(R2	=	0.78).		217	
	218	
Next,	we	evaluated	CheckV’s	accuracy	in	detecting	host	contamination	on	provirus	sequences	219	
(Table	S8).	To	generate	mock	proviruses,	we	paired	the	382	bacteriophages	with	their	bacterial	220	
and	archaeal	hosts	from	the	Genome	Taxonomy	Database	[36],	inserting	each	phage	at	a	random	221	
location	in	its	host	genome,	and	extracting	genome	fragments	of	varying	length	(5	to	50	kb)	and	222	
amount	of	host	sequence	(10	to	50%).	As	a	negative	control,	we	generated	genome	fragments	223	
that	were	entirely	viral.	Overall,	CheckV	correctly	classified	76.5%	of	mock	proviruses	(Figure	224	
3D)	while	incorrectly	classifying	only	0.9%	of	the	entirely	viral	sequences	(Figure	3E).	CheckV	225	
was	also	able	to	accurately	estimate	the	length	of	the	host	region	on	proviruses	(Figure	3F)	but	226	
was	less	sensitive	for	shorter	genome	fragments	(Figure	S4).		227	
	228	

	229	
	230	
Figure	3.	Benchmarking	CheckV	and	comparison	with	existing	tools.	A-C)	Benchmarking	genome	completeness	231	
on	a	mock	dataset	of	bacteriophage	genome	fragments.	A)	CheckV’s	estimated	completeness	versus	true	232	
completeness.	B)	CheckV's	quality	tiers	versus	true	completeness.	C)	VIBRANT's	quality	tiers	versus	true	233	
completeness.	D-F)	Benchmarking	detection	of	host	regions	for	CheckV	and	existing	tools	on	a	mock	dataset	of	234	
genome	fragments	from	proviruses.	Proviruses	were	identified	as	any	genome	fragment	with	a	predicted	viral	235	
region	that	covered	<95%	of	its	length.	D)	The	percent	of	provirus	fragments	correctly	identified	by	each	tool.	E)	The	236	
percent	of	viral	fragments	incorrectly	classified	as	proviruses	by	each	tool.	F)	The	error	in	estimated	contamination	237	
(i.e.	percent	of	contig	length	derived	from	host	genome)	for	correctly	identified	proviruses. 238	
	239	
	240	
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For	comparison,	we	evaluated	four	commonly	used	tools	for	identifying	host-provirus	241	
boundaries,	including	VIBRANT	[11],	VirSorter	[10],	PhiSpy	[20],	and	Phigaro	[21].	To	enable	242	
comparability	between	tools,	proviruses	were	defined	as	any	genome	fragment	with	a	predicted	243	
viral	region	that	covered	<95%	of	the	fragment	length.	Overall,	none	of	the	tools	sensitively	244	
detected	mock	proviruses	(range	=	20.7	to	33.5%;	Figure	3D),	particularly	when	fragments	were	245	
short,	or	host	contamination	was	low	(Figure	S4).	For	example,	VirSorter	detected	only	1.5%	of	246	
proviruses	with	<20%	contamination	and	only	5.1%	shorter	than	20	kb.	This	implies	that	247	
microbial	genes	at	the	edges	of	viral	contigs	may	be	overlooked	by	existing	tools	and	interpreted	248	
as	viral-encoded	functions.	In	contrast,	other	tools	identified	host-virus	boundaries	on	entirely	249	
viral	sequences	(Figure	3E).	For	example,	PhiSpy	predicted	non-viral	regions	on	22.9%	of	250	
entirely	viral	fragments	which	covered	26.3%	of	the	length	of	these	sequences	on	average.	This	251	
implies	that	truly	viral	regions	may	be	discarded	with	existing	tools	and	that	sequences	may	be	252	
inadvertently	classified	as	integrated	proviruses.	 253	
	254	
Finally,	we	compared	the	computational	efficiency	of	CheckV	to	existing	tools.	Using	16	CPUs	255	
(Intel	Xeon	E5-2698	v3	processors),	CheckV	was	1.6×	to	11.6×	faster	than	the	other	programs	256	
when	applied	to	the	mock	dataset	and	required	~2	GB	of	RAM.	Using	a	single	CPU	CheckV	was	257	
still	faster	than	VirSorter	and	VIBRANT	but	slower	compared	to	PhiSpy	and	Phigaro	(Table	S9).		258	
		259	
Using	CheckV	to	identify	high-quality	genomes	from	metagenomes	and	viromes	260	
	261	
To	illustrate	the	type	of	results	obtained	with	CheckV	and	its	ability	to	scale	to	large	datasets,	we	262	
first	applied	it	to	the	735,106	contigs	from	the	IMG/VR	2.0	database	[37]	(Table	S10).	The	263	
IMG/VR	contigs	were	identified	in	assembled	metagenomes	using	the	Earth’s	Virome	Protocol	264	
[5]	using	a	minimum	length	cutoff	of	5	kb.	The	original	samples	came	from	many	studies,	the	265	
majority	of	which	did	not	use	size	filtration	to	enrich	for	extracellular	viral	particles.	Because	of	266	
the	sample	characteristics	and	detection	approach,	this	dataset	is	mostly	composed	of	267	
environmental	dsDNA	phages	and	contains	sequences	from	both	lysogenic	and	lytic	viruses.		268	
	269	
First,	we	used	CheckV	to	identify	three	types	of	complete	genomes	from	IMG/VR,	including:	DTR	270	
contigs	(N=14,844),	proviruses	with	5’	and	3’	attachment	sites	(N=1,052),	and	contigs	with	271	
