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ARTICLE

Commonalities across computational workflows for
uncovering explanatory variants in undiagnosed cases
Shilpa Nadimpalli Kobren1, Dustin Baldridge2, Matt Velinder3, Joel B. Krier4, Kimberly LeBlanc1, Cecilia Esteves1, Barbara N. Pusey5,
Stephan Züchner6, Elizabeth Blue7, Hane Lee8,9, Alden Huang8, Lisa Bastarache10, Anna Bican10, Joy Cogan10, Shruti Marwaha11,
Anna Alkelai12, David R. Murdock13, Pengfei Liu13,14, Daniel J. Wegner2, Alexander J. Paul15 and Undiagnosed Diseases Network*,
Shamil R. Sunyaev1,4 and Isaac S. Kohane 1✉

PURPOSE: Genomic sequencing has become an increasingly powerful and relevant tool to be leveraged for the discovery of
genetic aberrations underlying rare, Mendelian conditions. Although the computational tools incorporated into diagnostic
workflows for this task are continually evolving and improving, we nevertheless sought to investigate commonalities across
sequencing processing workflows to reveal consensus and standard practice tools and highlight exploratory analyses where
technical and theoretical method improvements would be most impactful.
METHODS: We collected details regarding the computational approaches used by a genetic testing laboratory and 11 clinical
research sites in the United States participating in the Undiagnosed Diseases Network via meetings with bioinformaticians, online
survey forms, and analyses of internal protocols.
RESULTS:We found that tools for processing genomic sequencing data can be grouped into four distinct categories. Whereas well-
established practices exist for initial variant calling and quality control steps, there is substantial divergence across sites in later
stages for variant prioritization and multimodal data integration, demonstrating a diversity of approaches for solving the most
mysterious undiagnosed cases.
CONCLUSION: The largest differences across diagnostic workflows suggest that advances in structural variant detection,
noncoding variant interpretation, and integration of additional biomedical data may be especially promising for solving chronically
undiagnosed cases.

Genetics in Medicine (2021) 23:1075–1085; https://doi.org/10.1038/s41436-020-01084-8

INTRODUCTION
Next-generation exome sequencing (ES) and genome sequencing
(GS) have revolutionized the process for diagnosing rare and novel
genetic conditions.1 Traditionally, the diagnostic process has
primarily been driven by phenotype, with clinicians comparing
patients’ symptoms to others encountered in their prior experience
and clinical training and/or to a knowledgebase of known human
diseases.2 In a typical undiagnosed case, however, either a patient’s
phenotype is not indicative of any known disease, or tests to
confirm the presence of a suspected genetic condition are
inconclusive. In these instances, ES and GS have enabled health-
care providers to pursue a genetics-driven diagnostic approach in
parallel, where the genetic variation uncovered in a patient can be
assessed with respect to not only its known phenotypic associa-
tions3 but also to its prevalence in background populations,4

predicted pathogenicity,5 functional consequences, and mode of
inheritance to reveal novel disease-causing loci. Indeed, while
traditional clinical case review and directed diagnostic assays
continue to solve difficult cases, ~74% of newly diagnosed genetic
conditions have been attributed to analyses of ES and GS data.6,7

However, the diagnosis rate for patients with potentially unique
genetic conditions is still ~35%,7 suggesting ample opportunity for
methodological improvements to advance our understanding of the
genetic underpinnings of phenotypic extremes.
With this goal in mind, cross-institutional initiatives such as

Care4Rare in Canada (http://care4rare.ca) and Solve-RD in Europe
(http://solve-rd.eu) have been established to connect and enable
clinical researchers to uncover the genetic origins of disease in
undiagnosed patients. In addition to furthering basic genetics
research, these efforts have provided scores of patients with an
end to diagnostic uncertainty and access to additional services.8

The most expansive undiagnosed initiative in the United States is
the Undiagnosed Diseases Network (UDN), which encompasses 12
clinical sites and has, since its inception in 2014, cumulatively
diagnosed over 400 individuals and described over 30 novel
syndromes.7 Each UDN clinical site is staffed with specialists who
develop and apply complex suites of bioinformatics tools to
analyze sequencing data and uncover disease-causing variants.9

These sites each underwent a competitive application process and
were selected to join the UDN due to their demonstrated track
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record of diagnosing difficult cases and characterizing novel
genetic conditions through ongoing research efforts. The work-
flows implemented at these sites are thus representative of the
state-of-the-art in rare disease diagnostic efforts.
We gathered details about 12 UDN bioinformatics pipelines,

determined recurrent steps in a typical diagnostic evaluation, and
identified consensus approaches. Moreover, we highlight sub-
stantial differences across pipelines regarding overall organization
and incorporated tools. The comprehensive snapshot of effective
computational workflows presented here can direct clinical teams
interested in initiating genomic sequencing usage or re-evaluating
patients who have had inconclusive genetic testing.

MATERIALS AND METHODS
Participating sites
Sequence analysis pipeline details were collected from the CLIA-certified
sequencing core at Baylor Genetics (BaylorSeq) and 11 UDN clinical sites:
Baylor College of Medicine (BCM), Duke University and Columbia University
Institute for Genomic Medicine (Duke/Columbia), three Harvard-affiliated
hospitals and Brigham Genomic Medicine (Harvard), University of Miami
Miller School of Medicine (Miami), National Institutes of Health (NIH),
University of Washington School of Medicine and Seattle Children’s
Hospital (PacificNW), Stanford Center for Undiagnosed Diseases (Stanford),
University of California–Los Angeles (UCLA), University of Utah Health
Center for Genetic Discovery (Utah), Vanderbilt University Medical Center
(Vanderbilt), and Washington University School of Medicine (WUSTL). The
University of Pennsylvania and Children’s Hospital of Philadelphia clinical
site had yet to process sequencing data for a UDN case at the time of
writing and thus is excluded from this study.

