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Abstract

Understanding and Designing Convolutional Networks for Local Recognition Problems
by
Jonathan Leonard Long
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Trevor Darrell, Chair

In recent years, convolutional networks have dramatically (re)emerged as the dominant
paradigm for solving visual recognition problems. Convnets are effective and appealing
machines because they are made of a few simple, efficient building blocks, and are learnable
end-to-end with straightforward gradient descent methods. However, convnets have often
been construed as black-box classification machines, which receive whole images as input,
produce single labels as output, and leave uninterpretable activations in between.

This work addresses the extension of convnets to rich prediction problems requiring lo-
calization along with recognition. Given their large pooling regions and training from whole-
image labels, it has not been clear that classification convnets derive their success from an
accurate correspondence model which could be used for precise localization. In the first part
of this work, we’ll conduct an empirical study of convnet features, asking the question: do
networks designed and trained for classification alone contain enough information to under-
stand the local, fine-scale content of images, such as the locations of parts and keypoints?
We'll see that convnet features are indeed effective for tasks requiring correspondence. We
present evidence that convnet features localize at a much finer scale than their receptive field
sizes, that they can be used to perform intraclass alignment as well as conventional hand-
engineered features, and that they outperform conventional features in keypoint prediction
on objects from PASCAL VOC 2011 [EVGWT].

Encouraged by this positive result, in the second part, we’ll go on to see how convolutional
networks by themselves, trained end-to-end, pixels-to-pixels, are state-of-the-art semantic
segmentation systems. We achieve this by building “fully convolutional” networks that take
input of arbitrary size and produce correspondingly-sized output with efficient inference and
learning. We define and detail the design space and history of fully convolutional networks,
and explain their application to spatially dense prediction tasks. We adapt contemporary
classification networks (AlexNet [KSHI12|, the VGG net [SZ14a], and GoogLeNet [SL.JT14])
into fully convolutional networks and transfer their learned representations by fine-tuning
[DJVT14] to the segmentation task. We then define a skip architecture that combines se-
mantic information from a deep, coarse layer with appearance information from a shallow,



fine layer to produce accurate and detailed segmentations. Our FCNs achieve a 20% relative
improvement on PASCAL VOC compared to prior methods, as well as performance improve-
ments on NYUDv2 and SIFT Flow, while inference takes less than one fifth of a second for
a typical image.

In the third part, we go beyond pixel labeling to explore generating object regions directly
from a convolutional network. The networks we build produce object segments at multiple
scales without intermediate bounding boxes, and without building an image pyramid, instead
taking advantage of the natural pyramid of features present in a subsampling network. We
extend the usual notion of convolutional networks, which are indexed spatially, to a notion
of pairwise networks, which are doubly indexed spatially. We describe a wide set of design
choices in this space, and relate existing approaches to models of this type. By carefully
examining the structure of learned weights in an existing region generating network (Deep-
Mask [PCD15]), we see that one of the simplest operations on pairs improves performance
at negligible cost. Our final pure convnet region generator trains and tests in a fraction of a
second per image, and produces competitive output on the COCO dataset [LMB™14].



to a few people I won’t name here who have made doing things seem so worthwhile
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Chapter 1

Introduction

A hungry lion spots a herd of lechwe antelope grazing in an African swamp. Though the
prey are adapted for aquatic survival, our lion notices a young straggler near dry land. A
chase ensues. The lion flanks the lechwe, runs it down, and dines. [lio]

Although we will not build lions in this thesis, this story illustrates the motivation for the
work herein. Acting in the physical world requires drawing rapid inferences from perceptual
input. Real recognition systems must be:

1. Accurate. Incorrect judgements can be the difference between life and death: for lion,
for lechwe, and for systems that serve human needs.

2. Fast. Accurate judgements are worthless if they come too late.

3. Rich. When surveying the landscape, it is not enough to know general whats, such as
the type of terrain, or time of day, or presence of certain types of objects, but rather
necessary to know specific combinations of what and where: there is a herd of antelope
over there, a specific individual right there, favorable terrain in this specific area. In
combination with the above, once the chase begins, the relevant information must be
updated many times per second.

Biological systems serve not only as inspiration for what we might be do, but also as an
existence proof: it is possible to achieve remarkable levels of performance by all three of
these measures simultaneously.

In this work, we’ll look for ways to improve recognition systems along these three axes,
without stepping backwards by trading off one desideratum for another. In order to do
so, we'll need to follow good principles of engineering: we’ll build systems out of a small
set of fast, reliable, and reusable components. In particular, we’ll exploit recent, dramatic
recognition advances achieved with convolutional networks. We achieve accuracy by directly
transferring models trained for image classification to other tasks. We’'ll achieve speed by
building systems only out of the same type of elements already used in convnets. And we’ll
obtain richer output by finding ways to use those elements to do more than classification.



In Chapter [2| we study the features already present in a network trained for classification,
and ask whether those features contain information at a finer scale than the whole-image
output for which they’re trained. Encouraged by a positive answer, we continue on in Chapter
to build networks which label every pixel of an input image. Finally, in Chapter [ we
develop a general framework for building networks that can break images into regions—
even if those regions overlap, and even if they cover adjacent objects of the same class.
Throughout, we’ll build systems that are trained end-to-end, and that perform inference in
a fraction of a second.

1.1 Background

In the remaining chapters, we’ll assume familiarity with convolutional networks and related
notions. This section provides a brief reference, including definitions of notation and termi-
nology as used in the following.

1.1.1 Parametric Learning by Gradient Descent

Suppose we have labeled data {(z;,v;)}, where each data point (usually, image) z; is given
a corresponding label (scalar, vector, or other object) y;. In supervised learning, we attempt
to find a function f such that

yi =~ f(xi)
for all i. To quantify the accuracy of our approximation, we pick a (task-dependent) loss
function ¢ and minimize the total loss

L=t f )

In parametric learning, f is determined by a vector of parameters 0; f(x;) = f(z;;6). Thus
we arrive at the learning problem

maanK(yl, f(z:;0)).

For our purposes, 6 will always be a vector of real numbers (to be given a discrete floating
point implementation), and we will perform this minimization by gradient desent. Specifi-
cally, we’ll use (minibatch) stochastic gradient descent with momentum. At each timestep ¢
we’ll take a gradient step ¢;, updating parameters according to

0, =01+ g

Specifically, our update will be (itself recurrently defined as)

k—1

9t = —nz Vol(Yrtvis f(Tht+i; 01-1)) + pge-1,

=0



where

e 7 is a real-valued hyperparameter (i.e., a tunable learning parameter) called the learn-
ing rate (n determines the absolute scale of each step);

e k is a positive integer called the (mini)batch size (minibatching produces smoother,
averaged gradients, and can improve computational efficiency);

V is the ordinary gradient on R”ﬂ

¢ is the loss function defined above; and

e pis areal parameter in the interval [0, 1), called the momentum (p smooths the updates
between minibtaches).

1.1.2 Momentum vs Batch Size

It’s worth noting that the expression above can be expanded into an infinite sum with
geometric coefficients, i.e.,

oo k-1

ge = —1N Z Zpsveé(yk(t—s)ﬂ, f(xk(t—s)—i-i; 0i—s)).

s=0 =0

Each example is included in the sum with coefficient pU/*, where the index j orders the
examples from most recently considered to least recently considered. Approximating this
expression by dropping the floor, we see that learning with momentum p and batch size k
is similar to learning with momentum p’ and batch size k' if p(1/%) = p/(1/E) Note, however,
that using a smaller batch size results in a smoother fall off and more frequent parameter
updates (and the learning rate may need to be adjusted accordingly). Figure gives
a visual comparison of the weighting resulting from two training schemes related by this
expression.

1.1.3 Convolutional Networks

How shall we choose a function f(-;6) to represent a transformation from input (images) to
output? A simple choice is a linear function: f(x;0) = fx, where 6 is a matrix and z is a
vector. While linear regression is itself a powerful technique with a long history, we will be
interested in more complex nonlinear transformations.

The basic tool for building model complexity is composition. Compositional representa-
tions naturally appeal to intuiton: we think of scenes as made of objects, objects as made of
parts, and parts as made of basic shapes. (In practice, we’ll arrive at a much more opaque,

IThis is not the only choice, nor necessarily the best choice. See the natural gradient [PB13, [Ama98| for
one (but not the only) alternative.
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Figure 1.1: Trading off batch size for momentum results in a similar learning procedure which
can have smoother behavior and improved convergence. The blue, step-like curve shows the
effective weight of each example in a gradient update using momentum 0.9 and batch size
20. The green, smooth curve shows the effective weight using the alternative settings of
momentum 0.91/20) batch size one. Note that in addition to smoothing out these weights,
lowering the batch size also increases the frequency of parameter updates.

learned representation.) Because linearity is preserved by composition, nonlinear elements
are also needed to build nonlinear functions. Following Occam’s razor and standard practice,
we therefore build networksﬂ that alternate between linear operations and simple elementwise
nonlinearities, called activation functions.

When dealing with images, we can make an additional simplification by insisting that our
representations be translation invariant (up to quantization effects). The means that we’ll
implement our linear transformations as convolutions] rather than unconstrained matrices.
(We'll revisit this princple in more detail in Chapter [3])

Together with a few additional nonlinearities (most notably nonlinear poolingﬁ), these
are all of the ingredients needed to build convolutional networks. The rest is a matter of
finding effective architectures and learning parameters.

Convolutional networks are sometimes called convolutional neural networks or CNNs.
Despite this name, neurons are not necessary in any way to motivate or influence the design
of the models that we use. So we’ll use the simpler term convolutional network, or convnet
for short.

2We'll use the term network to mean any function built by composition including linear, parametric
components (which will encompass all of the models we learn).

3Following standard practice in computer vision, we will use convolution to mean correlation; the dis-
tinction will usually be unimportant.

4which, in common cases, may be viewed as convolution in a nonstandard semiring



1.1.4 Network Details

We’ll make use of a couple well-known and publicly available benchmark networks (including
both their architectures and their weights learned on TmageNet [DDST09]). These include
the eight-layer AlexNet model [KSH12], and the sixteen-layer VGG-16 model [SZ14D] (also
called VGG-D). We'll refer to the layers of these networks by commonly-used abbreviations,
writing (for example) convn, pooln, or fcn, for the nth convolutional, pooling, or fully-
connected layer, respectively.

(Note that the implementation of AlexNet we use (“CaffeNet”) reverses the order of the
response normalization and pooling layers.)

We'll use the term receptive field, abbreviated rf, to refer to the set of input pixels that
are path-connected to a particular unit in a convnet. (Note that other usages of this term
exist.)

All experiments are performed using the Caffe [JSDT14] framework, and trained net-
works (including networks we make use, and many of the networks we produce) are publicly
available in the Caffe model zoo [mod]. We'll also use Halide [RKBA™13]| for efficient imple-
mentations of some of our custom routines.

1.2 Related Work

While each chapter includes a topic-specific discussion of related work, in this section we’ll
provide a brief (and therefore, necessarily biased and incomplete) overview of the most
important overall influences.

A complete history of deep learning is outside the scope of this document; see, for example
[Sch15]. This work follows the recent resurgence in popularity of supervised deep learning
precipitated by the benchmark ILSVRC [ILS12] results of AlexNet [KSH12]. That network in
turn shares overall design principles (with subtle, but important differences) with the classic
digit classifier LeNet [LBD™89], which draws inspiration from the Neocognitron [Fuk80]. The
idea of extending convolutional networks to produce spatial output dates back to at least
the “space displacement neural networks” [MBLD9I1] that extended LeNet to digit strings.

This work also follows a natural progression in spatial specificity from whole-image clas-
sification to per-pixel classification, with benchmark detection results, especially R-CNN
[GDDM14b], providing an encouraging intermediate stepping stone. (The ideas presented
here have in turn influenced bounding box detection, as seen in the subsequent Fast R-CNN
|Gir15] and Faster R-CNN [RHGS15].)

All the while, the use of finetuning means that advances in classification directly improve
the performance of methods presented here; we’ll especially consider the networks VGG
[SZ14b] and GoogLeNet |SLJT14], and note that ResNet [HZRS15], while too recent to be
included in our results, is also showing promise for powerful finetuning (e.g., in [DHS15]).



Chapter 2

Understanding Local Responses:
Correspondence and Keypoints]|

In this chapter we study convnets pretrained for classification, asking questions about the
intermediate representations that result, and especially about how useful those representa-
tions are for tasks beyond their original purpose of whole-image classification. Note that this
is an extremely common mode of usage: a network is first pretrained on a very large dataset
for a simple task, after which it is treated as a feature extractor for further applications,
much like a traditional hand-engineered feature extractor.

Although backpropagation affords the possibility of finetuning the feature extraction
stage for a particular new task, we won’t be finetuning in this chapter. Instead, we’ll in-
tentionally leave the features fixed, and even though we’ll examine performance on several
tasks, we’ll be interested not in building a system with the highest level of performance, but
rather in what the tasks tell us about features learned only from classification. (In later
chapters, we’ll continue on to building end-to-end learned systems for acheiving high levels
of performance.)

Dramatic improvements in image classification benchmarks [KSH12] were the major event
that rekindled interest in convolutional nets for computer vision. Despite the magnitude of
these results, many doubted [Yan| that the resulting features had the spatial specificity
necessary for localization; after all, whole image classification can rely on context cues and
overly large pooling regions to get the job done. For coarse localization, such doubts were
alleviated by record breaking results extending the same features to detection on PASCAL
[GDDM14b).