inverted	terminal	repeats	(ITRs;	N=579).	The	longest	DTR	contig	we	identified	was	a	528,258	bp	272	
sequence	from	a	saline	lake	in	Antarctica	estimated	to	be	100.0%	complete	and	supported	by	273	
paired	end	reads	that	connected	contig	ends.	Based	on	gene	content	and	phylogeny,	this	274	
sequence	is	likely	a	member	of	one	of	the	recently	defined	clades	of	"huge"	phages	[13]	275	
(Supplementary	Text,	Figure	S5).	To	validate	the	other	potentially	complete	genomes,	we	276	
compared	the	contigs	to	CheckV’s	database	of	complete	reference	genomes	based	on	AAI,	277	
estimated	completeness	(medium-	and	high-confidence	estimates	only),	and	identified	high-278	
quality	assemblies	(i.e.	>90%	complete).	We	found	that	90.1%	of	the	DTR	contigs	with	estimated	279	
completeness	met	the	high-quality	standard,	compared	to	only	58.2%	of	complete	proviruses	280	
and	31.8%	of	ITRs.	In	the	case	of	proviruses,	lower	estimated	completeness	may	be	due	to	their	281	
domestication	and	degradation	in	the	host	genome	over	time	[38].	These	results	confirm	that	282	
DTRs	are	a	good	indicator	of	complete	viral	genomes	most	of	the	time	[15],	but	suggest	that	283	
greater	caution	is	needed	when	interpreting	other	signatures.	284	
	285	
Next,	we	used	CheckV	to	estimate	completeness	for	the	entire	IMG/VR	dataset,	including	genome	286	
fragments.	Using	the	accurate	AAI-based	approach,	completeness	could	be	estimated	for	572,369	287	
IMG/VR	contigs	(78.6%)	with	high-	or	medium-confidence,	including	82.8%	from	host-288	
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associated,	82.0%	from	marine,	72.2%	from	freshwater,	and	65.9%	from	soil	environments.	For	289	
the	majority	of	these	contigs,	the	best	hit	in	the	CheckV	database	was	a	DTR	sequence	290	
(N=486,130,	84.9%)	and	was	often	derived	from	the	same	habitat	as	the	IMG/VR	contig	(Figure	291	
S6).	We	next	applied	the	HMM-based	approach,	which	increased	the	percent	of	IMG/VR	contigs	292	
with	estimated	completeness	to	97.8%.	The	AAI-	and	HMM-based	estimates	of	completeness	293	
were	well	correlated	for	IMG/VR	contigs	with	both	predictions	(Spearman’s	rho	=	0.90),	but	the	294	
HMM-based	estimates	were	consistently	lower	(94.1%	of	contigs),	which	is	expected	given	that	295	
this	approach	was	designed	to	be	more	conservative.	296	
	297	
We	next	classified	IMG/VR	sequences	into	quality	tiers	according	to	their	estimated	298	
completeness,	revealing	1.9%	complete,	2.5%	high-,	6.5%	medium-,	and	86.9%	low-quality	299	
sequences,	with	the	remainder	2.2%	with	undetermined	quality	(Figure	4A).	Contig	sizes	were	300	
strongly	correlated	with	quality	tiers,	with	complete	genomes	centered	at	44	kb,	which	is	301	
consistent	with	genome	sizes	from	the	Caudovirales	order	(Figure	4B).	Interestingly,	aquatic	302	
samples,	both	marine	and	freshwater,	seemed	to	contribute	more	partial	genomes	than	other	303	
environments,	which	may	reflect	challenges	in	metagenomic	assembly	for	these	environments	304	
related	to	low	sample	biomass	[39],	high	strain	heterogeneity	[40],	or	rare	(i.e.	low-coverage)	305	
viral	populations.		We	also	applied	CheckV	to	the	Global	Ocean	Virome	(GOV)	2.0	dataset	[6]	306	
(Table	S11)	revealing	remarkably	similar	patterns	(Figure	S7).	Like	IMG/VR,	the	GOV	dataset	307	
contains	viral	contigs	that	are	at	least	5	kb,	but	unlike	IMG/VR,	the	original	samples	were	from	308	
the	open	ocean	and	enriched	for	viral	particles	prior	to	sequencing.		309	
	310	
Using	CheckV	to	discriminate	viral-encoded	functions	from	host	contamination		311	
	312	
Finally,	we	used	CheckV	to	identify	putative	proviruses	from	the	IMG/VR	database	that	were	313	
flanked	on	one	or	both	sides	by	host	genes.	Overall,	only	5.2%	of	contigs	followed	this	pattern	314	
(Figure	4C)	with	97.1%	of	host	regions	occurring	on	only	one	side	and	typically	representing	a	315	
minor	fraction	of	the	contig’s	length	(median=12.0%,	Figure	4D).	Proviruses	were	detected	in	all	316	
biomes,	although	more	frequently	in	host-associated	metagenomes.	However,	longer	contigs	317	
were	more	likely	to	contain	a	host	region	(Figure	4D),	which	may	be	explained	by	higher	318	
sensitivity	of	CheckV	for	longer	sequences	(Figure	S4)	and	a	greater	chance	of	intersecting	a	319	
host-provirus	boundary.	Supporting	these	predictions,	the	majority	of	long	proviruses	(>50	kb	320	
with	>20%	contamination)	were	confirmed	by	either	VirSorter	or	VIBRANT	(617/805,	76.6%)	321	