Data collection
We systematically collected details about each UDN site’s computational
diagnostic workflows using a combination of in-person and virtual
meetings with bioinformaticians and genetic counselors, online survey
forms, and inspections of published papers and internal protocols.10–12

RESULTS
Overview of diagnostic workflow components
Before applying to the UDN, a patient has typically endured
extensive prior testing by multiple clinicians over the course of a
multiyear “diagnostic odyssey.” As part of the application process,
UDN clinical sites review patients’ health records to assess whether
the UDN evaluation may aid in the identification of a diagnosis.
Accepted patients undergo an in-person evaluation at a clinical site
(Fig. 1a). In most cases, blood, saliva, and/or fibroblast samples of
affected and unaffected individuals in the family are collected
during this evaluation or beforehand via mailed-in collection kits.
These samples are sequenced at BaylorSeq; all sequencing data are
made available to the clinical site within weeks (Fig. 1b). Variants in
disease-causing genes related to the clinical phenotype, medically
actionable pathogenic variants in disease-causing genes unrelated
to the clinical phenotype, and heterozygote status for select
recessive Mendelian conditions are listed in a clinical report issued
by BaylorSeq in accordance with the UDN protocol and following
American College of Medical Genetics and Genomics (ACMG) variant
classification guidelines.13 At 8 of the 11 clinical sites surveyed,
researchers simultaneously perform local analyses of the sequencing
data in an attempt to identify “strong candidate” variants that may
explain the patient’s symptoms (Fig. 1c, d); three surveyed sites run
their local pipelines only when BaylorSeq’s clinical report is
inconclusive. Once candidate variants are highlighted via clinical
sites’ and BaylorSeq’s analyses, there are three ways by which their
causality is established. First, human and animal databases are
queried for genotype-matched individuals with symptomatic
concordance with the patient.14–17 Second, experiments are
simultaneously performed to evaluate the in vivo effect of candidate

variants in model organisms or cell lines. Third, the presence of
secondary phenotypes indicated by genotype-matched individuals
or in vivo experiments are confirmed in affected patients (Fig. 1e).
Causal variants revealed through these steps are confirmed by
Sanger sequencing, broadly shared by the UDN (Extended Data
Note 1), and ideally lead to a molecular diagnosis for a patient,
which in and of itself represents a turning point in a patient’s
diagnostic odyssey, and also can inform positive therapeutic
changes (Fig. 1f).18

The computational tools used to find explanatory genetic
variants change constantly with newly available technologies and
newly encountered disease etiologies. Despite these iterative
improvements to bioinformatics pipelines, the primary roles
that computational tools play in the overall variant prioritization
process can be categorized as follows: (1) aligning sequencing
reads to a reference human genome (Fig. 1g), (2)
identifying genetic variants present in the individual from the
sequencing reads (Fig. 1h), (3) annotating those variants with
relevant information (Fig. 1i), and finally (4) filtering and
prioritizing variants that are likely to cause the patient’s condition
(Fig. 1j). In the following sections, we delve into the purpose of
and tools used in each of these categories.

Aligning next-generation sequencing reads
Aligning next-generation sequencing reads to a reference human
genome is the necessary first step for all sequence analysis pipelines
(Fig. 1g); the ubiquity of this step has resulted in community-driven
standardization.19 Eight sites regularly realign reads after BaylorSeq’s
initial alignment, whereas three sites realign reads only in specific
circumstances, such as during reanalysis of a patient’s prior
sequencing data. Realignment is necessary for six sites whose
pipelines are configured for the GRCh37/hg19 human genome
build, as genetic testing laboratories including BaylorSeq now
provide reads aligned to the newer GRCh38/hg38 build. Realign-
ment uses either an open-source implementation of the
Burrows–Wheeler Aligner (BWA-MEM) (used regularly by six sites
and in specific circumstances, as described above, by two sites) or
Illumina/Edico’s DRAGEN aligner (used regularly by BaylorSeq and
two clinical sites and in specific circumstances by one clinical site).

Simple variant calling
Calling single-nucleotide variants (SNVs) and short insertions and
deletions (indels) from aligned reads is the next step in sequence
processing (Fig. 1h) and is often accomplished using the Genome
Analysis Toolkit (GATK) best practices workflow,20 though Google’s
DeepVariant21 and Real Time Genomics’ PolyBayes implementa-
tion (https://www.realtimegenomics.com) perform competitively
for this task and are used in addition to GATK by two clinical sites.
BaylorSeq calls variants using Illumina/Edico’s DRAGEN platform.
Six clinical sites and BaylorSeq “jointly” call variants across samples
as recommended in GATK to rescue low coverage true variants
and accurately model false variants. In practice, variants are jointly
called with (1) members of the same family, (2) other UDN patients
at the same site, and/or (3) healthy patients internal or external to
an institution. The Variant Quality Score Recalibration (VQSR) step
recommended by GATK to identify technical artifacts, however,
may misclassify real rare variants as false positives; this step is
carefully reviewed or omitted in practice.

Structural variant detection
In contrast to calling simple variants, calling structural variants
(SVs) from GS data is a relatively divergent step, indicating
that best practices have yet to be determined. SVs refer to large
(>50 bp) insertions and deletions, duplications and other copy-
number variants (CNVs), short tandem repeat (STR) expansions,
translocations where genomic regions have moved within or
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across chromosomes, and inversions where a detached stretch of
DNA was reattached in the opposite orientation. Combining the
output from many SV calling tools—each optimized for detecting
complementary types of SVs and often using distinct information
(e.g., read depth, paired-end reads, or split reads)—is necessary for
comprehensive SV detection.22 Existing SV detection tools have
been reviewed in depth;23 here we list the subset of tools that are
actively used by UDN sites (Table 1, Extended Data Table 1). The
most commonly used tool, Manta, has been shown by indepen-
dent evaluations to have high sensitivity but also a high false
positive rate.24 Future development of SV benchmarking data sets
for assessing the accuracy of SV detection tools will be essential in
directing the current diverse exploration of techniques toward
community-established best practices.

