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On Notions and Sufficient Conditions for Forward Invariance of Sets

for Hybrid Dynamical Systems

Jun Chai and Ricardo G. Sanfelice

Abstract— Forward invariance for hybrid dynamical systems
modeled by differential and difference inclusions with state-
depending conditions enabling flows and jumps is studied.
Several notions of forward invariance are considered and
sufficient conditions in terms of the objects defining the system
are introduced. In particular, we study forward invariance
notions that apply to systems with nonlinear dynamics for
which not every solution is unique or may exist for arbitrary
long hybrid time. Such behavior is very common in hybrid
systems. Lyapunov-based conditions are also proposed for the
estimation of invariant sets. Applications and examples are

given to illustrate the results. In particular, the results are
applied to the estimation of weakly forward invariant sets,
which is an invariance property of interest when employing
invariance principles to study convergence of solutions.

I. INTRODUCTION

A forward invariant set for a dynamical system is a set that

has solutions evolving within the set. The property of forward

invariance is important for the analysis and control design

of dynamical systems since it characterizes regions of the

state space from which solutions start and stay for all future

time. Forward invariance properties are inherently used in

the study of reachability, safety, and asymptotic stability

of sets. Several articles and books introducing notions of

forward invariance are available in the literature; see, e.g.,

[1], [2], [3]. Conditions to guarantee forward invariance of a

set and methods to construct sets that are forward invariant

are introduced in [2], [4], [5]. For systems with an input,

forward invariance can be employed as a tool for control

design. Referred to as forward invariance-based control, the

use of forward invariance for analysis and control design

include results for the stabilization of constrained systems

[6], cascades of nonlinear systems [7], and for the study of

robustness [8].

Forward invariance for hybrid dynamical systems is more

intricate than for classical systems. Among the main reasons

is the fact that such systems include both continuous and

discrete behaviors. In addition, the dynamics of hybrid

systems are typically governed by set-valued, nonlinear

maps, which lead to nonunique solutions and increase the

complexity in predicting the behavior of the system. Recent

contributions to the understanding of forward invariance for

hybrid systems without inputs include those for impulsive

differential inclusions [9] and for hybrid automata [10], [11],

[12] (forward invariance is also employed in the analysis of
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hybrid inclusions [13], [14]). Same as for classical systems,

the interest in forward invariance is driven by several applica-

tions featuring hybrid systems. The use of forward invariance

for analysis and control design for hybrid systems include

periodic motion analysis with impacts [15], reachability [16],

determining safe sets for switched systems [17], and hybrid

control design [18].

In this paper, we study the forward invariance properties

of sets for hybrid systems modeled within the hybrid inclu-

sion framework of [13]. Hybrid inclusions are defined by

differential and difference inclusions with state-depending

conditions enabling flows and jumps. This broad class of

hybrid systems may have nonunique solutions and nonlinear

dynamics. Motivated by these properties, forward invariance

notions based on the existence and completeness of solutions

are introduced. For each notion, we propose sufficient con-

ditions that guarantee the said forward invariance property.

We employ these sufficient conditions to estimate weakly

forward invariant sets for hybrid systems using Lyapunov-

like functions. Our notions include those in [9], in particular,

the viability notion defined therein, while our results provide

sufficient conditions for hybrid systems given in terms of

hybrid inclusions.

The remainder of the paper is organized as follows.

Forward invariance notions and sufficient conditions are

presented in Section II and Section III, respectively. The

results for an estimation of weakly forward invariant sets are

given in Section IV. Applications and examples are given

in Section V. Due to space constraints, the proofs will be

published elsewhere.

II. FORWARD INVARIANCE NOTIONS FOR HYBRID

SYSTEMS

In this paper, we follow the framework in [13], in which,

a hybrid system H = (C,F,D,G) is given by

H

{
x ∈ C ẋ ∈ F (x)

x ∈ D x+ ∈ G(x),
(1)

where F is the flow map which governs the continuous

evolution of the state on the flow set C, and G is the jump

map, which governs the discrete evolution from the jump

set D. A solution to the hybrid system H is parameterized

by the ordinary time variable t ∈ R≥0 := [0,∞) and

by the discrete jump variable j ∈ N := {0, 1, 2, ...}, and

defined on a hybrid time domain E ⊂ R≥0 × N; see [13,

Definition 2.3]. The set E is a hybrid time domain if, for

each (T, J) ∈ E, E ∩ ([0, T ]× {0, 1, ..., J}) can be written

as ∪J−1
j=0 ([tj , tj+1], j) for some finite sequence of times

0 = t0 ≤ t1 ≤ t2 ... ≤ tJ . A hybrid arc φ is a function



on a hybrid time domain if, for each j ∈ N, t 7→ φ(t, j) is

absolutely continuous on the interval {t : (t, j) ∈ domφ }.