and	often	contained	integrases	(686/805,	85.2%).	We	also	used	CheckV	to	identify	proviruses	in	322	
the	GOV	dataset,	revealing	similar	patterns	(Figure	S7).	Together,	these	results	confirm	that	the	323	
majority	of	IMG/VR	and	GOV	sequences	are	entirely	viral	or	encode	a	short	host-derived	region.		324	
	325	
Notably,	even	a	small	amount	of	contamination	by	host-derived	sequences	can	impair	326	
downstream	analyses,	especially	ones	related	to	the	gene	content	and	functional	potential	of	327	
uncultivated	viruses	[16].	To	illustrate	this	potential	issue,	we	functionally	annotated	IMG/VR	328	
proviruses	using	the	KEGG	database	[41]	and	compared	the	functions	of	genes	in	host	versus	329	
viral	regions.	Overall,	host	regions	represented	only	12.0%	of	the	genes,	but	42.3%	of	genes	330	
assigned	to	a	KEGG	metabolic	pathway	(Figure	4F).	Many	pathways	were	highly	enriched	in	host	331	
genes,	including	those	for	biosynthesis	of	antibiotics	and	ABC	transporters	(Figure	4G	and	Table	332	
S12).	For	example,	625	genes	from	the	IMG/VR	database	were	annotated	as	multi-drug	333	
resistance	efflux	pumps,	but	92.8%	of	these	were	found	in	host	regions.	In	contrast,	KEGG	334	
pathways	for	recombination,	mismatch	repair,	and	nucleotide	biosynthesis	were	all	enriched	in	335	
viral	regions.	Without	the	detection	of	provirus	boundaries	provided	by	CheckV,	it	would	not	336	
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have	been	possible	to	discriminate	truly	viral-encoded	functions	from	host	contamination	except	337	
through	manual	curation,	which	at	the	scale	of	IMG/VR’s	data	size	becomes	virtually	impossible.	338	
	339	

	340	
	341	
Figure	4:	Application	of	CheckV	to	the	IMG/VR	database.	A)	Estimated	completeness	of	IMG/VR	contigs	by	342	
biome.	B)	Distribution	of	IMG/VR	contig	length	across	quality	tiers.	For	proviruses,	only	the	size	of	the	predicted	343	
viral	region	was	considered.	C)	Proportion	of	IMG/VR	contigs	predicted	as	proviruses	by	biome.	D)	Length	of	the	344	
predicted	host	region	by	biome	for	IMG/VR	contigs	predicted	as	proviruses.	The	region	length	is	indicated	as	a	345	
percentage	of	the	total	contig	length.	E)	Proportion	of	contigs	predicted	as	proviruses	by	contig	length.	F)	346	
Percentage	of	all	genes	from	predicted	proviruses	found	in	viral/host	regions.	G)	Percentage	of	metabolic	genes	347	
from	predicted	proviruses	found	in	viral/host	regions.	H)	Percentage	of	genes	from	selected	KEGG	pathways	for	348	
predicted	proviruses	found	in	viral/host	regions. 349	

	350	

Discussion 351	
	352	
Here	we	presented	CheckV,	an	automated	pipeline	for	assessing	the	quality	of	metagenome-353	
assembled	viral	genomes	along	with	an	expanded	database	of	complete	viral	genomes	we	354	
systematically	identified	from	environmental	data	sources.	We	anticipate	CheckV	will	be	broadly	355	
useful	in	future	viral	metagenomics	studies	and	for	reporting	quality	statistics	required	in	the	356	
MIUViG	checklist	[17].	Estimation	of	completeness	will	be	especially	valuable	to	distinguish	near-357	
complete	genomes	from	short	genome	fragments,	as	these	two	types	of	sequences	are	associated	358	
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with	different	limitations	and	biases.	Meanwhile,	the	removal	of	genes	originating	from	the	host	359	
genome	will	be	critically	important	for	reducing	false	positives	in	viral	studies	focusing	on	360	
auxiliary	metabolic	genes	or	novel	protein	families.	We	also	expect	that	CheckV’s	database	of	361	
complete	viral	genomes	will	be	a	useful	community	resource	that	contains	a	wealth	of	untapped	362	
insights	about	novel	viruses	from	diverse	environments.	363	
	364	
While	this	first	version	of	CheckV	represents	a	major	advance,	several	improvements	may	be	365	
possible	in	the	future.	First,	it	will	be	important	to	incorporate	new	viral	genomes	as	they	366	
become	available	in	order	to	continually	expand	the	environmental	and	taxonomic	diversity	of	367	
the	reference	database.	Second,	metagenomic	read	mapping	could	be	used	to	identify	circular	368	
contigs,	refine	virus-host	boundaries,	and	determine	genome	termini.	Third,	viral	bins	and	369	
segmented	viral	genomes,	which	are	represented	by	multiple	sequences,	pose	several	additional	370	
challenges	not	addressed	by	the	current	version	of	CheckV.	Finally,	we	largely	focused	on	371	
bacterial	and	archaeal	viruses	in	our	benchmarking	and	applications,	so	modifications	may	be	372	
necessary	to	extend	CheckV	for	eukaryotic	viruses,	particularly	those	with	segmented	genomes	373	