However, these results left open the same questions on a finer scale. Are the modern
convnets that excel at classification and detection also able to find precise correspondences
between object parts? Or do large receptive fields mean that correspondence is effectively
pooled away, making this a task better suited for hand-engineered features?

In this chapter, we provide evidence that convnet features perform at least as well as con-

IThis section is based on joint work with Ning Zhang and Trevor Darrell [LZD14].



Table 2.1: The receptive field sizes and strides for an “AlexNet” network, which takes an
input of size 227 x 227.

layer  rf size stride
convl 11 x 11 4 x4
conv2 51 x 51 8 X8
convd 99 x 99 16 x 16
convd 131 x 131 16 x 16
convd 163 x 163 16 x 16
poolds 195 x 195 32 x 32

ventional ones, even in the regime of point-to-point correspondence, and achieve considerable
performance improvement in certain settings, including category-level keypoint prediction.

2.1 Feature visualization

In this section and Figures [2.1] and 2.2] we conduct a visual investigation of the effective
pooling regions of convnet features.

In Figure [2.1], we perform a nonparametric reconstruction of images from features in the
spirit of HOGgles [VKMT13|. Rather than paired dictionary learning, however, we simply
replace patches with averages of their top-k nearest neighbors in a convnet feature space. To
do so, we first compute all features at a particular layer, resulting in an 2d grid of feature
vectors. We associate each feature vector with a patch in the original image at the center of
the corresponding receptive field and with size equal to the receptive field stride. (Note that
the strides of the receptive fields are much smaller than the receptive fields themselves, which
overlap. Refer to Table above for specific numbers.) We replace each such patch with an
average over k nearest neighbor patches using a database of features densely computed on
the images of PASCAL VOC 2011. Our database contains at least one million patches for
every layer. Features are matched by cosine similarity.

Even though the feature rfs cover large regions of the source images, the specific resem-
blance of the resulting images shows that information is not spread uniformly throughout
those regions. Notable features (e.g., the tires of the bicycle and the facial features of the
cat) are replaced in their corresponding locations. Also note that replacement appears to
become more semantic and less visually specific as the layer deepens: the eyes and nose
of the cat get replaced with differently colored or shaped eyes and noses, and the fur gets
replaced with various animal furs, with the diversity increasing with layer number.

Figure gives a feature-centric rather than image-centric view of feature locality. For
each column, we first pick a random seed feature vector (computed from a PASCAL image),
and find k nearest neighbor features, again by cosine similarity. Instead of averaging only
the centers, we average the entire receptive fields of the neighbors. The resulting images
show that similar features tend to respond to similar colors specifically in the centers of their
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Figure 2.1: Even though they have large receptive fields, convnet features carry local infor-
mation at a finer scale. Upper left: given an input image, we replaced 16 x 16 patches with
averages over 1 or b nearest neighbor patches, computed using convnet features centered at
those patches. The yellow square illustrates one input patch, and the black squares show
the corresponding rfs for the three layers shown. Right: Notice that the features retrieve
reasonable matches for the centers of their receptive fields, even though those rfs extend
over large regions of the source image. In the “uniform rf” column, we show the best that
could be expected if convnet features discarded all spatial information within their rfs, by
choosing input patches uniformly at random from conv3-sized neighborhoods. (Best viewed
electronically.)

receptive fields.
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Figure 2.2: Similar convnet features tend to have similar receptive field centers. Starting
from a randomly selected seed patch occupying one rf in conv3, 4, or 5, we find the nearest
k neighbor features computed on a database of natural images, and average together the
corresponding receptive fields. The contrast of each image has been expanded after averaging.
(Note that since each layer is computed with a stride of 16, there is an upper bound on the
quality of alignment that can be witnessed here.)

2.2 Intraclass alignment

We conjecture that category learning implicitly aligns instances by pooling over a discrimina-
tive mid-level representation. If this is true, then such features should be useful for post-hoc
alignment in a similar fashion to conventional features. To test this, we use convnet features
for the task of aligning different instances of the same class. We approach this difficult task
in the style of SIFT flow [LYTT11]: we retrieve near neighbors using a coarse similarity mea-
sure, and then compute dense correspondences on which we impose an MRF smoothness
prior which finally allows all images to be warped into alignment.

Nearest neighbors are computed using fc7 features. Since we are specifically testing the
quality of alignment, we use the same nearest neighbors for convnet or conventional features,
and we compute both types of features at the same locations, the grid of convnet rf centers
in the response to a single image.

Alignment is determined by solving an MRF formulated on this grid of feature locations.
Let p be a point on this grid, let fs(p) be the feature vector of the source image at that
point, and let f;(p) be the feature vector of the target image at that point. For each feature
grid location p of the source image, there is a vector w(p) giving the displacement of the
corresponding feature in the target image. We use the energy function

E(w) =Y _Ilfsp) = fulp +w@)la+8 Y llwm) - w3,

(p,9)€€

where & are the edges of a 4-neighborhood graph and [ is the regularization parameter.
Optimization is performed using belief propagation, with the techniques suggested in [FHO6].
Message passing is performed efficiently using the squared Euclidean distance transform
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Table 2.2: Keypoint transfer accuracy using convnet flow, SIFT flow, and simple copying
from nearest neighbors. Accuracy (PCK) is shown per category using ao = 0.1 (see text) and
means are also shown for the stricter values o = 0.05 and 0.025. On average, convnet flow
performs as well as SIFT flow, and performs a bit better for stricter tolerances.

aero bike bird boat bttl bus car cat chair cow table dog horse mbike prsn plant sheep sofa train tv mean

conv4 flow 28.2 34.1 20.4 17.1 50.6 36.7 20.9 19.6 15.7 25.4 12.7 18.7 25.9 23.1 21.4 40.2 21.1 14.5 18.3 33.3 24.9
SIFT flow 27.6 30.8 19.9 17.5 49.4 36.4 20.7 16.0 16.1 25.0 16.1 16.3 27.7 28.3 20.2 36.4 20.5 17.2 19.9 32.9 24.7
NN transfer 18.3 24.8 14.5 15.4 48.1 27.6 16.0 11.1 12.0 16.8 15.7 12.7 20.2 18.5 18.7 33.4 14.0 15.5 14.6 30.0 19.9

mean a =01 a=0.05 a=0.025

conv4 flow 24.9 11.8 4.08
SIFT flow 24.7 10.9 3.55
NN transfer 19.9 7.8 2.35

[EHO4]. (Unlike the L, regularization originally used by SIFT flow [LYT11], this formulation
maintains rotational invariance of w.)

Based on its performance in the next section, we use conv4 as our convnet feature, and
SIFT with descriptor radius 20 as our conventional feature. From validation experiments,
we set 8 =3-107? for both conv4 and SIFT features (which have a similar scale).

Given the alignment field w, we warp target to source using bivariate spline interpolation
(implemented in SciPy [JOP™ ]). Figure gives examples of alignment quality for a few
different seed images, using both SIF'T and convnet features. We show five warped nearest
neighbors as well as keypoints transferred from those neighbors.

We quantitatively assess the alignment by measuring the accuracy of predicted keypoints.
To obtain good predictions, we warp 25 nearest neighbors for each target image, and order
them from smallest to greatest deformation energy (we found this method to outperform
ordering using the data term). We take the predicted keypoints to be the median points
(coordinate-wise) of the top five aligned keypoints according to this ordering.

We assess correctness using mean PCK [FMJZ08|. We consider a ground truth keypoint
to be correctly predicted if the prediction lies within a Euclidean distance of a times the
maximum of the bounding box width and height, picking some a € [0,1]. We compute the
overall accuracy for each type of keypoint, and report the average over keypoint types. We
do not penalize predicted keypoints that are not visible in the target image.

Results are given in Table 2.2l We show per category results using v = 0.1, and mean
results for a = 0.1, 0.05, and 0.025. Indeed, convnet learned features are at least as capable
as SIFT at alignment, and better than might have been expected given the size of their
receptive fields.
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Table 2.3: Keypoint classification accuracies, in percent, on the twenty categories of PASCAL
2011 wval, trained with SIFT or convnet features. The best SIFT and convnet scores are
bolded in each category.

aero bike bird boat bttl bus car cat chair cow table dog horse mbike prsn plant sheep sofa train tv mean

SIFT' 10 36 42 36 32 67 64 40 37 33 37 60 34 39 38 29 63 37 42 64 75 45
(radius) 20 37 50 39 35 74 67 47 40 36 43 68 38 42 48 33 70 44 52 68 77 50
40 35 54 37 41 76 68 47 37 39 40 69 36 42 49 32 69 39 52 74 78 51

80 33 43 37 42 75 66 42 30 43 36 70 31 36 51 27 70 35 49 69 77 48

160 27 36 34 38 72 59 35 25 39 30 67 27 32 46 25 70 29 48 66 76 44

conv 1 16 14 15 19 20 29 15 22 16 17 29 17 14 16 15 33 18 12 27 29 20
(layer) 2 37 43 40 35 69 63 38 44 35 40 61 38 40 44 34 65 39 41 63 72 47
3 42 50 46 41 76 69 46 52 39 45 64 47 48 52 40 T4 46 50 T1 77 B4
4 44 53 49 42 78 70 45 55 41 48 68 51 51 53 41 76 49 52 73 76 56
544 51 49 41 77 68 44 53 39 45 63 50 49 52 39 73 47 47 71 75 ™4

2.3 Keypoint detection

In this section, we specifically address the ability of convnet features to understand semantic
information at the scale of parts. As an initial test, we consider the task of keypoint clas-
sification: given an image and the coordinates of a keypoint on that image, can we train a
classifier to label the keypoint?

For this task we use keypoint data [BM09] on the twenty classes of PASCAL VOC 2011
[EVGWT]. We extract features at each keypoint using SIFT [Low99] and using the column of
each convnet layer whose rf center lies closest to the keypoint. (Note that the SIFT features
will be more precisely placed as a result of this approximation.) We trained one-vs-all linear
SVMs on the train set using SIFT at five different radii and each of the five convolutional
layer activations as features (in general, we found pooling and normalization layers to have
lower performance). We set the SVM parameter C' = 107° for all experiments based on
five-fold cross validation on the training set (see Figure [2.7).

Table gives the resulting accuracies on the val set. We find features from convnet
layers consistently perform at least as well as and often better than SIFT at this task, with
the highest performance coming from layers conv4 and convb. Note that we are specifically
testing convnet features trained only for classification; the same net could be expected to
achieve even higher performance if trained for this task.

Finally, we study the precise location understanding of our classifiers by computing their
responses with a single-pixel stride around ground truth keypoint locations. For two example
keypoints (cat left eye and nose), we histogram the locations of the maximum responses
within a 21 pixel by 21 pixel rectangle around the keypoint, shown in Figure 2.5 We do
not include maximum responses that lie on the boundary of this rectangle. While the SIF'T
classifiers do not seem to be sensitive to the precise locations of the keypoints, in many cases
the convnet ones seem to be capable of localization finer than their strides, not just their
receptive field sizes. This observation motivates our final experiments to consider detection-
based localization performance.
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2.4 Keypoint prediction

We have seen that despite their large receptive field sizes, convnets work as well as the
hand-engineered feature SIFT for alignment and slightly better than SIFT for keypoint
classification. Keypoint prediction provides a natural follow-up test. As in Section [2.2] we
use keypoint annotations from PASCAL VOC 2011, and we assume a ground truth bounding
box.

Inspired in part by [GDDM14bl ISEZ 14, |[JTA™14], we train sliding window part detectors
to predict keypoint locations independently. R-CNN [GDDM14b] and OverFeat [SEZT14]
have both demonstrated the effectiveness of deep convolutional networks on the generic
object detection task. However, neither of them have investigated the application of CNNs
for keypoint predictionE] R-CNN starts from bottom-up region proposal [UvdSGS13], which
tends to overlook the signal from small parts. OverFeat, on the other hand, combines
convnets trained for classification and for regression and runs in multi-scale sliding window
fashion.

We rescale each bounding box to 500 x 500 and compute conv5 (with a stride of 16
pixels). Each cell of convb contains one 256-dimensional descriptor. We concatenate convh
descriptors from a local region of 3 x 3 cells, giving an overall receptive field size of 195 x 195
and feature dimension of 2304. For each keypoint, we train a linear SVM with hard negative
mining. We consider the ten closest features to each ground truth keypoint as positive
examples, and all the features whose rfs do not contain the keypoint as negative examples.
We also train using dense SIFT descriptors for comparison. We compute SIFT on a grid
of stride eight and bin size of eight using VLFeat [VF08]. For SIFT, we consider features
within twice the bin size from the ground truth keypoint to be positives, while samples that
are at least four times the bin size away are negatives.

We augment our SVM detectors with a spherical Gaussian prior over candidate locations
constructed by nearest neighbor matching. The mean of each Gaussian is taken to be
the location of the keypoint in the nearest neighbor in the training set found using cosine
similarity on poolb features, and we use a fixed standard deviation of 22 pixels. Let s(X;)
be the output score of our local detector for keypoint X;, and let p(X;) be the prior score.
We combine these to yield a final score f(X;) = s(X;)'p(X;)", where n € [0, 1] is a tradeoff
parameter. In our experiments, we set n = 0.1 by cross validation. At test time, we predict
the keypoint location as the highest scoring candidate over all feature locations.

