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ABSTRACT OF THE DISSERTATION
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analyze large-scale genetic studies of

complex human traits

by
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Professor Bogdan Pasaniuc, Chair

Large-scale genome-wide association studies (GWAS) have produced a rich resource of ge-

netic data over the past decade, urging the need to develop computational and statistical

methods that analyze these data. This dissertation presents four statistical methods that

model the correlation structure between genetic variants and its effect on GWAS summary

association statistics to help understand the genetic basis of complex human traits and dis-

eases.

The first method employs the multivariate Bernoulli distribution to model haplotype data,

allowing for higher-order interactions among genetic variants, and shows better accuracy in

predicting DNase I hypersensitivity status.

The second method partitions heritability into small regions on the genome using GWAS

summary statistics data, while accounting for complex correlation structures among genetic

variants, and uncovers the genetic architectures of complex human traits and diseases.

Extending the second method into pairs of traits, the third method partitions genetic correla-

tion into small genomic regions using GWAS summary statistics data, and provides insights

into the shared genetic basis between pairs of traits.

ii



Finally, the fourth method dissects population-specific and shared causal genetic variants of

complex traits in two continental populations, using GWAS summary statistics data obtained

from samples of different ethnicities, and reveals differences in genetic architectures of two

continental populations.
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gwas across

all loci that is accounted for by loci with multiple signals of association. . . . . . 46

3.3 Details of the summary GWSA data for the 30 analyzed traits. aFraction

refers to the fraction of genome with GWAS hits. bIBD refers to the union of CD

and UC. For case-control traits, we list sample size as No. cases / No. controls. 47

xvii



3.4 Total SNP-heritability for the 30 traits obtained by HESS and LDSC.

To obtain LDSC estimate, we compute LD scores for all SNPs with MAF greater

than 5% using the same reference panel as used by HESS. Since HESS does

not account for population stratification, we obtain LDSC estimate without the

intercept. h2:
g,local,gwas refers to the estimated SNP-heritability attributable to loci

containing GWAS hit after all GWAS hits are removed. aWe define enrichment

as the ratio between the fraction of h2
g attributable to h2:

g,local,gwas and the fraction

of genome covered by these loci. We obtain standard errors by jack-knife over

the loci. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 A summary of the 36 GWAS summary data sets analyzed. . . . . . . . 79

4.2 Loci that show significant local genetic covariance (two-tailed p ă 0.05{1703{630)

and local SNP heritability (one-tailed p ă 0.05{1703{36) for both traits. 80

4.3 Loci that show significant local genetic covariance (two-tailed p ă 0.05{1703{630)

and local SNP heritability (one-tailed p ă 0.05{1703{36) for both traits. 81

4.4 Bi-directional analysis of local genetic correlation identifies 40 pairs of

traits for which one is likely a causal factor of the other. . . . . . . . . . 82

5.1 A list of GWAS summary statistics data set analyzed. We obtain genome-

wide SNP-heritability estimates of these traits using LD score regression [19], with

intercept term constrained to 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Total number of SNPs, estimated number of population-specific and

shared causal variants for BMI, MCH, and MCV. We estimated the stan-

dard errors of the numbers of population-specific and shared causal variants using

the last 25 iterations of the EM-MCMC algorithm for estimating the prior pro-

portion of population-specific and shared causal variants. . . . . . . . . . . . . . 111

xviii



ACKNOWLEDGMENTS

First, I would like to express my gratitude to my thesis advisor, Bogdan Pasaniuc, for his

patience, rigor, and encouragement, in cultivating me to become an independent researcher.

His advice and support paved the way to my future career.

I would also like to thank both current and previous members of the Bogdan lab: Gleb

Kichaev, Nicholas Mancuso, Claudia Giambartolomei, Robert Brown, Megan Roytman,

Ruth Johnson, Kathryn Burch, Valerie Arboleda, Malika Freund, Arunabha Majumdar,

Megan Major, Robert Smith, Tommer Schwarz, Wen-Yun Yang, and Page Goddard, for

helpful and productive intellectual discussions, and more importantly, for the fun that they

brought to my life as a Ph.D. student.

I owe special thanks to my previous Bruins in Genomics (BIG) summer students: Sarah

Spendlove, Astrid Manuel, Natalie Dong, Christian Torres, and Anthony Fernandez for help-

ing out on my research projects during the summer.

My adventure as a Ph.D. student wouldn’t have been a smooth sail without the generous

help and advice from my committee members: Janet Sinsheimer, Kenneth Lange, Päivi
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CHAPTER 1

Introduction

Complex human traits and diseases are driven by both genetic and environmental factors.

Since genetics is intrinsic to every person, studying the genetic basis of complex traits offers

an unbiased approach to understand the biological mechanisms behind complex traits. A

conceptually simple but highly effective approach to assess the contribution of genetics on

complex traits is genome-wide association study, which scans for association between each

genetic variant and complex trait. The drastic decrease in sequencing and genotyping tech-

nologies enabled genome-wide association studies at a large scale, which have produced a

rich resource of genetic data over the past decade. These large-scale genetic studies revealed

both valuable biological insights and challenges in genetic studies, urging the need to develop

new and efficient computational and statistical methods to analyze these data. The next

four chapters introduce methods for modeling linkage and its effect on GWAS results.

The non-random crossover during meiosis creates dependencies betweens alleles on haplo-

types, sequences of alleles on one copy of chromosome, inducing correlation (linkage dise-

quilibrium) between the alleles. Modeling linkage disequilibrium in haplotypes has a wide

range of applications in population inference and disease gene discovery. The hidden Markov

models (HMM) traditionally used for haplotypes[84] are hindered by the dubious assumption

that dependencies occur only between consecutive pairs of variants. In Chapter 2, we apply

the multivariate Bernoulli (MVB) distribution [30] to model haplotype data. The MVB dis-

tribution relies on interactions among all sets of variants, thus allowing for the detection and

exploitation of long-range and higher-order interactions [30]. We discuss penalized estima-

tion and present an efficient algorithm for fitting sparse versions of the MVB distribution to
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haplotype data. Finally, we showcase the benefits of the MVB model in predicting DNaseI

hypersensitivity (DH) status – an epigenetic mark describing chromatin accessibility– from

population-scale haplotype data. We fit the MVB model to real data from 59 individuals

on whom both haplotypes and DH status in lymphoblastoid cell lines are publicly available.

The model allows prediction of DH status from genetic data (prediction R2 “ 0.12 in cross-

validations). Comparisons of prediction under the MVB model with prediction under linear

regression (best linear unbiased prediction or BLUP) and logistic regression demonstrate that

the MVB model achieves about 10% higher prediction R2 than the two competing methods

in empirical data.

Linkage disequilibrium has profound impact on genome-wide association studies (GWAS) of

complex traits [20]. Modeling the effect of linkage disequilibrium on between GWAS results is

crucial for the correct interpretation of important quantities in genetics, such as heritability,

the fraction of variance in trait explained by genetic variation. While GWAS have identified

thousands of genetic variants associated with complex human traits and diseases, a large

fraction of heritability of complex traits remain unexplained by genetic variants identified

through GWAS [95]. A possible explanation to this discrepancy is that most genetic variants

have effect too small to be detected at the current sample size. Variance components methods

that estimate the aggregate contribution of large sets of variants to the heritability of complex

traits have yielded important insights into the genetic architecture of common diseases. In

Chapter 3, we introduce new methods that estimate the total variance in trait explained by

the typed variants at a single locus in the genome (local SNP-heritability) from summary

GWAS data while accounting for linkage disequilibrium (LD) among variants. We apply our

new estimator to ultra large-scale GWAS summary data of 30 common traits and diseases

to gain insights into their local genetic architecture. First, we find that common SNPs have

a high contribution to the heritability of all studied traits. Second, we identify traits for

which the majority of the SNP heritability can be confined to a small percentage of the

genome. Third, we identify GWAS risk loci where the entire locus explains significantly

more variance in the trait than the GWAS reported variants. Finally, we identify loci that

explain significant amount of heritability across multiple traits.
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The rich resource of genetic data curated through GWAS also facilitate the understand-

ing of shared genetic basis between pairs of complex traits, which has been traditionally

quantified through genetic correlation, correlation between complex traits driven by genetic

variations [18]. Although genetic correlations between complex traits provide valuable in-

sights into epidemiological and etiological studies, a precise quantification of which genomic

regions disproportionately contribute to the genome-wide correlation is currently lacking. In

Chapter 4, we introduce ρ-HESS, a technique to quantify the correlation between pairs of

traits due to genetic variation at a small region in the genome. Our approach only requires

GWAS summary data, and makes no distributional assumption on the causal variant effect

sizes while accounting for linkage disequilibrium (LD) and overlapping GWAS samples. We

analyzed large-scale GWAS summary data across 36 quantitative traits, and identified 25

genomic regions that contribute significantly to the genetic correlation among these traits.

Notably, we find 6 genomic regions that contribute to the genetic correlation of 10 pairs of

traits that show negligible genome-wide correlation, further showcasing the power of local

genetic correlation analyses. Finally, we report the distribution of local genetic correlations

across the genome for 55 pairs of traits that show putative causal relationships.

Genome-wide association studies (GWAS) have been predominantly performed in European

populations, limiting the transferability of GWAS results into other populations. The re-

cent increase in the number GWASs in non-European populations creates opportunities for

trans-ethnic studies to improve disease mapping, fine mapping, risk prediction, and trans-

ferability of GWAS results. Differences in linkage disequilibrium patterns of two continental

populations arose during the history of evolution, and need to be accounted for in trans-

ethnic genetic studies. A quintessential theme of trans-ethnic genetic studies is the degree

of genetic overlap of a complex trait across two populations. In Chapter 5, we introduce

POSC, a method to dissect genetic architectures that are specific to a continental popula-

tions and those are shared by both populations. We applied POSC on summary statistics

data of large-scale GWAS of anthropometric, hematological, immunological, and psychiatric

traits and diseases, obtained from samples of East Asian and European descent. We show

that complex traits harbor genetic architectures that are both specific to a population and
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shared by both populations. We also quantify enrichment of population-specific and shared

causal variants in regions of genes specifically expressed across 53 GTEx tissues, and find

that there are enrichments of both population-specific and shared causal variants.
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CHAPTER 2

A multivariate Bernoulli model to predict DNaseI

hypersensitivity status from haplotype data

2.1 Introduction

Accidents of history and variable recombination rates have divided the human genome into

blocks of shared recent ancestry [27, 31, 50]. Ancestry sharing manifests itself in complex

haplotype patterns and strong dependencies among variants. (Recall that a haplotype sum-

marizes the sequence of alleles displayed by the sampled markers in a narrow genomic region

of a particular chromosome [77].) Therefore, modeling haplotype data is of paramount im-

portance for a wide range of problems in population genetics and disease gene discovery

[24, 67, 68, 81, 86, 92, 99, 107, 121, 126, 130, 136, 153].

Haplotypes have been traditionally analyzed by hidden Markov models (HMMs) [84, 172],

with emissions corresponding to observed genotypes and transitions to recombination events.

Although HMMs for haplotypes undergird many efficient and accurate algorithms for hap-

lotype phasing [137], genotype imputation [17, 69, 85], and identity-by-descent detection

[16], they suffer from the drawback of modeling only dependencies between consecutive vari-

ants. This assumption leads to the unrealistic conclusion that the previous variant and

This chapter is published in Shi et al., Bioinformatics 2015 [141]
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the next variant are independent given the current variant. Ignoring dependencies among

non-consecutive markers makes it difficult to detect and exploit long range correlations and

higher-order interactions among variants. These complex dependencies definitely exist in

the human genome and are important factors in genetic studies [131, 163].

The current paper applies the multivariate Bernoulli (MVB) distribution to haplotype data.

The MVB distribution captures the entire spectrum of dependencies among the entries of

random binary vectors of length N [30]. The observed haplotypes at N nearby SNPs (single

nucleotide polymorphisms) can be thought of as realizations of such a process. Since there are

2N possible haplotyes for N SNPs, the MVB distribution requires an unsustainable exponen-

tial number of parameters. Vast amounts of training data or clever algorithms cannot com-

pensate for this combinatorial explosion. Here we investigate a Poisson re-parameterization

of the MVB distribution and impose an `1-norm penalty to enforce sparsity in parameter

estimation. These steps allow us to devise an efficient coordinate ascent algorithm for learn-

ing the MVB parameters from haplotype data while restricting the number of parameters

to a manageable level.

We showcase the utility of the MVB model by predicting an individual’s DNaseI hypersen-

sitivity status from haplotypes observed near known DNaseI hypersensitivity sites. DNaseI

hypersensitivity (DH) status is a mark of open chromatin and flags genomic regions where

the DNA is accessible to the DNaseI enzyme. These regions, such as transcription start sites,

correlate with active DNA regulation. DH status is usually assayed through DNase-Seq, a

genome-wide high-throughput technology that sequences genomic regions sensitive to DNa-

seI [94]. Recent research [36] suggests that genetic variants control this epigenetic mark.

Since DH status can be naturally encoded as a binary variable, the MVB model offers a

natural way to integrate DH status and local haplotype data. In predicting DH status from

haplotypes, the MVB model allows all allelic sets to contribute regardless of the order of the

participating SNPs and the physical distances separating them.

Our analysis of data from the 1000 Genomes project [27] demonstrates the superiority of the

sparse MVB distribution in model fitting. In practice, interactions beyond order three play
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little role in determining haplotype frequencies in these data. Our new cyclic coordinate

descent algorithm for estimating the MVB interaction parameters converges quickly and

reliably. The MVB model also turns out to be pertinent to predicting DH status from

haplotype data at known DH sites [34]. On a sample of just 59 subjects, cross-validation

under the MVB yields a prediction R2 of 0.12 for dichotomized DH levels. As expected, the

accuracy of DH prediction decreases as extraneous predictors are added. Finally, prediction

under the MVB achieves about 10% better accuracy than prediction by linear regression

(best unbiased linear predictor or BLUP) and logistic regression. Thus, the MVB model is

recommended for prediction of binary epigenetic status from local haplotype data.

2.2 Methods

2.2.1 The multivariate Bernoulli distribution as a model for haplotype data

The multivariate Bernoulli (MVB) distribution extends the univariate Bernoulli distribution

to binary vectors of fixed length N [30]. The density PrpY “ yq “ ppy1,...,yN q of such a

discrete random vector Y depends on 2N probabilities pp0,0,...,0q, pp0,0,...,1q, . . . , pp1,1...,1q specific

to the different realizations of Y . For example, the bivariate Bernoulli distribution consists

of four realizations p0, 0q, p0, 1q, p1, 0q, and p1, 1q specified by four probabilities pp0,0q, pp0,1q,

pp1,0q, and pp1,1q. By definition the conditional distribution of a subvector, say pY1, Y2, . . . , Ykq,

given the complementary subvector, say pYk`1, . . . , YNq, is also MVB. In the bivariate case,

conditioning on either Y1 or Y2 produces a standard univariate Bernoulli distribution. There

is an alternative parameterization that captures interactions and is conducive to parsimony.

This parameterization substitutes subsets of t1, . . . , Nu for binary vectors. To the realization

y we correspond the index set A “ ti : yi “ 1u. The natural parameters fC of the MVB

model are indexed by interaction subsets C, and the density function PrpY “ yq is written

as the ratio

PrpAq “
exp

`
ř

CĎA fC
˘

ř

B exp
`
ř

CĎB fC
˘ “

exp pSAq
ř

B exp pSBq
, (2.1)
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where we define SA “
ř

CĎA fC for notational simplicity. The denominator
ř

B exp pSBq is

the appropriate normalizing constant.

The haplotypes spanning N bi-allelic SNPs can be represented as binary vectors of length

N . We adopt the convention that yi “ 0 indicates the major allele and yi “ 1 indicates

the minor allele at SNP i. One can obviously model the distribution of haplotypes in a

population as MVB. The major advantage of the MVB is its ability to incorporate interac-

tions in the recovery of haplotype frequencies. The number of parameters in both the naive

and interaction parameterizations grows exponentially fast in N . However, the interaction

parameterization organizes interactions by level and suggests limiting model complexity by

imposing an upper bound on interaction level. The next section introduces a lasso penalty

that in combination with maximum likelihood estimation eliminates superfluous interactions

and keeps the number of levels in check.

2.2.2 Estimating MVB parameters from haplotype data

To estimate haplotype frequencies and ultimately infer missing haplotypes, one can randomly

sample a population and count the number XA of haplotypes of each type A. For a fixed

sample size M , the XA jointly follow a multinomial distribution with M total counts and

the count probabilities PrpAq displayed in equation (2.1). Alternatively, one can adopt a

Poisson rather than a multinomial sampling framework. The two share the assumption of

independent samples but differ in whether the total sample size is random (Poisson) or fixed

(multinomial). The law of small numbers justifies the equivalence of the two frameworks.

The Poisson setting invokes a mean sample size µ, which is estimated by the observed sample

size
ř

AXA. One can show [78] that the random variables XA are independent and Poisson

distributed with means µA “ µPrpAq.

