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A Federated Graph Learning Framework for Brain Connectome
Chaomeng Chen (gianluigi-chen@bupt.edu.cn) 1

Sen Su (susen@bupt.edu.cn)
School of Computer Science, Beijing University of Posts and Telecommunications,

Beijing, China

Abstract
Neuroimaging, especially through Functional Magnetic
Resonance Imaging (fMRI), plays a pivotal role in
understanding brain activity by leveraging blood-oxygen
level dependent (BOLD) signals to estimate neural activities
across the brain. The interpretation of these signals
through functional connectivity (FC) matrices facilitates
the application of Graph Neural Networks (GNN) for
analyzing brain network structures, offering insights into
both normal and abnormal brain functions. Despite the
potential of centralized learning methods in this domain,
challenges related to data privacy and the feasibility
of sharing sensitive medical datasets across institutions
limit their application. This study introduces the
Federated Graph Learning Framework for Brain Connectome
(FGLBC), addressing these concerns. This novel approach
enables the collaborative training of GNN models across
multiple entities, such as hospitals, without compromising
data privacy. The FGLBC framework implements a
privacy-preserving local GNN training (PPGT) algorithm
that incorporates Differential Privacy (DP) to safeguard
sensitive information during model training. Furthermore,
we introduce a unique similarity-weighted aggregation
(SWA) algorithm that enhances the aggregation process,
thereby boosting the global model’s utility and performance.
Our comprehensive evaluation across benchmark datasets
demonstrates that the FGLBC not only preserves user privacy
but also achieves or surpasses the performance of existing
methods.

Keywords: Graph Neural Networks; Cognitive Science;
Federated Learning; Brain Connectome

Introduction
Neuroimaging techniques are essential for capturing neural
signals and measuring brain activity. Among these,
Functional Magnetic Resonance Imaging (fMRI) is a
prominent non-invasive method that measures whole-brain
neural activity by tracking blood-oxygen level dependent
(BOLD) signals at specific intervals (Matthews & Jezzard,
2004).. fMRI employs statistical metrics like Pearson
correlation and mutual information to determine functional
connectivity (FC) across different brain regions. These

1Corresponding Author. Email: gianluigi-chen@bupt.edu.cn

FC matrices are crucial for graph-based network analysis
(Sporns, 2018; Wang, Zuo, & He, 2010), providing vital data
for Graph Neural Network (GNN), which offer deep insights
into both standard and abnormal brain functions (He et al.,
2020).

GNN has become a dominant paradigm in deep learning,
especially for graph-structured data (Wu et al., 2020). The
structural similarity between brain networks and graphs has
notably boosted the application of GNNs to analyze brain FC
networks. Such analyses are crucial to pinpointing specific
features or states in brain signals, greatly aiding the study of
how cognitive functions rely on the integrated activities of
various brain regions. However, most existing studies rely on
centralized learning approaches (Y. Zhang, Tetrel, Thirion,
& Bellec, 2021; Kim & Ye, 2020; Azevedo et al., 2022;
Huang, Xia, Xu, & Qiu, 2022), which may not be viable
where hospitals each maintain private brain imaging datasets
due to privacy concerns.

In situations where multiple parties hold localized data,
such as hospitals with individual fMRI datasets, a significant
challenge is enabling collaborative training without risking
data privacy. The Federated Graph Learning (FGL) (Lalitha,
Kilinc, Javidi, & Koushanfar, 2019) framework provides
a promising solution, allowing GNN models to be trained
independently on local datasets while a central server
manages weight aggregation and updates. This framework
effectively handles data isolation and improves model
generalizability. Despite the development of various FGL
approaches, challenges persist in managing spatio-temporal
graph data and identifying community structures within
networks (Jiang, Jung, Karl, & Zhao, 2022; Luo et al., 2021;
Baek, Jeong, Jin, Yoon, & Hwang, 2023). The main concerns
include the vulnerability of gradients to inference attacks and
the need for more precise FL aggregation techniques.