A solution to H is a hybrid arc φ : domφ→ R
n that satisfies

the dynamics of H, where domφ is a hybrid time domain

E; see [13, Definition 2.6].

Following [13, Section 2.2, Section 2.3], we list the types

of solutions that will be used in this paper.
Definition 2.1: (Types of Solutions to a Hybrid System) A

solution φ to the hybrid system H = (C,F,D,G) is called

1) nontrivial if domφ contains at least two points;

2) complete if domφ is unbounded;

3) maximal if there does not exist another solution ψ to H
such that domφ is a proper subset of domψ and φ(t, j) =
ψ(t, j) for all (t, j) ∈ domφ.

For convenience, we define the set of maximal solutions

to H from the set K as SH(K) := {φ : φ is a maximal

solution to H with φ(0, 0) ∈ K}. We also define the range

of a solution φ to a hybrid system H as rgeφ = {x ∈ R
n :

x = φ(t, j), (t, j) ∈ domφ}. To formulate our results, we

will need the following result [13, Proposition 2.10].
Proposition 2.2: (Basic Existence) Consider the hybrid

system H = (C,F,D,G). Let ξ ∈ C ∪D. If ξ ∈ D or

(VC) there exist ε > 0 and an absolutely continuous function

z : [0, ε] → R
n such that z(0) = ξ, ż(t) ∈ F (z(t)) for

almost all t ∈ [0, ε] and z(t) ∈ C for all t ∈ (0, ε],

then there exists a nontrivial solution φ to H with φ(0, 0) =
ξ. If (VC) holds for every ξ ∈ C \ D, then there exists a

nontrivial solution to H from every point of C ∪ D, and

every φ ∈ SH satisfies exactly one of the following:
(a) φ is complete;

(b) φ is not complete and “ends with flow”, with (T, J) =
sup domφ, the interval IJ has nonempty interior; and

either
(b.1) IJ is closed, in which case φ(T, J) ∈ C \ (C ∪D);

or

(b.2) IJ is open to the right, in which case (T, J) /∈
domφ, and there does not exist an absolutely con-

tinuous function z : IJ → R
n satisfying ż(t) ∈

F (z(t)) for almost all t ∈ IJ , z(t) ∈ C for all

t ∈ int IJ , and such that z(t) = φ(t, J) for all

t ∈ IJ ;
(c) φ is not complete and “ends with jump”: for (T, J) =

sup domφ, one has φ(T, J) /∈ C ∪D.

Furthermore, if G(D) ⊂ C ∪ D, then (c) above does not

occur.
Solutions to H might not be unique due to F and G

being set-valued or due to C and D overlapping. Hence, a

set may enjoy weak or strong forward invariance properties

for a given hybrid system. Moreover, maximal solutions to

H might not be complete due to the directions of flow

determined by F , the new values after the jumps allowed by

G, or the geometry of the sets C and D. In this section, we

define several forward invariance notions that, in particular,

apply in situations where not every maximal solution is

complete and unique, which is very common in hybrid

systems.

We start by defining weak forward pre-invariance of a set.

Definition 2.3: (Weak Forward pre-Invariance) The set

K ⊂ R
n is said to be weakly forward pre-invariant for H if

for every x ∈ K there exists at least one solution φ ∈ SH(x)
such that rgeφ ⊂ K .

The weak forward pre-invariance notion requires that at

least one solution exists from every point in K . Such a

solution can be trivial (domφ with only one point) or

nontrivial, but at least one maximal solution from each point

in the set has to stay in the set for all future hybrid time.

Note that the prefix “pre” captures the fact that the solution

staying in K may not be complete.

Next, we define a weak forward invariant notion, which is

equivalent to the notion in [13, Definition 6.19] and in [14,

Definition 3.1].
Definition 2.4: (Weak Forward Invariance) The set K ⊂

R
n is said to be weakly forward invariant for H if for every

x ∈ K there exists at least one complete solution φ ∈ SH(x)
with rgeφ ⊂ K .