Quality control of called variants
Confirming the quality of sequencing data and variants is critical
to avoid expending downstream analyses on false variants.
CLIA-certified genetic testing laboratories check the quality of
unaligned and map-aligned sequencing reads prior to variant
calling for all clinical grade sequencing (Extended Data Note 2).
Four UDN clinical sites regularly confirm the quality of sequencing

reads using a combination of FASTQC, FASTP, MultiQC, BEDTools
(to check coverage), and bam.iobio. Other clinical sites begin
quality control (QC) only after read alignment and variant calling.
QC for Mendelian disease diagnosis encompasses three checks:

(1) sequencing reads are high quality, (2) sequenced samples
correspond to the correct individuals and have expected related-
ness, and (3) inheritance patterns across families are as expected
(Table 2, Extended Data Table 1). BaylorSeq performs QC for all
clinical genomic sequencing before providing data to UDN clinical
sites. However, when patients provide their own sequencing data
(as opposed to BaylorSeq providing newly acquired data) or when
“research” (as opposed to clinical) sequencing is provided, clinical
sites perform QC. Most sites have nearly identical steps for check 1
and similar QC for checks 2 and 3. In practice, QC has identified
incorrectly related or labeled samples and poor overall quality of
sequencing reads that were remedied via resequencing before
subsequent analyses.11 Notably, existing QC tools rarely “flag”
anomalous samples; users must accurately interpret results.

Annotation and filtering of genetic variants
Even after removing low quality calls, a single genome can have
several thousand unique genetic variants uncovered. Efficient,
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automated annotation and filtering of these variants is the next
step of the variant prioritization process (Fig. 1i, Extended Data
Table 2). Annotations fall into four categories: (1) known disease
associations, (2) prevalence across healthy human populations, (3)
predicted pathogenicity and functional effect, and (4) inheritance.
Many scores exist across the first three categories;25 in the
following sections we explore those that are used in practice for
rare disease diagnosis.

Known disease-associated genes
Many specific genetic variants have previously been determined
to cause human disease, and it is useful to first look for the
presence of these variants in a patient’s sequencing data.
Databases compiling disease-causing variants, the genes they
impact, and their phenotypic associations are used by ten clinical
sites (Table 3). Genetic testing laboratories, including BaylorSeq,

use these in addition to internal databases containing similar
information. Disease-relevant variants are listed on clinical reports
and are considered during the initial pass of each UDN case at all
clinical sites.

Variant segregation in healthy human populations
Several positions within the human genome naturally vary across
healthy individuals, and “common” variants at these positions are
unlikely to cause the conditions under investigation by the UDN.
Though rare combinations of otherwise common variants may
lead to disease,26 clinical sites do not currently consider all
common variant combinations. Instead, variants observed more
than 1 in 100 times across healthy populations (i.e., minor allele
frequency [MAF] > 0.01) are typically excluded during the first pass
of the data. The exact MAF threshold used depends on the
suspected mode of inheritance. Lower MAF thresholds are used

Table 1. Structural variant (SV) callers in use at clinical sites.

BaylorSeq BCM Duke/
Columbia

Harvard Miami NIH PacificNW Stanford UCLA Utah Vanderbilt WUSTL

Find SVs from sequencing reads

Mantaa ■ ■ □ □ □ □ □ □ ■ ■ □ ■

ExpansionHunter ■ ■ ■ ■ ■

GATKb ■ □ □ ■

LUMPY □ ■ □ □

CNVnator □ ■ ■

RUFUS ■ ■

CNVkit ■ ■

BreakDancer □ ■

Illumina DRAGEN
depth-based CNV caller

■

SvABA: SV/indel
Analysis by Assembly

■

CoNIFERc ■

ERDS: estimation by
reads depth w/ SNVs

■

BreakSeq2 □

DELLY2 □

Jointly call and/or genotype SVs

smoove ■ ■ ■

SVTyper □ □ □

Annotate SVs

AnnotSV ■ ■ ■ ■ ■ ■

gnomAD-SV ■ ■

duphold □ □

Run or combine output from other tools

XHMM ■ ■ ■

SURVIVOR □ ■

Parliament2 ■

■ Tool called directly. □ Tool called indirectly (e.g., by a wrapper).
Each SV calling tool identifies subsets of SVs by type or other factors, and so in practice, the output of multiple methods must typically be combined and
considered together. Wrapper tools that automatically call and combine results from multiple other SV detection methods improve the efficiency of this
process. Duke/Columbia, NIH, Stanford, and Vanderbilt only use SV calling tools in specific cases or contexts rather than as part of their regular
pipelines. Tool citations are listed in Extended Data Table 1.
CNV copy-number variant, SNV single-nucleotide variant.
aManta is used by BaylorSeq to generate putative SV calls, which are then shared with the clinical sites.
bThe two functions from GATK used are GermlineCNVCaller and DepthOfCoverage (DoC); the latter is used to detect exonic deletions or duplications.
cIn contrast to other tools, CoNIFER runs on exome sequencing (ES) data rather than genome sequencing (GS) data.
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for suspected dominant conditions because the variants causing
the extremely rare phenotypes of UDN patients are assumed to be
naturally selected against and thus equally rare in the general
population and entirely absent in control population databases.
Higher MAF thresholds are used for suspected recessive condi-
tions because heterozygous individuals would not be expected to
manifest severe disease features.
All UDN sites use data from the Broad Institute’s Genome

Aggregation Database (gnomAD) to compute MAFs, and seven
sites also compute MAFs from smaller or population-specific data
sets on a case-by-case basis (Table 3). Two sites eliminate variants
that are homozygous in three or more healthy individuals in these

data sets. At the NIH site, rather than thresholding on MAFs
computed directly from variant proportions in gnomAD, 95%
Wilson confidence score intervals computed from these propor-
tions are used to retain rare variants occurring in low coverage
regions. Finally, five sites flag variants that are present in data sets
internal to their institutions, because variants present in asympto-
matic or differently symptomatic individuals are unlikely to be
disease-relevant.
Eight sites consult SV databases to check the existence and/or

MAF of detected SVs (Table 3, Extended Data Table 1). Multiple
databases are checked in practice because the SV detection tools
used across databases differ, so the absence or rarity of an SV in

Table 2. Quality control (QC) checks of variants for rare disease diagnosis.