In response to these challenges, we have developed the
Federated Graph Learning Framework for Brain Connectome
(FGLBC), a novel approach designed for cross-institutional
collaborative training of GNN models. FGLBC directly
tackles privacy issues by integrating Differential Privacy
(DP) (Dwork, 2006) into the gradient updates of GNN
models through a privacy-preserving local GNN training
(PPGT) algorithm. Additionally, our newly devised
Weight Similarity-Weighted Aggregation (SWA) algorithm
minimizes the negative impacts of uncooperative participants
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on the global model’s performance. The contributions of our
research are summarized as follows:

• We introduce the Federated Graph Learning for Brain
Connectome (FGLBC), optimized for collaborative GNN
model training across multiple hospitals.

• We advance the field by proposing a novel
privacy-preserving local GNN training (PPGT) and
similarity-weighted aggregation (SWA) algorithm that
enhances data privacy and aggregation efficacy.

• Through comprehensive experiments and analysis of
benchmark datasets, our methods have demonstrated the
capability to match or exceed the efficacy of existing
methods while rigorously maintaining user privacy.

Related Work
Federated Graph Learning
Federated Graph Learning (FGL) has become a cornerstone
in distributed Graph Neural Network training, significantly
expanding GNN applications. FGL research is divided into
three primary categories: inter-graph FGL, intra-graph FGL,
and graph-structured FGL.

In inter-graph FGL, each participant utilizes a distinct
graph dataset to enhance the efficiency of GNNs in modeling
local data. This model’s effectiveness has been demonstrated
in various contexts, e.g., (Xie, Ma, Xiong, & Yang, 2021),
and its adaptability for more generalized models has been
explored, e.g., (Zhu et al., 2021). Additionally, it effectively
handles the complexities of spatial-temporal graph data,
as explored in recent studies (Jiang et al., 2022; Luo et
al., 2021). Conversely, intra-graph FGL operates under
a different premise where each client manages a segment
of a larger graph. This configuration effectively resolves
issues with missing links in subgraphs by supplementing
neighboring data voids, as indicated in (K. Zhang, Yang,
Li, Sun, & Yiu, 2021), and facilitates the identification
of community structures (Baek et al., 2023). Finally,
graph-structured FGL leverages graphical representations to
elucidate the relationships between clients. This approach has
shown versatility in handling various types of data, such as in
image processing (Chen, Long, Wu, Zhou, & Jiang, 2022)
and traffic data analysis (Meng, Rambhatla, & Liu, 2021).

Our research focuses on enhancing inter-graph FGL by
developing a privacy-preserving FL framework tailored for
brain connectome graphs.

GNN For Brain Connection
In brain network analysis, various methodologies for
measuring functional connectivity (FC), such as Pearson
correlation (Y. Zhang et al., 2021), (Kim & Ye, 2020),
(Azevedo et al., 2022), (Huang et al., 2022), and
partial correlation (Li et al., 2021), are fundamental for
constructing brain graphs. These methods facilitate a deeper
understanding of brain functions through the analysis of

interactions between brain regions. However, they tend to
overlook the dynamic nature of FC, remarkably its temporal
variability, a crucial aspect highlighted by (Calhoun, Miller,
Pearlson, & Adalı, 2014). Moreover, the selection of FC
metrics profoundly influences the efficacy of subsequent
analytical tasks, as noted by (Korhonen, Zanin, & Papo,
2021). In response to these challenges, recent advancements
have been made in modeling dynamic brain graphs to more
accurately reflect the non-stationary characteristics of brain
activity. For instance, (Gadgil et al., 2020) introduced a
technique utilizing spatio-temporal Graph Neural Networks,
building upon the foundational work in spatio-temporal
GNN by (Yan, Xiong, & Lin, 2018). This approach
significantly enhances the integration of temporal dynamics,
offering novel insights into the evolving nature of the brain.
Concurrently, (Kim, Ye, & Kim, 2021) has applied the
spatio-temporal attention mechanism from the transformer
model, initially developed by (Vaswani et al., 2017), to
effectively process and analyze dynamic brain graphs.

Preliminaries
Differential Privacy
Differential privacy, as established by (Dwork, 2006),
provides a structured framework that offers provable
safeguards against various privacy breaches. In this
framework, two datasets, D and D′, are considered adjacent,
denoted as D' D′, if they differ by only a single record.