or	those	that	contain	many	metabolic	genes.			374	
	375	
	376	

Methods	377	
	378	
Database	of	HMMs	for	classification	of	viral	and	microbial	genes		379	
	380	
We	selected	HMMs	from	existing	databases	that	could	be	leveraged	to	classify	genes	as	either	381	
viral	or	microbial	with	high	specificity.	First,	125,754	HMMs	were	downloaded	four	databases:	382	
VOGDB	(release	97,	N=25,399,	http://vogdb.org),	IMG/VR	(downloaded	January	2020,	383	
N=25,281)	[37],	RVDB	(release	17,	N=9,911)	[42],	KEGG	Orthology	(October	02,	2019	release,	384	
N=22,746)	[41],	Pfam	A	(release	32,	N=17,929)	[43],	Pfam	B	(release	27,	N=20,000)	[44],	and	385	
TIGRFAM	(release	15,	N=4,488)	[45].	Next,	we	used	hmmsearch	v3.1b2	[46]	to	align	the	HMMs	386	
versus	1,590,764	proteins	from	30,903	NCBI	GenBank	viral	genomes	(downloaded	June	1,	2019)	387	
[28]	and	5,749,148	proteins	from	2,015	bacterial	and	239	archaeal	genomes	from	the	Genome	388	
Taxonomy	Database	(GTDB;	Release	89)	[36].	For	GTDB,	one	genome	was	selected	per	family	389	
and	when	multiple	genomes	were	available,	we	chose	the	one	with	the	highest	CheckM	quality	390	
score	(completeness	-	5	x	contamination).	Additionally,	we	ran	VIBRANT	v1.2.0	[11],	VirSorter	391	
v.1.0.5	[10],	and	PhiSpy	v.3.7.8	[20]	using	default	parameters	to	identify	and	remove	590,484	392	
viral	proteins	identified	on	proviruses	in	the	selected	GTDB	genomes.		393	
	394	
Based	on	the	hmmsearch	results,	we	calculated	the	percentage	of	viral	and	microbial	genes	395	
matching	each	HMM	at	bit-score	cutoffs	ranging	from	25	to	1,000	in	increments	of	5.	We	then	396	
selected	the	lowest	bit-score	cutoff	for	each	HMM	that	resulted	in	a	>100-fold	difference	between	397	
the	percentage	of	the	total	viral	gene	set	and	the	percentage	of	the	total	microbial	gene	set	398	
matched	by	the	HMM	(i.e.	bit-score	cutoff	for	which	the	hits	were	either	strongly	enriched	in	399	
viruses	or	microbial	genes).	To	limit	false	positives,	we	excluded	HMMs	that	were	classified	as	400	
microbial-specific	but	were	derived	from	primarily	viral	databases	(VOGDB,	IMG/VR,	RVDB)	or	401	
contained	viral	terms	(viral,	virus,	virion,	provirus,	capsid,	terminase)	for	HMMs	from	other	402	
databases.	Using	this	approach,	114,765	HMMs	were	identified	as	viral-specific	or	microbial-403	
specific.	404	
	405	
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Next,	we	selected	the	maximally	informative	subset	of	HMMs	to	reduce	the	size	of	the	database	406	
and	limit	CheckV	computing	time.	First,	we	retained	44,415	HMMs	with	at	least	20	viral	hits	or	407	
with	at	least	100	microbial	hits	after	applying	the	bit-score	cutoffs.	Next,	we	calculated	the	408	
Jaccard	similarity	between	all	pairs	of	HMMs	based	on	each	HMMs	set	of	gene	hits.	For	409	
computational	efficiency,	we	used	the	‘all_pairs’	function	in	the	SetSimilaritySearch	Python	410	
package	(https://github.com/ekzhu/SetSimilaritySearch).	Jaccard	similarities	were	used	as	411	
input	for	single-linkage	clustering	with	a	Jaccard	similarity	cutoff	of	0.5,	resulting	in	15,958	non-412	
redundant	HMMs	(8,773	viral-specific,	7,185	microbial-specific).	To	form	the	final	database,	we	413	
selected	the	HMM	with	the	greatest	number	of	gene	hits	from	each	cluster	of	HMMs.		414	
	415	
Identification	of	virus-host	boundaries	416	
	417	
Given	a	viral	contig,	CheckV	predicts	host-virus	boundaries	in	three	stages.	First,	proteins	are	418	
predicted	using	Prodigal	v2.6.3	(option	'-p'	for	metagenome	mode)	[47]	and	compared	to	the	419	
15,958	HMMs	using	hmmsearch.	Each	protein	is	classified	as	viral,	microbial,	or	unannotated	420	
according	to	its	top-scoring	hit	after	applying	the	HMM-specific	bit-score	cutoffs.	Additionally,	421	
the	GC	content	of	each	gene	is	calculated.	Second,	CheckV	evaluates	each	intergenic	region	as	a	422	
potential	boundary	between	a	host	and	a	viral	region	as	follows.	For	each	intergenic	region,	two	423	
windows	of	up	to	40	genes	are	compared,	one	upstream	and	one	downstream	of	the	potential	424	
breakpoint.	Windows	can	contain	fewer	than	40	genes	only	if	they	start	or	end	at	a	contig	425	
boundary.	For	each	window,	viral-annotated	genes	are	assigned	a	score	of	+1,	microbial-426	
annotated	genes	are	assigned	a	score	of	-1,	and	a	mean	viral	score,	V,	across	the	window	is	427	
calculated,	ignoring	unannotated	genes.	Then,	CheckV	computes	a	breakpoint	score,	S,	based	on	428	