Next, we define forward pre-invariance of a set as the

property that every maximal solution starting from K stays

in K . This notion was introduced in [13, Definition 6.25] in

the context of invariance principles.
Definition 2.5: (Forward pre-Invariance) The set K ⊂ R

n

is said to be forward pre-invariant for H if for every x ∈ K
there exists at least one solution, and for every solution φ ∈
SH(K), rgeφ ⊂ K .

Finally, we define the strongest version of forward invari-

ance properties, which requires not only that every maximal

solution starting from K stays in K , but also requires

completeness of all maximal solutions.
Definition 2.6: (Forward Invariance) The set K ⊂ R

n is

said to be forward invariant for H if for every x ∈ K there

exists at least one solution, and every solution φ ∈ SH(K)
is complete and satisfies rgeφ ⊂ K .

The relationship among the four notions is summarized in

the diagram in Figure 1.

+ Completeness+ Completeness

+∀φ ∈ SH(K)

+∀φ ∈ SH(K)Weak Forward Forward

Weak

pre-Invariance pre-Invariance

Forward Invariance
Forward Invariance

Fig. 1. Relationships of the notions of forward invariance for a set K .

Remark 2.7: In [9], viable and invariant sets concepts are

introduced for hybrid systems that are modeled in term of

impulsive differential inclusions. The viability property in [9]

is equivalent to the weak forward invariance in Definition 2.4,

while the invariance property in [9] is equivalent to the

definition of forward pre-invariance in Definition 2.5 and the

definition of positively invariant in [2]. Note that in addition,

we introduce the strongest forward invariance notion in

Definition 2.6.

III. SUFFICIENT CONDITIONS FOR THE FORWARD

INVARIANCE PROPERTIES

In general, it is very difficult to directly check forward

invariance of a set from the definitions, as that would require



checking solutions explicitly. In this section, when possible,

solution independent conditions to check if a set satisfies

each notion are given. To this end, we use the concept of

tangent cone to a set K (see, e.g.,[13, Definition 5.12]),

which is also known as the Bouligand tangent cone or

contingent cone.

Definition 3.1: (Tangent Cone) The tangent cone to a set

K ⊂ R
n at a point x ∈ R

n, denoted as TK(x), is the set of

all vectors ω ∈ R
n for which there exist sequences xi ∈ K ,

τi > 0 with xi → x, τi ց 0 and ω = limi→∞
xi−x
τi

.

In comparison to the Clarke tangent cone [19, Remark 4.7],

the tangent cone defined in Definition 3.1 includes all vectors

that point inward to the set K or that are tangent to the

boundary of K .

For a given set K and a hybrid system H = (C,F,D,G)
for the study of forward invariance, the sufficient conditions

we present in this paper require the following mild assump-

tions on K,C,D, and F .

Assumption 3.2: The sets K,C, and D are such that K ⊂
C ∪ D and that K ∩ C is closed. The map F : Rn

⇒ R
n

is outer semicontinuous, locally bounded relative to K ∩C,

and F (x) is convex for every x ∈ K ∩ C. Furthermore,

C ⊂ domF and D ⊂ domG.

The following proposition introduces conditions implying

that a set is weakly forward pre-invariant.

Proposition 3.3: (Sufficient Conditions for Weak Forward

pre-Invariance) Let K and H = (C,F,D,G) satisfy As-

sumption 3.2. Then, the set K is weakly forward pre-

invariant for H if:

2.1) ∀x ∈ K ∩D,G(x) ∩K 6= ∅; and

2.2) For every ξ ∈ K\D, there exists a neighborhood U of ξ
such that for every x ∈ U∩K∩C,F (x)∩TK∩C (x) 6= ∅.

Furthermore, for every point in K , there exists a nontrivial

solution φ satisfying rgeφ ⊂ K .

Next, building from Proposition 3.3, we provide sufficient

conditions for weak forward invariance as given in Defini-

tion 2.4, which requires completeness of a maximal solution

from each point in the set K .

Proposition 3.4: (Sufficient Conditions for Weak Forward

Invariance) Let K and H = (C,F,D,G) satisfy Assump-

tion 3.2. Then, the set K is weakly forward invariant for H
if:

3.1) Conditions 2.1) and 2.2) of Proposition 3.3 hold; and

3.2) For every φ ∈ SH(x), case (b.2) in Proposition 2.2 does

not hold.