Definition 1 (ε, δ)-Differential Privacy. Let M : D→ R
be a randomized mechanism that ensures (ε, δ)-differential
privacy (ε-DP). This mechanism operates over a domain D
and range R , and guarantees that for all pairs of adjacent
datasets D and D′, and for any subset Z of R :

Pr(M (D) ∈ Z)≤ eε×Pr(M (D′) ∈ Z)+δ (1)

Here, ε represents the privacy budget, which quantifies the
allowable difference in outcomes between D and D′, whereas
δ denotes the probability of the mechanism failing to maintain
ε-DP. Lower values of ε and δ enhance the rigor and strength
of privacy protection.

Federated Learning
In a FL framework with M clients, each client m possesses
a unique dataset Dm. The primary goal is to minimize the
following objective function:

min
w={w1,...,wM}

1
M

M

∑
m=1

|Dm|
N

Lm(wm;Dm), (2)

where N is the total number of data points across all
clients, Lm denotes the loss function, and wm are the model
parameters for client m.

The server aggregates the model parameters from all
clients as follows:

w̄global ← wglobal +
1
M

M

∑
m=1

|Dm|
N

wm, (3)
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and then redistributes the updated global model to all
clients.

Despite its potential, these methods can only perform
with heterogeneous data distributions among clients.
Recent innovations improve this by integrating personalized
strategies into the local training and aggregation process,
thus enhancing the performance of wm on client m’s dataset.

Spatio-Temporal Graph Convolutional Network
(ST-GCN)
The ST-GCN (Gadgil et al., 2020) processes graph-structured
data over time, making it highly suitable for applications like
action recognition and brain activity prediction.

Notation Consider a graph G = (V,E) with vertices V and
edges E. Each vertex vi ∈V is associated with a feature vector
xi ∈ RF , where F denotes the feature count. For dynamic
scenarios, we analyze a series of graphs {Gt}T

t=1, with T
representing the timeline.

ST-GCN Model ST-GCN adapts convolution operations to
graphs, defined as:

fout(vi) =
1

Zii
∑

v j∈B(vi)

fin(v j) ·ω(v j), (4)

where fin(v j) and fout(vi) are the input and output features
at node vi, B(vi) represents the node’s spatial-temporal
neighborhood, ω denotes the convolutional kernel, and Zii is
the normalization factor.

The graph convolution is split into spatial and temporal
phases, each handled by distinct kernels. The spatial
convolution at time t is:

f
′
i = Λ

− 1
2 (A+ I)Λ−

1
2 ftWSG, (5)

with A as the adjacency matrix, Λ as the degree matrix, I as
the identity matrix, ft as the temporal feature matrix, and WSG
as the spatial kernel.

Classifying BOLD Time Series with ST-GCN ST-GCN
excels in classifying Blood Oxygen Level Dependent
(BOLD) time series, utilizing the graph’s structural
properties. The classification is achieved by directing
ST-GCN’s outputs to a fully connected layer with a sigmoid
activation, generating class probabilities.

Methodology
This section presents a comprehensive overview of the
FGLBC framework. We then present two core components
of FGLBC: Privacy-Preserving Local GNN Training and the
Similarity-Weighted Aggregation algorithm.

Overview of FGLBC
This section introduces the FGLBC framework, illustrated
in Figure 1. FGLBC operates through a central server
collaborating with multiple hospitals. Each hospital
contributes by training models on local subgraphs, followed

by model updates through weight adjustments. The process
involves the following steps:

1. Privacy-Preserving Local GNN Training: Hospitals
execute the PPGT algorithm, details of which are provided
later.

2. Weight Upload: Hospitals upload their model weights to
the central server.

3. Similarity-Weighted Aggregation: The server performs
aggregation using the SWA algorithm.

4. Global Weight Update: The server distributes the global
weights back to the hospitals.

Privacy-Preserving Local GNN Training (PPGT)
In the PPGT, we enhance the application of the ST-GCN
tailored for fMRI data analysis. This approach involves
transforming functional brain networks into detailed
spatio-temporal graphs. Central to this is our comprehensive
Spatio-Temporal Graph Convolution (ST-GC) framework,
detailed previously.

Our model represents brain networks using nodes that
correspond to BOLD signals from different brain regions.
The edges are designed to capture the intricate connectivity
that encompasses both temporal dynamics and spatial
relationships, thus facilitating a deeper understanding of the
brain connectome’s activity.