the	absolute	difference	in	the	mean	viral	score,	V,	and	average	GC	content,	G,	between	upstream	429	
(5’)	and	downstream	(3’)	windows:	𝑆 = 	 |𝑉&' − 𝑉)'| 	+ 	0.02 ∗ |𝐺&' 	− 	𝐺)'|	.	The	value	of	S	ranges	430	
from	0	to	4,	given	that	|𝑉&' − 𝑉)'|	and	0.02 ∗ |𝐺&' 	− 	𝐺)'|	both	range	from	0.0	to	2.0.	CheckV	also	431	
stores	the	orientation	of	each	breakpoint	(i.e.	host-virus	or	virus-host)	based	on	the	values	of	𝑉&'	432	
and	𝑉)'.	These	scores	are	computed	at	each	intergenic	position,	moving	from	the	5’	end	to	the	3’	433	
end	of	a	contig.	CheckV	then	identifies	significant	breakpoints	having	scores	≥	1.2,	≥	30%	of	434	
genes	annotated	as	microbial	in	either	window,	and	a	total	of	4	annotated	genes	between	435	
windows.	After	these	filters,	CheckV	groups	together	adjacent	breakpoints	with	the	same	436	
orientation	and,	for	each	group,	chooses	the	breakpoint	with	the	highest	score.	The	algorithm	437	
parameters	were	fine-tuned	empirically	based	on	a	dataset	of	mock	proviruses	and	sequences	438	
from	the	IMG/VR	database.		439	
	440	
AAI-based	estimation	of	genome	completeness	441	
	442	
Given	a	viral	contig,	CheckV	estimates	genome	completeness	in	four	stages.	First,	CheckV	443	
performs	an	amino	acid	alignment	of	Prodigal-predicted	protein	coding	genes	from	the	contig	444	
against	the	database	of	reference	genomes	using	DIAMOND	[48]	with	options	'--evalue	1e-5	--445	
query-cover	50	--subject-cover	50	-k	10000'.		Based	on	these	alignments,	the	following	metrics	446	
are	computed	for	the	viral	contig	versus	each	reference	genome:	average	amino	acid	identity	447	
(AAI):	length-weighted	average	identity	across	aligned	proteins,	alignment	fraction	(AF):	the	448	
percent	of	amino	acids	aligned	from	the	query	sequence,	and	alignment	score:	AAI	multiplied	by	449	
AF.	Second,	CheckV	identifies	the	top	hit	in	the	database	for	the	contig	(i.e.	reference	genome	450	
with	the	highest	alignment	score)	and	all	reference	genomes	with	alignment	scores	that	are	451	
within	50%	of	the	top	hit.	The	expected	genome	length	of	the	viral	contig,	𝐺0,	is	then	estimated	by	452	
taking	a	weighted	average	of	the	genome	sizes	of	matched	reference	genomes,	where	the	453	
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alignment	scores	are	used	as	weights.	Reference	genome	lengths	are	further	weighted	based	on	454	
their	source:	2.0	for	isolate	viruses	and	1.0	for	metagenome-derived	viruses,	which	are	more	455	
likely	to	contain	assembly	errors	and	artifacts.	CheckV	also	reports	the	confidence	level	of	this	456	
estimate	(low,	medium,	high),	which	is	determined	based	on	the	length	of	the	viral	contig	and	the	457	
alignment	score	to	the	top	reference	genome.	(See	below	for	more	details	on	how	confidence	458	
levels	are	estimated).	Third,	CheckV	estimates	the	genome	completeness	of	each	viral	contig,	𝐶2 ,	459	
using	the	formula:		𝐶2 	= 	100	 ∗ 	𝐿/	𝐺0,	where	L	is	the	length	of	the	viral	region	for	proviruses,	or	460	
the	contig	length	otherwise.	461	
	462	
HMM-based	estimation	of	genome	completeness	463	
	464	
An	HMM-based	approach	was	developed	to	estimate	completeness	for	novel	viruses	that	are	too	465	
diverged	from	CheckV	genomes	to	obtain	an	AAI-based	estimate.	First,	CheckV	identifies	viral	466	
genes	on	the	contig	based	on	comparison	to	the	8,773	viral	HMMs	(as	described	in	‘Identification	467	
of	virus-host	boundaries’).	Each	HMM	is	associated	with	one	or	more	reference	genome	lengths	468	
(based	on	CheckV	references	where	the	HMM	is	found)	and	the	coefficient	of	variation	(CV)	is	469	
computed,	in	order	to	prioritize	HMMs	with	low	genome	length	variability.	For	each	contig,	470	
CheckV	identifies	the	viral	HMM	with	the	lowest	CV	that	is	associated	with	at	least	10	reference	471	
genomes.	Next,	the	program	compares	the	contig	length	to	the	distribution	of	genome	lengths	472	
represented	by	the	selected	HMM	and	chooses	the	level	of	completeness	(0-100%)	that	would	473	
place	the	contig	in	the	upper	5th	percentile	of	the	genome	length	distribution.	Thus,	the	474	
approach	is	designed	to	estimate	the	maximum	level	of	genome	completeness	that	can	be	475	
ascertained	with	at	least	95%	probability.	476	
		477	
Confidence	levels	for	AAI-based	completeness	estimates	478	
	479	
We	conducted	a	large-scale	benchmarking	experiment	to	derive	confidence	levels	for	AAI-based	480	
completeness	estimation.	First,	we	extracted	a	random	fragment	from	each	of	CheckV’s	reference	481	
genomes	to	simulate	metagenomic	contigs	of	varying	length	(200	bp,	500	bp,	1	kb,	2	kb,	5	kb,	10	482	