Remark 3.5: Although, in principle, condition 3.2) in

Proposition 3.4 is a solution-dependent property, it can be

guaranteed by verifying that solutions from C \D can flow

into C (which is expressed in terms of the tangent cone

condition in Proposition 3.3) and that K ∩ C is compact or

F is bounded on K ∩ C (see [20, Chapter 4, Theorem 3]).

Under such conditions, solutions cannot escape to infinity in

finite time, therefore, case (b.2) in Proposition 2.2 would not

hold. The following result pertains to this case.

Proposition 3.6: (Sufficient Conditions for Weak Forward

Invariance Revised) Let K and H = (C,F,D,G) satisfy

Assumption 3.2. Then, the set K is weakly forward invariant

for H if:

3’.1) Conditions 2.1) and 2.2) of Proposition 3.3 hold; and

3’.2) Either K ∩C is compact or F is bounded on K ∩C.

Remark 3.7: Compared to Proposition 3.4, Proposi-

tion 3.6 further constraints the data of H so as to provide

a solution-independent condition. In [9, Theorem 1, 2],

the map F is assumed to be Marchuad to guarantee the

completeness of solutions from the set K , which is a stronger

assumption than condition 3’.2) in Proposition 3.6.1

In the remainder of this section, we obtain conditions for

the two stronger forward invariance properties introduced in

Definition 2.5 and Definition 2.6. First, we give sufficient

conditions for a set K to be forward pre-invariant.
Proposition 3.8: (Sufficient Conditions for Forward pre-

Invariance) Let K and H = (C,F,D,G) satisfy Assump-

tion 3.2, and suppose F is locally Lipschitz on C.2 Then,

the set K is forward pre-invariant for H if:

4.1) G(K ∩D) ⊂ K; and

4.2) For every ξ ∈ K ∩C, there exists a neighborhood U of

ξ such that for every x ∈ U∩K∩C,F (x) ⊂ TK∩C(x).

Furthermore, every maximal solution φ ∈ SH(K) is nontriv-

ial and satisfies rgeφ ⊂ K .

Remark 3.9: Note that the condition in the well known

Nagumo Theorem (see a rewriten version in [2, Theorem

3.1]), describes a special case of condition 4.2) in Propo-

sition 3.3. In particular, the Nagumo Theorem provides a

necessary and sufficient condition for a set to be positively in-

variant (defined similarly to our forward pre-invariant notion)

for the continuous-time system ẋ = f(x). The condition in

[2, Equation (12)] for autonomous discrete-time system is

similar to condition 4.1).

With the conditions in Proposition 3.8, and if all maximal

solutions that start from K are complete, then, the set K is

forward invariant for H. The following proposition gives a

set of sufficient conditions for a such property.
Proposition 3.10: (Sufficient Conditions for Forward In-

variance) Let K and H = (C,F,D,G) satisfy Assump-

tion 3.2, and suppose F is locally Lipschitz on C. Then,

the set K is forward invariant for H if:

5.1) Conditions 4.1) and 4.2) of Proposition 3.8 hold; and

5.2) For every φ ∈ SH(K), case (b.2) in Proposition 2.2

does not hold.

IV. FORWARD PRE-INVARIANCE OF SUBLEVEL SETS OF

LYAPUNOV-LIKE FUNCTIONS

In [2, Section 3.3], Lyapunov functions are employed

to determine invariant sets for a given system and for

1A map F is said to be Marchaud if its graph and its domain are nonempty
and closed; F (x) is convex, compact, and nonempty for each x ∈ domF ;
and F has linear growth; see [1, Definition 10.3.2].

2 Definition: (Locally Lipschitz) A set-valued map F : R
n

⇒ R
m is

locally Lipschitz on a set K ⊂ Rn if for any x ∈ K , there exist a

neighborhood U of x and a constant λ ≥ 0 (the Lipschitz constant) such

that for every ξ ∈ U ∩ domF , F (x) ⊂ F (ξ) + λ|x− ξ|B.



the design of invariant-based feedback controllers. In this

section, also inspired by the Lyapunov stability result for

hybrid systems in [13, Theorem 3.18], we characterize the

forward invariance properties of sets that are sublevel sets of

Lyapunov-like functions.

Proposition 4.1: (Forward pre-Invariance of Sublevel

Sets) Consider the hybrid system H = (C,F,D,G) in (1).