We evaluate the predicted keypoints using the measure PCK introduced in Section [2.2]
taking a = 0.1. A predicted keypoint is defined as correct if the distance between it and the
ground truth keypoint is less than « - max(h, w) where h and w are the height and width of
the bounding box. The results using convb and SIFT with and without the prior are shown
in Table[2.4l From the table, we can see that local part detectors trained on the conv5 feature
outperform SIFT by a large margin and that the prior information is helpful in both cases.
To our knowledge, these are the first keypoint prediction results reported on this dataset. We

2But see works cited in Section 1.1 regarding keypoint localization.
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show example results from five different categories in Figure[2.8] Each set consists of rescaled
bounding box images with ground truth keypoint annotations and predicted keypoints using
SIFT and convb features, where each color corresponds to one keypoint. As the figure shows,
conv) outperforms SIFT, often managing satisfactory outputs despite the challenge of this
task. A small offset can be noticed for some keypoints like eyes and noses, likely due to the
limited stride of our scanning windows. A final regression or finer stride could mitigate this
issue.

2.5 Conclusion

Through visualization, alignment, and keypoint prediction, we have studied the ability of the
intermediate features implicitly learned in a state-of-the-art convnet classifier to understand
specific, local correspondence. Despite their large receptive fields and weak label training,
we have found in all cases that convnet features are at least as useful (and sometimes con-
siderably more useful) than conventional ones for extracting local visual information.

2.6 Related Work

2.6.1 Image alignment

Image alignment is a key step in many computer vision tasks, including face verification,
motion analysis, stereo matching, and object recognition. Alignment results in correspon-
dence across different images by removing intraclass variability and canonicalizing pose.
Alignment methods exist on a supervision spectrum from requiring manually labeled fidu-
cial points or landmarks, to requiring class labels, to fully unsupervised joint alignment and
clustering models. Congealing [HJLMO07] is an unsupervised joint alignment method based
on an entropy objective. Deep congealing [HMLLM12] builds on this idea by replacing hand-
engineered features with unsupervised feature learning from multiple resolutions. Inspired
by optical flow, SIFT flow [LYT11] matches densely sampled SIFT features for correspon-
dence and has been applied to motion prediction and motion transfer. In Section 2.2 we
apply SIFT flow using deep features for aligning different instances of the same class.

2.6.2 Keypoint localization

Semantic parts carry important information for object recognition, object detection, and
pose estimation. In particular, fine-grained categorization, the subject of many recent works,
depends strongly on part localization [LB13, BB13]. Large pose and appearance variation
across examples make part localization for generic object categories a challenging task.
Most of the existing works on part localization or keypoint prediction focus on either facial
landmark localization [BJKK11] or human pose estimation. Human pose estimation has been
approached using tree structured methods to model the spatial relationships between parts
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[YR11l, [SS11), ZR12], and also using poselets [BM09] as an intermediate step to localize
human keypoints [GHGM14, (GABM13|. Tree structured models and poselets may struggle
when applied to generic objects with large articulated deformations and wide shape variance.

2.6.3 Deep learning

Convolutional neural networks have gained much recent attention due to their success in
image classification [KSHI12|. Convnets trained with backpropagation were initially succesful
in digit recognition [LBD"89] and OCR [LBBHO9S|. The feature representations learned from
large data sets have been found to generalize well to other image classification tasks [DJV™14]
and even to object detection [GDDMI14b, [SKCL13|]. Recently, Toshev et al. [TS14] trained
a cascade of regression-based convnets for human pose estimation and Jain et al. [JTAT14]
combine a weak spatial model with deep learning methods.

The latter work trains multiple small, independent convnets on 64 x 64 patches for
binary body-part detection. In contrast, we employ a powerful pretained ImageNet model
that shares mid-elvel feature representations among all parts in Section [2.4]

Several recent works have attempted to analyze and explain this overwhelming success.
Zeiler and Fergus [ZF14] provide several heuristic visualizations suggesting coarse localization
ability. Szegedy et al. [SZST13|] show counterintuitive properties of the convnet representa-
tion, and suggest that individual feature channels may not be more semantically meaningful
than other bases in feature space. A concurrent work [FDB14a] compares convnet features
with SIFT in a standard descriptor matching task. This work illuminates and extends that
comparison by providing visual analysis and by moving beyond single instance matching to
intraclass correspondence and keypoint prediction.
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Figure 2.3: Convnet features can bring different instances of the same class into good align-
ment at least as well (on average) as traditional features. For each target image (left column),
we show warped versions of five nearest neighbor images aligned with conv4 flow (first row),
and warped versions aligned with SIFT flow [LYTT1I] (second row). Keypoints from the
warped images are shown copied to the target image. The cat shows a case where convnet
features perform better, while the bicycle shows a case where SIFT features perform better.
(Note that each instance is warped to a square bounding box before alignment. Best viewed
in color.)
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Figure 2.5: Convnet features show fine localization ability, even beyond their stride and
in cases where SIFT features do not perform as well. Each plot is a 2D histogram of the
locations of the maximum responses of a classifer in a 21 by 21 pixel rectangle taken around

a ground truth keypoint.
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Figure 2.7: Cross validation scores for cat keypoint classification as a function of the SVM
parameter C. In (a), we plot mean accuracy against C' for five different convnet features; in
(b) we plot the same for SIFT features of different sizes. We use C' = 107 for all experiments

in Table .
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Table 2.4: Keypoint prediction results on PASCAL VOC 2011. The numbers give average
accuracy of keypoint prediction using the criterion described in Section PCK with a =
0.1.

aero bike bird boat bttl bus car cat chair cow table dog horse mbike prsn plant sheep sofa train tv mean

SIFT 179 16.5 15.3 15.6 25.7 21.7 22.0 12.6 11.3 7.6 6.5 12.5 18.3 15.1 159 21.3 14.7 15.1 9.2 19.9 15.7
SIFT+prior 33.5 36.9 22.7 23.1 44.0 42.6 39.3 22.1 185 23.5 11.2 20.6 32.2 33.9 26.7 30.6 25.7 26.5 21.9 324 284
convh 38.5 37.6 29.6 25.3 54.5 52.1 28.6 31.5 89 30.5 24.1 23.7 35.8 29.9 39.3 38.2 30.5 24.5 41.5 42.0 33.3
convh-+prior 50.9 48.8 35.1 32.5 66.1 62.0 45.7 34.2 21.4 41.1 27.2 29.3 46.8 45.6 47.1 42.5 38.8 37.6 50.7 45.6 42.5

Groundtruth ~ SIFT+prior  convh+prior Groundtruth ~ SIFT+prior  convh+prior

Figure 2.8: Examples of keypoint prediction on five classes of the PASCAL dataset: aero-
plane, cat, cow, potted plant, and horse. Each keypoint is associated with one color. The
first column is the ground truth annotation, the second column is the prediction result of
SIFT+prior and the third column is convb+prior. (Best viewed in color).
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Chapter 3

Predicting Pixels Directly: Fully
Convolutional Networks|

In previous chapter, we’ve learned that convnet features, even in nets trained only for clas-
sification, carry powerful local information. In this chapter, encouraged by those results, we
go on to train networks directly for per-pixel prediction.

Convolutional networks have driven advances in recognition. This includes not only
whole-image classification [KSHI12 [SZ14al ISL.JT14], but also local tasks with structured
output. These include advances in bounding box object detection [SEZT14, [GDDMI14a,
HZRS14], but also part and keypoint prediction [ZDGD14] [LZD14], and local correspondence
[LZD14, [FDB14b], as we have seen in the previous chapter.

The natural next step in the progression from coarse to fine inference is to make a
prediction at every pixel. Prior approaches have used convnets for semantic segmentation
INDL™05, ICGGS12, [FCNL13| PC14, HAGM14a, (GGAM14, [GL14], in which each pixel is
labeled with the class of its enclosing object or region, but with shortcomings that this
chapter addresses.

We show that a fully convolutional network (FCN) trained end-to-end, pixels-to-pixels
on semantic segmentation exceeds the state-of-the-art without further machinery. To our
knowledge, this is the first result that trains FCNs end-to-end (1) for pixelwise prediction
and (2) from supervised pre-training. Fully convolutional versions of existing networks pre-
dict dense outputs from arbitrary-sized inputs. Both learning and inference are performed
whole-image-at-a-time by dense feedforward computation and backpropagation. In-network
upsampling layers enable pixelwise prediction and learning in nets with subsampled pooling.

This method is efficient, both asymptotically and absolutely, and precludes the need
for the complications in other works. Patchwise training is common [NDLT05, [CGGS12,
FCNLI13| [PC14, [GL14], but lacks the efficiency of fully convolutional training. Our approach
does not make use of pre- and post-processing complications, including superpixels [FCNL13],
HAGM14a], proposals [HAGMI14al, (GGAM14], or post-hoc refinement by random fields or

!This section is based on joint work with Evan Shelhamer and Trevor Darrell [LSD15].
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forward/inference

backward/learning

Figure 3.1: Fully convolutional networks can efficiently learn to make dense predictions for
per-pixel tasks like semantic segmentation.

local classifiers [FCNL13, [HAGMI14a]. Our model transfers recent success in classification
IKSH12, [SZ144, to dense prediction by reinterpreting classification nets as fully
convolutional and fine-tuning from their learned representations. In contrast, previous works
have applied small convnets without supervised pre-training [FCNLI3, [PC14, NDL*05].

Semantic segmentation faces an inherent tension between semantics and location: global
information resolves what while local information resolves where. Deep feature hierarchies
encode location and semantics in a nonlinear local-to-global pyramid. We define a skip
architecture to take advantage of this feature spectrum that combines deep, coarse, semantic
information and shallow, fine, appearance information in Section m (see Figure .

In the next section, we review related work on deep classification nets, FCNs, and recent
approaches to semantic segmentation using convnets. The following sections explain FCN
design and dense prediction tradeoffs, introduce our architecture with in-network upsam-
pling and multi-layer combinations, and describe our experimental framework. Finally, we
demonstrate state-of-the-art results on PASCAL VOC 2011-2, NYUDv2, and SIFT Flow.

3.1 Related work

Our approach draws on recent successes of deep nets for image classification [KSH12l [SZ14al
SLJ*14] and transfer learning [DJVF14, [ZF14]. Transfer was first demonstrated on various
visual recognition tasks [DJVT14| [ZF14], then on detection, and on both instance and se-
mantic segmentation in hybrid proposal-classifier models HAGM14al [GGAM14].
We now re-architect and fine-tune classification nets to direct, dense prediction of semantic
segmentation. We chart the space of FCNs and situate prior models, both historical and
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recent, in this framework.

3.1.1 Fully convolutional networks

To our knowledge, the idea of extending a convnet to arbitrary-sized inputs first appeared
in Matan et al. [MBLD91], which extended the classic LeNet [LBDT89] to recognize strings
of digits. Because their net was limited to one-dimensional input strings, Matan et al. used
Viterbi decoding to obtain their outputs. Wolf and Platt [WP94] expand convnet outputs to
2-dimensional maps of detection scores for the four corners of postal address blocks. Both of
these historical works do inference and learning fully convolutionally for detection. Ning et
al. INDLT05] define a convnet for coarse multiclass segmentation of C. elegans tissues with
fully convolutional inference.

Fully convolutional computation has also been exploited in the present era of many-
layered nets. Sliding window detection by Sermanet et al. [SEZT14], semantic segmentation
by Pinheiro and Collobert [PC14], and image restoration by Eigen et al. [EKEF13|] do fully
convolutional inference. Fully convolutional training is rare, but used effectively by Tompson
et al. [TJLB14] to learn an end-to-end part detector and spatial model for pose estimation,
although they do not exposit on or analyze this method.

Alternatively, He et al. [HZRS14] discard the non-convolutional portion of classification
nets to make a feature extractor. They combine proposals and spatial pyramid pooling to
yield a localized, fixed-length feature for classification. While fast and effective, this hybrid
model cannot be learned end-to-end.

3.1.2 Dense prediction with convnets

Several recent works have applied convnets to dense prediction problems, including semantic
segmentation by Ning et al.[NDLT05|, Farabet et al.[FCNLI3], and Pinheiro and Collobert
[PC14]; boundary prediction for electron microscopy by Ciresan et al.[CGGS12] and for
natural images by a hybrid convnet/nearest neighbor model by Ganin and Lempitsky [GL14];
and image restoration and depth estimation by Eigen et ol [EKF13] [EPF14]. Common
elements of these approaches include

e small models restricting capacity and receptive fields;
e patchwise training [NDL™05, [CGGS12 [FCNL13|, PC14] [GL14];

e refinement by superpixel projection, random field regularization, filtering, or local clas-
sification [FCNL13|, [CGGS12] IGL14];

e ‘“interlacing” to obtain dense output [SEZ"14, [PC14, [(GL14];
e multi-scale pyramid processing [FCNLI13| [PC14, |GL14];

e saturating tanh nonlinearities [FCNLI3| [EKF13, [PC14]; and
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e ensembles [CGGS12, IGL14],

whereas our method does without this machinery. However, we do study patchwise training
(Section and “shift-and-stitch” dense output (Section from the perspective of
FCNs. We also discuss in-network upsampling (Section [3.2.3)), of which the fully connected
prediction by Eigen et al.[EPF14] is a special case.