kb,	20	kb,	and	50	kb).	Next,	we	used	CheckV	to	compute	the	alignment	score	between	each	contig	483	
and	each	complete	genome	in	the	reference	database.	We	then	compared	the	true	genome	length	484	
of	each	contig	(i.e.	the	length	before	fragmentation),	𝐿,	to	the	estimated	genome	length	based	on	485	
each	matched	reference	genome,	𝐿0 ,	and	computed	the	relative	unsigned	error,	as	100	 ∗486	
	6𝐿 − 𝐿06/𝐿0 .	We	then	computed	the	median	relative	unsigned	error	after	grouping	the	estimates	487	
based	on	their	alignment	score	and	contig	length.	Finally,	we	determined	three	confidence	levels:	488	
high	confidence	(0-5%	median	unsigned	error,	76.6%	mean	AAI,	65.0%	mean	AF);	medium	489	
confidence	(5-10%	median	unsigned	error,	51.8%	mean	AAI%,	54.7%	mean	AF);	low	confidence	490	
(>10%	median	unsigned	error,	47.5%	mean	AAI,	36.6%	mean	AF.	Using	this	information,	CheckV	491	
reports	a	confidence	level	in	the	estimated	completeness	value	for	each	input	contig	based	on	the	492	
contig	length	and	alignment	score	(i.e.	combination	of	AAI	and	AF)	to	the	top	database	hit.	By	493	
default,	only	medium-	and	high-confidence	estimates	are	included	in	the	final	report.	494	
	495	
Database	of	complete	viral	genomes	for	AAI-based	completeness	estimation	496	
	497	
We	downloaded	30,903	genomes	from	NCBI	GenBank	on	June	1,	2019.	1,937	genomes	were	498	
excluded	that	were	indicated	as	'partial',	'chimeric',	or	'contaminated'.	Of	the	28,966	that	499	
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remained,	677	(2.3%)	were	labeled	as	'metagenomic'	or	'environmental',	indicating	the	vast	500	
majority	are	derived	from	cultivated	isolates.	501	
	502	
Next,	we	used	CheckV	to	systematically	search	for	complete	genomes	of	uncultivated	viruses	503	
from	publicly	available	and	previously	assembled	metagenomes,	metatranscriptomes,	and	504	
metaviromes.	An	assembled	contig	was	considered	complete	if	it	was	at	least	2,000	bp	long	and	505	
included	a	direct	terminal	repeat	(DTR)	of	at	least	20	bp	(DTR	contigs).	We	searched	for	DTR	506	
contigs	in	the	following	datasets:	19,483	metagenomes	and	metatranscriptomes	from	IMG/M	507	
(accessed	on	September	2019)	[29],	11,752	metagenomes	from	MGnify	(accessed	on	April	16,	508	
2019)	[30],	9,428	metagenomes	assembled	by	Pasolli	et	al.	[32],	an	expanded	collection	of	4,763	509	
metagenomes	from	the	HGM	dataset	[31],	1,831	viromes	from	the	HuVirDB	[33],	and	145	510	
viromes	from	the	global	ocean	[6].		511	
	512	
From	this	initial	search,	we	identified	a	total	of	751,567	DTR	contigs.	To	minimize	false	positives	513	
and	other	artifacts,	we	removed	the	following:	(1)	45,448	contigs	with	low	complexity	repeats	514	
(e.g.	AAAAA...),	as	determined	by	dustmasker	from	the	BLAST+	package	v2.9.0	[49],	(2)	11,359	515	
contigs	classified	as	a	provirus	by	CheckV	(e.g.	flanked	by	host	region),	(3)	5,737	contigs	with	516	
repetitive	repeats	occurring	more	than	5	times	per	contig,	which	could	represent	repetitive	517	
genetic	elements	like	CRISPR	arrays,	(4)	6,543	contigs	that	contained	a	large	duplicated	region	518	
spanning	>=20%	of	the	contig	length	which	results	from	the	rare	instances	where	assemblers	519	
concatenate	multiple	copies	of	the	same	genome,	and	(5)	1,293	contigs	containing	>=1%	520	
ambiguous	base	calls.	After	these	filters,	686,030	contigs	remained	(91.3%	of	total).	521	
	522	
Next,	we	used	a	combination	of	CheckV	marker	genes	and	VirFinder	[9]	to	classify	116,666	DTR	523	
contigs	as	viral.	First,	the	DTR	contigs	were	used	as	input	to	VirFinder	v1.1	with	default	524	
parameters	and	to	CheckV	to	identify	viral	and	microbial	marker	genes.	We	additionally	525	
searched	for	genes	related	to	plasmids	and	other	non-viral	mobile	genetic	elements	using	a	526	
database	of	141	HMMs	from	recent	publications	[50-52].	A	contig	was	classified	as	viral	if	the	527	
number	of	viral	genes	exceeded	number	of	microbial	and	plasmid	genes	(N=99,345),	or	528	
VirFinder	reported	a	p-value	<	0.01	with	no	plasmid	genes	and	<=	1	microbial	gene	(N=36,084).	529	
	530	
Taxonomic	annotation	of	CheckV	reference	genomes	531	
	532	
Annotations	were	determined	based	on	HMM	searches	against	a	custom	database	of	1,000	533	
taxonomically	informative	HMMs	from	the	VOG	database.	These	HMMs	were	selected	for	major	534	
bacterial	and	archaeal	viral	groups	with	consistent	genome	length	and	at	least	10	representative	535	
genomes,	including:	Caudovirales,	CRESS-DNA	and	Parvoviridae,	Autolykiviridae,	Fusello-	and	536	