In the Poisson framework, it is easier work with the interaction parameters by setting µA “

exppSAq “ expp
ř

BĎA fBq and ignoring µ and the normalizing constant
ř

B exp pSBq. In

effect, these are absorbed into the empty set parameter fH. Independence of the XA now
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yields the likelihood

Lpf |Xq “
ź

A

pµAq
XA

XA!
expp´µAq, (2.2)

where X “ pXAq and f “ pfAq are the vectors of haplotype counts and interaction parame-

ters, respectively. Taking logarithms produces the loglikelihood

`pf |Xq “
ÿ

A

fA
ÿ

BĚA

XB ´
ÿ

A

exppSAq ´
ÿ

A

logXA!. (2.3)

It is natural to estimate the MVB parameter vector f “ pfAq by maximizing `pf |Xq.

Unless N is small and the sample size M is large, estimating all 2N MVB parameters is

an exercise in over-fitting. To achieve parsimony, we append an `1-norm (lasso) penalty to

the loglikelihood. Any reasonable model should include the low-order parameters fA with

|A| ď 1, where |A| denotes the cardinality of the set A. Hence, we maximize the penalized

loglikelihood

F pfq “
ÿ

A

fA
ÿ

BĚA

XB ´
ÿ

A

exppSAq ´ λ
ÿ

|A|ě2

|fA|. (2.4)

Here, λ is a tuning constant determining the strength of the penalty. Increasing λ increases

the sparsity of the estimated parameter vector. The analogy with lasso-guided regression is

obvious. The new objective function F pfq is concave and directionally differentiable. It has

kinks introduced by the terms |fA|. We recommend maximization by coordinate ascent.

2.2.3 Coordinate ascent algorithm

Coordinate ascent maximizes the objective function one parameter at a time holding other

parameters fixed. Cycling through the parameters continues until the objective value con-

verges or a maximum number of iterations is reached. Algorithm 1 outlines the coordinate

ascent algorithm for estimating model parameters.

Line 5 of Algorithm 1 requires finding arg maxfA F pfq. To update fA when |A| ď 1, we set
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Algorithm 1 coordinate ascent algorithm for fitting the MVB

1: Let C be the collection of possible haplotypes of length N
2: Initialize fA to 0 for all A P C
3: while stop condition fails do
4: for A in C do
5: fA “ arg maxfA F pfq
6: end for
7: end while

the partial derivative of F pfq

B

BfA
F pfq “

ÿ

BĚA

XB ´ e
fA

ÿ

BĚA

e
ř

CĎB,C‰A fC (2.5)

with respect to fA equal to 0. This yields the update

fA “ ln

ř

BĚAXB
ř

BĚA e
ř

CĎB,C‰A fC
. (2.6)

When |A| ě 2, the supergradient

B

BfA
F pfq “

ÿ

BĚA

XB ´ e
fA

ÿ

BĚA

e
ř

CĎB,C‰A fC

´ λ

$

’

’

’

’

’

&

’

’

’

’

’

%

1 if fA ą 0

r´1, 1s if fA “ 0

´1 if fA ă 0

(2.7)

must contain 0 [79]. Equating it to 0 yields the update

fA “

$

’

’

’

’

’

&

’

’

’

’

’

%

0 |c| ď λ

ln
ř

BĚAXB´λ
ř

BĚA e
ř

CĎB,C‰A fC
c ą λ

ln
ř

BĚAXB`λ
ř

BĚA e
ř

CĎB,C‰A fC
c ă ´λ

(2.8)

for the criterion c “
ř

BĚAXB ´
ř

BĚA e
ř

CĎB,C‰A fC .
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In view of the summations over B Ě A in the denominators of equation (2.6) and equation

(2.8), each coordinate ascent update takes nearly Op2Nq operations. This computational

load restricts estimation to MVB models with small N , say N ď 15. Once parameters are

estimated, prediction under the MVB is relatively straightforward. The normalizing constant

in formula (2.1) must be calculated, but this can be done once and the result stored.

2.2.4 Best linear unbiased predictor (BLUP)

Part of our evaluation of the MVB involves comparison of DNaseI hypersensitivity (DH)

prediction on simulated data. The simulated DH status yi of an individual i was constructed

as a linear combination of individual i’s SNP alleles and SNP pairwise interactions weighted

by effect sizes βj and βjk. In symbols

yi “
ÿ

j

βjhij `
ÿ

tj,ku

βjkhijhik ` εi, (2.9)

where hij is the SNP predictor (standardized version of 0 or 1) of individual i at SNP j,

hijhik is the SNP interaction of individual i for the pair of SNPs j and k, and εi is an

independent normally distributed error term. Simplified versions of the model ignore the

pairwise interactions and take all βjk “ 0.

To make predictions under the linear model, we first estimate the effect sizes βj and βjk

from training data set and then predict the phenotype (DH status) of each individual in the

test data, substituting estimated parameters for true parameters. For notational brevity,

let H “ pHSNP , HINT q be the block matrix of single SNP and interaction SNP predictors

across the training set; for each subject i and SNPs j and k, the matrix HSNP has entries

phijq, and the matrix HINT has entries phijhikq. The effect sizes βj and βjk are estimated by

the least squares formula

β̂ “ pHTHq´1HTy. (2.10)

Finally, the best linear unbiased predictor (BLUP) ŷi of DH status for an individual i is
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computed via

ŷi “
ÿ

j

β̂jhij `
ÿ

tj,ku

β̂jkhijhik. (2.11)

2.2.5 Logistic regression (LOGIT)

We also compared the MVB model with logistic regression (LOGIT); unlike linear regression,

logistic regression directly models binary outcomes. Under logistic regression, the probability

of the DH status yi of individual i given his/her SNP alleles phijq and pairwise interactions

phijhikq is

Prpyi “ yq “

ˆ

eci

1` eci

˙yˆ
1

1` eci

˙1´y

, (2.12)

where ci “ α0 `
ř

j αjhij `
ř

tj,ku αjkhijhik. Here the α’s are the regression coefficients in

logistic regression. As with linear regression, one can simplify the model by ignoring pairwise

interactions and taking all αjk “ 0. To estimate the parameters of the model, one maximizes

the likelihood
ź

ti:yi“1u

eci

1` eci

ź

ti:yi“0u

1

1` eci
. (2.13)

over the entire sample. Prediction of the DH status of individual i relies on the the predicted

probability

ŷi “
eĉi

1` eĉi
, (2.14)

of yi “ 1, where ĉi is the same as ci except for substitution of estimated regression coefficients

for true coefficients.

2.2.6 Hidden Markov model (HMM) for haplotypes

A hidden Markov model (HMM) views a haplotype h of length N as a mosaic of haplotypes

from a set H of R reference haplotypes [84]. The N ˆ R HMM states pi, jq capture the

particular reference haplotype j occurring at SNP i. A transition matrix K models recom-

bination events and controls how switches occur between haplotypes in meiosis. The entries
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Krpijq, pklqs of the transition matrix are 0 unless k “ i ` 1. For neighboring SNPs, the en-

tries depend on the distance between the SNPs. Thus, the larger the distance, the larger the

transition probability for j ‰ l. The emission probabilities Prphi|pijqq allow for mistyping

and occasional mutation events. Inferences based on HMM are achieved efficiently through

the forward, backward, and Viterbi algorithms, all of which have complexity OpNR2q. We

adopt the latest IMPUTE2 [69, 66] implementation of HMM for comparison purposes.

2.3 Results

2.3.1 Assessment of MVB on 1000 Genome haplotypes

In an initial set of experiments, we used the 1000 Genomes EUR (European) haplotypes (505

individuals) to investigate the performance of the MVB model and our coordinate descent

algorithm for fitting it to data. We randomly selected 50 regions on chromosome 1, each

containing 15 SNPs, and fit the MVB under various settings. The first setting imposed no

constraint on the maximum order (max |A|) of the interaction sets A. Thus, in effect, we

estimated all 215 “ 32, 768 parameters. Figure 2.1 shows that the regularization constant λ

has a significant effect on the magnitude of parameters, especially for fA’s where |A| ě 4. For

example, as λ increases from 0.0 to 0.5, the sum
ř

|A|“4 |fA| of estimated parameters decreases

from 87.5 to 30 for interaction sets with |A| “ 4. Furthermore, Figure 2.2 indicates that the

average value of |fA| converges to 0 as |A| tends to N “ 15. Thus, we conclude that the

lower-order interactions fA predominate in determining haplotype frequencies.

We also recorded the number of iterations until convergence of the coordinate descent al-

gorithm. The algorithm invariably converges within 20 to 30 iterations. See Figure 2.3 for

typical results. Finally, Table 2.2 shows that the bulk of computational time is taken in

estimating MVB parameters; once model parameters are estimated, applying the model to

making predictions is relatively trivial.

Next we investigated how well the MVB fits the selected 1000 Genomes haplotypes using just
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lower-order interactions. To measure goodness of fit, we computed the Euclidean distance

between the haplotype frequencies recovered by the MVB model as given in equation (2.1)

and the haplotype frequencies observed in the data. Table 2.1 demonstrates that the MVB

model requires only the lower-order interactions terms to accurately fit typical data. Because

λ “ 0.25 attains the best fit across interaction level bounds (|A| ď bq, we set λ to 0.25 in all

future experiments.

2.3.2 Prediction of DNaseI hypersensitivity status in simulations

To simulate binary DNaseI hypersensitivity (DH) data, we took the 1,010 EUR (European)

haplotypes of the 1000 Genome project [27] and simulated 20,000 haploid individuals at

200 randomly selected 20Kbp regions on chromosome 1 [150]. From each region we selected

15 SNPs with minor allele frequency above 1%. From the 15 chosen SNPs we randomly

selected m causal SNPs and n pairs of interaction SNPs and simulated continuous DH values

according to the linear model sketched in Section 2.2.4. Prior to simulation we standardized

the SNP predictors hij and hijhik to have mean 0 and variance 1. The regression coefficients

for the causal SNPs and SNP pairs were sampled as βj „ Np0, h2{mq and βjk „ Np0, h2
int{nq

and the noise for each DH variable as εi „ Np0, 1´ph2`h2
intqq, where h2 and h2

int denote the

variance of DH values explained by single variants and interactions, respectively. Finally, we

converted the continuous DH values to binary DH values by imposing a threshold chosen so

that 20% of the binary DH values were elevated (status 1 rather than status 0).

For testing under the MVB model, we constructed binary vectors of length 16 by concate-

nating each 15-SNP haplotype and a corresponding simulated binary DH status. Given the

tuning constant λ “ 0.25, this allows us to estimate the fA parameters. To predict DH status

given observed SNP haplotypes, one simply computes a conditional probability under the

MVB model. In one set of MVB trials, we limited the interaction level to |A| ď 2, for a total

of 137 parameters. In a second set of trials, we limited the interaction level |A| ď 3, for a

total of 697 parameters. One can compare MVB prediction to BLUP and LOGIT prediction

based on the same SNP haplotypes and interaction model. For BLUP and LOGIT, we also
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tested a model involving SNPs and interactions between adjacent SNPs.

In linear regression, equation (2.10) supplies effect sizes, and equation (2.11) supplies pre-

dicted values. In logistic regression, equation (2.14) supplies predicted values. For estimation

and prediction under HMM, we concatenated DH status as a pseudo SNP at the end of each

15-SNP haplotype to avoid changing the SNP interactions in the original haplotype. We

also set the physical distance between the pseudo SNP and the last SNP to be the average

distance between consecutive pairs of SNPs in the original 15-SNP haplotype. We employed

half of the simulated individuals as reference panel and ran HMM with IMPUTE2 default

settings on the other half to obtain predicted DH status. All 200 simulations summarized

below involve two causal SNPs (m “ 2) and 2 causal SNP interactions (n “ 2) for 200

randomly sampled individuals. Of these 200 people, 100 served as training individuals and

100 as validation individuals.

We first investigated performance of MVB, BLUP, LOGIT, and HMM prediction for varying

h2 for a fixed interaction h2
int of 0.1. Figure 2.4 shows that prediction R2 achieved by all

models increases as h2 increases. However, the MVB model consistently achieves higher

prediction R2 than BLUP, LOGIT, and HMM under both settings, suggesting that the

MVB model is capable of yielding more accurate estimates of effect sizes for prediction.

Notably as h2 increases, the improvement in prediction R2 also increases. In other words,

as the effect of a single SNP increases, the comparative advantage of the MVB model over

BLUP, LOGIT, and HMM increases.

Next we investigated the accuracy of these approaches at varying h2
int values. Figure 2.5

demonstrates that for all pairs of h2 and h2
int, the MVB model also achieves higher prediction

R2 than BLUP, LOGIT, and HMM.

Finally we investigated the number of samples required for accurate prediction. Figure 2.6

shows that although the MVB model requires more parameters than BLUP, LOGIT, and

HMM, it is able to outperform these models even if the training sample size is small. This

suggests that the MVB model is less sensitive to noise. Notably, HMM under-performs
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both MVB and LOGIT in most simulation settings, suggesting that HMM is less capable of

detecting long range interactions for reasonable sample sizes. Across all simulated data sets,

we observe no major difference in prediction R2 between the two MVB settings. This is to

be expected since only pairwise interactions are simulated.

2.3.3 Predicting DNaseI hypersensitivity status in empirical data

We now turn to real data on DH status and reach similar conclusions. The data set in

question [36] contains normalized DNaseI hypersensitivity (DH) scores for 70 YRI (Yorubas

in Ibadan, Nigeria) individuals at 1.5 million 100-bp genomic windows. These windows

cover the 5% of the human genome with the highest DNaseI sensitivity. About half of the

windows are expected to be truly sensitive to DNaseI [14]; 8,902 windows have associated

dsQTLs (SNPs showing significant correlations with DH scores across individuals [36]). We

dichotomized DH scores by placing scores above the threshold of 0.0 in one category and

scores below the threshold of 0.0 in the complementary category. Among the 70 YRI indi-

viduals in the sample, 59 are also in the 1000 Genome project [27] and have fully phased

haplotypes. We accordingly used the haplotypes and the binary DH status of these 59 indi-

viduals to evaluate the MVB model. For computational reasons, we selected one haplotype

for each individual and restricted our analysis to 250 random DH sites and the 377 DH sites

with associated dsQTLs on chromosome 22.

In genomic windows with associated dsQTLs, the dsQTLs are on average about 8,000 base

pairs (10 SNPs) away from their windows. This action at a distance renders it difficult

for HMMs to accurately capture interactions between dsQTLs and their genomic windows.

Because sequence order is an important factor for HMMs, the question also arises of where

to place binary DH status (a pseudo SNP) in the haplotype. For this reason, we excluded

HMM from comparisons on real data.

To avoid over-fitting, we assessed prediction accuracy by leave-one-out cross-validation.

Thus, we estimated parameters using data from 58 (all but one) training individuals and
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predicted DH status for the remaining validation individual. Repeating this process across

all 59 individuals allowed us to compare predicted and true DH status. The results can

be summarized in a squared Pearson correlation (prediction R2). Prior to parameter esti-

mation in each of the 59 folds, we selected a small number of relevant SNP predictors by

linear regression and forward selection. Our selection procedure excluded SNPs with minor

allele frequency below 1% or at a distance of 1 Mbp or greater from the center of the win-

dow. Each successive SNP entering the candidate list provided the greatest reduction of the

current residual sum of squares.

Given a candidate set of SNP predictors P in the MVB model, we created binary haplotype

vectors of length |P | ` 1 from the SNPs and the binary DH status. We considered at most

second-order interactions and set the penalty constant λ to 0.25. For BLUP and LOGIT,

we considered three models, one limited to single SNPs, one involving both single SNPs and

two-way interactions, and one involving single SNPs and only interactions between adjacent

SNPs.

Figure 2.7a shows the prediction R2 obtained through leave-one-out cross-validation averaged

over the 250 randomly selected windows. Due to overfitting and our small sample size, the

average prediction R2 decreases for all methods as the number of predictors |P | increases.

The MVB model achieves higher prediction R2 than BLUP and LOGIT over both settings.

We repeated the same experiment on the 377 windows with associated dsQTLs. Again the

MVB model consistently achieves higher prediction R2 than BLUP and LOGIT (see Figure

2.7b). Figures 2.7c and 2.7d depict the distribution of prediction R2’s under each model.

It is clear that the MVB models achieve more high prediction R2’s (greater than 0.2) than

BLUP and LOGIT. One can legitimately conclude that the MVB model predicts DH status

better than BLUP and LOGIT. Table 2.3 summarizes the average and standard error of

prediction R2 for some representative experiments.
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2.4 Discussion

The current paper presents the multivariate Bernoulli (MVB) distribution as a vehicle for

modeling haplotype data. Because the number of distinct haplotypes observed in a narrow

genomic region tends to be small, the MVB model is typically wildly over-parameterized. To

achieve parsimony, we propose a lasso penalty within a Poisson sampling framework. The

penalized MVB model encourages the detection and exploitation of higher-order interactions

among the underlying SNPs. In contrast to Markovian models, interactions extend beyond

nearest neighbor and pairwise interactions. The interaction parameterization adopted here

is more natural than the naive MVB parameterization implicitly seen in BLUP and LOGIT.

Empirically, the interaction parameterization extracts more haplotype information and pre-

dicts with better accuracy.