QC checks of variant data fall into three main categories, listed in bold above. Although some tools can be used for many of these steps, we illustrate here
which QC steps they are actually used for in practice. Note the clarifications for some of the QC tools and steps listed in footnotes a–e. Tool citations are
listed in Extended Data Table 1.
ES exome sequencing, GS genome sequencing, SNV single-nucleotide variant.
aBCFtools refers to the Wellcome Trust Sanger Institute’s suite of tools: BCFtools, VCFtools, SAMtools, and HTSlib.
bThese tools either call de novo variants from sequencing reads to reduce false positive calls or provide de novo frequencies where a high frequency
indicates a likely false positive.
cThe expected transition (Ts) to transversion (Tv) ratios assume variants are called with respect to the human reference sequence; if variants are called with
respect to computed ancestral alleles, the expected Ts/Tv ratio for ES should be ~1.
dExpected relatedness between family members is estimated using a “kinship coefficient”; unexpectedly low kinship implies a family member is not as
related as was originally assumed, unexpectedly high kinship suggests consanguinity, and maximal kinship implies an accidental sample duplication.
eMosaicism—where an individual contains a mix of genetically distinct cells—may be relevant for disease rather than only indicative of sequencing errors.
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one database may reflect a particular SV detection approach
rather than true population rarity.
Simple genetic variation observed across healthy humans tends

to be sparsely distributed with varying degrees of impact. These
features can be used to capture how regions of the human
genome may be intolerant of loss-of-function (LoF) variants, such
as frameshift or protein-truncating variants. Nine surveyed sites
incorporate selective constraint scores derived from and released
with gnomAD data in their diagnostic pipelines, with the
probability of heterozygous LoF intolerance scores and missense
constraint Z scores used most commonly (Table 3).

Predicted pathogenicity and functional effect of variants
Various tools predict the pathogenicity of uncovered variants.25

Values derived from cross-species comparative genomics con-
tribute heavily to pathogenicity predictors, as positions that are
conserved across species tend to be functionally critical. However,
since most candidate coding variants are evolutionarily well-
conserved, only five sites directly consider conservation in their
diagnostic pipelines (Table 4, Extended Data Table 1).
The most commonly used pathogenicity predictors for rare

disease diagnosis—used by eight clinical sites each—are Com-
bined Annotation Dependent Depletion (CADD) and Rare Exome
Variant Ensemble Learner (REVEL), each of which consider multiple
variant annotations and where scores >25 and >0.3 respectively
indicate likely pathogenic variants. Nearly all predicted patho-
genicity scores used, with the exception of ReMM, indicate disease
relevance primarily for coding variants.27

Indeed, predicting and experimentally validating the patho-
genic impact of noncoding variants is notoriously difficult. All
12 sites use tools to predict how noncoding variants alter
expected gene expression and splicing. Few sites use the same
subset of tools for this task, though SpliceAI is the most commonly
used tool overall (Table 4).

Mode of inheritance
After variants have been quality checked, MAF filtered, and
annotated, Mendelian mode of inheritance is evaluated next by
the clinical sites. Some sites simultaneously consider the
functional impact of variants, where, for instance, intergenic or
perceived synonymous variants are excluded.3 Despite the
ubiquity of this step, each site uses different tools for computing
inheritance patterns.
For a dominantly inherited genetic condition to manifest, only

one defective copy of the relevant gene is required, whereas
recessive disease manifestation requires two defective gene
copies. GS of unrelated or distantly related affected individuals
is desired in suspected dominant cases to find rare, shared
variants.
In sporadic cases—caused by a single de novo dominant or two

recessive variants—GS of at least the affected individual and both
unaffected parents is desired. Selecting heterozygous variants in
the affected individual that are absent in both unaffected parents
or homozygous variants in the affected individual that are absent
in at least one parent via straightforward segregation analysis
results in a majority of spurious de novo calls. These false positive
calls stem from inadequate sequence coverage or alignment in
parents from whom variants were in fact inherited and/or
inaccurate modeling of underlying variant frequencies. Four sites
regularly use specialized de novo calling tools or databases to
offset these issues (Table 2). Fixing de novo calling errors requires
analysis of sequencing reads, which many genetic testing centers
do not readily provide.
Occasionally in sporadic and/or recessive cases, the same disease-

causing variant is inherited from both heterozygous parents and can
be easily detected as a homozygous variant. Genomic regions
containing only homozygous variants in an affected individual with
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nonconsanguineous parents can also indicate an inherited deletion
from one parent or uniparental isodisomy. These latter phenomena,
revealed as Mendelian violations during the QC process (Table 2),
can manifest in a recessive disease despite only one parent being
heterozygous for the disease-causing variant. Often in undiagnosed
recessive cases, two or more different heterozygous variants, each
either inherited or occurring de novo, can give rise to the disease
phenotype; these variants are referred to as compound hetero-
zygous pairs. The complete set of compound heterozygous variant
pairs in any given case is very large, and so filters—such as
restricting to rare, LoF, likely pathogenic variants—are applied
beforehand. If too few candidate explanatory variants pass these
filters, the NIH, WUSTL and Miami sites use internal “second tier”
schemes, such as increasing the allowable MAF threshold, to rescue
additional compound heterozygous pairs.28

Integration of nonsequencing data
Cases with nondiagnostic genetic testing have eventually been
solved by reanalysis approaches that leverage additional data,
such as transcriptome sequencing29,30 (RNA-seq) or “deep
phenotyping,”31,32 to complement ES and GS.