To protect the privacy of sensitive medical data,
we integrate the Differential Privacy-Stochastic Gradient
Descent (DP-SGD) algorithm into the ST-GCN classifier.
A critical component is the precise adjustment of privacy
controls to ensure patient data protection while maintaining
the model’s utility.

The critical element of our methodology is computing the
gradient of the ST-GCN’s loss function, L(θ), with respect to
the model parameters w, for each mini-batch of graph data xi.
We adhere to stringent privacy norms by rigorously clipping
this gradient to ensure that the L2 norm remains below a
predefined threshold C. This step is crucial for balancing data
utility with privacy.

After gradient clipping, we add a calculated amount
of random Gaussian noise, N (0,σ2C2I), where σ =√

2log 1.25
δ
/ε. This is not just noise injection; it is a strategic

enhancement of our privacy framework, meticulously
calibrated to evaluate its impact on privacy protection.

In the classifier’s final stage, we implement a
fully connected layer that transitions from analyzing
spatio-temporal features to producing actionable
classification probabilities. This phase marks the progression
towards practical predictive decision-making.

The Similarity Weighted Aggregation Algorithm
(SWA)
To improve the aggregation effectiveness in FGL, we
propose the SWA. The initial challenge of diverse model
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Figure 1: Framework of FGLBC

dimensions in GNNs is addressed by employing Principal
Component Analysis (PCA) (Wold, Esbensen, & Geladi,
1987), which projects model weights w j into a consistent,
lower-dimensional space h j. We then compute the cosine
similarity between these projections and the global model
weights hglobal , defined as S( j) = h j ·hglobal

‖h j‖‖hglobal‖
, to determine

their similarity S(i, j).
Once S(i, j) is established, we update the global model

by incorporating weights from various clients based on this
similarity metric, adjusted to avoid negative values: S(i, j) =
max(S(i, j),0). The aggregation method averages the local
GNNs according to their functional similarity, utilizing the
following formula:

wglobal ← wglobal +
K

∑
j=1

α j ·w j, α j =
exp(τ ·S( j))

∑
K
j=1 exp(τ ·S( j))

(6)
Here, α j denotes the normalized similarity between client

j and the global model, effectively adjusting the influence
of each client’s model. The hyperparameter τ, which can be
increased to enhance community-specific model aggregation,
regulates the sensitivity of similarity measures, emphasizing
the contributions of similar subgraphs.

Experiments and Results
Datasets
We make use of two datasets: NCANDA and HCP in our
experiments:

• NCANDA (Brown et al., 2015): The dataset includes 773
rs-fMRI scans from adolescents aged 12–21. It features

scans from 388 individuals younger and 385 older than
16, with a gender distribution of 376 males and 397
females. Among them, 638 adolescents adhered to NIAAA
guidelines for minimal alcohol consumption. Processing
involved aligning each mean BOLD image with individual
T1 MRI and MNI space and normalizing BOLD signals in
34 cortical ROIs to z-scores.

• HCP (Van Essen et al., 2013): This dataset includes
rs-fMRI scans of 1,091 young adults aged 22–35, with
498 females and 593 males. After excluding five scans
with insufficient frames, 1,200-frame scans from the
first session (15 min, TR = 0.72 s) were used. The
scans were processed through the HCP minimal pipeline
and fMRISurface, aligning volumes to standard CIFTI
gray coordinates space. Two subsets were created,
HCP-Rest and HCP-Task, based on the activity status
during scanning.

Baselines
We evaluate FGLBC against two baselines: (1) FedAvg+DP,
which integrates a standard FL algorithm with a differential
privacy (DP) mechanism, and (2) FedGNN +DP, a
benchmark system for graph neural networks in federated
learning, also incorporating standard DP.

Experimental Settings
The study involved four hospitals, with each client’s privacy
budget set at 10. The dataset was evenly distributed
among the clients. The primary loss function employed
was cross-entropy. All experiments were conducted on GPU
servers equipped with 10 NVIDIA Tesla V100 GPUs, and the
default τ value was set at 10.
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(a) NCANDA (b) HCP-Rest (c) HCP-Task

Figure 2: Test accuracy curves of our proposed FGLBC and other baselines methods along the communication rounds.

Performance and Analysis

Table 1: Accuracy on NCANDA, HCP-Rest and HCP-Task
dataset.