Our application of the MVB model to predict DNaseI hypersensitivity (DH) status from

observed haplotypes supports the utility of the model. We show that the MVB model

achieves better accuracy than BLUP and LOGIT in predicting simulated DH status. The

overall prediction R2 achieved by MVB, BLUP, and LOGIT on real DH status suggests

substantial heritability of this epigenetic signal.

In likelihood evaluation and parameter estimation, the computational complexity of the

MVB models scales like 2N for N SNPs. This harsh reality limits the applicability of the

model to a small number of variants. Fortunately, even for small N , the MVB model offers

valuable insights into genomic data. The MVB model may well be critical in predicting

binary gene expression when a small number of causal variants localize within a gene. In

particular, MVB profiles in cases and controls may help in fine mapping traits in genome-

wide association studies. Overcoming the computational limits of the MVB model limit is

high on our research agenda. Once this task is accomplished, it will be possible to apply

the MVB model to pre-phasing, a technique for improving genotype imputation by first

imputing haplotypes [66]. We conjecture that Monte Carlo methods will play a decisive

role in extending the range of the model to larger N . Finding an efficient sampling scheme
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to approximate the normalization constant
ř

B exp pSBq is of paramount importance and

doubtless the place to start in accelerating algorithm performance.
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2.5 Tables

λ

max |A| no. param. 0.0 0.25 0.5 0.75 1.0
1 16 0.348 0.348 0.348 0.348 0.348
2 121 0.137 0.072 0.073 0.074 0.075
3 576 0.120 0.054 0.055 0.056 0.056
4 1,941 0.120 0.055 0.056 0.057 0.058

Table 2.1: Euclidean distance between haplotype frequencies recovered by the
MVB model and haplotype frequencies observed in data for different values of
max |A| and λ.

max |A| Learning (sec/iter) Prediction (sec/pred)
1 0.2 ă 0.01
2 1.1 ă 0.01
3 4.4 0.01
4 13.7 0.02

Table 2.2: Learning time (second per iteration) and prediction time (second per
prediction), averaged over 50 loci.

|P | MVB(|A| ď 2) LOGIT BLUP

RANDOM
1 .112˘.015 .093˘.013 .097˘.013
2 .109˘.015 .106˘.015 .100˘.014

dsQTL
1 .120˘.015 .108˘.015 .114˘.015
2 .102˘.014 .100˘.015 .096˘.014

Table 2.3: Average prediction R2 and standard error for |P | ď 2 over 250 randomly
selected windows (RANDOM) and 377 windows with dsQTLs (dsQTL).
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2.6 Figures
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Figure 2.1: Sum of |fA|’s averaged over 50 regions as a function of |A|.
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Figure 2.2: Mean of |fA|’s averaged over 50 loci as a function of |A|.
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Figure 2.3: Objective value averaged over 50 loci at each iteration of the coordinate
ascent algorithm for different values of max |A|.
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Figure 2.7: Prediction R2 for MVB, BLUP, and LOGIT. Here “SNP” refers to the
experiment involving only single SNPs, “SNP & INT” refers to the experiment involving both
SNPs and all two-way interactions, and “SNP & ADJ” refers to the experiment involving
both SNPs and only interactions between adjacent SNPs. Figure 2.7a and 2.7b show the
average prediction R2 over different windows as a function of the number of true predictors
|P |. Figure 2.7c and 2.7d show the distribution of prediction R2 for the highest average
prediction R2 over all |P |. For |P | “ 2, the experiments “SNP & INT” and “SNP & ADJ”
are identical.
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CHAPTER 3

Contrasting the genetic architecture of 30 complex

traits from summary association datas

3.1 Introduction

Large-scale genome-wide association studies (GWAS) have identified thousands of single

nucleotide polymorphisms (SNPs) associated with hundreds of traits and diseases [90, 165,

29, 164]. However, only a fraction of the variance in trait can be explained by the risk

SNPs reported by GWAS. The so-called “missing heritability problem” is in part due to the

stringent significance threshold imposed in GWAS, which neglects variants of small effect that

fail to reach the genome-wide significance level at current sample sizes. As an alternative,

variance component (SNP-heritability) analysis aggregates the effect of all SNPs regardless

of their significance [168] and has yielded important insights into the genetic architecture of

complex traits [19, 44, 170, 91, 54, 117].

Heritability has been traditionally estimated using twins or pedigree [13] information with

more recent works showing that SNP-based heritability (i.e. proportion of variance in trait

explained by a given set of SNPs) can be estimated from unrelated individuals [170]. Stan-

dard approaches for SNP-heritability estimation rely on estimating the genetic relationships

This chapter is published in Shi et al., American Journal of Human Genetics 2016 [140]
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between pairs of individuals (estimated genome-wide or across a subset of the genome)

[170, 59, 53]. Therefore, these analyses require individual-level genotype data which pro-

hibits their applicability to ultra-large GWAS that, due to privacy concerns, is typically

available only at the summary level. To solve this bottleneck, recent methods have shown

that SNP-heritability, both genome-wide as well as for different functional categories in the

genome, can be accurately estimated using only summary GWAS data [19, 44]. Although

these methods have enabled powerful analyses making insights into genetic basis of com-

plex traits, they rely on the infinitesimal model assumption (i.e. all SNPs contribute to the

trait) which is invalid at most risk loci [19, 44]. To overcome this drawback, alternative

approaches have proposed to impose a prior on the sparsity of effect sizes to further increase

SNP-heritability estimation accuracy [178]. A potentially more robust approach is to not

assume any distribution for the effect sizes at causal variants and treat them as fixed effects

in the estimation procedure. Indeed, recent works have shown that SNP-heritability estima-

tion can be performed under maximum-likelihood from polygenic scores under a fixed-effect

model assuming no LD among SNPs [117].

Here, we introduce Heritability Estimator from Summary Statistics (HESS), an approach

to estimate the variance in trait explained by all typed SNPs at a single locus in the

genome while accounting for linkage disequilibrium (LD) among SNPs. We build upon

recent works[45, 117] that treat causal effect sizes as fixed effects and model the genotypes

at the locus as random correlated variables. Our estimator can be viewed as a weighted

summation of the squares of the projection of GWAS effect sizes onto the eigenvectors of

the LD matrix at the considered locus, where the weights are inversely proportional to the

corresponding eigenvalues. Through extensive simulations, we show that HESS is unbiased

when in-sample LD is available regardless of disease architecture (i.e. number of causals

and distribution of effect sizes). We extend our method to use LD estimated from reference

panels [28] and show that a principal components based regularization of the LD matrix [57]

yields approximately unbiased and more consistent estimates of local SNP-heritability as

compared to existing methods [19].
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We applied HESS to partition common SNP heritability at each locus in the genome using

GWAS summary data for 30 traits spanning over 10 million SNPs and 2.4 million phenotype

measurements. First, we show that common SNPs explain a large fraction of the total

familial heritability estimated from twin studies, ranging anywhere from 20% to 90% across

the studied quantitative traits. Second, we showcase the utility of local SNP-heritability

estimates in finding loci that explain more variance in trait than the top associated SNP

at the locus – an effect likely due to multiple signals of association. Third, we contrast the

polygenicity of all 30 traits by comparing the fraction of total SNP-heritability attributable

to loci with highest local SNP-heritability. We find that most of the 30 selected traits are

highly polygenic with a small number of traits driven by a small number of loci. Finally, we

report 36 “heritability hotspots” – regions of genome that attain a significant contribution

to the SNP-heritability of multiple traits. Taken together, our results give insights into traits

where further GWAS and/or fine-mapping studies are likely to recover a significant amount

of the missing heritability.

3.2 Materials and methods

3.2.1 Overview of methods

We introduce estimators for the variance in trait explained by typed variants at a single

locus (local SNP-heritability, h2
g,local) from summary GWAS data (i.e. Z-scores, effect sizes

and their standard errors). We derive our estimator under the assumption that effect sizes

at typed variants are fixed and genotypes are drawn from a distribution with a pre-specified

covariance structure. The covariance, (i.e. pairwise correlation between any variants at a

locus, LD) can be estimated in-sample, from the genotype data in GWAS, or from external

reference panels (e.g. 1000 Genomes Project[28]). Our estimator can be viewed as a weighted

summation of the squared projections of GWAS effect sizes onto the eigenvectors of the LD

matrix at the considered locus. The finite sample size of the GWAS studies as well as the

reference panels used to estimate LD induces statistical noise that needs to be accounted
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for to obtain an accurate estimation. Since the top projections make up the bulk of the

summation, truncated-SVD lends itself as the appropriate regularization method to account

for noise in the estimated LD matrices. Finally we extend our approach to consider multiple

independent loci each contributing to the trait and show how our local estimator can be

employed when the total genome-wide SNP-heritability is known (or estimated from other

methods).

3.2.2 Estimating SNP-heritability at a single locus from GWAS summary data

Let yi “ xi
Tβββ ` εi, where yi is the trait value for individual i, xi are the standardized

(i.e. 0 mean and unit variance) genotypes of individual i at p typed SNPs in the locus,

βββ “ pβ1, ¨ ¨ ¨ , βpq is the vector of fixed effect sizes for the p SNPs, and εi „ Np0, σ2
eq is the

environmental effect. Assuming that βββ is fixed and X is random, the phenotypic variance is

Varrys “ VarrXβββs ` σ2
e “ βββT CovrXsβββ ` σ2

e “ βββTV βββ ` σ2
e (3.1)

where V is a pˆ p variance-covariance matrix of the genotype vector (i.e. the LD matrix).

If we make a standard assumption that the phenotypes are standardized (i.e. Varrys “ 1),

it follows that the amount of variance contributed by the p SNPs to the trait (i.e. local

SNP-heritability) is h2
g,local “ βββTV βββ. If the true effect size vector βββ and the LD matrix V

are given, then computing h2
g,local is trivial. In reality, however, the vector βββ is unknown and

is estimated in GWAS involving n samples and p SNPs, where β̂gwas,i is estimated as the

marginal standardized regression coefficient for SNP i

β̂gwas,i “
1

n
XT

i y “
1

n
XT

i

´”

X1 ¨ ¨ ¨ Xp

ı

βββ ` εεε
¯

“

”

1
n
XT

i X1 ¨ ¨ ¨ 1
n
XT

i Xp

ı

βββ `
1

n
XT

i εεε “
p
ÿ

j“1

rijβj `
1

n
XT

i εεε
(3.2)

where X i denotes standardized genotypes for SNP i across the n individuals, and rij denotes

the LD between SNPs i and j. Extending to p SNPs at the locus, if follows that β̂ββgwas “ V βββ`
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1
n
XTεεε where V is the LD matrix. With βββ fixed and ε random, β̂ββgwas is a random variable with

Erβ̂ββgwass “ ErV βββ` 1
n
XTεεεs “ V βββ, and Covrβ̂ββgwass “ VarrV βββ` 1

n
XTεεεs “ 1

n2X
T CovrεεεsX “

σ2
e

n
V “

1´h2g,local
n

V . By central limit theorem, β̂ββgwas „ N
´

V βββ,
1´h2g,local

n
V
¯

.

As GWAS sample size (n) increases, β̂ββgwas converges to βββgwas “ V βββ. By simple substitution

in Equation (3.1) it follows that an estimator for h2
g,local is

pβββTgwasV
´1
qV pV ´1βββgwasq “ βββTgwasV

´1βββgwas (3.3)

Unfortunately, the finite sample size of GWAS induces statistical noise in the estimation

of βββgwas which leads to biased estimation if we simply replace βββgwas with β̂ββgwas above, as

Erβ̂ββ
T

gwasV
´1β̂ββgwass “ trpV ´1 Covrβ̂ββgwassq ` βββTV βββ. However, we can correct for the bias

trpV ´1 Covrβ̂ββgwassq as follows.

Let ĥ2
g,local be an unbiased estimator of h2

g,local, then by definition Erĥ2
g,locals must satisfy

Erĥ2
g,locals “ h2

g,local. Then it follows that

Erβ̂ββ
T

gwasV
´1β̂ββgwass “ tr

ˆ

1´ h2
g,local

n
V ´1V

˙

` h2
g,local “

1´ Erĥ2
g,locals

n
p` Erĥ2

g,locals. (3.4)

A sufficient condition for Equation (3.4) to hold is
1´ĥ2g,local

n
p ` ĥ2

g,local “ β̂ββ
T

gwasV
´1β̂ββgwas.

Solving for ĥ2
g,local gives an unbiased estimator for h2

g,local

ĥ2
g,local “

nβ̂ββ
T

gwasV
´1β̂ββgwas ´ p

n´ p
. (3.5)

Following quadratic form theory [41], the variance of ĥ2
g,local is

Varrĥ2
g,locals “

ˆ

n

n´ p

˙2 ˆ

2p

ˆ

1´ h2
g,local

n

˙

` 4h2
g,local

˙ˆ

1´ h2
g,local

n

˙

. (3.6)

Since h2
g,local, the true local SNP-heritability, is unknown, we use ĥ2

g,local instead. For h2
g,local
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near 0, Varrĥ2
g,locals «

4
pn´pq2

h2
g,local `

2p
pn´pq2

through Taylor expansion around 0. Thus, the

plug in principle yields an estimation of Varrĥ2
g,locals approximately equal to the truth in the

expectation. For small ĥ2
g,local (as expected for most loci and traits) Varrĥ2

g,locals is dominated

by 2p
pn´pq2

.

3.2.3 Accounting for rank deficiencies in the LD

In the above derivation we made the assumption that the inverse of the LD matrix V exists.

In practice, however, due to pairs of SNPs in perfect LD, V is usually rank deficient, and

thus V ´1 does not exist. In such cases we use the Moore-Penrose pseudoinverse [9] V :.

Let q “ rankpV q, by rank decomposition, V “ V AV B, where V A P Rpˆq and V B P

Rqˆp are matrices with full column rank and full row rank respectively, then trpV :V q “

trpV :

BV
:

AV AV Bq “ trpV BV
:

BV
:

AV Aq “ trpIqq “ q. Accounting for rank-deficient LD

matrix, we obtain an unbiased estimator, ĥ2
g,local “

nβ̂ββ
T
gwasV

:β̂ββgwas´q

n´q
. We make the same

adjustment (replacing p with q) in the variance estimator for ĥ2
g,local.

3.2.4 Adjusting for noise in external reference LD

When genotype data of GWAS samples is not available, we substitute the in-sample LD

matrix V with external reference LD matrix V̂ estimated from the 1000 Genomes Project

[28] using a population that matches the GWAS samples. However, due to limited sample

size, external reference LD matrices contain statistical noise that biases our estimate. We

apply truncated-SVD regularization to remove noise from external reference LD matrix as

follows.

First note that β̂ββ
T

gwasV
:β̂ββgwas “

řq
i“1 si “

řq
i“1

1
wi
pβ̂ββ

T

gwasuiq
2 , where wi and ui are the

eigenvalues and eigenvectors of the LD matrix V , and q “ rankpV q. For external reference

LD matrix V̂ with eigenvalues and eigenvectors ŵi and ûi, the same decomposition holds

except that si is replaced by ŝi “
1
ŵi
pβ̂ββ

T

gwasûiq
2. In our previous works [122, 72], we propose
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to regularize V̂ using ridge regression penalty. This regularization method is equivalent to

replacing ŵi with ŵi`λ, where λ is the ridge regression penalty. The ridge regression penalty

shrinks the quadratic term β̂ββgwasV̂
:
β̂ββgwas towards 0, which can lead to downward bias. We

also notice that a large λ is needed to drive down the noise (ŝi for large i), which diminishes

the true signal at the same time. Here we show through simulations that most of the signal

in β̂ββ
T

gwasV
:β̂ββgwas comes from si where i ! q and that ŝi « si for i ! q (see Figure 3.1).

These results motivate us to apply truncated-SVD to remove noise in V̂ , i.e. we estimate

β̂ββ
T

gwasV
:β̂ββgwas by

řk
i“1 1{ŵipβ̂ββ

T

gwasûiq
2, where k ! q. Let gpβ̂ββgwas, kq “

řk
i“1

1
ŵi
pβ̂ββ

T

gwasûiq
2,

through eigen-decomposition of V̂ , it can be shown that

Ergpβ̂ββgwas, kqs “
kp1´ h2

g,localq

n
`

k
ÿ

i“1

ŵipû
T
i βββq

2. (3.7)

Since the true local SNP-heritability is h2
g,local “

řq
i“1wipu

T
i βββq

2, assuming ûi “ ui for i ! q,

Equation (3.7) is an approximation of h2
g,local with bias

kp1´h2g,localq

n
. Correcting for this bias

yields the estimator for the single-locus case

h̃2
g,local “

ngpβ̂ββgwas, kq ´ k

n´ k
. (3.8)

In theory, the variance of h̃2
g,local is Varrh̃2

g,locals «
4

pn´kq2
ĥ2
g,local`

2k
pn´kq2

. In practice, however,

this gives an underestimation of the truth. Thus, we replace k with q “ rankpV q.

3.2.5 Extension to multiple independent loci

For genomes partitioned into m independent loci, the linear model for individual i’s trait

value becomes yi “ xTi,1βββ1 ` . . . ` xTi,mβββm ` εi where xi,j denotes the genotypes at the pi

SNPs in the i-th locus for individual i, and βββi denotes the effect sizes of SNPs in this locus.