Guttaviridae,	Inoviridae,	Ligamenvirales	Ampulla-	Bicauda-	and	Turriviridae,	Microviridae,	and	537	
Riboviria.	For	each	group,	VOGs	found	in	≥10%	of	the	group	members	and	never	detected	538	
outside	of	this	group	were	considered	as	marker	genes.	All	CheckV	reference	genomes	were	539	
annotated	based	on	the	clade	with	the	most	HMM	hits.	Overall,	96.4%	of	HMM	hits	were	to	a	540	
single	viral	taxon.	541	
	542	
Validating	the	completeness	of	CheckV	reference	genomes	543	
	544	
Next,	we	validated	the	completeness	for	all	GenBank	genomes	and	DTR	contigs.	First,	we	used	545	
CheckV	to	estimate	the	completeness	for	all	sequences	after	excluding	self	matches.	This	was	546	
performed	using	a	database	of	just	GenBank	sequences	and	another	of	just	DTR	contigs.	Any	547	
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sequence	with	<90%	estimated	completeness	using	either	database	was	excluded	(medium-	and	548	
high-confidence	estimates	only).	Second,	we	compared	the	genome	length	to	the	known	549	
distribution	of	genome	lengths	for	the	annotated	viral	taxon	(e.g.	Microviridae).	Any	genome	550	
considered	an	outlier	or	shorter	than	the	shortest	reference	genome	for	the	annotated	clade	was	551	
excluded.	After	these	filters,	we	then	selected	genomes	with	≥	90%	estimated	completeness	552	
using	either	database	(medium-	and	high-confidence	estimates	only)	or	longer	than	30	kb	553	
without	a	completeness	estimate.	These	selection	criteria	were	chosen	to	minimize	the	number	554	
of	false	positives	(i.e.	genome	fragments	wrongly	considered	complete	genomes)	at	the	cost	of	555	
some	false	negatives	(i.e.	removing	truly	complete	genomes).	This	resulted	in	24,834	GenBank	556	
genomes	and	76,262	DTR	contigs	that	were	used	to	form	the	final	CheckV	genome	database.	557	
	558	
Generating	a	non-redundant	set	of	CheckV	reference	genomes	559	
	560	
Average	nucleotide	identity	(ANI)	and	the	alignment	fraction	(AF)	were	computed	between	the	561	
24,834	GenBank	genomes	and	76,262	DTR	contigs	using	a	custom	script.	Specifically,	we	used	562	
blastn	from	the	blast+	package	v.2.9.0	(options:	perc_identity=90	max_target_seqs=10000)	to	563	
generate	local	alignments	between	all	pairs	of	genomes.	Based	on	this,	we	estimated	ANI	as	the	564	
average	DNA	identity	across	alignments	after	weighting	the	alignments	by	their	length.	The	565	
alignment	fraction	(AF)	was	computed	by	taking	the	total	length	of	merged	alignment	566	
coordinates	and	dividing	by	the	length	of	each	genome.	Clustering	was	then	performed	using	a	567	
greedy,	centroid-based	algorithm	in	which	(1)	genomes	were	sorted	by	length,	(2)	the	longest	568	
genome	was	designated	as	the	centroid	of	a	new	cluster,	(3)	all	genomes	within	95%	ANI	and	569	
85%	AF	were	assigned	to	that	cluster,	and	steps	(2-3)	were	repeated	until	all	genomes	had	been	570	
assigned	to	a	cluster,	resulting	in	52,141	non-redundant	genomes.		571	
	572	
Benchmarking	CheckV	and	comparison	to	existing	tools	573	
	574	
To	benchmark	CheckV's	detection	of	host	regions,	we	constructed	a	mock	dataset	of	proviruses.	575	
382	viral	genomes	were	downloaded	from	NCBI	GenBank	(after	June	1,	2019)	and	paired	with	576	
76	GTDB	genomes	(71	from	bacterial	5	from	archaea).	The	pairing	was	performed	at	the	genus	577	
level	based	on	the	annotated	name	of	the	virus	and	host	(e.g.	Escherichia	phage	paired	with	578	
Escherichia	bacterial	genome).	When	multiple	GTDB	genomes	were	available	for	a	given	bacterial	579	
genus,	we	selected	the	one	with	the	highest	CheckM	quality	score,	and	we	selected	a	maximum	of	580	
10	GenBank	genomes	per	bacterial	genus	to	reduce	the	influence	of	a	few	overrepresented	581	
groups.	Any	GenBank	or	GTDB	genome	that	was	used	at	any	stage	for	training	CheckV	was	582	
excluded.	Proviruses	were	simulated	at	varying	contig	lengths	(5,	10,	20,	50,	100	kb)	with	583	
varying	levels	of	host	contamination	(10,	20,	50%;	defined	as	the	%	of	the	contig	length	derived	584	
from	the	microbial	genome).	Microbial	genome	fragments	were	appended	to	either	the	5'	or	3'	585	
end	of	the	viral	fragment	at	random.	As	a	negative	control,	we	also	simulated	contigs	that	were	586	
entirely	viral	(i.e.	no	flanking	microbial	region)	at	the	same	contig	lengths.		587	
	588	
Mock	proviruses	were	used	as	input	to	CheckV	using	default	parameters.	For	comparison,	we	589	
also	ran	VIBRANT	v1.2.0	[11],	VirSorter	v.1.0.5	[10],	PhiSpy	v.3.7.8	[20],	and	Phigaro	v0.1.5.0	590	