Unlike these existing methods, we adapt and extend deep classification architectures,
using image classification as supervised pre-training, and fine-tune fully convolutionally to
learn simply and efficiently from whole image inputs and whole image ground thruths.

Hariharan et al.[HAGMI4a] and Gupta et al.[GGAMI4] likewise adapt deep classifica-
tion nets to semantic segmentation, but do so in hybrid proposal-classifier models. These
approaches fine-tune an R-CNN system [GDDMI14a] by sampling bounding boxes and/or
region proposals for detection, semantic segmentation, and instance segmentation. Neither
method is learned end-to-end. They achieve the previous best segmentation results on PAS-
CAL VOC and NYUDvV2 respectively, so we directly compare our standalone, end-to-end
FCN to their semantic segmentation results in Section [4.4.5]

We fuse features across layers to define a nonlinear local-to-global representation that
we tune end-to-end. In contemporary work Hariharan et al. [HAGMI15a] also use multiple
layers in their hybrid model for semantic segmentation.

3.2 Fully convolutional networks

Each layer of data in a convnet is a three-dimensional array of size h X w x d, where h and
w are spatial dimensions, and d is the feature or channel dimension. The first layer is the
image, with pixel size h X w, and d color channels. Locations in higher layers correspond to
the locations in the image they are path-connected to, which are called their receptive fields.

Convnets are built on translation invariance. Their basic components (convolution, pool-
ing, and activation functions) operate on local input regions, and depend only on relative
spatial coordinates. Writing x;; for the data vector at location (7,7) in a particular layer,
and y;; for the following layer, these functions compute outputs y;; by

Yi; = frs ({Xsi+5i,sj+6j}og&,ajgk)

where k is called the kernel size, s is the stride or subsampling factor, and f;s determines
the layer type: a matrix multiplication for convolution or average pooling, a spatial max for
max pooling, or an elementwise nonlinearity for an activation function, and so on for other
types of layers.

This functional form is maintained under composition, with kernel size and stride obeying
the transformation rule

fks O Gk's' = (f % g)k’+(k—1)s’,ss’-
While a general deep net computes a general nonlinear function, a net with only layers of this
form computes a nonlinear filter, which we call a deep filter or fully convolutional network.
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Figure 3.2: Transforming fully connected layers into convolution layers enables a classification
net to output a heatmap. Adding layers and a spatial loss (as in Figure produces an
efficient machine for end-to-end dense learning.

An FCN naturally operates on an input of any size, and produces an output of corresponding
(possibly resampled) spatial dimensions.

A real-valued loss function composed with an FCN defines a task. If the loss function
is a sum over the spatial dimensions of the final layer, £(x;0) = >, ¢'(x;;;0), its gradient
will be a sum over the gradients of each of its spatial components. Thus stochastic gradient
descent on ¢ computed on whole images will be the same as stochastic gradient descent on
¢, taking all of the final layer receptive fields as a minibatch.

When these receptive fields overlap significantly, both feedforward computation and back-
propagation are much more efficient when computed layer-by-layer over an entire image
instead of independently patch-by-patch.

We next explain how to convert classification nets into fully convolutional nets that pro-
duce coarse output maps. For pixelwise prediction, we need to connect these coarse outputs
back to the pixels. Section describes a trick, fast scanning |[GCM™13|, introduced for
this purpose. We gain insight into this trick by reinterpreting it as an equivalent network
modification. As an efficient, effective alternative, we introduce deconvolution layers for up-
sampling in Section [3.2.3] In Section we consider training by patchwise sampling, and
give evidence in Section that our whole image training is faster and equally effective.

3.2.1 Adapting classifiers for dense prediction

Typical recognition nets, including LeNet [LBD789|, AlexNet [KSH12], and its deeper suc-
cessors [SZ14al, ISLJT14], ostensibly take fixed-sized inputs and produce non-spatial outputs.
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The fully connected layers of these nets have fixed dimensions and throw away spatial co-
ordinates. However, these fully connected layers can also be viewed as convolutions with
kernels that cover their entire input regions. Doing so casts them into fully convolutional
networks that take input of any size and output classification maps. This transformation is
illustrated in Figure (3.2}

Furthermore, while the resulting maps are equivalent to the evaluation of the original
net on particular input patches, the computation is highly amortized over the overlapping
regions of those patches. For example, while AlexNet takes 1.2 ms (on a typical GPU) to
infer the classification scores of a 227 x 227 image, the fully convolutional net takes 22 ms
to produce a 10 x 10 grid of outputs from a 500 x 500 image, which is more than 5 times
faster than the naive approachﬂ

The spatial output maps of these convolutionalized models make them a natural choice
for dense problems like semantic segmentation. With ground truth available at every output
cell, both the forward and backward passes are straightforward, and both take advantage
of the inherent computational efficiency (and aggressive optimization) of convolution. The
corresponding backward times for the AlexNet example are 2.4 ms for a single image and 37
ms for a fully convolutional 10 x 10 output map, resulting in a speedup similar to that of
the forward pass.

While our reinterpretation of classification nets as fully convolutional yields output maps
for inputs of any size, the output dimensions are typically reduced by subsampling. The
classification nets subsample to keep filters small and computational requirements reasonable.
This coarsens the output of a fully convolutional version of these nets, reducing it from the
size of the input by a factor equal to the pixel stride of the receptive fields of the output
units.

3.2.2 Shift-and-stitch is filter dilation

Dense predictions can be obtained from coarse outputs by stitching together outputs from
shifted versions of the input. If the output is downsampled by a factor of f, shift the input
x pixels to the right and y pixels down, once for every (z,y) such that 0 < z,y < f. Process
each of these f? inputs, and interlace the outputs so that the predictions correspond to the
pixels at the centers of their receptive fields.

Although this transformation naively increases the cost by a factor of f2, there is a well-
known trick for efficiently producing identical results [GCM™13, ISEZ"14]. (This trick is also
used in the algorithme a trous [HKMMTR9, [Mal99] for wavelet transforms and related to
the Noble identities [Vai90] from signal processing.)

Consider a layer (convolution or pooling) with input stride s, and a subsequent convo-
lution layer with filter weights f;; (eliding the irrelevant feature dimensions). Setting the
earlier layer’s input stride to one upsamples its output by a factor of s. However, convolving

2 Assuming efficient batching of image inputs. The classification scores for a single, unbatched image take
5.4 ms to produce, which is nearly 25 times slower than the fully convolutional version.
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the original filter with the upsampled output does not produce the same result as shift-and-
stitch, because the original filter only sees a reduced portion of its (now upsampled) input.
To produce the same result, dilate (or “rarefy”) the filter by forming

f { fissjss if s divides both i and j;

Ei 0 otherwise,

(with ¢ and j zero-based). Reproducing the full net output of shift-and-stitch involves re-
peating this filter enlargement layer-by-layer until all subsampling is removed. (In practice,
this can be done efficiently by processing subsampled versions of the upsampled input.)

Simply decreasing subsampling within a net is a tradeoff: the filters see finer information,
but have smaller receptive fields and take longer to compute. This dilation trick is another
kind of tradeoff: the output is denser without decreasing the receptive field sizes of the filters,
but the filters are prohibited from accessing information at a finer scale than their original
design.

Although we have done preliminary experiments with dilation, we do not use it in our
model. We find learning through upsampling, as described in the next section, to be effective
and efficient, especially when combined with the skip layer fusion described later on. For
further detail regarding dilation, refer to the dilated FCN of [YKI6].

3.2.3 Upsampling is (fractionally strided) convolution

Another way to connect coarse outputs to dense pixels is interpolation. For instance, simple
bilinear interpolation computes each output y;; from the nearest four inputs by a linear map
that depends only on the relative positions of the input and output cells.

In a sense, upsampling with factor f is convolution with a fractional input stride of
1/f. So long as f is integral, it’s natural to implement upsampling by convolution with an
output stride of f. Such an operation is trivial to implement, since it simply reverses the
forward and backward passes of more typical input-strided convolution. Thus upsampling is
performed in-network for end-to-end learning by backpropagation from the pixelwise loss.

By an abuse of terminology, these layers are sometimes refered to as deconvolution layers.
Note that the convolution filter in such a layer need not be fixed (e.g., to bilinear upsampling),
but can be learned. A stack of deconvolution layers and activation functions can even learn
a nonlinear upsampling.

In our experiments, we find that in-network upsampling is fast and effective for learning
dense prediction. Our best segmentation architecture uses these layers to learn to upsample
for refined prediction in Section [3.3.2

3.2.4 Patchwise training is loss sampling

In stochastic optimization, gradient computation is driven by the training distribution. Both
patchwise training and fully convolutional training can be made to produce any distribu-
tion, although their relative computational efficiency depends on overlap and minibatch size.
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Whole image fully convolutional training is identical to patchwise training where each batch
consists of all the receptive fields of the units below the loss for an image (or collection
of images). While this is more efficient than uniform sampling of patches, it reduces the
number of possible batches. However, random selection of patches within an image may
be recovered simply. Restricting the loss to a randomly sampled subset of its spatial terms
(or, equivalently applying a DropConnect mask [WZZ713| between the output and the loss)
excludes patches from the gradient computation.

If the kept patches still have significant overlap, fully convolutional computation will still
speed up training. If gradients are accumulated over multiple backward passes, batches can
include patches from several images [’

Sampling in patchwise training can correct class imbalance [NDL™05, [FCNL13|, [CGGS12]
and mitigate the spatial correlation of dense patches [PC14, HAGMI14a]. In fully convolu-
tional training, class balance can also be achieved by weighting the loss, and loss sampling
can be used to address spatial correlation.

We explore training with sampling in Section [3.3.4] and do not find that it yields faster
or better convergence for dense prediction. Whole image training is effective and efficient.

3.3 Segmentation Architecture

We cast ILSVRC classifiers into FCNs and augment them for dense prediction with in-
network upsampling and a pixelwise loss. We train for segmentation by fine-tuning. Next,
we add skips between layers to fuse coarse, semantic and local, appearance information. This
skip architecture is learned end-to-end to refine the semantics and spatial precision of the
output.

For this investigation, we train and validate on the PASCAL VOC 2011 segmentation
challenge [EVGW™|. We train with a per-pixel multinomial logistic loss and validate with the
standard metric of mean pixel intersection over union, with the mean taken over all classes,
including background. The training ignores pixels that are masked out (as ambiguous or
difficult) in the ground truth.

3.3.1 From classifier to dense FCN

We begin by convolutionalizing proven classification architectures as in Section We
consider the AlexNeffl] architecture [KSHI2] that won ILSVRC12, as well as the VGG nets
[SZ14a] and the GoogLeNetf’| [SLIT14] which did exceptionally well in ILSVRC14. We pick

3Note that not every possible patch is included this way, since the receptive fields of the final layer units
lie on a fixed, strided grid. However, by shifting the image right and down by a random value up to the
stride, random selection from all possible patches may be recovered.

4Using the publicly available CaffeNet reference model.

5Since there is no publicly available version of GoogLeNet, we use our own reimplementation. Our
version is trained with less extensive data augmentation, and gets 68.5% top-1 and 88.4% top-5 ILSVRC
accuracy.
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Figure 3.3: Our DAG nets learn to combine coarse, high layer information with fine, low
layer information. Pooling and prediction layers are shown as grids that reveal relative spatial
coarseness, while intermediate layers are shown as vertical lines. First row (FCN-32s): Our
single-stream net, described in Section [3.3.1} upsamples stride 32 predictions back to pixels
in a single step. Second row (FCN-16s): Combining predictions from both the final layer
and the pool4 layer, at stride 16, lets our net predict finer details, while retaining high-level
semantic information. Third row (FCN-8s): Additional predictions from pool3, at stride 8,
provide further precision.

the VGG 16-layer netf] which we found to be equivalent to the 19-layer net on this task. For
GoogLeNet, we use only the final loss layer, and improve performance by discarding the final
average pooling layer. We decapitate each net by discarding the final classifier layer, and
convert all fully connected layers to convolutions. We append a 1x 1 convolution with channel
dimension 21 to predict scores for each of the PASCAL classes (including background) at
each of the coarse output locations, followed by a deconvolution layer to bilinearly upsample
the coarse outputs to pixel-dense outputs as described in Section [3.2.3] Table [3.1] compares
the preliminary validation results along with the basic characteristics of each net. We report
the best results achieved after convergence at a fixed learning rate (at least 175 epochs).
Fine-tuning from classification to segmentation gave reasonable predictions for each net.
Even the worst model achieved ~ 75% of state-of-the-art performance. The segmentation-
equipped VGG net (FCN-VGG16) already appears to be state-of-the-art at 56.0 mean IU on
val, compared to 52.6 on test [HAGMI14a]. Training on extra data raises FCN-VGG16 to 59.4
mean IU and FCN-AlexNet to 48.0 mean IU on a subset of val”. Despite similar classification
accuracy, our implementation of GoogLeNet did not match the VGG16 segmentation result.

6Using the publicly available version from the Caffe model zoo.
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Table 3.1: We adapt and extend three classification convnets. We compare performance by
mean intersection over union on the validation set of PASCAL VOC 2011 and by inference
time (averaged over 20 trials for a 500 x 500 input on an NVIDIA Tesla K40c). We detail
the architecture of the adapted nets with regard to dense prediction: number of parameter
layers, receptive field size of output units, and the coarsest stride within the net. (These
numbers give the best performance obtained at a fixed learning rate, not best performance
possible.)