Based on the revised model, we decompose Varrys into

Varrys “ VarrX1βββ1s ` ¨ ¨ ¨ ` VarrXmβββms ` σ
2
e “ h2

g,local,1 ` ¨ ¨ ¨ ` h
2
g,local,m ` σ

2
e , (3.9)
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where h2
g,local,i denotes the local SNP-heritability contributed by the i-th locus. In the case

of multiple independent loci, the noise term σ2
e is equal to 1´

řm
j“1 h

2
g,local,j. Thus, in order

to correct for the bias generated by σ2
e , one need to know h2

g,local,j for all j. Accounting for

bias and adjusting for noise in external reference LD (V̂ i) following strategies outlined in

previous sections, we arrive at the estimator,

ĥ2
g,local,i “

ngpβ̂ββgwas,i, kiq ´ p1´
řm
j“1,j‰i ĥ

2
g,local,jqki

n´ ki
, (3.10)

which defines a system of linear equations involving m variables (ĥ2
g,local,i) and m equations.

A similar system of linear equations can be solved to obtain the variance estimate,

Varrĥ2
g,is “

ˆ

n

n´ ki

˙2 ˆ

2ki
σ̂2
e

n
` 4ĥ2

g,local,i

˙

σ̂2
e

n
`

ˆ

ki
n´ ki

˙2 m
ÿ

j“1,j‰i

Varrĥ2
g,local,js, (3.11)

where σ̂2
e “ 1´

řm
j“1 ĥ

2
g,local,j.

In the special case when k1 “ ¨ ¨ ¨ “ km “ k (i.e. all loci use the same number of eigenvectors

in the truncated-SVD regularization of LD matrices), Equation (3.10) simplifies as follows:

ĥ2
g “

řm
i“1 ĥ

2
g,local,i “

řm
i“1

ngpβ̂ββgwas,i,kq´p1´ĥ
2
g`ĥ

2
g,local,iqk

n´k
“ n

n´k

řm
i“1 gpβ̂ββgwas,i, kq ´

k
n´k
pm ´

mĥ2
g ` ĥ

2
gq, yielding the following estimate for the total genome-wide SNP-heritability:

ĥ2
g “

n

n´mk

m
ÿ

i“1

gpβ̂ββgwas,i, kq ´
mk

n´mk
, (3.12)

with variance:

Varrĥ2
gs “

ˆ

n

n´mk

˙2 m
ÿ

i“1

Varrgpβ̂ββgwas,i, kqs «

ˆ

n

n´mk

˙2
2mk

pn´ kq2
. (3.13)

Thus, if k is chosen such that n ´ mk is small (i.e. n
n´mk

large) the genome-wide SNP-

heritability estimates becomes unstable with large variance. To ensure stable estimates and

reduce variance (at the cost of some bias) we recommend choosing k such that n
n´mk

is less

than 2 when using our estimator for genome-wide estimation.
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3.2.6 Known genome-wide SNP-heritability

In many cases, the total genome-wide SNP-heritability estimate (h2
g) and its variance (Varrh2

gs)

of a trait are known (e.g. estimated from individual-level data). In those cases, one can sim-

ply plug h2
g into Equation (3.10) to obtain local estimates of heritability h2

g,local,i:

ĥ2
g,local,i “ gpβ̂ββgwas,i, kq ´

k

n
p1´ h2

gq, (3.14)

from which we conclude

Varrĥ2
g,local,is “ Varrgpβ̂ββgwas,i, kqs `

ˆ

k

n

˙2

Varrh2
gs. (3.15)

In general, the sum of local SNP-heritability ĥ2
g “

řm
i“1 ĥ

2
g,local,i is not necessarily equal to

h2
g due to variance in ĥ2

g,local,i. Since Varrĥ2
gs “ Varr

řm
i“1 ĥ

2
g,local,is «

2mk
pn´kq2

`
`

mk
n

˘2
Varrh2

gs,

we recommend choosing k such that mk
n

is less than 0.5 to ensure stable estimate and reduce

variance. We assessed the local SNP-heritability estimation with or without known genome-

wide SNP-heritability using the height GWAS data (see Table 1) with a previously reported

h2
g=0.50[165]. The local SNP-heritability estimates were virtually indistinguishable between

the two approaches (R “ 1.0).

3.2.7 Simulation framework

We use HAPGEN2 [150] to simulate genotypes for 50,000 individuals starting from half of

the 505 European (EUR) individuals in the 1000 Genomes Project [28] for SNPs with minor

allele frequency (MAF) greater than 5% in randomly selected regions spanning 0.75 Mb

to 1.5Mb on chromosome 1. We reserve the other half of the EUR individuals as external

reference panel. From the simulated genotypes of the 50,000 individuals, we then simulate

phenotypes based on the linear model y “ Xβββ ` εεε, where X is the standardized genotype

matrix with mean 0 and variance 1 at each column.
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We investigated the performance of our method under a wide-range of simulations. We first

select a subset C of |C| causal SNPs at random and then simulate the effect sizes at these

SNPs as βββC „ Np0, h
2

|C|
I|C|q, where h2 is the heritability to be simulated. We draw εεε from

Np0, p1´h2qInq such that Erys “ 0, Varrys “ 1, and that the SNP-heritability for this locus

is h2. For fixed βββ, we then generate replications of trait values y by re-drawing εεε. Finally, we

compute summary statistics, β̂ββgwas, following procedures outlined in previous sections. We

simulate 500 set of summary statistics for each simulation scenario. Although within each

of the 500 set of simulated summary statistics, C and βββ are fixed, they vary across different

set of simulations.

We also investigated simulations where βββ varies across simulated individuals. In each of the

500 set of simulated GWAS summary statistics, we first select a subset C of |C| causal SNPs

at random. Then, for each individual, we draw βββC,i from Np0,αααih
2q for i “ 1, ¨ ¨ ¨ , |C|, where

ααα governs the proportion of heritability contributed by each SNP and satisfies
ř|C|
i“1αααi “ 1.

In the special case when αααi “
1
|C|

for all i, each causal SNP contributes the same proportion

of heritability. Here, C and ααα are fixed in each set of simulation but vary across the 500 set

of simulations.

Since in simulations, we assume that all SNPs are typed and that environmental effect (εεε) is

drawn independently for each individual, cryptic relatedness among individuals in the 1000

Genomes Project [28] will have minimal effect on our estimates.

3.2.8 Empirical data sets

We obtained publicly available GWAS summary over European ancestry data for 30 traits

from 11 GWAS consortia (see Table 3.3). For quality control, we restricted our analysis to

GWAS studies involving at least 20,000 samples, and excluded sex chromosomes. We used

the definition of independent loci as defined in [11] (1.6 Mb on the average). To reduce

statistical noise in LD matrix, we focused on estimating heritability attributable to common

SNPs (i.e. SNPs with MAF greater than 5% in the European 1000 Genomes data[28]). Prior
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to estimating heritability, we also removed SNPs with ambiguous alleles as compared to the

reference panel (Table 3.3) and applied our estimator as defined in Equation (3.10). For

each trait, we choose k, the number of eigenvectors used to estimate local heritability across

all loci, based on sample size of the GWAS (see Methods) – a large k is used for GWAS

with large sample size, and a small k is used for GWAS with small sample size. To avoid

inflation due to noise in LD, we cap k at a maximum of 50 (see Table 3.4). To ensure stable

estimates, we also recommend filtering out eigenvectors with corresponding eigenvalues less

than 1.

Most GWAS apply genomic control (GC) factor (λgc) to χ2 statistics to correct for inflation

due to population structure [158] and publish GC-corrected effect size estimation (β̂ββgwas,gc).

And we note that all the summary GWAS data we analyze in this work were adjusted for

population structure to various degrees, and had at least one round of genomic correction.

However, recent works [19, 171] show that λgc can not distinguish between inflation and true

polygenicity and overestimates the correction factor needed for population stratification.

Although dividing the χ2 statistics by λgc has little effect on computing the ratios between

local and genome-wide heritability [44], it can result in underestimation of both local and

genome-wide SNP-heritability – when applied on GC-corrected summary data directly, our

method can produce negative and uninformative local and total SNP-heritability estimates.

To account for this, we first estimate λgc from summary GWAS data and re-inflate the effect

sizes (β̂ββgwas,gc) with estimated
a

λgc before obtaining local SNP-heritability estimates. We

estimate λgc based on the observation that at a locus with no heritability (i.e. h2
g,local,i “ 0),

Erβ̂ββ
T

gwas,gc,iV
:

iβ̂ββgwas,gc,is “
1
λgc

qi
n

, where β̂ββgwas,gc,i “
β̂ββgwas,i?

λgc
denotes GC-corrected effect size

vector, and that Erβ̂ββ
T

gwas,iV
:

iβ̂ββgwas,is “
qi
n

, where β̂ββgwas,i is the vector of effect size estimation

without GC correction. To estimate λgc, we treat the bottom 50% of all loci with the

smallest estimated local SNP-heritability as loci having h2
g,local,i “ 0, and regress the vector

p
qi
n
q against the vector pβ̂ββ

T

gwas,gc,iV
:

iβ̂ββgwas,gc,iq. We note that using the bottom 50% of all

loci is a conservative measure to account for ascertainment in choosing loci and can result

in estimated λgc less than 1. In practice, we only re-inflate β̂ββgwas,gc if the estimated λgc is
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greater than 1. We report estimated λgc for all 30 traits in Table S1. Overall, our estimated

λgc is consistent with the reported λgc. For example, our estimated λgc for BMI (1.33), HDL

(1.13), LDL (1.16), TC (1.16), and TG (1.18) are consistent with the reported λgc for BMI

(1.38) [90] and lipid traits (1.10-1.15) [29].

We define GWAS hits as SNPs with p-values less than 5 ˆ 10´8. To avoid overestimation

due to LD tagging, for each locus, we only select the most significant (i.e. smallest p-value)

GWAS hit as the index SNP. Heritability attributable to index SNPs, ĥ2
gwas, is then estimated

as
řI
i“1 β̂

2
i , where β̂i is effect size of the i-th index SNP, and I the number of index SNPs.

We estimate the variance of ĥ2
gwas as Varrĥ2

gwass “
řI
i“1 Varrβ̂2

i s “
řI
i“1 VarrpZi{

?
nq2s “

řI
i“1 Varr 1

n
χ2
i s “ 2I{n2.

For case-control traits, an adjustment factor is needed to correct for ascertainment [82].

We note that this adjustment factor is derived based on the infinitesimal model, and does

not apply to our method, which assumes a fixed effect model. Therefore, we only report

unadjusted heritability estimates for case-control traits. However, we note that ratio between

local to genome-wide SNP-heritability is not affected by this scaling factor.

3.3 Results

3.3.1 Performance of HESS in simulations

We used simulations to assess the performance of our proposed approach under a variety of

disease architectures. First, we confirmed that by accounting for rank deficiency in the LD

matrix we obtain unbiased estimation whereas the approach that uses the number of SNPs

to correct for bias generated by the quadratic form [45] leads to a severe under-estimation

of heritability. Second, we find that using the top 10-50 eigenvectors of the LD matrix (see

Methods) provides a good approximation for the estimated heritability when LD is estimated

from external reference panels (Figure 3.1).
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Since we use approximately independent loci [11], we also assessed potential bias due to

cross-tagging of heritability resulting from LD across adjacent loci. We simulated summary

statistics based on 10,000 randomly selected SNPs spread across the entire chromosome

22, with 20% of these SNPs being causal and total SNP-heritability varying from 2% to

10%. For each simulation scenario, we simulate 500 set of summary statistics, and obtain

local SNP-heritability estimates using equation (3.10). We obtain total SNP-heritability

estimate by summing all local SNP-heritability estimates. We find that using the top k “ 30

eigenvectors in the truncated-SVD regularization of LD matrices, HESS yields downwardly

biased estimate of total SNP-heritability estimate, whereas at k “ 50 HESS is approximately

unbiased (Figure 3.2). Therefore, we use k “ 50 as the default unless otherwise noted.

Next, we compared HESS to the recently proposed LD-score regression (LDSC)[19, 44]

method that provides estimates of heritability from GWAS summary data. Although LDSC

is not designed for local analyses due to model assumptions on polygenicity, it is able to esti-

mate the variance in trait attributable to any sets of SNPs. As expected, in our simulations,

where all individuals share the same effect size vector (βββ), we find that LDSC is sensitive

to the underlying polygenicity and, in general, yields biased estimation of heritability. In

contrast, HESS provides an unbiased estimation of heritability across all simulated disease

architectures when in-sample LD is available. For example, in simulations where 20% of the

variants at the locus are causal explaining 0.05% heritability, HESS yields an estimate of

0.054% (s.e. 0.004%) as compared to 0.025% (s.e. 0.0009%) for LDSC (Figure 3.3). We

attribute this to the fact that HESS does not make any assumption on the distribution of

effect sizes at causal variants by treating them as fixed effects in the model. When LD from

the sample is unavailable and has to be estimated from reference panels, both methods are

biased with HESS (with k “ 30, 50 eigenvectors in the truncated-SVD regularization of the

LD matrix) yielding results closer to simulated heritability than LDSC at randomly selected

loci with different width (Figure 3.3). Similar results were obtained in simulations where

the βββ is drawn independently for each individual. This is expected because conditional on

a fixed βββ, HESS is unbiased (i.e. Erĥ2
g|βββs “ h2

g), then the expectation of HESS estimate

integrating over all possible βββ is still unbiased (i.e. Erĥ2
gs “ ErErĥ2

g|βββss “ Erh2
gs “ h2

g).
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Finally, unlike LDSC that employs a jack-knife approach to estimate variance in the esti-

mated heritability (thus requiring multiple loci), HESS provides a variance estimator follow-

ing quadratic form theory (see Methods). Since external reference LD is typically computed

based on much smaller samples than in-sample LD, subtle patterns in in-sample LD cannot

be captured by external reference LD. Thus, external reference LD matrices usually have

lower rank than their corresponding in-sample LD matrices, resulting in under-estimation of

Varrĥ2
g,local,is (see Equation (3.11)). We verify this in simulations and find that the variance

estimator yields unbiased estimates when in-sample LD is available and under-estimates the-

oretical variance when external reference LD is used. We also note that cryptic relatedness in

GWAS samples can drive down the effective sample size (n), thus our estimates of standard

errors could be deflated for GWAS where the effective sample size is significantly smaller

than the actual sample size.

3.3.2 Common variants explain a large fraction of heritability

Having demonstrated the utility of HESS in simulations, we next applied our method to

empirical GWAS summary data across 30 complex traits and diseases spanning more than

two million phenotypic measurements (see Methods, Table 3.3, Table S1). We estimated the

local SNP-heritability at 1,703 approximately-independent loci [11] using European individ-

uals of the 1000 Genomes to estimate LD [28]. We first investigated the total contribution

of common variants (MAF ą 5%) to the heritability of complex traits. We summed up the

local estimates provided by our method to obtain an estimate for the total genome-wide

heritability for all genotyped SNPs. For traits where the SNP-heritability was previously

reported we find a broad consistency between our estimate and the existing estimates from

the literature (see Table 3.3). For example, HESS estimates a genome-wide SNP heritability

(h2
g) of 16.5% (s.e. 0.5%) for BMI and 59.4% (s.e. 0.3%) for height as compared to previously

reported estimates of 21.6% (2.2%) for BMI [90] and 62.5% for height [165]. We also find

that our total SNP-heritability estimates broadly correlates with those obtained by LDSC

(R “ 0.78). Most importantly, we find that common SNPs explain a large fraction of the
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previously reported familial heritability for all quantitative traits we interrogated ranging

from 21% for Forearm BMD to 94% for HDL(Table 3.3). Although we observe a very high

contribution of common SNPs to case-control traits as well, we note that our estimator can

be biased due to ascertainment in this case (see Methods).

3.3.3 Hidden heritability at known risk loci

Recent works[54, 96] have shown that the total heritability explained by all variants at the

GWAS risk loci (h2
g,local,gwas) is higher than heritability explained by GWAS index SNPs

(h2
gwas). This suggests that a fraction of the missing heritability is due to multiple causal

variants or poor tagging of hidden causal variants at known risk loci. We used HESS to

quantify the gap between these two estimates of heritability at known risk loci. We find

several traits for which h2
g,local,gwas is significantly larger than h2

gwas. For example, h2
g,local,gwas

is over two fold higher (32.0%, s.e. 0.2%) than h2
gwas (13.9%, s.e. 0.002%) for height (Table

3.3). The difference can be accounted by incomplete tagging of hidden causal variant(s) or

allelic heterogeneity (i.e., multiple causal variants). Indeed, conditional analysis identified

36 GWAS loci that contain multiple signals of associations (for a total of 87 GWAS risk

SNPs at these loci) for height[169]. Restricting to the 28 loci that contain at least 2 of

the 87 GWAS risk SNPs, we estimate h2
g,local,gwas=4.6%(s.e. 0.06%), a 2.4-fold increase over

h2
gwas=1.9% (s.e. 0.003%). These loci, 5.8% of all GWAS loci for height, contribute to

14.2% of the difference between h2
g,local,gwas and h2

gwas across all loci, thus suggesting that

the difference is likely due to multiple signals of association. To confirm this hypothesis we

applied a conditional analysis from summary GWAS data using GCTA-COJO [169] for the

traits HDL, TG, RA, and SCZ. We observe that a moderate fraction (2% – 16%) of GWAS

loci show multiple signals of association (see Table 3.2) thus confirming that contrasting

h2
g,local,gwas with h2

gwas is indicative of multiple signals of association.