Transcriptome sequencing
RNA-seq is increasingly utilized to (1) confirm suspected expression-
or splice-altering variants initially prioritized through genomic
sequencing, and/or (2) highlight genes that are aberrantly expressed
relative to healthy, tissue-matched samples from databases such as
GTEx (https://gtexportal.org/).29,30 BCM, Stanford, and UCLA regularly
use RNA-seq data for variant prioritization, and two other sites are
actively working to incorporate RNA-seq data into their workflows as
well (Extended Data Table 3). Vanderbilt uses PrediXcan to correlate
observed phenotypes with imputed, rather than directly measured,
gene expression.33

Structured phenotyping
Deep phenotyping of patients is critical to the overall UDN process
(Fig. 1a) and enables clinicians to focus on genes associated with a
patient’s symptoms or suspected disease. Symptom terms are
standardized via the Human Phenotype Ontology (HPO) and
explicitly annotated for each UDN case during the in-person
evaluation.34 Computational tools can reason over these terms to
generate gene panels that complement manual efforts.35 All
clinical sites have access to genes ranked by PhenoTips, a program
embedded into the UDN data server. Eight clinical sites and
BaylorSeq use additional tools to prioritize genes from patients’
phenotypes (Fig. 1j, Extended Data Table 4).36 Amelie is used by
five sites to scour the literature for examples of genes causing
patients’ observed phenotypes, a process typically performed
manually using the Monarch Initiative’s gene–phenotype browser.
Exomiser is used by three sites to integrate genotype–phenotype
data and runs in parallel to existing pipelines. Finally, pairwise
associations between genes and HPO terms are downloadable
from the HPO website; the union of genes associated with all
annotated HPO terms per patient can be used directly or
intersected with sets of disease-relevant genes from OMIM and
HGMD. This approach is used by three sites regularly but has been
implemented for various projects at all clinical sites.

Workflow management and wrapper tools
The complex workflows described here must be well-documented,
customizable per case, and provide results in a timely manner and
intuitive format. Case materials should be accessible by collabora-
tive teams of clinicians, bioinformaticians, and genetic counselors.
In practice, all sites use automated platforms to call, annotate, and
prioritize candidate diagnostic variants (Extended Data Table 5,
Extended Data Table 6). Spreadsheets are the most common tool

used by all sites for storing, sharing, and commenting on variant-
level data. Many sites also use commercial solutions for case
management, which has enabled secure transition of certain
workflow components to the cloud.

DISCUSSION
Pinpointing the genetic variants giving rise to ultrarare, undiag-
nosed diseases is a challenging and pressing problem being
tackled on a case-by-case basis by clinical researchers worldwide.
The computational tools utilized during these investigative efforts
reflect relevant community standards but can also diverge across
institutions and even across cases handled by the same
clinical team.
The diverse, exploratory techniques employed by UDN clinical

sites can overcome inherent limitations of clinical case review and
standard sequencing interpretation provided by genetic testing
laboratories—both of which rely on existing disease gene
knowledge—by uncovering novel disease loci. For instance,
when no compelling variants were found in phenotypically
prioritized genes in two patients presenting with muscular and
white matter abnormalities, a genetics-driven UDN pipeline
uncovered diagnostic de novo missense variants in both
individuals in TOMM70, a gene previously unassociated with
disease.37 Similarly, sequencing analyses were able to uncover de
novo, heterozygous variants in nine individuals with neurodeve-
lopmental delay and other multisystem anomalies in CDH2, a
gene previously unassociated with a Mendelian neurodevelop-
mental condition.38

Indeed, divergent aspects of UDN pipelines reflect promising
avenues for case reanalysis and reveal areas where technical
developments would be most impactful. Improving SV detection
specificity would aid in cases with nondiagnostic microarrays,
gene panels, and GS. Experimentally verifiable pathogenicity
predictions for noncoding variants may solve cases with
nondiagnostic ES. Finally, automated integration of additional
data, such as RNA-seq,29,30 long-read sequencing,39 and epige-
netic modifications,40 may also increase the diagnostic rate for
cases with inconclusive GS.
Consensus tools used across sites by multiple clinical research

teams have been convincingly evaluated and are easily
incorporated into existing workflows external to their original
development environment. Clinical sites strive to incorporate
better tools—including those developed in-house—as they
emerge over time. Flexible, open-source implementations ease
this process and can ultimately shorten the time to and improve
the rate of diagnosis. Initiatives like the UDN provide an
excellent opportunity to assess and share tools and ideas and
jointly develop methods inspired by the most challenging
undiagnosed cases.

DATA AVAILABILITY
All data used in this analysis are available in the Main and Extended Data Tables.

Received: 11 August 2020; Revised: 14 December 2020; Accep-
ted: 17 December 2020;
Published online: 12 February 2021

REFERENCES
1. Boycott, K. M., Vanstone, M. R., Bulman, D. E. & MacKenzie, A. E. Rare-disease

genetics in the era of next-generation sequencing: discovery to translation. Nat.
Rev. Genet. 14, 681–691 (2013).

2. Online Mendelian Inheritance in Man, OMIM. (McKusick-Nathans Institute of
Genetic Medicine, Johns Hopkins University, Baltimore, MD). https://omim.org.

3. Robinson, P. N. et al. Improved exome prioritization of disease genes through
cross-species phenotype comparison. Genome Res. 24, 340–348 (2014).

S.N. Kobren et al.

1083

Genetics in Medicine (2021) 23:1075 – 1085

https://gtexportal.org/
https://omim.org


4. Karczewski, K. J. et al. The mutational constraint spectrum quantified from var-
iation in 141,456 humans. Nature 581, 434–443 (2020).

5. Adzhubei, I. A. et al. A method and server for predicting damaging missense
mutations. Nat. Methods 7, 248–249 (2010).

6. Posey, J. E. et al. Insights into genetics, human biology and disease gleaned from
family based genomic studies. Genet. Med. 21, 798–812 (2019).

7. Splinter, K. et al. Effect of genetic diagnosis on patients with previously
undiagnosed disease. N. Engl. J. Med. 379, 2131–2139 (2018).

8. Macnamara, E. F. et al. Cases from the Undiagnosed Diseases Network: The
continued value of counseling skills in a new genomic era. J. Genet. Couns. 28,
194–201 (2019).