FCN- FCN- FCN-
AlexNet  VGG16  GoogLeNet?
mean [U 39.8 56.0 42.5
forward time 50 ms 210 ms 59 ms
conv. layers 8 16 22
parameters 5TM 134M 6M
rf size 355 404 907
max stride 32 32 32

Table 3.2: Comparison of skip FCNs on a subset” of PASCAL VOC 2011 segval. Learning
is end-to-end, except for FCN-32s-fixed, where only the last layer is fine-tuned. Note that
FCN-32s is FCN-VGG16, renamed to highlight stride.

pixel mean mean f.w.
acc. acc. [U U
FCN-32s-fixed | 83.0 59.7 454 72.0
FCN-32s | 89.1 73.3 59.4 814
FCN-16s | 90.0 75.7 62.4 83.0
FCN-8s | 90.3 75.9 62.7 83.2

3.3.2 Combining what and where

We define a new fully convolutional net (FCN) for segmentation that combines layers of the
feature hierarchy and refines the spatial precision of the output. See Figure [3.3]

While fully convolutionalized classifiers can be fine-tuned to segmentation as shown in
3.3.1], and even score highly on the standard metric, their output is dissatisfyingly coarse
(see Figure . The 32 pixel stride at the final prediction layer limits the scale of detail in
the upsampled output.

We address this by adding skips [Bis06] that combine the final prediction layer with
lower layers with finer strides. This turns a line topology into a DAG, with edges that skip
ahead from lower layers to higher ones (Figure [3.3). As they see fewer pixels, the finer
scale predictions should need fewer layers, so it makes sense to make them from shallower
net outputs. Combining fine layers and coarse layers lets the model make local predictions
that respect global structure. This crossing of layers and resolutions is a learned, nonlinear
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Table 3.3: Comparison of skip FCNs on a subset” of PASCAL VOC 2011 segval. Learning
is end-to-end, except for FCN-32s-fixed, where only the last layer is fine-tuned. Note that
FCN-32s is FCN-VGG16, renamed to highlight stride.

pixel mean mean f.w.

acc. acc. [U IU
FCN-32s | 89.1 73.3 594 81.4
FCN-16s | 90.0 75.7 62.4 83.0
FCN-8s | 90.3 75.9 62.7 83.2

counterpart to the multi-scale representation of the Laplacian pyramid [BAS3]. By analogy
to the jet of Koenderick and van Doorn [KvD87], we call our feature hierarchy the deep jet.

We first divide the output stride in half by predicting from a 16 pixel stride layer. We
add a 1 x 1 convolution layer on top of pool4d to produce additional class predictions. We
fuse this output with the predictions computed on top of conv7 (convolutionalized f£c7) at
stride 32 by adding a 2x upsampling layer and summing[] both predictions (see Figure .
We initialize the 2x upsampling to bilinear interpolation, but allow the parameters to be
learned as described in Section [3.2.3] Finally, the stride 16 predictions are upsampled back
to the image. We call this net FCN-16s. FCN-16s is learned end-to-end, initialized with
the parameters of the last, coarser net, which we now call FCN-32s. The new parameters
acting on pool4 are zero-initialized so that the net starts with unmodified predictions. The
learning rate is decreased by a factor of 100.

Learning this skip net improves performance on the validation set by 3.0 mean IU to
62.4. Figure [3.4] shows improvement in the fine structure of the output. We compared
this fusion with learning only from the pool4 layer, which resulted in poor performance, and
simply decreasing the learning rate without adding the skip, which resulted in an insignificant
performance improvement without improving the quality of the output.

We continue in this fashion by fusing predictions from pool3 with a 2x upsampling
of predictions fused from pool4 and conv7, building the net FCN-8s. We obtain a minor
additional improvement to 62.7 mean IU, and find a slight improvement in the smoothness
and detail of our output. At this point our fusion improvements have met diminishing
returns, both with respect to the IU metric which emphasizes large-scale correctness, and
also in terms of the improvement visible e.g. in Figure[3.4] so we do not continue fusing even
lower layers.

3.3.3 Refinement by other means

Decreasing the stride of pooling layers is the most straightforward way to obtain finer predic-
tions. However, doing so is problematic for our VGG16-based net. Setting the pool5 stride
to 1 requires our convolutionalized fc6 to have kernel size 14 x 14 to maintain its receptive

"Max fusion made learning difficult due to gradient switching.
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Figure 3.4: Refining fully convolutional nets by fusing information from layers with different
strides improves segmentation detail. The first three images show the output from our 32,
16, and 8 pixel stride nets (see Figure .

field size. In addition to their computational cost, we had difficulty learning such large filters.
We attempted to re-architect the layers above pool5 with smaller filters, but did not achieve
comparable performance; one possible explanation is that the ILSVRC initialization of the
upper layers is important.

Another way to obtain finer predictions is to use the shift-and-stitch trick described in
Section In limited experiments, we found the cost to improvement ratio from this
method to be worse than layer fusion.

3.3.4 Experimental framework

3.3.5 Optimization

We train by SGD with momentum. We use a minibatch size of 20 images and fixed learning
rates of 1073, 107, and 57 for FCN-AlexNet, FCN-VGG16, and FCN-GoogLeNet, respec-
tively, chosen by line search. We use momentum 0.9, weight decay of 57% or 27, and doubled
learning rate for biases, although we found training to be sensitive to the learning rate alone.
We zero-initialize the class scoring layer, as random initialization yielded neither better per-
formance nor faster convergence. Dropout was included where used in the original classifier
nets.

3.3.6 Fine-tuning

We fine-tune all layers by back-propagation through the whole net. Fine-tuning the output
classifier alone yields only 70% of the full fine-tuning performance as compared in Table
3.3l Training from scratch is not feasible considering the time required to learn the base
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classification nets. (Note that the VGG net is trained in stages, while we initialize from the
full 16-layer version.) Fine-tuning takes three days on a single GPU for the coarse FCN-32s
version, and about one day each to upgrade to the FCN-16s and FCN-8s versions.

3.3.7 More Training Data

The PASCAL VOC 2011 segmentation training set labels 1112 images. Hariharan et al.
[HAB™11] collected labels for a larger set of 8498 PASCAL training images, which was used
to train the previous state-of-the-art system, SDS [HAGMI4a]. This training data improves
the FCN-VGG16 validation scord by 3.4 points to 59.4 mean IU.

3.3.8 Patch Sampling

As explained in Section [3.2.4] our full image training effectively batches each image into a
regular grid of large, overlapping patches. By contrast, prior work randomly samples patches
over a full dataset [NDLT05, [CGGS12, [FCNL13, [PC14l [GL14], potentially resulting in higher
variance batches that may accelerate convergence [LBOMO9S|. We study this tradeoff by
spatially sampling the loss in the manner described earlier, making an independent choice
to ignore each final layer cell with some probability 1 — p. To avoid changing the effective
batch size, we simultaneously increase the number of images per batch by a factor 1/p.
Note that due to the efficiency of convolution, this form of rejection sampling is still faster
than patchwise training for large enough values of p (e.g., at least for p > 0.2 according
to the numbers in Section [3.2.1)). Figure shows the effect of this form of sampling on
convergence. We find that sampling does not have a significant effect on convergence rate
compared to whole image training, but takes significantly more time due to the larger number
of images that need to be considered per batch. We therefore choose unsampled, whole image
training in our other experiments.

3.3.9 Class Balancing

Fully convolutional training can balance classes by weighting or sampling the loss. Although
our labels are mildly unbalanced (about 3/4 are background), we find class balancing un-
necessary.

3.3.10 Dense Prediction

The scores are upsampled to the input dimensions by deconvolution layers within the net.
Final layer deconvolutional filters are fixed to bilinear interpolation, while intermediate up-
sampling layers are initialized to bilinear upsampling, and then learned.

8There are training images from [HAB*11] included in the PASCAL VOC 2011 val set, so we validate
on the non-intersecting set of 736 images.
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Figure 3.5: Training on whole images is just as effective as sampling patches, but results in
faster (wall time) convergence by making more efficient use of data. Left shows the effect of
sampling on convergence rate for a fixed expected batch size, while right plots the same by
relative wall time.

3.3.11 Augmentation

We tried augmenting the training data by randomly mirroring and “jittering” the images
by translating them up to 32 pixels (the coarsest scale of prediction) in each direction. This
yielded no noticeable improvement.

3.3.12 Implementation

All models are trained and tested with Caffe [JSDT14] on a single NVIDIA Tesla K40c. Our
models and code are publicly available at
http://fcn.berkeleyvision.org.

3.4 Results

We test our FCN on semantic segmentation and scene parsing, exploring PASCAL VOC,
NYUDv2, and SIFT Flow. Although these tasks have historically distinguished between
objects and regions, we treat both uniformly as pixel prediction. We evaluate our FCN skip
architecture on each of these datasets, and then extend it to multi-modal input for NYUDv2
and multi-task prediction for the semantic and geometric labels of SIFT Flow.


http://fcn.berkeleyvision.org
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3.4.1 Metrics

We report four metrics from common semantic segmentation and scene parsing evaluations
that are variations on pixel accuracy and region intersection over union (IU). Let n;; be the
number of pixels of class ¢ predicted to belong to class j, where there are n., different classes,
and let t; = Zj n;; be the total number of pixels of class i. We compute:

pixel accuracy: Y, ni/ > .t

e mean accuraccy: (1/nq) Y . ni/t;

mean 1U: (1/nq) >, i/ (ti + Dy — nzz)

frequency weighted TU: (32, tx) " 32, tinii/ (ti + D2 — n”>

3.4.2 PASCAL VOC

Table [3.4] gives the performance of our FCN-8s on the test sets of PASCAL VOC 2011 and
2012, and compares it to the previous state-of-the-art, SDS [HAGM14a], and the well-known
R-CNN [GDDM14a]. We achieve the best results on mean IUﬂ by a relative margin of 20%.
Inference time is reduced 114x (convnet only, ignoring proposals and refinement) or 286x
(overall).

Table 3.4: Our fully convolutional net gives a 20% relative improvement over the state-of-
the-art on the PASCAL VOC 2011 and 2012 test sets and reduces inference time.

mean U mean U inference
VOC2011 test VOC2012 test time
R-CNN [GDDM14a] 47.9 - -
SDS [HAGM14a] 52.6 51.6 ~ 50 s
FCN-8s 62.7 62.2 ~ 175 ms

NYUDv2 [SHKF12] is an RGB-D dataset collected using the Microsoft Kinect. It has
1449 RGB-D images, with pixelwise labels that have been coalesced into a 40 class semantic
segmentation task by Gupta et al. [GAMI3]. We report results on the standard split of 795
training images and 654 testing images. (Note: all model selection is performed on PASCAL
2011 val.) Table gives the performance of our model in several variations. First we train
our unmodified coarse model (FCN-32s) on RGB images. To add depth information, we
train on a model upgraded to take four-channel RGB-D input (early fusion). This provides
little benefit, perhaps due to the difficultly of propagating meaningful gradients all the way
through the model. Following the success of Gupta et al. [GGAMI14], we try the three-
dimensional HHA encoding of depth, training nets on just this information, as well as a

9This is the only metric provided by the test server.
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Table 3.5: Results on NYUDv2. RGBD is early-fusion of the RGB and depth channels
at the input. HHA is the depth embedding of [GGAMI4| as horizontal disparity, height
above ground, and the angle of the local surface normal with the inferred gravity direction.
RGB-HHA is the jointly trained late fusion model that sums RGB and HHA predictions.

pixel mean mean f.w.
acc. acc. [U IU
Gupta et al. [GGAMI14] | 60.3 - 28.6 47.0
FCN-32s RGB | 60.0 42.2 29.2 439
FCN-32s RGBD | 61.5 424 30.5 455
FCN-32s HHA | 57.1 35.2 242 404
FCN-32s RGB-HHA | 64.3 449 32.8 48.0
FCN-16s RGB-HHA | 65.4 46.1 34.0 49.5

“late fusion” of RGB and HHA where the predictions from both nets are summed at the
final layer, and the resulting two-stream net is learned end-to-end. Finally we upgrade this
late fusion net to a 16-stride version.

SIFT Flow is a dataset of 2,688 images with pixel labels for 33 semantic categories
(“bridge”, “mountain”, “sun”), as well as three geometric categories (“horizontal”, “verti-
cal”, and “sky”). An FCN can naturally learn a joint representation that simultaneously
predicts both types of labels. We learn a two-headed version of FCN-16s with semantic and
geometric prediction layers and losses. The learned model performs as well on both tasks
as two independently trained models, while learning and inference are essentially as fast as
each independent model by itself. The results in Table [3.6, computed on the standard split
into 2,488 training and 200 test images|"”| show state-of-the-art performance on both tasks.

3.5 Upper Bounds on IU

In this chapter, we have achieved good performance on the mean IU segmentation metric
even with coarse semantic prediction. To better understand this metric and the limits of this
approach with respect to it, we compute approximate upper bounds on performance with
prediction at various scales. We do this by downsampling ground truth images and then up-
sampling them again to simulate the best results obtainable with a particular downsampling
factor. The following table gives the mean IU on a subset of PASCAL 2011 val for various
downsampling factors.