Methods NCANDA HCP-Rest HCP-Task
FGLBC 78.16 89.34 93.25
FedGNN+DP 74.22 83.12 86.28
FedAvg+DP 70.31 80.15 82.97

Performance Comparison
We conducted a comprehensive comparison of three methods:
FGLBC, FedGNN +DP, and FedAvg+DP, assessing their
accuracy on the NCANDA, HCP-Rest, and HCP-Task
datasets. As demonstrated in Table 1, FGLBC consistently
outperformed the other methods, notably achieving a
remarkable accuracy of 93.25% on the challenging HCP-Task
dataset. This performance underscores FGLBC’s ability
to simultaneously preserve model privacy and enhance
effectiveness through an optimized weighted aggregation
process. Conversely, FedGNN +DP and FedAvg+DP showed
inferior performance across all datasets, with FedAvg+DP
notably lagging at only 70.31% accuracy on the NCANDA
dataset. These results underscore the superior adaptability
and efficiency of FGLBC in managing diverse types of
datasets.

Table 2: Effects of Different Numbers of Hospitals on
HCP-Task Dataset.

Methods 2 4 6 8 10
FGLBC 91.02 93.24 93.10 93.04 92.98
FedGNN+DP 84.21 86.23 83.52 81.74 79.83
FedAvg+DP 80.07 82.97 80.17 77.93 72.57

Convergence Analysis
Figure 2 illustrates the average testing accuracy curves from
five random training iterations across all methods. PPFGL
consistently achieves higher average testing accuracy across

all three datasets and shows faster convergence. This
performance indicates that our SWA algorithm significantly
improves the model’s aggregation efficiency.

Effects of Different Numbers of Hospitals
We evaluated the model’s performance within an expanded
FGL framework by varying the number of participating
hospitals from 2 to 10, as shown in Table 2. FGLBC
maintained the highest and most consistent accuracy,
experiencing only slight decreases as the number of
hospitals increased, showcasing its robustness and scalability.
Conversely, FedGNN+DP showed optimal performance
with four hospitals but suffered significant accuracy losses
with larger numbers, indicating its susceptibility to data
heterogeneity. FedAvg+DP started with lower accuracy,
which declined sharply with more than four hospitals,
underscoring its challenges in managing larger graph
datasets. These results demonstrate that our SWA effectively
addresses data heterogeneity from multiple hospitals,
maintaining model utility in federated learning.

Effects of Different Privacy Budgets
Table 3 presents the effects of varying privacy budgets (ε) on
the performance of FGLBC, FedGNN+DP, and FedAvg+DP
across three datasets: NCANDA, HCP-Rest, and HCP-Task.
The data reveal a general trend where performance improves
with increased privacy budgets. FGLBC consistently
outperforms other methods in all scenarios, particularly at
lower privacy budgets. Performance enhancements tend to
plateau when the privacy budget exceeds 10, highlighting the
efficacy of our methods in preserving accuracy despite the
addition of varying levels of DP noise.

Conclusion
In this study, we introduce the FGLBC, designed to facilitate
the collaborative training of GNN while prioritizing data
privacy. Within FGLBC, each hospital independently trains
its local GNN model. Model weights are then securely
uploaded to a central server for aggregation before being
redistributed to update the local models. The FGLBC
framework incorporates a PPGT algorithm integrating DP
to protect sensitive data during training. Additionally, we
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Table 3: Effects of Different Privacy Budgets on Cora, CiteSeer and Pubmed datasets.

Mathods NCANADA HCP-Rest HCP-Task
2 5 10 20 2 5 10 20 2 5 10 20

FGLBC 70.98 73.65 78.16 80.54 79.27 83.98 89.34 91.65 80.12 84.47 93.25 93.73
FedGNN+DP 65.48 68.99 74.22 76.15 72.67 76.05 83.12 84.65 73.12 80.54 86.28 88.81
FedAvg+DP 59.60 63.48 70.31 72.33 65.78 72.16 80.15 82.92 70.79 74.68 82.97 85.02

introduce a novel Similarity-Weighted Aggregation SWA
algorithm that enhances the efficiency of the aggregation
process, thus improving the utility and performance of the
global model. Extensive experiments confirm that FGLBC
significantly outperforms existing methods, establishing
its efficacy in safeguarding privacy and enhancing model
performance.
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