Let c ≥ 0 andW : Rn → R be continuously differentiable on

an open set containing3 C ∩LW (c) and such that it satisfies

〈∇W (x), η〉 ≤ 0 ∀x ∈ C ∩ LW (c), η ∈ F (x), (2)

W (η)−W (x) ≤ 0 ∀x ∈ D ∩ LW (c), η ∈ G(x), (3)

G(x) ⊂ K ∀x ∈ D ∩ LW (c), (4)

where K = LW (c)∩ (C ∪D). In addition, let the set K and

H̃ = (K∩C,F,D∩K,G) satisfy Assumption 3.2. Then, the

set K is forward pre-invariant for H̃.

Proposition 4.1 establishes a forward pre-invariance prop-

erty of sublevel sets of Lyapunov-like functions for a modi-

fied version of a hybrid system H, namely H̃. In particular,

H̃ has the same flow and jump map as the original system H,

but its flow set and jump set are intersected by the sublevel

set LW (c). We provide sufficient conditions for the set K to

be forward invariant for H̃ by applying Proposition 3.10.

Proposition 4.2: (Forward Invariance of a Sublevel Set for

H̃) Consider a hybrid system H = (C,F, D,G), c ≥ 0,

and W (as well as K) be such that the conditions in

Proposition 4.1 hold. Then, the set K is forward invariant

for H̃ = (C∩K,F,D∩K,G) if at least one of the following

condition holds:
• For every φ ∈ SH̃(K), case (b.2) in Proposition 2.2

does not hold;

• Either K ∩ C is compact or F is bounded on K ∩ C.

In addition to the results from Proposition 4.1, Proposi-

tion 4.2 states that if every solution φ ∈ SH̃(K) is complete,

the set K is forward invariant for the modified hybrid system

H̃. With these results, we provide a result that can be used to

estimate weakly forward invariant sets of the original hybrid

system H.

Theorem 4.3: (Weak forward invariance of a set for H)

Consider the hybrid system H in (1). For each i ∈
{1, 2, ..., N}, let ci and Ki satisfy the conditions in Propo-

sition 4.2 for some function Wi. Then, the set

K =
⋃

i∈{1,2,...,N}

Ki

is weakly forward invariant for H if 2.2) in Proposition 3.3

holds.

Remark 4.4: Note that SH(K) may include more solu-

tions than
⋃

i∈{1,2,...,N}

SH̃i

(Ki), due to Ci = Ki ∩ C and

Di = Ki∩D for each i, where H̃i = (Ki∩C,F,Ki∩D,G).
These extra solutions may be allowed to flow or jump outside

of K , therefore, we cannot guarantee forward invariance of

the set K for H. On the other hand, if for every x ∈ K ,

3The c-sublevel set of the function W : Rn → R is denoted by LW (c) =
{x : W (x) ≤ c}.

solution φ ∈ SH(K) is unique, and we can conclude that K
is forward invariant for H.

V. APPLICATIONS AND EXAMPLES

In this section, examples and applications of our results

are presented. The following three examples illustrate the

proposed notions and sufficient conditions for hybrid systems

H in Section II and Section III.

Example 5.1 (Weak Forward pre-Invariant Set):

Consider the hybrid system H = (C, f,D,G) in R
2

with system data given by4

f(x) := [1 + x21 0]⊤

∀x ∈ C := {x ∈ R
2 : x1 ∈ [0,∞), x2 ∈ [−1, 1]};

G(x) := [x1 + B x2]
⊤

∀x ∈ D := {x ∈ R
2 : x1 ∈ [0,∞), x2 = 0}.

We can observe that solutions to H from K = C are not

complete, since their x1 component escapes to infinity in

finite time, though they stay inside K . Thus, we argue that

K is weakly forward pre-invariant for H. We verify this by

showing that system H and the set K satisfy Assumption 3.2,

and by applying Proposition 3.3. Since G(K ∩ D) ∩ K 6=
∅, we have that condition 2.1) holds. Condition 2.2) holds

because for every x ∈ K ∩ C, f(x) ∈ TK∩C(x) since it is

pointing horizontally, and TK∩C(x) =



R× R≤0 if x ∈ {x ∈ R
2 : x1 ∈ (0,∞), x2 = 1}

R× R if x ∈ {x ∈ R
2 : x1 ∈ (0,∞), x2 ∈ (−1, 1)}

R× R≥0 if x ∈ {x ∈ R
2 : x1 ∈ (0,∞), x2 = −1}

R≥0 × R≤0 if x = (0, 1)

R≥0 × R if x ∈ {x ∈ R
2 : x1 = 0, x2 ∈ (−1, 1)}

R≥0 × R≥0 if x = (0,−1).