10T hree of the SIFT Flow categories are not present in the test set. We made predictions across all 33
categories, but only included categories actually present in the test set in our evaluation.
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SDS [HAGM14a] Ground Truth

Figure 3.6: Fully convolutional segmentation nets produce state-of-the-art performance on
PASCAL. The left column shows the output of our highest performing net, FCN-8s. The
second shows the segmentations produced by the previous state-of-the-art system by Hari-
haran et al. [HAGMI4a]. Notice the fine structures recovered (first row), ability to separate
closely interacting objects (second row), and robustness to occluders (third row). The fourth
row shows a failure case: the net sees lifejackets in a boat as people.
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Table 3.6: Results on SIFT Flow” with class segmentation (center) and geometric segmen-
tation (right). Tighe [TLI10] is a non-parametric transfer method. Tighe 1 is an exemplar
SVM while 2 is SVM + MRF. Farabet is a multi-scale convnet trained on class-balanced
samples (1) or natural frequency samples (2). Pinheiro is a multi-scale, recurrent convnet,
denoted RCNN3 (0%). The metric for geometry is pixel accuracy.

pixel mean mean f.w.| geom.
acc. acc. IU IU | acc.
Liu et al. [LYT11] | 76.7 - - - -

Tighe et al. [TL10] | - - - - 1908

Tighe et ol [TLI3) 1 | 75.6 411 - - | -

Tighe et ol [TLI3] 2 | 786 392 - - | -

Farabet et al. [FCNL13] 1 | 72.3 50.8 - - -

Farabet et al. [FCNL13] 2 | 785 29.6 - - -

Pinheiro et al. [PC14] | 77.7 29.8 - - -

FCN-16s | 85.2 51.7 39.5 76.1 | 94.3

factor | mean IU
128 | 50.9
64 | 73.3
32 | 86.1
16 | 92.8
8 196.4
4 | 98.5

Pixel-perfect prediction is clearly not necessary to achieve mean IU well above state-of-
the-art, and, conversely, mean IU is a not a good measure of fine-scale accuracy.

3.6 More Results

We further evaluate our FCN for semantic segmentation.

PASCAL-Context [MCLT14|] provides whole scene annotations of PASCAL VOC 2010.
While there are over 400 distinct classes, we follow the 59 class task defined by [MCLT14]
that picks the most frequent classes. We train and evaluate on the training and val sets
respectively. In Table 3.7, we compare to the joint object + stuff variation of Convolutional
Feature Masking [DHS14] which is the previous state-of-the-art on this task. FCN-8s scores
37.8 mean IU for a 20% relative improvement.
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Table 3.7: Results on PASCAL-Context. CFM is the best result of [DHS14] by convolutional
feature masking and segment pursuit with the VGG net. O, P is the second order pooling
method [CCBS12] as reported in the errata of [MCL™14]. The 59 class task selects the 59
most frequent classes for evaluation.

pixel mean mean f.w.
59 class | acc. acc. IU Iu
O,P - - 18.1 -
CFM - - 31.5 -
FCN-32s | 65.4 472 351 50.3
FCN-16s | 66.8 49.6 37.6 52.3
FCN-8s | 67.0 50.7 37.8 52.5

3.7 Conclusion

Fully convolutional networks are a rich class of models, of which modern classification con-
vnets are a special case. Recognizing this, extending these classification nets to segmenta-
tion, and improving the architecture with multi-resolution layer combinations dramatically
improves the state-of-the-art, while simultaneously simplifying and speeding up learning and
inference.

3.8 Further Progress in Segmentation

In this historical addendum, we examine progress on the PASCAL VOC segmentation bench-
mark before and after the public release of the system described in this chapter. Figure
plots publicly-posted scores [com] on the PASCAL VOC “comp6” test set against the time
of their submission. Note that the points on this plot reflect both technological and so-
cial forces; each point appears only after it becomes feasible to obtain the corresponding
score, and effort is invested to actually do so. Keeping this conflation in mind, a number of
interesting trends are revealed by this plot. Observe:

e Little progress was made in the first two years of competition results. This is despite
the AlexNet-precipitated advances in classification, which began near the left side of
the plot, and subsequent advances in detection.

e Significant progress was made simultaneously by a number of works, corresponding to
the CVPR 2015 submission cycle. Specifically, the results presented here (originally
in [LSD15]), Hypercolumn SDS [HAGMI5b], Zoomout [MYS15], and CFM [DHS14]
all achieved relative improvements of 13-22% over the previous state-of-the-art. The
VGG networks [SZ14b] (and, in particular, the 16-layer “VGG-D” network, as used
here) are a key unifying element in these works. Note that these networks were made
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publicly available on September 24, 2014. (The first results were posted on November
12, 2014—even though these results can be obtained in hours from the VGG weights.)

With the exception of further Zoomout results, all subsequent segmentation numbers
on this benchmark have built on the ideas and networks developed herein, and the rate
of submission has increased dramatically. This is likely due to a combination of excite-
ment resulting from the original jump in performance, along with the simplification of
experimental methods (and corresponding drop in iteration time) afforded by address-
ing the problem end-to-end with a small set of very efficient parts. The improvements
over the original FCN number result from a menagerie of sources, including addi-
tional CRF processing, much larger training sets (especially COCO [LMB™14]), better
training methodology and hyperparameters, normalization techniques, and network
architectural improvements |[CPKT15, [ZJRP™15, [LRBI15, NHH15, RFEB15, YK16].

At the time of this writing, there appears to be a performance plateau below 80% I/U.
It’s likely that new ideas are necessary to make further significant progress. (Although
those may not be new segmentation ideas, but rather ideas resulting in a more powerful
initial network.)



38

80

® o FCN-based methods

o © q
B B Other methods i o®
75} o® o ° ®
[ ]
[ )
|
° [
70 °* 9
K4 Updated FCN @

[}
w

Original FCN ® g gy B Hypercolumn SDS

[}
[=}
T

°
Original Zoomout =

PASCAL VOC2012 test I/U (comp6)

w
wl
T

50| ]

Il Il Il Il Il Il Il Il Il Il
Dec 2012 Apr2013 Aug 2013 Dec 2013 Apr2014 Aug 2014 Dec2014 Apr2015 Aug 2015 Dec 2015
Date of result submission

Figure 3.7: Plotting performance on the PASCAL “comp6” segmentation benchmark reveals
a number of interesting trends; see text for analysis. In this plot, submission time is on the
x-axis, while performance on the “comp6” test set, in terms of mean intersection-over-union,
is on the y-axis. (Note that scores may be made public after they have been submitted for
evaluation, so it is possible, though unlikely, for additional points to retroactively appear
on this plot in the future.) A few points are annotated with method names, including the
four works which originally and independently achieved a signficant boost in performance by
exploiting the VGG architecture and pretraining, as well as an updated result obtained by the
“vanilla” method developed in this chapter, but with improved hyperparameters [FCN]. The
blue circles are methods that are or include fully convolutional networks, generally trained
end-to-end. The green squares are either traditional methods, lacking convnet features
altogether, or methods that use convnet features but don’t build networks directly connecting
image to output, instead relying on extra proposal and /or feature extraction steps. See [com]
for the raw data, including a complete list of method names, descriptions, and citations.
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Chapter 4

Producing Object Segments: Pairwise
Networks

4.1 Introduction

As we’ve learned in preceeding chapters, convolutional networks are natural tools for local
prediction, where input and output are translation-covariant. In particular, as we’ve seen in
the last chapter, convnets are state-of-the-art models for semantic segmentation, or labeling
each pixel with the category of its containing object.

Although semantic segmentation identifies category boundaries, a pixel-labeling network
lacks a notion of objects, and cannot distinguish adjacent objects of the same class. In fact,
translation-covariance means that no pure convnet output can assign a label to every pixel
so that adjacent but otherwise identical objects have distinct labels.

In this chapter, we view the task of finding object regions as a classification problem on
pairs of pixels. Rather than labeling every pixel to indicate the object it belongs to, we’'d
like to label every pair of pixels as either connected or disconnected. Note that there is no
conflict with translation-covariance here—the connectedness of each pixel to other pixels is
a function of the local content of the image. Furthermore, despite the apparent quadratic
increase in output size, we can achieve remarkably efficient learning and inference by sharing
most of the computation and making coarse predictions where possible.

With this conception of computation on pairs comes a new palette of linear operations on
higher-dimensional arrays. We’ll explore this in detail and relate the operations we describe
to existing and contemporary approaches. Then, we’ll conduct a detailed empirical look
at existing region-generating networks [PCD15], which will lead to the finding that one of
the simplest such operations—a type of transposition—improves region quality at almost no
cost.

In addition, we compress the time needed for inference and learning by introducing the
natural feature pyramid into region generation. Rather than obtaining multiscale regions
by running each plane of an image pyramid through an entire net, we build a single net
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Figure 4.1: Efficient and effective region generating networks result from the right simple but
subtle design choices. This schematic illustrates the two main elements we develop in this
chapter. First, (A) inserting a special transposition and an extra matrix multiplication boosts
the effectiveness of convolutional region prediction, as detailed in Section . Second, (B)
building multiple region prediction pathways that branch off different layers is an efficient
way to produce regions at multiple scales, especially when compared to the standard practice
of sending an entire image pyramid through the network (Section .

with multiple output pathways that generate regions of different scales. In our model, both
learning and inference are performed on whole images, without any resizing or cropping, and
all pathways are trained jointly and end-to-end.

4.2 Related Work
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4.2.1 DeepMask

Our design is most closely allied to that of Pinheiro et al. [PCDI5|], who also generate
regions directly from convolutional networks, treating the problem as binary classification.
We maintain and corroborate many of the choices made by DeepMask. In particular, we find
that when training region generating networks, it’s useful to ignore non-object regions, to
group positive region examples by scale, and to avoid downsampling ground truth. However,
we take a broader view of region prediction in terms of pairwise networks, and in doing so we
find a simple way to improve any DeepMask-like system. In addition, we demonstrate the
advantages of the natural feature pyramid over DeepMask’s (and others’) image pyramids.
We directly compare to DeepMask in Section

4.2.2 Semantic Segmentation

Our single-network, jointly trained, end-to-end design draws inspiration from similar direc-
tions in semantic segmentation [LSDI5]. Although our goal is also segmentation, our need
to distinguish between distinct instances rather than merely labeling pixels leads us to a
network design that departs significantly from those used for pixel labeling.

4.2.3 Proposal Generation

A recently popular strategy for object segmentation and related problems divides the task
into two stages: first, generating a large but managable set of candidate regions which
attempt to cover all objects of interest; and second, processing those regions with more
powerful machinery (e.g., a classification network) to finish the task. Recent examples of
region proposal systems include MCGJAPTB™14], GOP [KK14], LPO [KK15], and the RPN
used in Faster R-CNN [RHGS15], as well as DeepMask [PCD15] (discussed in more detail
above). The region-generating networks we build in this chapter may be considered proposal
systems, and we do evaluate our regions using proposal metrics. However, we are also
interested in understanding the accuracy of region shapes independently from how they
may be scored. In fact, systems like Faster R-CNN [RHGSI5] and MNC [DHS15] erode
the boundary between proposals and detection; since detection-quality scoring is no longer
significantly more expensive than proposal-quality scoring, it makes sense to consider ways
to evaluate region quality independently from scoring mechanisms, which can be adjusted
separately. We'll explore this further in Section [4.4.5]

4.2.4 Simultaneous Detection and Segmentation

A number of systems have been proposed for the task of simultaneous detection and segmenta-
tion, which requires the production of scored object regions, which are evaluated according to
detection metrics. Examples include SDS [HAGM14b], Hypercolumn SDS [HAGM15b], and
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MNC [DHS15], as well as systems built by combining a proposal system with the scoring pi-
pline of Fast R-CNN [Girl5]. MNC in particular has achieved remarkable results, winning the
COCO 2015 detection challenge. While MNC includes a powerful region-generating pipeline,
our networks take a fundamentally different and ultimately more powerful approach. This
is because MNC (based on predecessors like SDS) relies on intermediate bounding boxes to
find object regions. In general, bounding boxes are a degenerate representation of objects:
distinct objects can have the same bounding box. (In practice, objects with sufficiently
similar bounding boxes are also conflated, because bounding boxes are reduced through an
NMS step.) Our networks have no such limitation.

In this chapter we focus on improvements to the quality of regions themselves rather than
on orthogonal choices which improve scoring. We believe that our system could be usefully
extended for SDS, a belief which is strongly encouraged by positive results for similar systems.

4.3 Building Region-Producing Networks

4.3.1 Single-Convolution Regions

A typical convnet produces layers of intermediate values as three-index arrays: two indices
correspond to spatial locations in the input, and a third indexes across responses of different
filters. For our purposes, it will be most convenient to think of each array of features as a
vector-valued function f : G C R? — R which associates the center point of each receptive
field with a d-dimensional feature vector. The domain of each such function is a discrete,
regular 2d grid G, so that each function is uniquely determined by a three-index array of
values. We'll denote the vector of feature values at a particular location by f(x), where
x = (z,y) € G is a location on that grid.

We'd like a way to compute a four-index array of values that indicates how likely two
points on the image are to belong to the same object. Let’s denote such an array as a scalar
function p : G x R — R, which takes a 2d point on a regular grid of image locations (as
above), as well as a 2d point on a grid of relative image coordinates. Thus we’d like p(x, A)
to indicate how likely it is that the points x and x + A belong to the same object.