In contrast, the majority of traits show similar ĥ2
g,local,gwas and ĥ2

gwas (see Table 1) suggesting a

single causal variant at these loci very well tagged by the index GWAS variant. For example,

it is known that LDL is strongly regulated by a single non-coding functional variant at the
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SORT1 locus [29, 110] and that bone mineral density trait (FN) is strongly regulated by

WNT16 [177, 75]. We also observe traits (e.g. MCH, MCV, RBC) for which ĥ2
g,local,gwas is

estimated to be less than ĥ2
gwas. This seemingly contradictory result is due to the fact that

fewer eigenvectors in the truncated-SVD regularization of LD matrices were used to estimate

ĥ2
g,local,gwas for GWAS with small sample sizes (see Table S2), resulting in downward bias (see

Methods).

3.3.4 Contrasting polygenicity across multiple complex traits

Most studied common traits exhibit a strong polygenic architecture (i.e. an abundance of

loci of small effect contributing to trait)[91, 90, 165, 29] . We recapitulate this observation

using the HESS analysis and find a strong correlation between chromosome length and the

fraction of heritability it explains for most traits we analyze here (Figures 3.4, 3.5 ). We

also observe, consistent with previous findings [25], regions such as FTO on chromosome 16

and HLA on chromosome 6 contributing disproportionately to the fraction of heritability for

HDL, BMI, and RA, respectively.

Next, we sought to quantify the variability in polygenicity across traits. We rank order loci

based on their estimated local SNP-heritability, sum their contribution and plot it versus the

percentage of genome they occupy (Figure 3.6). For highly polygenic traits, we expect the

cumulative fraction of total SNP-heritability to be proportional to the fraction of genome

covered, whereas for less polygenic traits, we expect to see a small fraction of the genome

accounting for a large fraction of total SNP heritability. For example, in schizophrenia and

height the top 1% of the loci with the highest local SNP-heritability contribute to 4.2%(s.e.

1.0%) and 6.5%(s.e. 1.5%) of the total SNP-heritability of these traits, respectively. This is

consistent with previous reports on the degree of polygenicity of these traits [91, 165, 29].

At the other extremes, RA and lipid traits (HDL, LDL, TC, TG) have a lower degree of

polygenicity, with the top 1% of loci accounting for 14-30% of the total SNP heritability.

However, the low polygenicity of RA is mostly driven by the HLA region on chromosome

6. After removing local SNP-heritability estimates at loci overlapping the HLA region for
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all traits, we observe that RA shows a moderate degree of polygenicity for the rest of the

genome. We also note that the different degrees of polygenic signals across traits reflect both

a difference in disease architecture (i.e. distribution of effect sizes) as well as a difference in

the sample sizes for the GWAS summary data.

A different perspective of polygenicity is to restrict to GWAS risk loci (as they clearly contain

risk variants) and contrast the proportion of explained variance with the proportion of the

genome they occupy. We observe a wide distribution across traits reflecting diverse genetic

architectures as well as different sample sizes for the GWAS performed for these traits. For

example, approximately 30% of loci across the genome harbor a risk variant for height and

account for 50% to the total SNP-heritability (a 1.5-fold enrichment). On the other hand,

while only 5% of the loci contain GWAS risk variants for HDL, these loci collectively explain

25% of the SNP-heritability of HDL (a 4.6-fold enrichment) (Figure 3.7).

3.3.5 Loci that contribute to heritability of multiple traits

It has been previously established that a number of the 30 traits investigated in this study

share a genetic basis [18]. Correlating local SNP-heritability estimates across the entire

genome can serve as a proxy for the magnitude of pleiotropy and we can identify pairs of traits

whose genetic components tend localize within the same regions of the genome. Motivated

by this, we searched for specific pleiotropic loci which we define as loci that contribute

significant non-zero SNP-heritability (one-tailed p-value ă 0.05, Bonferroni corrected for

1,703 loci) for at least 3 out of the 30 analyzed traits. In total, we identified 36 such loci

distributed genome-wide (see Figure 3.9).

As expected, the HLA region (chr6:26-34M), displays strong pleiotropic signal, particularly

for immunologically relevant phenotypes (see Figure 3.9). For instance, the locus chr6:32-

33M contributes significant amount of SNP-heritability for 8 traits, with exceptionally strong

signals for RA, UC, and IBD (see Figure 3.9). We also observe several other pleiotropic loci,

including chr2:199M-202M, contributing to AM, SCZ, and Height; chr6:134-136M, contribut-
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ing to multiple red blood cell traits; and chr19:45-46M, contributing to multiple lipid traits.

It’s well known that there exist genetic correlations among red blood cell traits [160, 46, 23]

as well as among lipid traits [29, 18]. Interestingly, previous research has also revealed that

early age at menarche is associated with later onset of schizophrenia [26]. Our results sug-

gest that these genetic correlations and associations may be caused in part by the pleiotropic

effect of these loci.

We note that the selection of traits can bias the identification of pleitropic loci towards

over-represented traits such as height and lipid traits. Nevertheless, local SNP-heritability

analysis is still a useful tool to quantify the fraction of total SNP heritability contributed by

a single loci and provide valuable insights into identifying pleiotropic loci.

3.4 Discussion

We have presented HESS, an unbiased estimator of local SNP-heritability from GWAS sum-

mary data. We extend existing work [45] that estimate heritability under the fixed-effect

model by proposing to regularize external reference LD matrix via truncated-SVD and gen-

eralizing the estimator to multiple independent loci. Through extensive simulations, we

demonstrate that HESS is unbiased given in-sample LD and yields more consistent and less

biased local SNP-heritability estimates than LDSC given external reference LD. We applied

HESS on GWAS summary data of 30 complex traits from 12 GWAS consortia and showed

that our results recapitulate previous findings. We then used these local SNP-heritability

estimate to contrast polygenicity of complex traits, find loci with multiple causal variants,

and identify heritability hot spots. We note that enrichment of heritability at GWAS risk loci

could be leveraged into prioritizing GWAS or fine-mapping; for example, traits with small

enrichment of heritability at GWAS risk loci are more suitable for larger GWAS, whereas

traits with large enrichment of heritability at known risk loci could be investigated further

through fine-mapping.

In this work, we focus on estimating local heritability attributable to common autosomal
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variants (MAF ą 5%), ignoring potential heritability captured by the sex chromosomes

and rare variants. We also note that our heritability estimates for case-control traits are

not adjusted for ascertainment as it is unclear whether adjustment derived based on the

infinitesimal model can be directly applied for the fixed-effect model. Thus, our reported

heritability estimation for case-control traits can be biased due to ascertainment. Future

work that addresses local heritability estimation including both common and rare variants,

sex chromosomes, as well as adjustment of heritability estimates under the fixed-effect model

for case-control traits will further improve the utility of our approach.

We conclude with several caveats and limitations of our work. First, our method relies on

independent LD blocks, which are often hard to define due to LD across multiple loci. In this

work, we attempt to minimize LD leakage by defining approximately independent loci using

principled approaches. Second, when only external reference LD is available, our method can

yield biased heritability estimate as well as its variance estimate, due to external reference

LD having lower rank than its corresponding in-sample LD as well as cryptic relatedness in

GWAS samples. This makes precise hypothesis testing difficult. However, with in-sample

LD and larger reference panels such as the Haplotype Reference Consortium [103], this bias

will be reduced as LD can be inferred more precisely. We also note that our estimated

λgc can be a potential source of bias, thus our genome-wide estimate should be interpreted

with caution. Third, to obtain stable estimate, the number of eigenvectors used (k) in the

truncated-SVD regularization should be chosen based on the sample size of GWAS study

– GWAS with large sample size can afford large k, whereas GWAS with small sample size

should use a small k. We recommend applying our method on summary data obtained from

GWAS studies involving around or above 50,000 samples. For GWAS with small sample

size, when genome-wide SNP-heritability is known, one can still apply Equation (3.14) to

obtain stable local heritability estimate. We also note that although using the same number

of eigenvectors for all loci facilitates the study of the statistical properties of our estimator,

this approach may not be optimal for all loci. We conjecture that selecting k using more

principled approach (e.g. based on the distribution of eigenvalues) may reduce bias, and we

leave such investigation as future work.
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3.5 Tables

Trait h2
g h2

pub h2
g{h

2
pub h2

gwas h2
g,local,gwas h2˚

g,local,gwas Enrichmenta

BMI (Body Mass Index) [90] 16.5(0.5) 42 [61] 0.39 1.6(0.001) 3.1(0.1) 3.1(0.1) 3.7(0.4)
Height (Height) [165] 59.4(0.3) 69 [61] 0.86 13.9(0.002) 32.0(0.2) 24.0(0.2) 1.5(0.1)
HB (Haemoglobin) [160] 17.9(2.1) 37 [47] 0.48 2.2(0.003) 1.9(0.3) 1.8(0.3) 7.6(1.4)
MCH (Mean Cell Haemoglobin) [160] 29.3(2.2) 52 [88] 0.56 7.2(0.003) 6.2(0.4) 6.1(0.4) 9.9(1.9)
MCHC (MCH Concentration) [160] 10.9(2.5) 48 [62] 0.23 0.4(0.003) 0.5(0.2) 0.5(0.2) 6.7(1.8)
MCV (Mean Cell Volume) [160] 26.3(2.0) 52 [88] 0.51 6.5(0.004) 5.7(0.4) 5.6(0.4) 8.1(1.3)
PCV (Packed Cell Volume) [160] 16.7(2.5) 30 [47] 0.56 1.4(0.003) 0.9(0.2) 0.8(0.2) 6.0(1.4)
RBC (Red Blood Cell Count) [160] 22.0(2.3) 56 [88] 0.39 3.6(0.004) 2.6(0.3) 2.6(0.3) 6.4(1.6)
PLT (Number of Platelets) [52] 27.5(1.5) 57 [47] 0.48 3.5(0.003) 3.9(0.3) 3.9(0.3) 5.7(0.9)
FG (Fasting Glucose) [38] 22.3(2.3) 66 [145] 0.34 2.6(0.002) 1.7(0.2) 1.6(0.2) 8.0(2.5)
FI (Fasting Insulin) [38] 19.9(2.4) 36 [133] 0.55 – – – –
HBA1C (HBA1C) [147] 20.8(2.3) 75 [145] 0.28 1.8(0.003) 0.9(0.2) 0.9(0.2) 6.6(1.9)
HOMA-B (HOMA-B) [38] 20.3(2.4) 72 [106] 0.28 0.6(0.001) 0.4(0.1) 0.4(0.1) 7.5(1.9)
HOMA-IR (HOMA-IR) [38] 19.9(2.4) 38 [133] 0.52 – – – –
HDL (High Density Lipoprotein) [29] 39.4(0.9) 42 [174] 0.94 5.8(0.002) 10.7(0.2) 10.5(0.2) 4.6(1.3)
LDL (Low Density Lipoprotein) [29] 33.0(1.0) 40 [174] 0.82 7.8(0.002) 8.4(0.2) 8.3(0.2) 5.1(0.9)
TC (Total Cholesterol) [29] 35.5(0.9) 50 [35] 0.71 8.0(0.002) 9.3(0.2) 9.3(0.2) 4.3(0.6)
TG (Triglycerides) [29] 34.8(0.9) 40 [40] 0.87 5.2(0.002) 8.0(0.2) 8.0(0.2) 5.8(1.4)
EY (Education Years) [134] 19.9(0.8) 40 [134] 0.50 0.1(0.002) 0.2(0.0) 0.2(0.0) 3.2(1.4)
FA (Forearm BMD) [176] 17.4(2.2) 84 [3] 0.21 0.3(0.001) 0.5(0.1) 0.5(0.1) 22.4(7.7)
FN (Femoral Neck BMD) [176] 24.1(2.1) 84 [3] 0.29 2.0(0.003) 2.0(0.2) 2.0(0.2) 7.1(1.0)
LS (Lumbar Spine) [176] 25.1(2.0) 84 [3] 0.30 2.2(0.003) 2.2(0.3) 2.2(0.3) 6.1(0.8)
AM (Age at Menarche) [124] 27.8(0.7) 49 [156] 0.57 2.6(0.002) 3.8(0.2) 3.7(0.2) 2.9(0.2)
COL (College) [134] 19.4(0.8) 40 [134] 0.48 0.1(0.001) 0.1(0.0) 0.1(0.0) 3.5(0.9)
RA (Rheumatoid Arthritis) [114] 66.3(0.9) 55 [58] 1.21 11.2(0.003) 22.0(0.3) 22.1(0.3) 9.8(4.3)
SCZ (Schizophrenia) [113] 64.5(0.7) 81 [152] 0.80 6.2(0.004) 9.2(0.2) 9.2(0.2) 2.3(0.1)
CD (Crohn’s Disease) [89] 35.9(1.8) 53 [159] 0.68 3.8(0.002) 5.9(0.4) 5.9(0.4) 4.8(0.7)
IBDc (Inflammatory Bowel Disease) [89] 35.3(1.4) – – 4.9(0.002) 6.7(0.3) 6.6(0.3) 4.6(0.5)
UC (Ulcerative Colitis) [89] 31.9(2.1) 58 [159] 0.55 2.7(0.002) 4.1(0.3) 4.1(0.3) 5.4(1.0)
T2D (Type 2 Diabetes) [109] 25.4(1.6) 26 [128] 0.98 1.3(0.002) 1.1(0.2) 1.1(0.2) 3.9(0.7)

Table 3.1: Total SNP heritability estimates and the amount of h2
g attributable

to loci containing GWAS index SNPs (h2
g,local,gwas) and index SNPs only (h2

gwas).
h2˚
g,local,gwas is the same as h2

g,local,gwas except that GWAS index SNPs are excluded in the

computation. In Table S2, we report h2:
g,local,gwas, obtained by excluding all GWAS hits. We

also report familial heritability (h2
pub) estimates obtained from twin or family studies. We

list case-control traits where our estimate of h2
g is biased due to ascertainment at the bottom

of the table. aSimilar to [44], we define enrichment as the ratio between the fraction of
h2
g attributable to h2˚

g,local,gwas and the fraction of genome covered by these loci. We obtain

standard errors by jackknife over the loci. bIBD refers to the union of CD and UC.
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Trait No. GWAS No. GWAS loci with ĥ2
g,local,gwas ĥ2

gwas Fraction
hit loci multiple signals (%) (%) (%)

HDL (High Density Lipoprotein) [29] 92 15 6.1(0.14) 2.8(0.003) 67.3
TG (Triglycerides) [29] 66 9 4.6(0.12) 3.0(0.002) 57.1
RA (Rheumatoid Arthritis) [114] 51 4 14.8(0.19) 4.3(0.005) 97.3
SCZ (Schizophrenia) [113] 103 2 0.28(0.003) 0.17(0.003) 3.6

Table 3.2: GCTA-COJO[169] analysis on summary statistics for the traits HDL,
TG, RA, and SCZ. We define loci with multiple association signals as loci containing at
least 2 of the risk SNPs reported by GCTA-COJO. Here, ĥ2

g,local,gwas and ĥ2
gwas are computed

restricting to the loci with multiple association signals. Fraction refers to the fraction of
difference between ĥ2

g,local,gwas and ĥ2
gwas across all loci that is accounted for by loci with

multiple signals of association.
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Trait Sample size No. SNPs No. GWAS hits No. index SNPs Fractiona

BMI (Body Mass Index) [90] 229269 1859666 1851 79 5.31
Height (Height) [165] 244015 1854761 26374 476 31.15
HB (Haemoglobin) [160] 52666 1894024 459 24 1.38
MCH (Mean Cell Haemoglobin) [160] 44658 1892019 1585 37 2.25
MCHC (MCH Concentration) [160] 48252 1893281 223 15 0.9
MCV (Mean Cell Volume) [160] 49808 1893769 1602 46 3.08
PCV (Packed Cell Volume) [160] 46169 1893412 288 14 0.92
RBC (Red Blood Cell Count) [160] 46465 1892553 1132 31 2.1
PLT (Number of Platelets) [52] 66867 1954590 954 40 2.54
FG (Fasting Glucose) [38] 46186 1824182 290 12 0.97
FI (Fasting Insulin) [38] 46186 1822388 – – –
HBA1C (HBA1C) [147] 46368 1870395 187 11 0.6
HOMA-B (HOMA-B) [38] 46186 1820938 119 4 0.24
HOMA-IR (HOMA-IR) [38] 46186 1821061 – – –
HDL (High Density Lipoprotein) [29] 96335 1805617 3445 92 6.28
LDL (Low Density Lipoprotein) [29] 91529 1803637 2971 76 4.87
TC (Total Cholesterol) [29] 96596 1805676 4039 91 5.98
TG (Triglycerides) [29] 92768 1803908 3149 91 3.95
EY (Education Years) [134] 126559 1788888 11 4 0.25
FA (Forearm BMD) [176] 53236 4725343 152 3 0.18
FN (Femoral Neck BMD) [176] 53236 4637340 867 21 1.21
LS (Lumbar Spine) [176] 53236 4636561 1077 24 1.39
AM (Age at Menarche) [124] 132989 1821879 2391 73 4.61
COL (College) [134] 126559 1792881 61 3 0.2
RA (Rheumatoid Arthritis) [114] 14361/43923 4265540 19575 51 3.06
SCZ (Schizophrenia) [113] 32405/42221 4772186 8113 103 6.9
CD (Crohn’s Disease) [89] 17897/33977 4822932 5179 54 3.48
IBDb (Inflammatory Bowel Disease) [89] 13769/33977 4823603 9243 70 4.17
UC (Ulcerative Colitis) [89] 31666/33977 4823578 5114 42 2.45
T2D (Type 2 Diabetes) [109] 12171/56862 1806359 236 13 1.0