9. Macnamara, E. F. & D’Souza, P, Undiagnosed Diseases Network & Tifft, C. J. The
undiagnosed diseases program: approach to diagnosis. Transl. Sci. Rare Dis. 4,
179–188 (2020).

10. Wambach, J. A. et al. Functional characterization of biallelic RTTN variants iden-
tified in an infant with microcephaly, simplified gyral pattern, pontocerebellar
hypoplasia, and seizures. Pediatr. Res. 84, 435–441 (2018).

11. Lee, H. et al. Clinical exome sequencing for genetic identification of rare Men-
delian disorders. JAMA 312, 1880–1887 (2014).

12. Haghighi, A. et al. An integrated clinical program and crowdsourcing strategy for
genomic sequencing and Mendelian disease gene discovery. NPJ Genom. Med. 3,
21 (2018).

13. Richards, S. et al. Standards and guidelines for the interpretation of sequence
variants: a joint consensus recommendation of the American College of Medical
Genetics and Genomics and the Association for Molecular Pathology. Genet. Med.
17, 405–424 (2015).

14. Philippakis, A. A. et al. The Matchmaker Exchange: a platform for rare disease
gene discovery. Hum. Mutat. 36, 915–921 (2015).

15. Frost, J. H. & Massagli, M. P. Social uses of personal health information within
PatientsLikeMe, an online patient community: what can happen when patients
have access to one another’s data. J. Med. Internet Res. 10, e15 (2008).

16. Wang, J. et al. MARRVEL: integration of human and model organism genetic
resources to facilitate functional annotation of the human genome. Am. J. Hum.
Genet. 100, 843–853 (2017).

17. Bimber, B. N., Yan, M. Y., Peterson, S. M. & Ferguson, B. mGAP: the macaque
genotype and phenotype resource, a framework for accessing and interpreting
macaque variant data, and identifying new models of human disease. BMC
Genomics 20, 176 (2019).

18. Meyer, E. et al. Mutations in the histone methyltransferase gene KMT2B cause
complex early-onset dystonia. Nat. Genet. 49, 223–237 (2017).

19. Regier, A. A. et al. Functional equivalence of genome sequencing analysis pipe-
lines enables harmonized variant calling across human genetics projects. Nat.
Commun. 9, 4038 (2018).

20. Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: the
Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinformatics 43,
11.10.1–11.10.33 (2013).

21. Poplin, R. et al. A universal SNP and small-indel variant caller using deep neural
networks. Nat. Biotechnol. 36, 983–987 (2018).

22. Collins, R. L. et al. A structural variation reference for medical and population
genetics. Nature 581, 444–451 (2020).

23. Mahmoud, M. et al. Structural variant calling: the long and the short of it. Genome
Biol. 20, 246 (2019).

24. Kosugi, S. et al. Comprehensive evaluation of structural variation detection
algorithms for whole genome sequencing. Genome Biol 20, 117 (2019).

25. Liu, X., Wu, C., Li, C. & Boerwinkle, E. dbNSFP v3.0: a one-stop database of
functional predictions and annotations for human nonsynonymous and splice-
site SNVs. Hum. Mutat. 37, 235–241 (2016).

26. Posey, J. E. Genome sequencing and implications for rare disorders. Orphanet J.
Rare Dis. 14, 153 (2019).

27. Mather, C. A. et al. CADD score has limited clinical validity for the identification of
pathogenic variants in noncoding regions in a hereditary cancer panel. Genet.
Med. 18, 1269–1275 (2016).

28. Gu, F. et al. A suite of automated sequence analyses reduces the number of
candidate deleterious variants and reveals a difference between probands and
unaffected siblings. Genet. Med. 21, 1772–1780 (2019).

29. Lee, H. et al. Diagnostic utility of transcriptome sequencing for rare Mendelian
diseases. Genet. Med. 22, 490–499 (2020).

30. Frésard, L. et al. Identification of rare-disease genes using blood transcriptome
sequencing and large control cohorts. Nat. Med. 25, 911–919 (2019).

31. Shashi, V. et al. A comprehensive iterative approach is highly effective
in diagnosing individuals who are exome negative. Genet. Med. 21, 161–172
(2019).

32. Pena, L. D. M. et al. Looking beyond the exome: a phenotype-first approach to
molecular diagnostic resolution in rare and undiagnosed diseases. Genet. Med.
20, 464–469 (2018).

33. Gamazon, E. R. et al. A gene-based association method for mapping traits using
reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015).

34. Köhler, S. et al. Expansion of the Human Phenotype Ontology (HPO) knowledge
base and resources. Nucleic Acids Res. 47, D1018–D1027 (2019).

35. Smedley, D. & Robinson, P. N. Phenotype-driven strategies for exome prioritiza-
tion of human Mendelian disease genes. Genome Med. 7, 81 (2015).

36. Gonzalez, M. et al. Innovative genomic collaboration using the GENESIS (GEM.
app) platform. Hum. Mutat. 36, 950–956 (2015).

37. Dutta, D. et al. De novo mutations in TOMM70, a receptor of the mitochondrial
import translocase, cause neurological impairment. Hum. Mol. Genet 29,
1568–1579 (2020).

38. Accogli, A. et al. De novo pathogenic variants in N-cadherin cause a syndromic
neurodevelopmental disorder with corpus collosum, axon, cardiac, ocular, and
genital defects. Am. J. Hum. Genet. 105, 854–868 (2019).

39. Merker, J. D. et al. Long-read genome sequencing identifies causal structural
variation in a Mendelian disease. Genet. Med. 20, 159–163 (2017).

40. Turro, E. et al. Whole-genome sequencing of patients with rare diseases in a
national health system. Nature 583, 96–102 (2020).