In addition, if we consider a new jump map G′, namely

x+ ∈ G′(x) =: [2x1 x2]
⊤, and maintain the other system

data C, f,D, then the set K = C is forward pre-invariant for

H, since the solutions that are able to jump out of K now are

only allowed to jump towards +∞ on the x1−axis. This can

be verified by checking Proposition 3.8: the flow condition is

met as discussed above, and the jump map G′(D∩K) ⊂ K .

Notice that the proposed tangent cone condition is able to

handle the nonlinear dynamics in f . △

To illustrate Proposition 3.4, we present the following

example on R
2.

Example 5.2 (Weak Forward Invariant Set): Consider the

hybrid system H = (C,F,D,G) in R
2 given by

F (x) :=





[1 1]⊤ if x2 > 1− x1

con
{
[1 1]⊤, [−1 − 1]⊤

}
if x2 = 1− x1

[−1 − 1]⊤ if x2 < 1− x1

∀x ∈ C := [0, 1]× [0, 1];

G(x) :=





[ 12 + 1
4B

1
2 ]

⊤ if x ∈ D1{
[ 12 + 1

4B
1
2 ]

⊤, [ 12
1
2 + 1

4B]
⊤
}

if x ∈ D2

[ 12
1
2 + 1

4B]
⊤ if x ∈ D3,

4
B denotes the closed unit ball in a Euclidean space centered at the origin.



where D = D1 ∪D2 ∪D3, and

D1 := {x ∈ R
2 : x1 ∈ (0, 1), x2 ∈ {0, 1}},

D2 := {x ∈ R
2 : x1 ∈ {0, 1}, x2 ∈ {0, 1}},

D3 := {x ∈ R
2 : x1 ∈ {0, 1}, x2 ∈ (0, 1)}.

We consider the set K = [ 12 , 1] × [ 12 , 1]. According

to the first piece of the definition of F , every solution

that starts from the set
(
(12 , 1)× (12 , 1)

)⋃ (
{ 1
2} × (12 , 1)

)
⋃ (

(12 , 1)× { 1
2}

)
, initially flows within K with vector field

[1 1]⊤. According to the definition of G, points in set(
{1} × [ 12 , 1]

)⋃ (
[ 12 , 1]× {1}

)
, are mapped via G to either

outside of K (to a point in {x ∈ R
2 : x1 ∈ [ 14 ,

1
2 ), x2 =

1
2}

⋃
{x ∈ R

2 : x2 ∈ [ 14 ,
1
2 ), x1 = 1

2}) or mapped inside

K (to a point in {x ∈ R
2 : x1 ∈ [ 12 ,

3
4 ], x2 = 1

2}
⋃
{x ∈

R
2 : x2 ∈ [ 12 ,

3
4 ], x1 = 1

2}). Finally, a solution that starts

from (12 ,
1
2 ), can flow either inside or outside of K due to

the second piece in the definition of F . In summary, using a

solution-based approach, from every point in K , there exists

at least one complete solution that stays in K .

Now, using Proposition 3.4, we verify that the set K is

weakly forward invariant for H. First, H and K satisfy As-

sumption 3.2. Then, according to above analysis, condition

2.1) in Proposition 3.3 holds, since for every x ∈ K ∩ D,

which is x ∈
(
{1} × [ 12 , 1]

)⋃ (
[ 12 , 1]× {1}

)
, G(x)∩K 6= ∅.

Moreover, we verify that condition 2.2) in Proposition 3.3

holds: for every point x ∈ K \D, we have

TK∩C(x) =






R× R if x ∈ (12 , 1)× (12 , 1)

R≥0 × R if x ∈ { 1
2} × (12 , 1)

R× R≥0 if x ∈ (12 , 1)× { 1
2}

R≥0 × R≥0 if x = (12 ,
1
2 ).

As a result, for every x in a neighborhood U of every

ξ ∈ K \D, F (x) ∩ TK∩C(x) 6= ∅. Then, since F is linear

everywhere on C, condition 3.2) in Proposition 3.4 holds.

Therefore, according to Proposition 3.4, K is weakly forward

invariant for H. △

We present an example inspired from [13, Example 8.3]

to which we apply Proposition 3.4.