Table 3.3: Details of the summary GWSA data for the 30 analyzed traits. aFraction
refers to the fraction of genome with GWAS hits. bIBD refers to the union of CD and UC.
For case-control traits, we list sample size as No. cases / No. controls.
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Trait h2g(HESS) k Estimated λgc h2:g,local,gwas Enrichmenta h2g(LDSC)

BMI (Body Mass Index) [90] 16.5(0.5) 50 1.33 2.45(0.11) 3.22(0.27) 14.0(0.9)
Height (Height) [165] 59.4(0.3) 50 1.00 23.86(0.20) 1.73(0.05) 33.0(1.7)
HB (Haemoglobin) [160] 17.9(2.1) 16 1.29 1.40(0.28) 6.19(1.38) 27.4(1.4)
MCH (Mean Cell Haemoglobin) [160] 29.3(2.2) 14 1.32 3.16(0.39) 6.71(1.28) 39.5(2.6)
MCHC (MCH Concentration) [160] 10.9(2.5) 15 1.30 0.40(0.25) 5.41(1.70) 21.6(0.9)
MCV (Mean Cell Volume) [160] 26.3(2.0) 15 1.31 3.08(0.39) 5.66(0.91) 35.2(2.1)
PCV (Packed Cell Volume) [160] 16.7(2.5) 14 1.31 0.64(0.25) 4.71(1.26) 31.4(1.5)
RBC (Red Blood Cell Count) [160] 22.0(2.3) 14 1.32 1.61(0.35) 4.48(0.82) 34.2(1.7)
PLT (Number of Platelets) [52] 27.5(1.5) 20 1.26 2.41(0.25) 4.04(0.44) 30.2(1.4)
FG (Fasting Glucose) [38] 22.3(2.3) 14 1.20 0.66(0.21) 3.58(1.11) 27.6(1.6)
FI (Fasting Insulin) [38] 19.9(2.4) 14 1.19 0.10(0.06) 15.41(0.00) 24.0(1.0)
HBA1C (HBA1C) [147] 20.8(2.3) 14 1.24 0.69(0.20) 5.31(1.89) 31.8(1.2)
HOMA-B (HOMA-B) [38] 20.3(2.4) 14 1.19 0.06(0.12) 1.26(0.68) 24.2(1.1)
HOMA-IR (HOMA-IR) [38] 19.9(2.4) 14 1.20 0.11(0.06) 16.17(0.00) 24.9(1.1)
HDL (High Density Lipoprotein) [29] 39.4(0.9) 29 1.13 4.33(0.24) 2.78(0.26) 33.4(7.5)
LDL (Low Density Lipoprotein) [29] 33.0(1.0) 27 1.16 3.97(0.24) 3.34(0.33) 27.0(4.5)
TC (Total Cholesterol) [29] 35.5(0.9) 29 1.16 5.27(0.25) 3.19(0.28) 27.2(3.8)
TG (Triglycerides) [29] 34.8(0.9) 28 1.18 3.76(0.21) 3.69(0.47) 31.4(5.2)
EY (Education Years) [134] 19.9(0.8) 38 1.05 0.15(0.04) 3.20(1.45) 12.6(0.5)
FA (Forearm BMD) [176] 17.4(2.2) 16 1.18 0.19(0.10) 9.90(4.33) 20.6(0.9)
FN (Femoral Neck BMD) [176] 24.1(2.1) 16 1.17 1.43(0.25) 5.39(0.81) 26.7(1.2)
LS (Lumbar Spine) [176] 25.1(2.0) 16 1.17 1.61(0.26) 4.70(0.61) 26.7(1.1)
AM (Age at Menarche) [124] 27.8(0.7) 40 1.05 3.18(0.17) 2.60(0.16) 16.5(0.7)
COL (College) [134] 19.4(0.8) 38 1.08 0.13(0.04) 3.34(0.98) 11.6(0.5)
RA (Rheumatoid Arthritis) [114] 66.3(0.9) 18 1.20 5.98(0.32) 5.82(1.29) 34.0(8.7)
SCZ (Schizophrenia) [113] 64.5(0.7) 22 1.00 8.36(0.21) 2.20(0.15) 43.7(1.4)
CD (Crohn’s Disease) [89] 35.9(1.8) 16 1.12 3.64(0.37) 3.47(0.43) 31.4(2.1)
IBDc (Inflammatory Bowel Disease) [89] 35.3(1.4) 20 1.09 4.45(0.33) 3.66(0.39) 26.3(1.5)
UC (Ulcerative Colitis) [89] 31.9(2.1) 15 1.11 2.96(0.36) 4.35(0.73) 28.5(1.3)
T2D (Type 2 Diabetes) [109] 25.4(1.6) 19 1.19 0.71(0.16) 2.63(0.49) 24.5(1.1)

Table 3.4: Total SNP-heritability for the 30 traits obtained by HESS and LDSC.
To obtain LDSC estimate, we compute LD scores for all SNPs with MAF greater than
5% using the same reference panel as used by HESS. Since HESS does not account for
population stratification, we obtain LDSC estimate without the intercept. h2:

g,local,gwas refers
to the estimated SNP-heritability attributable to loci containing GWAS hit after all GWAS
hits are removed. aWe define enrichment as the ratio between the fraction of h2

g attributable

to h2:
g,local,gwas and the fraction of genome covered by these loci. We obtain standard errors

by jack-knife over the loci.
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Figure 3.1: si “ pβ̂ββ
T
uiq

2{wi as a function of the rank order of eigenvalue wi obtained
under in-sample LD (blue, rank=974) and external reference LD (red, rank=251)
for a locus containing 1,377 SNPs. Each point represents the mean of si over 500
simulations. Figure 3.1a displays the first 300 si. Figure 3.1b focuses on the first 50 si.
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Figure 3.2: Total SNP-heritability estimates in the whole chromosome simulation
for different number (k) of eigenvectors included. We see a slight downward bias
when k is small (e.g. k “ 30), and upward bias when k is large (e.g. k “ 60). When k “ 50,
we attain approximately unbiased estimate of total SNP-heritability.
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Figure 3.3: HESS provides superior accuracy over LDSC in estimating local her-
itability. HESS attains unbiased estimates when in-sample LD is used (top) and approxi-
mately unbiased estimates when reference LD is used (bottom). Mean and standard errors
in these figures are computed based on 500 simulations, each involving 50,000 simulated
GWAS data sets.
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Figure 3.4: Fraction of h2
g per chromosome across the 30 traits studied. Here,

the chromosomal heritability is obtained by summing local heritability at loci within the
chromosome. For each chromosome we plot the box plots of estimates at the 30 considered
traits. Chromosomes are ordered by size. With some notable exceptions, all traits show a
strong polygenic signature of genetic architecture.
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Figure 3.5: Heritability attributable to each chromosome for four example traits.
The chromosomal heritability is obtained by summing local heritability at loci within the
chromosome. Standard error is obtained by taking the square root of the sum of variance
estimation.
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Figure 3.8: Manhattan-style plots of regional heritability across the genome for
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Figure 3.9: Heat map showing the fraction of total SNP-heritability (h2
g) con-

tributed by each of the 36 “pleiotropic” loci. For each locus, we only display traits to
which the locus contributes significant amount of heritability. We mark traits to which the
locus contributes more than 5% of the total SNP heritability in dark blue.
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CHAPTER 4

Local genetic correlation gives insights into the shared

genetic architecture of complex traits

4.1 Introduction

Genomic regions that harbor variants contributing to multiple traits provide valuable in-

sights into the underlying biological mechanisms with which genetic variation impacts com-

plex traits [49, 125, 98, 55, 129, 139, 162]. Therefore, both de novo discovery of such regions

as well as the quantification of the correlation in effect sizes at known shared regions are im-

portant to epidemiological and etiological studies. For example, genetic variants associated

with multiple traits in genome-wide associations studies (GWAS) can be used as instru-

mental variables in Mendelian randomization analyses to suggest causal relationships among

complex traits [80, 146, 162, 32]. Unfortunately, many risk variants are left undetected by

existing GWAS due to a combination of high polygenicity (i.e. many variants of small ef-

fects) and sample sizes which limits the power to detect genetic variants of small effect[168].

To improve accuracy at sub-GWAS significant regions, recent works [49, 125] proposed to

utilize the posterior probability of two traits sharing a causal variant at a given risk region

to detect genetic overlap. Although powerful in detecting shared genetic risk variants, the

posterior probability does not convey the direction or magnitude of the genetic effect at the

This chapter is published in Shi et al., American Journal of Human Genetics 2017 [?]
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overlapped genomic regions [49, 125]. Alternative approaches have used genetic correlation

(i.e. correlation of the genetic components of two traits), that summarizes both direction

and magnitude of effects, to gain insights into genetic overlap of complex traits[83, 19, 112].

Traditional methods to estimate genetic correlation are hindered by the lack of availability of

large-scale individual-level data due to privacy concerns as they require individual genotype

and trait measurements on the same set of individuals [112, 83, 59]. More recent works have

shown that GWAS summary data (i.e., effect sizes and standard errors at all variants typed

in the study) are sufficient to estimate genome-wide genetic correlation under a polygenic

trait architecture by aggregating information across all typed variants in the study[18, 119].

In this work, we investigate the correlation between traits due to typed genetic variants

from a small region in the genome (i.e. local genetic correlation) as means to identify

genomic regions that contribute disproportionately to the genetic sharing between traits.

We introduce methods that estimate the local genetic correlation from GWAS summary

data while allowing for overlapping GWAS samples and linkage disequilibrium (LD) among

variants. We partition the genome-wide genetic sharing across approximately independent

LD regions of 1.6Mb in width on average[12]. To allow for a broad range of causal effect

sizes, our approach makes no distributional assumptions on the causal effect sizes by treating

them as fixed quantities. Our method can be viewed as a natural extension to pairs of traits

of recently proposed methods that quantify local SNP-heritability from GWAS summary

data under a fixed-effect model[140].

We illustrate the utility of local genetic correlation through an analysis of GWAS summary

data of 36 quantitative complex traits. We identify 25 genomic regions that show significant

local genetic correlation across 27 pairs of traits; e.g., region chr2:21-23M that harbors APOB

(MIM 107730) shows a significant genetic correlation for the pair of traits High Density

Lipoprotein (HDL) and Triglycerides (TG). Notably, 6 (out of the 25) regions show significant

local genetic correlation although the genome-wide genetic correlation is not significantly

different from 0; e.g. region chr6:134-136M shows a significant in local genetic correlation

for mean cell volume (MCV) and platelet count (PLT) although the genome-wide genetic
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correlation MCV-PLT is negligible (0.02, 95% CI [-0.04, 0.07]). This shows that these traits

are correlated at a local level (e.g., due to pleiotropy and/or shared pathways) that are not

reflected in the genome-wide correlation (due to balancing effect of other loci; e.g., positive

correlation partially canceling a negative correlation, see Figure 4.1). Regions with significant

local genetic correlations can also be used to identify new risk loci. For example, although the

region chr8:9.2M-9.6M shows a significant local genetic correlation between HDL and LDL,

although it does not harbor GWAS variant for HDL and LDL . Finally, we explore putative

causal relations between all the 36 studied traits using a recently proposed approach[125] and

report 55 instances of pairs with putative causality. For most of these pairs, we show that

the local genetic correlation ascertained for GWAS signals specific to each trait is consistent

with the putative causal relation while providing a directly interpretable quantity of the

magnitude of effect.

4.2 Material and methods

4.2.1 Overview of methods

Genetic covariance measures the similarity between a pair of traits driven by genetic vari-

ations, and enjoys wide applications in understanding relations between complex traits[60,

22, 19]. Genetic covariance is traditionally estimated as a single measure across the entire

genome to capture the genome-wide contribution of genetic variations to the correlation be-

tween phenotypes. Here, we introduce local genetic covariance, the similarity between pairs

of traits driven by genetic variations localized at a specific region in the genome (e.g., one LD

block), as a principled way to partition the shared genetic risk between traits. For example,

a high genome-wide genetic covariance can be driven by one genomic region containing a

shared risk variant, or by a large number of regions each with a small contribution reflecting

putative causal relations (where all risk variants for one trait are risk variants for the other

trait) and/or pleiotropy (risk variants contributing to both traits through shared pathways)

(see Figure 4.1). Whereas genetic covariance quantifies the magnitude of co-variation of the
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genetic components of two traits in their original scale, genetic correlation quantifies co-

variation in a standardized scale, and is therefore comparable across pairs of traits and/or

genomic regions for which magnitude of effect size may differ. As a motivating example,

consider two traits modeled by φ “ x1β1 ` x2β2 ` ε and ψ “ x1γ1 ` x2γ2 ` δ, where x1 and

x2 represent two independent SNPs. In the special case where γ is proportional to β by a

factor of α, i.e. γ “ αβ, the genetic covariance between the two traits is αpβ2
1 ` β2

2q, and

is governed by α. However, the genetic correlation between the two traits is always 1 for

positive α (-1 for negative α) regardless of the magnitude of α.

We start by defining local genetic covariance under the fixed effect model, making a distinc-

tion between genetic covariance and covariance of the causal effects, β and γ (see below). We

then describe methods to estimate genetic covariance followed by an approach to standardize

the local genetic covariance to estimate local genetic correlation.

4.2.2 Local genetic covariance under fixed-effect model

Let φ “ xᵀβ`ε and ψ “ xᵀγ`δ be two traits measured at an individual, standardized so that

Erφs “ Erψs “ 0 and Varrφs “ Varrψs “ 1, where β,γ P Rp are the fixed effect size vectors

for the two traits; x P Rp, the genotype vector of the individual at p SNPs, standardized

so that Erxs “ 0, and Varrxs “ V , the LD matrix; and ε, δ, random environmental effects

independent of x, β, γ, with Erεs “ Erδs “ 0, Varrεs “ σ2
ε , Varrδs “ σ2

δ , and Covrε, δs “ ρe.

Under these assumptions, one can decompose the phenotypic covariance, ρ, between φ and

ψ into a summation of genetic covariance and environmental covariance, as

ρ “ Covrφ, ψs “ Erφψs ´ ErφsErψs “ Erpxᵀβ ` εqpxᵀγ ` δqᵀs

“ Erpxᵀβqpxᵀγqs ` Erεδs “ Covrxᵀβ,xᵀγs ` Covrε, δs

“ βᵀ Erxxᵀ
sγ ` Covrε, δs “ βᵀV γ ` ρe,

(4.1)

where ρg “ Covrxᵀβ,xᵀγs “ βᵀV γ is the genetic covariance between the two traits (i.e.

covariance between the genetic components of the two traits, xᵀβ and xᵀγ), and ρe the
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environmetal covariance (i.e. covariance between the environmental effects of two traits, ε

and δ). The magnitude and sign of local genetic covariance can be interpreted as the effect

and direction of the local genetic component of one trait on that of the other. Thus, given

the true effect size vectors, β, γ, and the LD matrix V , one can obtain ρg by plugging in

these quantities.

4.2.3 Genetic covariance versus covariance of the causal effects

An alternative approach to the covariance of the genetic components of the traits, is to

quantify the covariance (correlation) of the causal effects (i.e. ρg,causal “ βᵀγ). In the

special case where there is no LD (i.e. V “ I, the identity matrix), genetic covariance and

covariance of the causal effects coincide, ρg “ β
ᵀV γ “ βᵀIγ “ βᵀγ “ ρg,causal. However,

in general genetic covariance is different from covariance of the causal effects as function of

the LD between the causal variants. More importantly, high local genetic covariance does

not necessarily imply high covariance of the causal effects. In fact, high genetic covariance

can be attained even when causal variants are different between the traits. To illustrate the

difference, consider an example involving 2 SNPs. Let β “ p1, 0q and γ “ p0, 1q be the causal

effect vectors of the two traits, i.e. the two traits have two distinct set of causal variants.