The most straightforward way to produce such an array is by a convolution with two
output indices, i.e., by computing

p(x,A) = Z w(x',A) - f(x + %),

where:
e p is our four-index output;
e f is a three-index convnet feature layer;

e and w is a five-index array of convolution weights (to be learned).
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Figure 4.2: A simple architectural modification improves the performance of region generat-
ing networks at almost no cost. Subfigure (a) illustrates a direct approach to convolutional
region generation, as in [PCDI5|]. Subfigure (b) illustrates our approach: after an initial
convolution as in (a), the intermediate values undergo a type of transposition, followed by
a matrix multiplication with few parameters and shared weights (the latter is not shown).
Our approach increases receptive field size and improves region quality. Figure illustrates
the empirical and intuitive motivation for this structure.

This one-stage convolutional prediction, illustrated schematically in Figure (a), is
the essential structure of the DeepMask region proposal networkr_-] [PCD15] (see the previous
section for a detailed comparison to this work). With an appropriate loss, p can be interpreted
(after thresholding) as a set of region masks, each centered around a point in G. (We'll call
the points in G region centers, although they are really the centers of rectangular windows
containing each region.)

4.3.2 Pairwise Intermediate Values

While a single convolution on powerful features can produce a high-quality set of overlapping
regions, it feels underwhelming for that purpose. For one, this simple architecture forces the
filter to cover all features relevant to an entire region, resulting in large filter sizes and an
explosion of parameters.

Rather than viewing this single convolution as the final step, and its output as object
regions, consider a more powerful perspective: view this convolution as an intermediate
step which produces intermediate four-index values. This step transitions our network from

'Recent versions of DeepMask also include a dimensionality reduction step, which will not be relevant
to the discussion here.
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dealing in values which are each relevant to a single spatial location to dealing in values that
encode information about pairs of spatial locations. Note that (in order to keep this simple
and memory-efficient), we’ll only consider scalar values of the latter type, while a deep net
normally deals in vector values of the former type. (This is why we are upgrading from
three-index arrays to four-index ones, even though an additional spatial coordinate adds two
indices. The further generalization to vector values is straightforward.)

Pair-indexed intermediate values give rise to new ways of structuring computation. In
particular, we can think of each such as array as a matrix representing a linear transformation
from R to RE+. With this view, we can perform matrix operations on these values. For
example, suppose we have two four-index arrays, p; : G Xx R — R and p, : G' x R' — R.
If the “output” coordinates of p; line up with the “region center” coordinates of po, i.e., if
G+R={g+r|geG,re R} =G, then it makes sense to combine p; and py by matrix
multiplication by computing

pra(x, A) = Z p1(xX,0) X pa(x+ 9, A —9).
SER s.t. A—JER!

Note that the sum and product operations on p-values, while denoted > and x, need not
be ordinary addition and multiplication, but can be other operations, affording a large space
of (potentially nonlinear) inference procedures. By iterating computations of this type, we
establish a sequence of intermediate predictions pq, ..., pr, which add a series of four-index
layers to our network. Note that, while the whole network, viewed across the “region center”
indices, is still translation-covariant, the breakdown into locally-connected computation is
essential to continuing the inference, so that each region evolves based on the local content
of the image.

Even more simply, given a single four-index array p, we can take a matrix transpose by
computing

pl(x,A) =p(x+ A, —-A).

(Notice that in absolute rather than relative coordinates, this amounts to switching the order
of the arguments.) We'll see the usefulness of this operation in Section [4.3.3]

The form of network we’ve described encompasses a broad design space of inference
procedures and hyperparameters. We make the following observations to outline the space:

e Each output value, defined at a point (g,r) € Gy X <Zf:1 Ri>, is a reduction over

values computed on all paths from g to g +r going through the connectivity structure
of the network.

o If p; = p, for all i and j (where both are defined), the computation is recurrent, and
corresponds to a reduction over all paths of length k£ on a weighted directed graph.

o Ifp;(x,0) =1 (i.e., the identity for the x operation), as will typically be the case (since
connectedness is reflexive), the reduction is over all paths of length at most k.
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e If p; is symmetric in the sense that p;(x,A) = pi(x + A, —A), the graph becomes
undirected.

o [f the p; are distinct, the cost becomes “time-dependent” as the path progresses.

e If the operations used are (min,+), the computation finds the shortest path (p; > 0
should hold everywhere in this case). (This is akin to GOP [KK14], where object
regions are determined by geodesics.)

e If R; is spaced more finely than R; for j > ¢, the computation performs a coarse-to-fine
region refinement.

4.3.3 Restructuring Region Prediction

The possibilties outlined in the previous section afford a great deal of flexibility in the
design space of region-producing networks (or any networks that need to explicitly consider
pairs of spatial locations). In this section, we’ll find that a direct, visual examination of
learned weights immediately suggests a particular type of restructuring involving the special
transpose operation just defined.

Figure visualizes a set of weights learned for region prediction by a single-stage region
prediction network, as described in Section and shown in Figure (a). Recall that the
weights comprise a five-index array. For this visualization, we compute the L1 norm over the
channel index. We show explicitly the resulting four-index array of norms as a 2d array of
2d arrays; the outer indices move across the dimensions of the output region, while the inner
indices move across the dimensions of the input features. In other words, each small square
illustrates the kernel which produces a particular output pixel (in terms of L1 norms).

This visualization strongly suggests both that this structure is inefficient (as a large
portion of the weights appear to be insignificant) and that the learned weights are redundant
(as the weights used by adjacent predictions appear to have similar structure). Staring at
this figure gives rise to the following idea: rather than directly predicting whether two
points belong to the same region, perhaps we should predict how much more likely a point
is to belong to a given region than neighboring points. In other words, rather than learning
the weights illustrated in Figure [.3|(a), perhaps we should learn the differences between
adjacent blocks of weights. Computing these differences on the existing learned weights (in
the y direction, for example), as shown in Figure [4.3(b), encourages this idea. Notice that
the significant (i.e., bright) values in each block form a tight cluster (and, indeed, tighter
clusters than above), and that each cluster is shifted according to the location of the block.
In fact, the significant values lie directly over the corresponding part of the image.

Thus: rather than learning the weights in Figure (a), we’d prefer to rearrange the
computation to learn the weights in Figure (b) In doing so, we expect to be able to use a
smaller kernel size (or, alternatively, to keep the same kernel size but obtain higher-quality
regions).



46

bl o AR EIRd ¢
ol 1 L 3 £ KIS
L E3 63 K63 O]
e e feefe] e
e e fe e fe] e
e e fe]efe] e

output cell y

o3
/Aanannan
& s
kernel x
A N N N N
output cell x (b)
differences . . . . . . .

of adjacent blocks

(y direction) . . - - . .

> BEOOOEE
e e oo fe]
Haannnn

kernel x

output cell x

kernel y

Figure 4.3: Visualizing the weights learned in a single stage of naive convolutional region
prediction reveals both inefficiency and redundancy. In the 4d illustration (a), each block
corresponds to a particular output cell, and each pixel within a block corresponds to a
particular input feature vector. The brightness of each point indicates the L1 norm of
weights which connect a particular output cell (the “outer” dimensions) to input features (the
“inner” dimensions). Notice that most of the weights are insignificant (i.e., dark) (indicating
inefficiency), and that adjacent blocks appear nearly identical (indicating redundancy). In
(b), examining the differences between adjacent blocks (in the y direction) of the weights
illustrated in (a) points the way to a new computation which mitigates the redundancy of
the naive one. Notice that the weights in each block-of-differences are contained in a small
region centered on the features under the corresponding point on the image, suggesting that
these differences could be directly predicted by those underlying features.
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Figure 4.4: Performing region prediction under the special transposition described in the
text, together with an extra matrix multiplication step, improves region quality. Either of
these operations alone is less effective, in accord with the analysis in Section .

Now, actually computing differences would require a cumbersome step of defining exactly
which pairs we want to predict differences between (which, depending on our choice, might
overspecify the final output). So rather than literally computing differences, we’ll use this
intuition to restructure the computation in a more general way, according to the following
pattern. First, we’ll perform a single convolution to obtain a four-index array of intermediate
values. Then, we’ll perform the transposition operation defined at the end of Section [£.3.2
(Equivalently, we can think of the weights as connecting each output cell to a window of
features directly under that cell, rather than, as before, connecting each output cell to a
window of features under the center of the predicted region. This is what enables us to
exploit the structure visible in Figure 4.3|(b).) In addition, note that this operation increases
the total receptive field size for each region. Furthermore, this increase comes nearly “for
free”, since the transposition above adds no additional parameters and is amenable to a highly
efficient implementation (or can even be combined with previous or subsequent operations).

Finally, we’ll add a matrix multiplication as a final step on top of the transposed values.
We'll separately multiply each region by the same matrix. (Note that if we did interpret the
transposed values as differences, we might compute the final output using a least-squares
solution, i.e., by multiplying each region by a fized matrix. By learning the weights of this
final step, we arrive at a more general and easier to specify procedure which leaves the exact
meaning of the intermediate values open to interpretation.) Note that this final matrix
multiplication is an especially inexpensive one, both because the weights are shared between
regions, and because this step is performed after the feature dimension has been eliminated.

Figure [£.4] plots the results of an initial empirical test of this idea. We trained four
networks for region prediction (for this test, via a single pathway), which were otherwise
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identical except for the two components of this strategy: each network either includes or
omits the region transpose and the final matrix multiply. (See Section for more exper-
imental details.) The results accord with our intuition. The transposition alone has at most
a small effect (recall that it increases receptive field size per region). The matrix multipli-
cation alone has a larger effect, as it adds parameters and modifies learning. However, both
together boost performance more significantly than either alone.

4.3.4 Exploiting the Feature Pyramid

Object regions exist in a broad spectrum of sizes. The blue upper boundary in Figure [4.6] for
example, histograms the distribution of object sizes (in terms of square root of pixel area) in
(a subset of) the popular COCO dataset. Objects range from just a few pixels to occupying
entire images, with smaller objects being especially prevalent.

Finding all of these objects requires multiscale reasoning; it’s not reasonable to perform
an expensive computation on every pixel of a 600 x 600 region, and it’s also not possible to
find a several-pixel object from aggressively downsampled features. It’s therefore important
to employ both dense, inexpensive computation, necessary for noticing small regions, with
coarser, more expensive computation, necessary for pooling semantic information across
large regions. Fortunately, the progressive, layered structure of a deep net is well fit to this
challenge.

To produce regions at many scales, we build multiple region generating pathways which
split off from different layers of the net. Small regions come from shallow features; they are
produced cheaply and densely. Large regions come from deep features; they are produced
coarsely and with the full semantic power of a deep net. Figure [4.1| gives a schematic
illustration of this approach, while Figure 4.5 shows regions generated by this approach.

Note that the entire computation is performed by a single network, trained jointly and
end-to-end, which takes images at “natural” resolution—mno resizing or cropping.

Contrast this with the common practice of running a network on a feature pyramid.
While this can be a way to produce high-quality multiscale output, it’s not an efficient means
of doing so. Even though common networks include substantial downsampling, producing
output at the finest scales requires upsampling the image, a process which adds no additional
information. Using the natural feature pyramid instead of an image pyramid bypasses this
apparent circular computation. While networks built on the natural feature pyramid are
not exactly equivalent to running on an image pyramid, the results herein show that it
is nevertheless a more efficient way to produce multiscale output. In addition, unlike the
image pyramid, the natural feature pyramid provides reuse of computation—most of the
computation in the small region pathway is fed directly into the remaining pathways.

In fact, we can quantify this comparison for a particular region generating net. Consider
a typical image of size 640 x 480 (this is the mode size in the COCO dataset). For the net
described in Section [4.4.1 computing the coarsest pathway alone takes 161 ms. Computing
the same on a 2x upsampled image takes 416 ms; on a 3x upsampled image, it takes 922 ms.
(Proceeding further requires working around memory limitations.) Our full feature pyramid
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computation, which produces regions at scales of 1x, 2x, 4x, 8x, and 16X, requires only
292 ms total, nearly half the time required to add even the first additional equivalent level
from the image pyramid.

regions via:

conv2 2

'

Figure 4.5: A network with several region pathways at different layers efficiently produces a
pyramid of multiscale output. The image shown was run through the five-pathway network
described in Section [4.4.1] Each output plane shows a set of regions covering the image at
a particular scale. Each small dark blob indicates the shape of the predicted region, and
regions are arranged according to their locations in the image. (Note that adjacent regions
overlap.) Layer names refer to branches taken from layers in the VGG-16 network [SZ14b].

4.3.5 Non-max suppression

Our convolutional networks predict regions on a regular, highly overlapping grid of candidate
windows. It’s important that these windows overlap, as they must both be large enough to
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avoid cutting off regions, and be dense enough to avoid missing regions. However, this
makes non-max suppression important to prune redundant regions. Note that our regions
are especially amenable to NMS, as regions covering the same object will often be nearly
identical. Furthermore, because regions are predicted on a series of regular grids, the set of
regions which can overlap at all with a given region is known a priori. In particular, that
means that NMS can be performed in linear rather than quadratic time (in the number of
regions)E] Finally, note that while our predicted regions are upsampled to the resolution of
the input image, NMS can be performed before this upsampling step, making it even more
efficient.