Example 5.3 (Forward Invariant Set): Consider the hy-

brid system H = (C, f,D, g) in R
2 given by

f(x) :=

[
x2
−x1

]
∀x ∈ C := {x ∈ R

2 : |x| ≤ 1, x2 ≥ 0};

g(x) :=

[
−0.9x1
x2

]
∀x ∈ D := {x ∈ R

2 : x1 ≥ −1, x2 = 0}.

The set K = ∂C is weakly forward invariant for H by

Proposition 3.4. More precisely, for every x ∈ K∩D, g(x) ⊂
K; and for every x ∈ K \D = {x ∈ R

2 : |x| = 1, x2 > 0},

since d
dt
(x21 + x22) = 2x1x2 − 2x1x2 = 0, f(x) ⊂ TK∩C(x).

In addition, K∩C = ∂C is compact. Thus, for every x ∈ K ,

there exists one maximal solution that is complete and stay

within K . △

The invariance principle introduced in [13, Theorem 8.2]

requires the computation of (the largest) weakly invariant set

(inside some particular set) to characterize the set to which

solutions that are bounded and complete converge. Proposi-

tion 3.4 can be helpful in such computations, in particular,

to determine weakly forward invariant sets. The following

example illustrates such an application of Proposition 3.4.

Example 5.4 (Determining Largest Invariant Sets):

Consider the hybrid system H = (C, f,D, g) in R
2 given

by

f(x) :=
[
−x2 x1

]⊤
∀x ∈ C := R× [0,+∞),

g(x) :=
[
−x2 x1

]⊤
∀x ∈ D := R× (−∞, 0].

To determine where solutions to H converge to, using [13,

Theorem 8.2], we take the Lyapunov-like function W (x) =
1
2x

2
1 +

1
2x

2
2, and define the functions uC(x) and uD(x) as

uC(x) :=

{
〈∇W (x), f(x)〉 = 0 if x ∈ C

−∞ otherwise

uD(x) :=

{
W (g(x)) −W (x) = 0 if x ∈ D

−∞ otherwise

Then, following [13, Theorem 8.2], we compute the zero

level set of uC and uD defined above. It follows that

u−1
C (0) = R × [0,+∞) and u−1

D (0) = R × (−∞, 0].
Furthermore, we have g(u−1

D (0)) = [0,+∞) × R. Thus,

[13, Theorem 8.2] implies that every maximal solution to

H approaches the largest weakly invariant set given by

W−1(r)∩R2∩[(R×[0,+∞))∪((−∞, 0]×(−∞, 0])]. Then,

given an arbitrary choice of r, this set can be rewritten as

K = {x ∈ R
2 : |x| = r, x1 ≥ 0} ∪ {x ∈ R

2 : |x| =
r, x2 ≥ 0}. The set K is weakly forward invariant according

to Proposition 3.4. In fact, condition 3.1) holds since for

every point in K∩D, the jump map returns a point in K , and

for every point in K∩ (C \D) the linear oscillator dynamics

permits flowing within the flow set. Condition 3.2) holds due

to the properties of the flow map. △.

The next example illustrates Proposition 4.1.

Example 5.5 (Forward pre-Invariance of K): Consider

the hybrid system H = (C, f,D, g) in R
2 given by

f(x) := Ax :=

[
−2 1
1 −2

]
x ∀x ∈ C := B,

g(x) :=

{
2x if x ∈ D1

−x if x ∈ D2,
∀x ∈ D := D1 ∪D2,

where D1 := {x ∈ R
2 : x /∈ B} and D2 := {x ∈ R

2 : x2 =
0, |x| ≤ 1}. First, we note that the matrix A is Hurwitz,

so the origin is a stable focus, i.e., solutions to ẋ = f(x)
spiral toward the origin. We consider the function W1(x) =

x⊤P1x, where P1 =

[
2 0
0 1

]
. Then, we have, for each x ∈

C, 〈∇W1(x), f(x)〉 = − 23
4 x

2
1 − 4

(
3
4x1 − x2

)2
, which is

guaranteed to be less than or equal to zero for every x ∈ R
2.