And let

V “

»

–

1.0 0.9

0.9 1.0

fi

fl

be the LD matrix between the SNPs. In this example, the covariance of the causal effects is

ρg,causal “ β
ᵀγ “ 0, whereas the genetic covariance is ρg “ β

ᵀV γ “ 0.9. Thus, at a region

where the causal variants are distinct for the two traits, covariance of the causal effects is

always zero, whereas genetic covariance may be non-zero depending on the LD (see Figure

4.2). The two definitions measure genetic sharing at different levels of resolution. Local

genetic covariance measures sharing at regional level giving a measure of how similar the

regional genetic components are between the two traits, and has applications in predicting

the regional genetic component of one trait from that of the other. In contrast, local causal
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effect covariance measures sharing at an individual SNP level giving a measure of how similar

the causal effects are between the two traits. Consider a scenario where two traits are each

driven locally by a different SNP in the same gene. In this case, the local causal effect

covariance is zero since the two traits share no causal SNP. However, the local genetic

covariance is non-zero if the two SNPs are in LD, which induces similarity in the genetic

component of the two traits, and is an indication of the gene being shared across the two

traits. Although in this work we focus on genetic covariance, for completeness we discuss an

estimator for covariance of the causal effects (ρg,causal) in Appendix.

4.2.4 Estimating local genetic covariance from GWAS summary data

In two GWASs involving n1 individuals for trait 1 (φ), n2 individuals for trait 2 (ψ), and ns

shared individuals, we assume

»

–

φ

φs

fi

fl “

»

–

Y

Xs

fi

flβ `

»

–

ε

εs

fi

fl ,

»

–

ψ

ψs

fi

fl “

»

–

Z

X 1
s

fi

flγ `

»

–

δ

δs

fi

fl , (4.2)

where pφ,φsq P Rn1 and pψ,ψsq P Rn2 are the standardized trait values of all individuals

in each GWAS; pY ,Xsq P Rn1ˆp, pZ,X 1
sq P Rn2ˆp, column standardized genotype matrices

of all individuals in each GWAS, where Xs and X 1
s represent the genotype matrices for the

same set of individuals and SNPs but standardized differently in each GWAS; pε, εsq P Rn1 ,

pδ, δsq P Rn2 , environmental effects of all individuals in each GWAS. We use the subscript

‘s’ to represent individuals shared by both GWASs. We further assume that Erεs “ Erδs “

Erεss “ Erδss “ 0, Varrεs “ Varrεss “ σ2
εI, Varrδs “ Varrδss “ σ2

δI, Covrε, δs “ 0, and

Covrεs, δss “ ρeI.
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In a traditional GWAS, we obtain marginal effect size estimates, β̂gwas and γ̂gwas, as

β̂gwas “
1

n1

rY ᵀ Xᵀ
ss

»

–

φ

φs

fi

fl “
1

n1

pY ᵀY `Xᵀ
sXsqβ `

1

n1

pY ᵀε`Xᵀ
sεsq

γ̂gwas “
1

n2

“

Zᵀ X 1ᵀ
s

‰

»

–

ψ

ψs

fi

fl “
1

n2

`

ZᵀZ `X 1ᵀ
sX

1
s

˘

γ `
1

n2

`

Zᵀδ `X 1ᵀ
sδs

˘

.

(4.3)

Assuming individuals in both GWASs are drawn from the same population with LD matrix

V , we have β̂gwas „ N
´

V β, σ
2
ε

n1
V
¯

, γ̂gwas „ N
´

V γ,
σ2
δ

n2
V
¯

. We also find

Covrβ̂gwas, γ̂gwass “ Erβ̂gwasγ̂
ᵀ
gwass ´ pV βqpV γq

ᵀ
“

ρe
n1n2

ErXᵀ
sX

1
ss “

ρens
n1n2

V , (4.4)

where the last equality follows from Isserlis’ theorem [70].

Under infinite sample sizes, Varrβ̂gwass “ Varrγ̂gwass “ Covrβ̂gwas, γ̂gwass “ 0, and we have

β “ V ´1β̂gwas, γ “ V
´1γ̂gwas. Thus, local genetic covariance, ρg,local, can be computed as

ρg,local “ pβ̂
ᵀ

gwasV
´1
qV pV ´1γ̂gwasq “ β̂

ᵀ

gwasV
´1γ̂gwas. (4.5)

However, when sample sizes are finite, from bilinear form theory [138], the covariance between

β̂gwas and γ̂gwas creates bias, resulting in

Erβ̂
ᵀ

gwasV
´1γ̂gwass “ β

ᵀV γ `
ρe
n1n2

tr pV q “ βᵀV γ `
ppρ´ ρg,localqns

n1n2

, (4.6)

Correcting for bias, we arrive at the unbiased estimator

ρ̂g,local “
n1n2β̂

ᵀ

gwasV
´1γ̂gwas ´ nspρ

n1n2 ´ nsp
. (4.7)

For rank-deficient LD matrix V , one replaces V ´1 with the pseudo-inverse (V :) and p with
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q “ rankpV q, yielding the unbiased estimator

ρ̂g,local “
n1n2β̂

ᵀ

gwasV
:γgwas ´ nsqρ

n1n2 ´ nsq
. (4.8)

Thus, in order to obtain an unbiased estimate of genetic covariance between a pair of traits,

one needs to know their phenotypic covariance. When phenotypic covariance is not available,

one can obtain an estimate from genome-wide summary association data using cross-trait

LD Score regression [18],

Erzφ,jzψ,j|ljs “

?
n1n2ρg
p

lj `
ρns
?
n1n2

, (4.9)

where zφ,j, zψ,j are the Z-scores of SNP j in the two traits, and lj the LD score of SNP j.

Cross-trait LD Score regression regresses the product of Z-scores at each SNP against its

LD score, lj, and accounts for bias generated by overlapping samples through the intercept

term, ρns?
n1n2

[18], from which one can obtain an estimate of phenotypic covariance, ρ.

In the special case when β̂gwas and γ̂gwas are obtained for the same trait on the same set

of individuals (i.e. β̂gwas “ γ̂gwas, n1 “ n2 “ ns, ρ “ 1) Equation (4.7) reduces to the

local SNP-heritability estimator [140]. When ns “ 0 (i.e. no shared individuals between the

GWASs), the unbiased estimator is simply ρ̂g,local “ β̂
ᵀ

gwasV
´1γ̂gwas. An interpretation for

this simple formula is that in the absence of sample overlap, the covariance in the noise, ε

and δ, is 0 and does thus not introduce bias into the estimate of ρg,local.

Following bilinear form theory [138], we can estimate the variance for ρ̂g,local as,

Varrρ̂g,locals “

ˆ

n1n2

n1n2 ´ nsp

˙2
«

ˆ

pρens
n1n2

˙2

`
σ2
εσ

2
δp

n1n2
`
σ2
δh

2
gφ,local

n2
`
σ2
εh

2
gψ,local

n1
` 2

nsρeρg,local
n1n2

ff

(4.10)

For rank deficient LD matrix with rankpV q “ q, one replaces p with q in Equation (4.10).

65



4.2.5 Accounting for statistical noise in LD estimates

Limited sample size of external reference panels creates statistical noise in the estimated LD

matrix that biases our estimates. Following our previous work [140], we apply truncated-SVD

regularization [57] to remove noise in external reference LD. We note that β̂
ᵀ

gwasV
:γ̂gwas “

řq
i“1 si “

řq
i“1

1
wi
pβ̂

ᵀ

gwasuiqpγ̂
ᵀ
gwasuiq, where wi, ui are the eigenvalues and eigenvectors of

the LD matrix V , and q “ rankpV q. We use ŝi “
1
ŵi
pβ̂

ᵀ

gwasûiqpγ̂
ᵀ
gwasûiq, to denote the

counterpart obtained from external reference LD matrix V̂ . We show through simulations

that the bulk of β̂
ᵀ

gwasV
:γ̂gwas comes from si where i ! q and that si « ŝi for i ! q,

thus justifying truncated-SVD as an appropriate regularization method when only external

reference LD (V̂ ) is available.

Let gpβ̂gwas, γ̂gwas, kq “
řk
i“1 ŝi “

řk
i“1

1
ŵi
pβ̂

ᵀ

gwasûiqpγ̂
ᵀ
gwasûiq, be the truncated-SVD regu-

larized estimates for β̂
ᵀ

gwasV
:γ̂gwas, then it can be shown that

Ergpβ̂gwas, γ̂gwas, kqs “
nskpρ´ ρgq

n1n2

`

k
ÿ

i“1

ŵipβ
ᵀûiqpγ

ᵀûiq. (4.11)

Assuming ŵi “ wi and ûi “ ui for i ! k, Equation (4.11) is a biased approximation of

ρg,local, with bias nskpρ´ρgq

n1n2
. Correcting for the bias, we arrive at the estimator

ρ̂g,local “
n1n2gpβ̂gwas, γ̂gwas, kq ´ nsρk

n1n2 ´ nsk
, (4.12)

which has variance

Varrρ̂g,locals “

ˆ

n1n2

n1n2 ´ nsk

˙2
«

ˆ

kρens
n1n2

˙2

`
σ2
εσ

2
δk

n1n2

`
σ2
δh

2
gφ,local

n2

`
σ2
εh

2
gψ,local

n1

` 2
nsρeρg,local
n1n2

ff

(4.13)
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4.2.6 Extension to multiple independent regions

For genome partitioned into m regions, let

φ “ xᵀ
1β1 ` ¨ ¨ ¨ ` x

ᵀ
mβm ` ε

ψ “ xᵀ
1γ1 ` ¨ ¨ ¨ ` x

ᵀ
mγm ` δ,

(4.14)

denote the phenotype measurements of two traits at an individuals, where we assume that

SNPs in different pairs of regions are independent, i.e. Erxikxils “ 0 for all i ‰ j, k P

t1, ¨ ¨ ¨ , piu, and l P t1, ¨ ¨ ¨ , pju, where pi and pj are the number of SNPs in region i and

j. Under these assumptions, we decompose the phenotypic covariance, ρ, between φ and ψ,

into a summation of per-region genetic covariance and environmental covariance

ρ “ Covrφ, ψs “ Erpxᵀ
1β1 ` ¨ ¨ ¨ ` x

ᵀ
mβm ` εqpx

ᵀ
1γ1 ` ¨ ¨ ¨ ` x

ᵀ
mγm ` δq

ᵀ
s

“ Erpxᵀ
1β1qpx

ᵀ
1γ1qs ` ¨ ¨ ¨ ` Erpxᵀ

mβmqpx
ᵀ
mγmqs ` Erεδs

“

m
ÿ

i“1

Covrxᵀ
iβi,x

ᵀ
iγis ` Covrε, δs “

m
ÿ

i“1

βᵀ
iV iγi ` ρe

, (4.15)

where ρg,local,i “ Covrxᵀ
iβi,x

ᵀ
iγis “ β

ᵀ
iV iγi is the local genetic covariance between the pair

of traits attributed to genetic variants at region i. Following strategies outlined in previous

sections, we arrive at the estimator for genetic covariance at the i-th region,

ρ̂g,local,i “
n1n2gpβ̂gwas,i, γ̂gwas,i, kq ´ nspρ´

řm
j“1,j‰i ρ̂g,local,jqki

n1n2 ´ nski
, (4.16)

which defines a system of linear equation involving m unknown variables and m equations.

Following bilinear form theory, we obtain variance estimate for ρ̂g,local,i as,

Varrρ̂g,local,is “

ˆ

n1n2

n1n2 ´ nski

˙2
«

ˆ

kiρens

n1n2

˙2

`
σ2
εσ

2
δki

n1n2
`
σ2
δh

2
gφ,local,i

n2
`
σ2
εh

2
gψ,local,i

n1
` 2

nsρeρg,local,i

n1n2

ff

`

m
ÿ

j“1,j‰i

ˆ

nskj

n1n2 ´ nski

˙2

Varrρ̂g,local,js

(4.17)
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which also defines a system of linear equations with m equations and m variables. In the

special case where there is no sample overlap (ns “ 0), ρ̂g,local,i reduces to gpβ̂gwas, γ̂gwas, kq

with Varrρ̂g,local,is “
σ2
εσ

2
δki

n1n2
`

σ2
δh

2
gφ,local,i

n2
`

σ2
εh

2
gψ,local,i

n1
«

σ2
εσ

2
δki

n1n2
, i.e. both the local genetic

covariance and its variance can be estimated independent of all other windows.

When k1 “ ¨ ¨ ¨ “ km “ k, i.e. all regions use the same number of eigenvectors in the

truncated-SVD regularization, summing over i on both sides of Equation (4.16) yields

ρ̂g “
ÿ

i“1

ρ̂g,local,i “
n1n2

n1n2 ´ nsk

m
ÿ

i“1

gpβ̂gwas,i, γ̂gwas,i, kq ´
kns

n1n2 ´ nsk

m
ÿ

i“1

˜

r ´
m
ÿ

j“1,j‰i

ρ̂g,local,j

¸

“
n1n2

n1n2 ´ nsk

m
ÿ

i“1

gpβ̂gwas,i, γ̂gwas,i, kq ´
kns

n1n2 ´ nsk

m
ÿ

i“1

pρ´ ρ̂g ` ρ̂g,local,iq

“
n1n2

n1n2 ´ nsk

m
ÿ

i“1

gpβ̂gwas,i, γ̂gwas,i, kq `
knsm´ kns
n1n2 ´ nsk

ρ̂g ´
knsmρ

n1n2 ´ nsk
.

(4.18)

Solving for ρ̂g yields

ρ̂g “
n1n2

řm
i“1 gpβ̂gwas,i, γ̂gwas,i, kq ´ knsmρ

n1n2 ´ knsm
, (4.19)

which has variance

Varrρ̂gs “

ˆ

n1n2

n1n2 ´ knsm

˙2 m
ÿ

i“1

Varrgpβ̂gwas,i, γ̂gwas,i, kqs. (4.20)

Thus, if k is chosen such that pn1n2 ´ knsmq is small (i.e. n1n2

n1n2´knsm
large), the estimate

of total genetic covariance will have large standard error. To reduce standard error in the

estimates (at the cost of some bias), we recommend choosing k such that n1n2

n1n2´knsm
is less

than 2. When testing for statistical significance, we assume that the estimates of local and

genome-wide genetic covariance and correlation follow a normal distribution.
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4.2.7 Standardizing local genetic covariance

We estimate the local genetic correlation for the i-th region as

r̂g,local,i “
ρ̂g,local,i

b

ĥ2
gφ,local,i

b

ĥ2
gψ,local,i

, (4.21)

where ĥ2
gφ,local,i and ĥ2

gψ,local,i denote the local SNP-heritability of trait φ and ψ at the i-th

region. In some cases, this estimator of local genetic correlation may yield an estimate with

magnitude greater than 1, and we cap the estimate at -1 or 1. In simulations, we show

that r̂g,local,i is approximately unbiased when both traits are heritable at the i-th region. In

practice, however, the terms, ĥ2
gφ,local,i and ĥ2

gψ,local,i, can be close to zero, greatly inflating the

standard error of r̂g,local,i. Thus, we recommend estimating local genetic correlation only at

regions with significant local SNP-heritability. One can also estimate local genetic correlation

at a set of regions. For example, to estimate genetic correlation at regions indexed by the

index set C, one applies the following formula,

r̂g,C “

ř

iPC ρ̂g,local,i
b

ř

iPC ĥ
2
φ,g,local,i

b

ř

iPC ĥ
2
ψ,g,local,i

, (4.22)

We estimate standard error of local genetic correlation at a single region through a parametric

bootstrap approach [39] and local genetic correlation at a set of regions through jackknife.

4.2.8 Simulation framework

Starting from half (202 individuals) of the EUR reference panel from the 1000 Genomes

Project[28], we simulated genotype data for 50,000 individuals at HapMap3[51] SNPs with

minor allele frequency (MAF) greater than 5% in 100 randomly selected LD-independent

regions defined in ref[12] on chromosome 1 using HAPGEN2[51]. We used the other half of

the EUR reference panel (203 individuals) to obtain external reference LD matrices.

We simulated phenotypes from the genotypes according to the linear model φ “Xβ`ε and
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ψ “Xγ ` δ, where X is the column-standardized genotype matrix. We drew the effects of

causal SNPs (βC , γC) from the distribution

N

¨

˝

»

–

0

0

fi

fl ,

»

–

h2gφ
|C|
I ρe

|C|
I

ρe
|C|
I

h2gψ
|C|
I

fi

fl

˛

‚, (4.23)

where C is the index set of causal SNPs, and set the effects of all other SNPs to be zero. We

then drew (ε, δ) from the distribution

N

¨

˝

»

–

0

0

fi

fl ,

»

–

p1´ h2
gφqI ρeI

ρeI p1´ h2
gψqI

fi

fl

˛

‚. (4.24)

Finally, we simulated GWAS summary statistics using methods outlined in previous sections.

For each β and γ drawn from the normal distribution, we simulated 1000 sets of summary

statistics by varying ε and δ, and applied ρ-HESS to estimate genetic covariance and genetic

correlation for each set of the simulated summary statistics.