[21].	All	tools	were	run	with	default	options,	with	the	exception	of	VIBRANT	and	VirSorter,	which	591	
were	run	with	the	'--virome'	flag	to	increase	sensitivity.	Nucleotide	sequences	were	used	as	input	592	
to	all	tools,	except	Phispy,	for	which	we	first	ran	Prokka	v1.14.5	[53]	to	generate	the	required	593	
input	file.	A	contig	was	classified	as	a	provirus	if	it	contained	a	predicted	viral	region	that	594	
covered	<95%	of	its	length.	Each	prediction	was	then	classified	as	a	true	positive	(TP;	provirus	595	
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classified	as	provirus),	false	positive	(FP;	viral	contig	classified	as	provirus),	true	negative	(TN;	596	
viral	contig	not	classified	as	provirus),	and	false	negative	(FN;	provirus	classified	as	provirus).	597	
For	the	TPs,	we	also	compared	the	true	length	of	the	host	region	to	the	predicted	length.	598	
	599	
We	used	the	same	382	provirus	genomes	to	benchmark	CheckV's	completeness	estimation.	For	600	
each	of	the	382	genomes,	we	extracted	10	contigs	at	a	random	start	position	and	with	a	601	
completeness	value	between	1%	and	100%.	The	completeness	of	all	contigs	was	estimated	using	602	
CheckV	with	default	parameters.	VIBRANT	v1.2.0	was	also	run	using	default	parameters	to	603	
assign	contigs	to	quality	tiers.	604	
	605	
Application	of	CheckV	to	the	IMG/VR	and	GOV	datasets	606	
	607	
We	downloaded	735,106	contigs	longer	than	5	kb	from	IMG/VR	2.0	[37],	after	excluding	viral	608	
genomes	from	cultivated	isolates	and	proviruses	identified	from	microbial	genomes.	We	also	609	
downloaded	488,131	contigs	longer	than	5	kb	or	circular	from	the	Global	Ocean	Virome	(GOV)	610	
2.0	dataset	[6]	(datacommons.cyverse.org/browse/iplant/home/shared/iVirus/GOV2.0).	These	611	
were	used	as	input	to	CheckV	to	estimate	the	completeness,	identify	host-virus	boundaries,	and	612	
predict	closed	genomes.	When	running	the	completeness	module,	we	excluded	perfect	matches	613	
(100%	AAI	and	100%	AF)	to	prevent	any	DTR	contig	from	matching	itself	in	the	database	(since	614	
IMG/VR	2.0	and	GOV	2.0	were	used	as	data	sources	to	form	the	CheckV	database).	A	Circos	plot	615	
[54]	was	used	to	link	IMG/VR	contigs	to	their	top	matches	in	CheckV	database. Protein	coding	616	
genes	were	predicted	from	proviruses	using	Prodigal	and	compared	to	HMMs	from	KEGG	617	
Orthology	(October	02,	2019	release)	using	hmmsearch	from	the	HMMER	package	v3.1b2	(e-618	
value	≤	1e-5	and	score	≥	30).	Pfam	domains	with	the	keyword	“integrase”	and	“recombinase”	619	
were	also	identified	across	all	proviruses.	 620	
	621	
The	largest	DTR	contig	we	identified	from	IMG/VR	and	included	in	the	CheckV	database	was	622	
further	annotated	to	illustrate	the	type	of	virus	and	genome	organization	represented	(IMG	ID	=	623	
3300025697_____Ga0208769_1000001).	CDS	prediction	and	functional	annotations	were	624	
obtained	from	IMG	[29].	Annotation	for	provirus	hallmark	genes	including	a	terminase	large	625	
subunit	(TerL)	and	major	capsid	protein	were	confirmed	via	HHPred	[55]	(databases	included	626	
PDB	70_8,	SCOPe70	2.07,	Pfam-A	32.0,	and	CDD	3.18,	score	>	98).	A	circular	genome	map	was	627	
drawn	with	CGView	[56].	To	place	this	contig	in	an	evolutionary	context,	we	built	a	TerL	628	
phylogeny	including	the	most	closely	related	sequences	from	a	global	search	for	large	phages	629	
[13].	The	TerL	amino	acid	sequence	from	the	DTR	contig	was	compared	to	all	TerL	sequences	630	
from	the	“huge	proviruses”	dataset	via	blastp	(e-value	≤	1e-05	and	score	≥	50)	to	identify	the	30	631	
most	similar	sequences	(sorted	based	on	blastp	bit-score).	These	reference	sequences	and	632	
3300025697_____Ga0208769_1000001	were	aligned	with	MAFFT	v7.407	[57]	using	default	633	
parameters,	the	alignment	automatically	cleaned	with	trimAL	v1.4.rev15	with	the	--gappyout	634	
option	[58],	and	a	phylogeny	built	with	IQ-Tree	v1.5.5	with	built-in	model	selection	(optimal	635	
model	suggested:	LG+R4)	[59].	The	resulting	tree	was	visualized	with	iToL	[60].	636	
	637	

Data	and	code	availability	638	
	639	
CheckV	is	written	in	Python	and	is	freely	available	as	open	source	software	at	640	
https://bitbucket.org/berkeleylab/CheckV	under	a	BSD	license.	CheckV	quality	statistics	and	641	
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listing	of	complete	viral	genomes	from	IMG/VR	will	be	available	in	the	next	version	scheduled	for	642	
release	on	September	2020.	643	
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