We consider the largest sublevel set of W1 within C = B,

which is LW1
(c1) with c1 = 1 . In addition, g(x) = −x gives

W1(g(x)) −W1(x) = 0 for every x ∈ LW1
(c1) ∩D. Thus,

according to Proposition 4.1, K1 = LW1
(c1) is forward pre-

invariant for H̃1 = (K1 ∩ C, f,K1 ∩D, g).
Similarly, we consider the function W2(x) = x⊤P2x,

where P2 =

[
2 0.5
0.5 1

]
. Then, we have, for each x ∈ C,



〈∇W2(x), f(x)〉 = −6x21 − 2x22 − (x1 − x2)
2, which is

guaranteed to be less than or equal to zero for all points on

R
2. Again, we consider the largest sublevel set for W2 within

C = B, which is LW2
(c2) with c2 ≈ 0.793 . Similar to the

case for W1, g(x) = −x gives W2(g(x)) −W2(x) = 0 for

every x ∈ LW2
(c2)∩D. Thus, according to Proposition 4.1,

K2 = LW2
(c2) is forward pre-invariant for H̃2 = (K2 ∩

C, f,K2 ∩D, g). △

An example illustrating Theorem 4.3 is presented next.

Example 5.6 (Estimating Weakly Forward Invariant Set):

Consider the hybrid system H = (C,F,D, g) in R
2 given

by

F (x) :=





[−x2 x1 − 0.5]⊤ if x1 > 0

[0 − 0.5]⊤ if x1 = 0

[−x2 x1 + 0.5]⊤ if x1 < 0

∀x ∈ C := ((0, 0.5) + 0.5B)
⋃

((0,−0.5) + 0.5B)

g(x) :=

{
[1− x1 0]⊤ if x ∈ D1

[−1− x1 0]⊤ if x ∈ D2

∀x ∈ D := D1 ∪D2,
where D1 := {x ∈ R

2 : x2 = 0, x1 ≥ 0.5} and D2 := {x ∈
R

2 : x2 = 0, x1 ≤ −0.5}.

It is not possible to include every point in C using a single

sublevel set of a Lyapunov like function. However, it is

possible to use two different functions, W1 and W2, such that

every point within C is captured in the union of two sublevel

sets. We propose two candidates W1(x) = (x1 − 0.5)
2
+ x22

and W2(x) = (x1 + 0.5)2 + x22. For each x ∈ {x ∈
C : x1 > 0}, we have 〈∇W1(x), F (x)〉 = 0. For each

x ∈ {x ∈ C : x1 < 0}, we have 〈∇W2(x), F (x)〉 = 0. Then,

at the origin, 〈∇W1(x), F (x)〉 = 〈∇W2(x), F (x)〉 = 0.

Then, we check W at jumps. For every point in D1 we

have W1(g(x))−W1(x) = 0, and for every point in D2, we

have W2(g(x)) −W2(x) = 0. We choose K1 = LW1
(c1)

and K2 = LW2
(c2), which are subsets of C, for H with

c1 = c2 = 1. Then, according to Proposition 4.1, K1 is

forward pre-invariant for H̃1 = (K1 ∩C,F,K1 ∩D, g), and

K2 is forward pre-invariant for H̃2 = (K2∩C,F,K2∩D, g).
We verify that K1 and K2 are forward invariant for H̃1 and

H̃2, respectively, by applying Proposition 4.2. According to

the data of H̃i, i ∈ {1, 2}, solutions to H̃1 and H̃2 can always

be extended, respectively, by either flowing or jumping on

K1 and K2, respectively.

In addition, solutions starting from the origin (x = 0) can

either flow into the left circle or the right circle according

to F . Therefore, we know neither K1 nor K2 is forward

invariant set for the given H. On the other hand, Theorem 4.3

implies that the sets K1,K2, and K = K1 ∪K2 are weakly

forward invariant for H. △

VI. CONCLUSION

In this paper, notions characterizing forward invariance of

sets for hybrid systems and associated sufficient conditions

are presented. Each notion is defined based on the existence

and completeness of maximal solutions. Sufficient conditions

involving properties of the data of the system for each notion

are derived. A Lyapunov-like function approach to estimate

weakly forward invariant sets using the proposed tools in

invariance principles is presented. Applications and examples

illustrating the invariance notions and results are worked out

in details.

Note that the tangent cone conditions and the Lyapunov-

based tools used in this work can be computationally chal-

lenging. Future efforts will target such issues with the hope of

deriving algorithms that automatically compute invariant sets

for hybrid systems. Future research also includes deriving

necessary conditions, studying forward invariance property

for hybrid systems with input; and developing results for the

design of invariance-based feedback controllers.
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