ACKNOWLEDGEMENTS
Thank you to the UDN Tool Building Coalition for discussions about tools in use or
under development, to Daniel Traviglia for clarifications on UDN data availability, and
to Rebecca Reimers for writing feedback. Research reported here was supported by
the NIH Common Fund, through the Office of Strategic Coordination/Office of the
NIH Director under award numbers U01HG007530, U01HG007942, U01HG007672,
U01HG007690, U01HG010218, U01HG007703, U01HG010230, U01HG010217,
U01HG010233, U01HG007674, and U01HG010215, and by the Intramural Research
Program of the National Human Genome Research Institute. The content is solely the
responsibility of the authors and does not necessarily represent the official views of
the National Institutes of Health.

AUTHOR CONTRIBUTIONS
Conceptualization: S.N.K., S.R.S., I.S.K. Data curation: S.N.K., D.B., M.V., J.B.K., B.N.P., S.Z.,
E.B., H.L., A.H., L.B., A.B., J.C., S.M., A.A., D.R.M., P.L., D.J.W., A.J.P. Formal analysis: S.N.K.
Funding acquisition: I.S.K. Investigation: S.N.K., S.R.S., I.S.K. Methodology: S.N.K.
Visualization: S.N.K.; Writing—original draft: S.N.K. Writing—review & editing: S.N.K.,
D.B., M.V., K.L., C.E., S.R.S.

COMPETING INTERESTS
P.L. is an employee of Baylor College of Medicine and derives support through a
professional services agreement with Baylor Genetics, which performs clinical genetic
testing services. The other authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41436-020-01084-8.

Correspondence and requests for materials should be addressed to I.S.K.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

S.N. Kobren et al.

1084

Genetics in Medicine (2021) 23:1075 – 1085

https://doi.org/10.1038/s41436-020-01084-8
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


UNDIAGNOSED DISEASES NETWORK

Maria T. Acosta16, Margaret Adam17, David R. Adams16, Pankaj B. Agrawal18, Mercedes E. Alejandro19, Justin Alvey20, Laura Amendola17,
Ashley Andrews20, Euan A. Ashley21, Mahshid S. Azamian19, Carlos A. Bacino19, Guney Bademci22, Eva Baker16,
Ashok Balasubramanyam19, Dustin Baldridge23,24, Jim Bale20, Michael Bamshad17, Deborah Barbouth22, Pinar Bayrak-Toydemir20,
Anita Beck17, Alan H. Beggs18, Edward Behrens25, Gill Bejerano21, Jimmy Bennett17, Beverly Berg-Rood17, Jonathan A. Bernstein21,
Gerard T. Berry18, Anna Bican26, Stephanie Bivona22, Elizabeth Blue17, John Bohnsack20, Carsten Bonnenmann16, Devon Bonner21,
Lorenzo Botto20, Brenna Boyd17, Lauren C. Briere18, Elly Brokamp26, Gabrielle Brown27, Elizabeth A. Burke16, Lindsay C. Burrage19,
Manish J. Butte27, Peter Byers17, William E. Byrd28, John Carey20, Olveen Carrasquillo22, Ta Chen Peter Chang22, Sirisak Chanprasert17,
Hsiao-Tuan Chao19, Gary D. Clark19, Terra R. Coakley21, Laurel A. Cobban18, Joy D. Cogan26, Matthew Coggins18, F. Sessions Cole23,
Heather A. Colley16, Cynthia M. Cooper18, Heidi Cope29, William J. Craigen19, Andrew B. Crouse28, Michael Cunningham17,
Precilla D’Souza16, Hongzheng Dai19, Surendra Dasari30, Joie Davis16, Jyoti G. Daya1, Matthew Deardorff25, Esteban C. Dell’Angelica27,
Shweta U. Dhar19, Katrina Dipple17, Daniel Doherty17, Naghmeh Dorrani27, Argenia L. Doss16, Emilie D. Douine27, David D. Draper16,
Laura Duncan26, Dawn Earl17, David J. Eckstein16, Lisa T. Emrick19, Christine M. Eng31, Cecilia Esteves32, Marni Falk25, Liliana Fernandez21,
Carlos Ferreira16, Elizabeth L. Fieg18, Laurie C. Findley16, Paul G. Fisher21, Brent L. Fogel27, Irman Forghani22, Laure Fresard21,
William A. Gahl16, Ian Glass17, Bernadette Gochuico16, Rena A. Godfrey16, Katie Golden-Grant17, Alica M. Goldman19,
Madison P. Goldrich16, David B. Goldstein33, Alana Grajewski22, Catherine A. Groden16, Irma Gutierrez27, Sihoun Hahn17,
Rizwan Hamid26, Neil A. Hanchard19, Kelly Hassey25, Nichole Hayes23, Frances High18, Anne Hing17, Fuki M. Hisama17, Ingrid A. Holm18,
Jason Hom21, Martha Horike-Pyne17, Alden Huang27, Yong Huang21, Laryssa Huryn16, Rosario Isasi22, Fariha Jamal19, Gail P. Jarvik17,
Jeffrey Jarvik17, Suman Jayadev17, Lefkothea Karaviti19, Jennifer Kennedy26, Dana Kiley23, Isaac S. Kohane32, Jennefer N. Kohler21,
Susan Korrick18, Mary Kozuira26, Deborah Krakow27, Donna M. Krasnewich16, Elijah Kravets21, Joel B. Krier18, Grace L. LaMoure16,
Seema R. Lalani19, Byron Lam22, Christina Lam17, Brendan C. Lanpher30, Ian R. Lanza30, Lea Latham16, Kimberly LeBlanc32,
Brendan H. Lee19, Hane Lee27, Roy Levitt22, Richard A. Lewis19, Sharyn A. Lincoln18, Pengfei Liu31, Xue Zhong Liu22, Nicola Longo20,
Sandra K. Loo27, Joseph Loscalzo18, Richard L. Maas18, John MacDowall16, Calum A. MacRae18, Ellen F. Macnamara16, Valerie V. Maduro16,
Marta M. Majcherska21, Bryan C. Mak27, May Christine V. Malicdan16, Laura A. Mamounas16, Teri A. Manolio16, Rong Mao20,
Kenneth Maravilla17, Thomas C. Markello16, Ronit Marom19, Gabor Marth20, Beth A. Martin21, Martin G. Martin27, Julian A. Martinez-
Agosto27, Shruti Marwaha21, Jacob McCauley22, Allyn McConkie-Rosell29, Colleen E. McCormack21, Alexa T. McCray32, Elisabeth McGee27,
Heather Mefford17, J. Lawrence Merritt17, Matthew Might28, Ghayda Mirzaa17, Eva Morava30, Paolo M. Moretti19, Paolo Moretti20,
Deborah Mosbrook-Davis16, John J. Mulvihill16, David R. Murdock19, Anna Nagy32, Mariko Nakano-Okuno28, Avi Nath16,
Stanley F. Nelson27, John H. Newman26, Sarah K. Nicholas19, Deborah Nickerson17, Shirley Nieves-Rodriguez27, Donna Novacic16,
Devin Oglesbee30, James P. Orengo19, Laura Pace20, Stephen Pak24, J. Carl Pallais18, Christina G. S. Palmer27, Jeanette C. Papp27,
Neil H. Parker27, John A. Phillips III26, Jennifer E. Posey19, Lorraine Potocki19, Bradley Power16, Barbara N. Pusey16, Aaron Quinlan20,
Archana N. Raja21, Deepak A. Rao18, Wendy Raskind17, Genecee Renteria27, Chloe M. Reuter21, Lynette Rives26, Amy K. Robertson26,
Lance H. Rodan18, Jill A. Rosenfeld19, Natalie Rosenwasser17, Francis Rossignol16, Maura Ruzhnikov21, Ralph Sacco22,
Jacinda B. Sampson21, Susan L. Samson19, Mario Saporta22, Judy Schaechter22, Timothy Schedl24, Kelly Schoch29, C. Ron Scott17,
Daryl A. Scott19, Vandana Shashi29, Jimann Shin24, Rebecca H. Signer27, Edwin K. Silverman18, Janet S. Sinsheimer27, Kathy Sisco23,
Edward C. Smith29, Kevin S. Smith21, Emily Solem26, Lilianna Solnica-Krezel24, Ben Solomon16, Rebecca C. Spillmann29, Joan M. Stoler18,
Jennifer A. Sullivan29, Kathleen Sullivan25, Angela Sun17, Shirley Sutton21, David A. Sweetser18, Virginia Sybert17, Holly K. Tabor21,
Amelia L. M. Tan32, Queenie K.-G. Tan29, Mustafa Tekin22, Fred Telischi22, Willa Thorson22, Audrey Thurm16, Cynthia J. Tifft16,
Camilo Toro16, Alyssa A. Tran19, Brianna M. Tucker21, Tiina K. Urv16, Adeline Vanderver25, Matt Velinder20, Dave Viskochil20,
Tiphanie P. Vogel19, Colleen E. Wahl16, Melissa Walker18, Stephanie Wallace17, Nicole M. Walley29, Chris A. Walsh18, Jennifer Wambach23,
Jijun Wan27, Lee-kai Wang27, Michael F. Wangler34, Patricia A. Ward31, Daniel Wegner23, Mark Wener17, Tara Wenger17,
Katherine Wesseling Perry27, Monte Westerfield35, Matthew T. Wheeler21, Jordan Whitlock28, Lynne A. Wolfe16, Jeremy D. Woods27,
Shinya Yamamoto34, John Yang16, Muhammad Yousef16, Diane B. Zastrow21, Wadih Zein16, Chunli Zhao21 and Stephan Zuchner22