4.3.6 Loss

The loss is the final ingredient needed to train a region predictor using segment ground
truth. We treat region prediction as a binary classification problem and use a binary lo-
gistic loss. The ground truth class is defined to be positive at a point (g,r) if g and r are
contained by the same segment, and negative if ¢ and r are contained in different segments.
Following DeepMask, we do not include in the loss points for which ¢ is not contained in
any segment; this performed poorly in preliminary experiments. We evaluate the loss with-
out downsampling the ground truth, instead upsampling coarsely-predicted regions (using
bilinear interpolation, and backpropagating through this step).ﬁ Again, we found skipping
this step hurt performance in preliminary experiments; upsampling predictions provides an
averaging effect in the learning phase allowing more of the ground truth to be used, even
when the predictions are made at a coarse scale.

4.4 Empirical Evaluation

The previous section describes a set of tools for improving region-producing networks. In
this section, we put those tools together to build a single network, and study its behavior.

4.4.1 Network Assembly

The backbone of our network is the VGG-16 classification net [SZ14b], which achieves ex-
cellent performance on ILSVRC [ILS12] and has been shown to finetune well to other tasks.
(Note, however, that any progressively subsampling network can be adapted into a region-
producing network following the steps here.) VGG-16 downsamples by factors of two in five
stages, going from features of stride one at the first convolutional layers to features of stride
thirty-two at the final pooling layer. We split a region-predicting pathway off of each layer
immediately before a pooling layer (except the first pooling layer), resulting in a five-level

2This is especially relevant for applications to unbounded images, such as satellite imagery.
3Since storing all regions at full resolution can be memory-intensive, we perform upsampling on-the-fly
when computing the loss.



51

Table 4.1: Details of our region-generating network. Feature layers of VGG-16 [SZ14b] are
split off into region-predicting pathways, each of which is described by a line below. Each
pathway has its own stride, kernel size, output size (i.e., “window size” or maximum region
size), and upsampling factor.

Feature Layer Region Stride Kernel Size  Window Size  Upsampling Factor

conv2_2 2px X 2px 5 XD 28px X 28px 2%
conv3_3 4px X 4px 5 XD 56px X H6px 4%
conv4_3 8px X 8px 9x%x9 144px x 144px 8x
convb_3 16px x 16px 9x9 288px X 288px 16 %
conv(fc)6 32px X 32px 9%x9 576px x 576px 32x

pyramid of regions. Table summarizes the detailed structure of our net. At the finest
level, regions are predicted from the conv2 2 layer. Region centers are located every two
pixels, but regions are limited to 28 x 28 pixels in size (and are predicted at a 2x down-
sampling factor). At the coarsest level, regions are predicted from the conv(fc)GF_r] layer.
Region centers are spaced thirty-two pixels apart, can be up to 576 x 576 pixels in size, and
are predicted at a 32x downsampling factor. Note that, while not compulsory, it’s natural
to use the same value for the stride between regions and the final upsampling factor. This
simplifies the form of the transposition operation, and adapts the network structure to the
region size; larger regions are searched for more coarsely, and their shapes are predicted
more coarsely.

Following an initial convolution, each pathway includes a special transposition step, fol-
lowed by a local matrix multiplication (with weights shared between all regions in a given
pathway), just as dictated by the arguments and results of the previous section. Each path-
way is trained using a binary logistic loss. The loss is computed on ground truth pixels
which are not downsampled or modified in any way; instead, the predictions are upsampled
as needed to match the resolution of the images. We include a region as ground truth for
a given prediction only if the prediction center lies within the region, and the region fits
entirely within the prediction window. This has two important effects: it inhibits prediction
of regions that are artificially cut off at window boundaries, and it allows smaller pathways to
focus on smaller objects, rather than learning to predict nearby boundaries of larger objects.
Conversely, we do not take any special steps to prevent larger pathways from learning about
smaller objects[]

4As in [LSDI5], we treat fully connected layers as convolutions, including finetuning from classification
weights.

SWhile larger pathways are less likely to encounter smaller objects, since their region centers are further
apart, smaller pathways are very likely to encounter the borders of larger objects, which are especially long.
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4.4.2 Experimental Setup

4.4.3 Data

We'll use COCO [LMB™14| as our dataset for training and evaluation. Training will use the
COCO training set, including object segment labels for over 80,000 images and for 80 object
categories. (Note that category labels are ignored in our training.) Validation will use a

subset of the COCO val set.

4.4.4 Learning Details

All learning is performed by SGD with momentum. Each image is treated as a batch;
gradients are computed one “whole” image at a time, averaging loss over all predicted regions,
and parameters are updated for each image. No image resizing or patch extraction ever takes
place. Rather than adjusting batch size, we adjust momentum. For all of our experiments, we
find that a momentum of 0.99 works well. In contrast to common practice in SGD training,
we do not pass through training examples in a preselected, shuffled order. Instead, we use
a “true” stochastic selection of examples.ﬁ Our implementation runs in Caffe [JSD™14], but
also includes custom CUDA code, as well as code written in Halide [RKBA*13]]

4.4.5 Metrics

We'll analyze our method both in a scoring-independent way, as well as adding a simple
scoring pathway which allows a comparison to existing methods using region proposal met-
rics.

We report the following standard measures of recall. These metrics are computed using
the area of intersection divided by the area of union of each predicted region with each
ground truth region, denoted 1/U.

e R@uz: recall at z, the portion of ground truth regions that match some predicted region
at I/U > z.

e ABO: average best overlap, the average over all ground truth regions of the maximum
I/U with a predicted region.

e AR: average recall, RQz averaged over the interval [0.5, 1]. (This metric was introduced
and shown to correlate well with detection mAP by [HBDS15].)

SNote that our iteration time is sufficient for a simultaneous disk read, since we are performing much
more processing per image than, e.g., single-label classification.

"which we find to be an effective tool for rapid but efficient prototyping of CUDA kernels, as well
a convenient way to inline functions that would otherwise be memory-intensive, such as the upsampling
necessary to evaluate loss at every output pixel
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Table 4.2: Adjusting the density of region prediction trades off inference time and perfor-
mance. The “feature computation” portion of the net has a fixed cost which is significant
relative to the marginal cost of region generation. As a result, performance climbs dra-
matically as inference time is allowed to increase, until most regions have been found and
diminishing returns are met.

stride at
lowest layer R@50 R@70 ABO AR Inf Time 45
2 85.5 57.2 69.9 432  287ms _ 40
4 79.7  50.0 66.5 38.1  187ms 8 35)
6 741 443 635 340  178ms £
8 67.0 779 59.7 29.7 172ms x 2f
16 378 188 428 153  165ms jz

0 50 100150200250300
inference time (ms)

Region proposals are generally evaluated both in terms of region quality and scoring
accuracy, typically by limiting the the number of regions per image to a fixed value. Since
the methods under study here address region quality rather than scoring accuracy (which
can be addressed in orthogonal ways outside the scope of this chapter), we’ll begin our
analysis by considering these metrics independently from scoring. The systematic nature
of our method provides a natural way to analyze region quality while ignoring scoring but
still taking into account the number of regions produced: we consider recall as a function of
region density.

Table provides a look at these measures of recall as a function of region density. We
measure density in terms of the region stride at the finest (lowest) prediction layer. Each
higher layer will always predict regions at twice the stride of the previous layerﬁ This analysis
exhibits the tradeoff between performance and inference time for our method. While the base
net is a significant fixed cost, performance rises rapidity with little marginal computation.

Although these metrics provide some interesting analysis, it’s also important to situate
our method with respect to existing ones. To this end, we also train a simple scoring pathway
(jointly with region generation), and evaluate according to standard proposal metrics. As
observed, these metrics depend on both region quality and scoring quality. However, we
think that our scoring pathways are reasonably equivalent to those of DeepMask [PCD15],
providing a fair comparison.

Even though our inference time is about 4x faster than DeepMask, we achieve similar
AR, with a larger boost at fewer regions per image.

8Note that the total number of regions is therefore a geometric sum which is bounded by 4/3 of the
number of regions at the smallest scale.
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Figure 4.6: Using a series of prediction pathways from different layers is a natural, efficient
way to generate regions at many scales, without needing an image pyramid. The histogram
shows how a region net with five pathways (as described in the text) finds object regions
at all scales. The blue outline histograms the distribution of ground truth regions in a
subset of COCO val. Each ground truth region is identified with the pathway with the
highest-overlapping predicted regions. The ground truth regions recalled at overlap at least
0.5 (above) or 0.7 (below) are shown as stacked histograms over ground truth region size,
colored according to the associated pathway.

4.5 Output Visualization

Figures and visualize the regions produced by the method described in thiis Chapter.
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Input Image Output Regions

Figure 4.7: Output visualization. For each of these images from the validation set, we show
the closest matching predicted region to each ground truth region (in terms of I/U). (Note
that some objects are correctly predicted, but no region is shown because a label does not
exist in the ground truth.) Note the ability to find occluded objects, to separate objects
without sharp boundaries (second example), and to find small objects in cluttered scenes
(without neglecting large objects).



Output Regions
||m
[

&= ounuay ru

= ounuay ru

Vs e

Figure 4.8: Additional output visualization. See Figure for explanation.
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Table 4.3: Training a simple scoring pathway jointly with region prediction produces com-
petitive results on proposal metrics, with a state-of-the-art inference time. We compare
methods according to average recall at a fixed number of regions per image, as described in
the text. MCG |[APTBT™14] is the best performing method pre-DeepMask. DeepMaskZoom
gives the highest numbers reported in [PCD15]; the inference time is not reported, although
it is noted to be larger than DeepMask.

Method AR@10 AR@100 AR@1000 Inf. Time
Ours  16.0 25.5 32.8 281ms (Titan X) / 409ms (K40)
MCG [APTB*14] 7.7 18.6 29.9 ~30s (CPU)
DeepMask [PCD15]  12.6 24.5 33.1 1.6s (K40)

DeepMaskZoom [PCDI5]  12.7 26.1 36.6 *
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Chapter 5

Conclusion

We’ve seen that state-of-the art convolutional networks, trained only for whole-image clas-
sification, naturally contain features that carry semantic information locally, about just a
few surrounding pixels. Guided by this positive result, we’ve built networks that predict
labels for individiual pixels, learning end-to-end from per-pixel supervision. Finally, we’ve
examined one way to produce richer information than just per-pixel labels, by upgrading one
spatial index to two, gaining the ability to understand object regions—the sense in which
pixels belong to other each, rather than just to semantic classes.

Along the way, we’ve built and analyzed systems for a number of tasks, including intr-
aclass object alignment, keypoint detection, semantic segmentation, and region generation.
While system-building work in computer vision has commonly relied on ad-hoc combinations
of hand-engineered features and machine learning techniques (and, more recently, modern
convnet features), it’s been our goal to build ezclusively with a small set of well-studied and
highly optimized parts, or, in other words, to build “pure” convnet systems. Exactly which
parts are considered to be in that set is a matter of interpretation, empiricism, and taste,
but the general principles are fixed, namely:

e Learning should be joint and end-to-end wherever that makes sense; otherwise, per-
formance is left on the table.

e Components should be simple to compute, with simple derivatives. Simple operations
lead to efficient implementations, which leads to larger training data sets, and shorter
iteration time. Simple derivatives are likewise essential to perform gradient-based
learning. Using only differentiable operations factors out model building from choice
of learning method (although these still interact in significant ways).

e Components should be flexible enough, with enough adjustable parameters, to support
a wide range of architectures and tasks (but not so flexible that finding effective values
of those parameters becomes an impossible task).

e Components should be reusable, in terms of both their archictectural parameters and
their learned weights. This reusability enables transfer learning (in this context, also
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called finetuning, though note that “fine” need not reflect the magnitude of the effect!).
Building a new system does not mean designing from scratch, nor learning from scratch,
but rather taking a machine that already works well and molding it to the task at hand,
both with new parts and new data.

By viewing convnets not simply as new features for old recognition tasks, but rather as
(re)inspiring certain design principles, we make progress towards a vision of the future where
building perceptual systems is as easy as playing with legos.

5.1 Epilogue: Future Directions

Of course, there is still much work to be done to achieve that vision. We’ll point out three
directions in particular that stand out as natural places to go from here, all of which are
active research areas.

e Making convnet learning robust. Currently there is a great deal of manual effort in-
volved in searching for effective hyperparameters (which have very little relevance to
the task at hand). It’s easy to imagine that with the right training methodology, this
manual tweaking could be circumvented.

e Finding new methods (of the type described above) to produce new kinds of rich
output. While this and other works have taken first steps in this direction, there is
still a large gap between the types of information that can be accurately assessed in a
fraction of a second by a convnet, and the types of information likewise accessible to
an animal.

e Finding new methods for unsupervised, weakly supervised, or self-supervised learning.
All of the systems explored here rely on ground truth labels as defined by the task,
provided by human annotation. For many tasks, especially the dense-labeling tasks
studied here, those annotations can be quite expensive, which limits available training
data and ultimately performance. While we already benefit by transferring from the
more cheaply-annotated classification task, performance is still highly dependent on
the training set size for the final task. As we desire new types of output and high levels
of performance even in the “long tail” where training data is necessarily sparse, it’s
important to find new ways to expand the power of a few labels.
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