16National Institutes of Health, Undiagnosed Diseases Program Clinical Site, Bethesda, MD, USA. 17University of Washington and Seattle Children’s Hospital Clinical Site, Seattle,
WA, USA. 18Harvard-affiliated Boston Children’s Hospital, Massachusetts General Hospital, Brigham and Women’s Hospital, and Brigham Genomic Medicine Clinical Site, Boston,
MA, USA. 19Baylor College of Medicine, Clinical Site, Houston, TX, USA. 20University of Utah Clinical Site, Salt Lake City, UT, USA. 21Stanford University Clinical Site, Stanford, CA,
USA. 22University of Miami Clinical Site, Miami, FL, USA. 23Washington University of Saint Louis, Clinical Site, Saint Louis, MO, USA. 24Washington University of Saint Louis, Model
Organism Screening Center, Saint Louis, MO, USA. 25Children’s Hospital of Philadelphia or University of Pennsylvania Clinical Site, Philadelphia, PA, USA. 26Vanderbilt University
Clinical Site, Nashville, TN, USA. 27University of California, Los Angeles, Clinical Site, Los Angeles, CA, USA. 28University of Alabama Coordinating Center, Birmingham, AL, USA.
29Duke University Clinical Site, Durham, NC, USA. 30Mayo Clinic Metabolomics Core, Rochester, MN, USA. 31Baylor Genetics Sequencing Core, Houston, TX, USA. 32Harvard Medical
School Coordinating Center, Boston, MA, USA. 33Columbia University Clinical Site, New York City, NY, USA. 34Baylor College of Medicine, Model Organism Screening Center,
Houston, TX, USA. 35University of Oregon, Model Organism Screening Center, Eugene, OR, USA.

S.N. Kobren et al.

1085

Genetics in Medicine (2021) 23:1075 – 1085


	Commonalities across computational workflows for uncovering explanatory variants in undiagnosed cases
	INTRODUCTION
	MATERIALS AND METHODS
	Participating sites
	Data collection

	RESULTS
	Overview of diagnostic workflow components
	Aligning next-generation sequencing reads
	Simple variant calling
	Structural variant detection
	Quality control of called variants
	Annotation and filtering of genetic variants
	Known disease-associated genes
	Variant segregation in healthy human populations
	Predicted pathogenicity and functional effect of variants
	Mode of inheritance
	Integration of nonsequencing data
	Transcriptome sequencing
	Structured phenotyping
	Workflow management and wrapper tools

	DISCUSSION
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