4.2.9 Empirical data sets

We obtained GWAS summary data for 36 quantitative complex traits and diseases from

15 GWAS consortia or institutions (see Table 4.1), all of which are based on individuals

of European ancestry, and have sample size greater than 20,000. We used approximately

independent genomic regions defined in ref[12] to partition the genome, and restricted our

analyses on HapMap3 SNPs with minor allele frequency (MAF) greater than 5% in the

European population in the 1000 Genomes data [28]. We also removed stand-ambiguous

SNPs prior to our analyses. We follow the method outlined in ref[140] to estimate and re-

inflate λgc, and to choose the number of eigenvectors to include in estimating local genetic

covariance and SNP-heritability.
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4.2.10 Local genetic correlation at regions ascertained for GWAS signals

Recent works leverage the difference in correlations of Z-scores at genomic regions ascertained

for GWAS signals specific to each trait to prioritize putative causal models between pairs

of complex traits [125, 98]. We evaluated the local genetic correlation at regions harboring

GWAS signals specific to each trait across all 298 pairs of traits exhibiting significant genome-

wide genetic correlation. We estimate local genetic correlations only for pairs of traits for

which the number of loci harboring GWAS hits specific to each trait is greater than 10. The

confidence intervals (1.96 times jackknife standard error on each side) of the ascertained

local genetic correlations (r̂g,local,trait1 and r̂g,local,trait2) do not overlap; one of the confidence

intervals overlap with 0 and the other does not.

4.3 Results

4.3.1 Local genetic correlation estimation in simulations

We evaluated the performance of our approach (ρ-HESS) through simulations across a wide-

range of disease architectures. We included cross-trait LDSC [18], an approach that assumes

a random-effect model, in the comparison for completeness purposes. When LD is estimated

in-sample, ρ-HESS provides an unbiased estimate of local genetic covariance and nearly

unbiased estimates of genetic correlation (i.e. genetic covariance divided with the square

root of local SNP heritability, see Methods). Next, we quantified the performance in the

more realistic case when in-sample LD is unavailable and needs to be estimated from external

reference panels. Although both cross-trait LDSC and ρ-HESS provide accurate estimates of

genetic correlation, we observe superior accuracy with higher precision for ρ-HESS (Figure

4.4, S4, S6, S7). We attribute the lower standard error of ρ-HESS to the truncated-SVD

regularization of the LD matrix which effectively reduces the degree of freedom of the bi-

linear form in Equation (4.7). Different genomic regions vary in their total amount of LD

and we observed that the accuracy of genetic correlation estimation decreases with the total
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amount of regional LD. This is expected as high LD regions lead to high rank deficiencies

in the LD matrix and small eigenvalues, thus increasing the level of statistical noise in

the estimation. We also evaluated the performance of local genetic correlation estimation in

simulations where we varied the number of causal variants in each region. Overall, we observe

that our estimator of genetic covariance and correlation is not sensitive to the underlying

polygenicity (i.e. number of causal SNPs) (Figure 4.4 S5, S8, S9). Finally, we also evaluated

the performance of the estimator when causal variants are all drawn from DHS regions[157],

and observed that the performance is not sensitive to the uneven distribution of causal

variants.

4.3.2 Local genetic correlation across 36 quantitative traits

We analyzed GWAS summary data from 36 complex traits to obtain local genetic correla-

tions at 1,703 approximately LD-independent regions in the genome („1.6Mb in width on

average)[12]. First, as a quality control step, we aggregated the local estimates into genome-

wide estimates of genetic correlation (see Methods) and compared to the cross-trait LDSC

estimates. Reassuringly, we find a high degree of consistency with genetic correlations esti-

mated by cross-trait LDSC regression (R “ 0.77, Figure 4.5, S13). Our estimator provides

lower standard errors as compared to cross-trait LDSC (likely due to the truncated-SVD regu-

larization procedure), and yields consistently lower estimates for pairs of traits from the same

consortium where we conservatively assume full sample overlap (see Discussion). Overall, we

identify 298 pairs of traits with significant genome-wide genetic correlation (p ă 0.05{630).

These include previously reported correlations, e.g. body mass index (BMI) and triglyceride

(TG), as well as complex traits that have not been studied before using genetic correlation,

e.g. red blood cell count (RBC) and fasting insulin (FI) (Figure 4.5).

Next, we searched for genomic regions that disproportionately contribute to the genetic cor-

relation of the 36 analyzed traits; we excluded the HLA region due to complex LD patterns.

We identify 25 genomic regions that show both significant local genetic correlation (two-tailed

p ă 0.05{1703{630) as well as significant local SNP-heritability (one-tailed p ă 0.05{1703{36)

72



(see Table 4.2). For example, the estimate of local genetic correlation between HDL and TG

at chr11:116-117Mb is -0.82 (95% CI [-0.95, -0.69]), suggesting highly shared genetic archi-

tecture at this region for HDL and TG. Indeed, the region chr11:116-117M harbors APOA1

(MIM 107680), which is known to be associated with multiple lipid traits [29]. Interestingly,

4 out of the 25 regions do not contain GWAS significant SNPs (p ă 5e´ 8) for either one or

both traits and can be viewed as new risk regions for these traits.

Since genetic correlation is an aggregation of local genetic covariance, for pairs of traits with

highly positive or negative genetic correlation, we expect the distribution of local genetic

covariances to be shifted towards the positive or negative side (see Figure 4.6); whereas

for pairs of traits with low genetic correlation, we expect the distribution of local genetic

covariances to be centered around zero (see Figure 4.7, 4.8). Indeed, pairs of traits with

higher genome-wide genetic correlation tend to harbor more loci with significant local genetic

covariance. For instance, only one region exhibits significant local genetic covariance for the

pair of traits age at menarche (AM) and height (rg “ 0.13, 95% CI [0.10, 0.13]), whereas four

loci show significant local genetic covariance for the pair of traits LDL and TG (rg “ 0.45,

95% CI [0.42, 0.49]).

4.3.3 Local correlations for pairs of traits with negligible genome-wide correla-

tion

Several pairs of traits show negligible genome-wide genetic correlation although they share

GWAS risk regions. For example HDL and LDL share several GWAS risk loci[29] but the

genome-wide genetic correlation is negligible (-0.05, 95% CI [-0.09, -0.01]) [18]. The absence

of significant genome-wide genetic correlation between these pairs of traits can be attributed

to either symmetric distribution of local genetic covariance (positive local genetic covariance

cancels out negative local genetic covariance, see Figure 4.1) and/or lack of power to declare

significance for genome-wide genetic correlation. Thus, we hypothesize that at the region-

specific level, many loci may manifest significant local genetic covariance even if the genome-

wide genetic correlation between a pair of traits is not significant. Indeed, 11 genomic regions

73



show significant local genetic correlation (two-tailed p ă 0.05{1703) for HDL and LDL (see

Figure 4.7). Some of these loci, e.g. chr2:21M-23M, chr11:116M-117M, and chr19:44M-

46M, harbor APOB, APOA1, and APOE (MIM 107741), respectively, which are known

to be involved in lipid genetics[48, 118, 29]. Across all pairs of traits with non-significant

genome-wide correlation, we identify 6 regions across 10 pairs of traits with significant local

genetic correlation (two-tailed p ă 0.05{1703{630) and local SNP-heritability (one-tailed

p ă 0.05{1703{36) (see Table 4.2). For example the region chr6:134-136M harbors HBS1L

(MIM 612450) [148, 160], and contributes to local genetic covariance across many blood

traits (MCH, MCV, RBC, and PLT).

4.3.4 Genetic correlation ascertained for GWAS risk loci

Assessing the correlation in the effects at genomic regions ascertained for trait-specific GWAS

regions can be used to prioritize putative causal models between complex traits. We utilized

a recently proposed approach[125] to assign putative causal relation to 55 pairs of traits.

Restricting to 40 of the 55 pairs of traits that contain at least 10 regions with trait-specific

GWAS signals (see Methods), we quantified the local genetic correlation at genomic regions

containing GWAS loci specific to each trait (see Table 4.4, Figure 4.9). Overall, the local

genetic correlation is highly consistent with the putative causal relationships inferred by

correlating the top signals at these loci[125]. For example, when considering body mass index

(BMI) and triglyceride levels (TG), the correlation at BMI-specific regions is significantly

greater than TG-specific loci (r̂g,local,BM “ 0.47 95% CI [0.37, 0.57] vs. r̂g,local,TG “ ´0.02

95% [-0.14, 0.10]), indicating that loci that increase BMI tend to consistently increase TG,

whereas loci that increase TG do not consistently affect BMI, consistent with the putative

model that BMI causally increases TG [125, 98]. We also observe correlations consistent

with a model in which years of education (EY) consistently decreases hemoglobin level

(HB), LDL, TG (see Table 4.4), in line with previous conclusions on the effect of education

on health [143, 7]. However, we note that education attainment (or other studied traits) may

be confounded by other factors such as social status and that one should exercise caution
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when inferring causality from genetic data. Finally, we also report pairs of traits in which the

genetic correlation approach attains different results form bi-directional regression on the top

signals[125]. For example, when considering body mass index (BMI) and age at menarche

(AM), the local correlation approach do not yield different estimates (rg,local,BMI “ ´0.49

95% CI [-0.63, -0.35] vs rg,local,AM “ ´0.47 95% CI [-0.59, -0.35]), whereas the approach of

ref [125] suggests a putative causal relation. This discrepancy can be due to different model

assumptions, e.g., single causal variant versus allelic heterogeneity, with further investigations

needed to assign causality from these data.

4.4 Discussion

We have described ρ-HESS, a method to estimate local genetic correlation from GWAS sum-

mary association data. Through extensive simulations, we demonstrated that our method

is approximately unbiased and provides consistent results irrespective of causal architec-

ture. We analyzed large-scale GWAS summary association data of 36 quantitative traits.

Compared with cross-trait LDSC, our methods identified considerably more pairs of traits

displaying significant genome-wide genetic correlation likely because of the truncated-SVD

regularization of the LD matrix, which decreases the standard error of the estimates. We

identify genomic regions that are significantly correlated across pairs of traits regardless of

the significance of genome-wide correlation. Finally, we performed bi-directional analyses

over the local genetic correlations to identify putative causal relationships, and report local

genetic correlations at loci harboring GWAS signal specific to each trait.

We conclude with several limitations highlighting areas for future work. First, our estimator

requires phenotype correlation between two traits, as well as the number of shared individ-

uals between the two GWASs. We estimate the phenotype correlation through cross-trait

LDSC assuming full sample overlap between GWAS within the same consortium and no sam-

ple overlap between GWAS across two consortia. Second, we note that our bi-directional

analyses over local genetic correlation can be further extrapolated to infer putative causal
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models between complex traits. We refrain from making conclusive causal inferences from

the bi-directional analyses because exact inference of causal relations is largely complicated

by unobserved confounders such as socioeconomic status, population stratification and/or bi-

ological pathways. Furthermore, most of the GWAS summary association data are adjusted

for covariates such as age, gender, to increase statistical power [104], and previous works

have shown that adjusting for covariates can potentially lead to false positives [4]. Third,

in our real data analyses, we made the assumption that the loci are independent of each

other. In reality however correlations may exist across adjacent loci due to long range LD,

and can lead to biased estimates. Nevertheless, we note that previous works have indicated

the effect of LD leakage to be minimal [91, 140], and we conjecture that this statement still

hold in estimating local genetic correlation. Lastly, we use truncated-SVD to regularize LD

matrix and to reduce standard error in the estimates of local genetic correlation, at the cost

of introducing bias. Currently, we use a fixed number of eigenvectors in the truncated-SVD

regularization, across all the loci. However, this approach may not be optimal for genomic

regions with different LD structure, and leave a principled approach of estimating the number

of eigenvectors as future work.

4.5 Appendix

4.5.1 Quantifying shared genetics via covariance of the causal effects

An alternative measure of shared genetics is the covariance of the causal effects (β and γ)

of the two traits. Under the fixed-effect model, we define covariance of the causal effects,

ρg,causal, as the dot product between the causal effect size vectors of the two traits,

ρg,causal “ β
ᵀγ. (4.25)

Here, we make the assumption that the average effect size of each SNP is 0.

The definition of covariance of the causal effects in Equation (4.25) coincides with genetic
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covariance under the random-effect model. As shown in the supplementary of [18], if one

assumes that β and γ have zero mean and

Varrpβ,γqs “
1

p

»

–

h2
gφ ρg

ρg h2
gψ

fi

fl , (4.26)

then it can be shown that the genetic covariance between two traits is

Covrxᵀβ,xᵀγs “
p
ÿ

i“1

p
ÿ

j“1

Erxixjβiγjs “
p
ÿ

i“1

Erx2
iβiγis “

p
ÿ

i“1

Erx2
i sErβiγis “ ρg. (4.27)

The random-effect model makes the implicit assumption that many SNPs are causal, which

is appropriate for genome-wide analysis but not for local analysis, where few SNPs are likely

to be causal.

4.5.2 Estimating covariance of the causal effects from GWAS summary data

For completeness, we derive an estimator for ρg,causal. We assume a linear model for the

two traits (see Methods). The effect size estimates from GWAS, β̂gwas and γ̂gwas, follow

β̂gwas „ N
´

V β,
1´h2φ
n1
V
¯

and γ̂gwas „ N
´

V γ,
1´h2φ
n2
V
¯

, with Covrβ̂gwas, γ̂gwass “
ρens
n1n2

V ,

where n1 and n2 are the sample size for the two GWASs, and ns is the number of shared

samples (see Methods).

As the sample size, n1 and n2, of the two GWASs go to infinity, we have βgwas “ limnÑ8 β̂gwas “

V β and γgwas “ limnÑ8 γ̂gwas “ V γ, which implies β “ V ´1βgwas and γ “ V ´1γgwas,

suggesting the following estimator for covariance of the causal effects,

ρg,causal “ β
ᵀγ “ βᵀ

gwasV
´2γgwas. (4.28)

In reality, however, finite sample sizes of GWAS results in noise in the estimates of β and
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γ, creating bias in the estimate of ρg,causal. From bilinear form theory, it can be shown that

Erβ̂
ᵀ

gwasV
´2γ̂gwass “ β

ᵀγ `
ρe
n

trpV ´2V q “ βᵀγ `
ρe
n

trpV ´1
q, (4.29)

suggesting the unbiased estimator of ρg,causal,

ρ̂g,causal “ β̂
ᵀ

gwasV
´2γ̂gwas ´

nsρe
n1n2

trpV ´1
q, (4.30)

where the environmental covariance can be estimated through cross-trait LD Score regression

[18].
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4.6 Tables

Table 4.1: A summary of the 36 GWAS summary data sets analyzed.

Trait Name Abbreviation Consortium # gen corr
all

consortium

# gen corr
outside

consortium

Approx.
sample size

Age at Menarche [124] AM REPROGEN 21 (4) 21 (4) 133K
Body Mass Index [90] BMI GIANT 27 (17) 23 (14) 231K
Height [165] HEIGHT GIANT 17 (2) 13 (1) 241K
Hip Circumference [142] HIP GIANT 23 (14) 19 (10) 144K
Waist Circumference [142] WC GIANT 26 (18) 22 (15) 153K
Waist-to-hip Ratio [142] WHR GIANT 27 (19) 23 (16) 143K
Haemoglobin [160] HB HAEMGEN 21 (10) 18 (8) 51K
Mean Cell Haemoglobin [160] MCH HAEMGEN 9 (1) 8 (1) 44K
MCH Concentration [160] MCHC HAEMGEN 6 (4) 2 (1) 47K
Mean Cell Volume [160] MCV HAEMGEN 12 (3) 10 (1) 49K
Packed Cell Volume [160] PCV HAEMGEN 18 (11) 14 (8) 45K
Red Blood Cell Count [160] RBC HAEMGEN 20 (10) 17 (8) 46K
Number of Platelets [52] PLT HAEMGEN 9 (1) 6 (1) 67K
Fasting Glucose [38] FG MAGIC 19 (9) 16 (8) 46K
Fasting Insulin [38] FI MAGIC 20 (12) 18 (12) 46K
HBA1C [147] HBA1C MAGIC 19 (14) 18 (13) 46K
HOMA-B [38] HOMA-B MAGIC 17 (11) 15 (11) 46K
HOMA-IR [38] HOMA-IR MAGIC 21 (12) 21 (12) 46K
High Density Lipoprotein [29] HDL LIPID 23 (12) 21 (11) 96K
Low Density Lipoprotein [29] LDL LIPID 19 (6) 17 (4) 91K
Total Cholesterol [29] TC LIPID 18 (3) 15 (1) 96K
Triglycerides [29] TG LIPID 26 (14) 23 (11) 92K
Forearm BMD [176] FA GEFOS 4 (1) 2 (0) 53K
Femoral Neck BMD [176] FN GEFOS 4 (2) 2 (0) 53K
Lumbar Spine BMD [176] LS GEFOS 7 (1) 5 (0) 53K
Education Years [116] EY SSGAC 26 (5) 24 (4) 294K
Neuroticism [115] NEURO SSGAC 5 (2) 3 (0) 171K
Subjective Well-being [115] SWB SSGAC 4 (1) 2 (0) 298K
Age First Birth [8] AFB BIOS 23 (5) 23 (5) 251K
Birth Weight [63] BW EGG 13 (1) 13 (1) 68K
Urinary Albumin-to-Creatinine Ratio [155] UACR DCCT-EDIC 11 (1) 11 (1) 53K
Rest Heart Rate [42] HR EPPINGA 14 (0) 14 (0) 265K
Serum Urate Concentrations [76] URATE GUGC 25 (14) 25 (14) 107K
Body Fat [93] BF Lu 26 (17) 26 (17) 58K
Extra-Glomerular Filtration Rate of Creatinin [123] CRN CKDGEN 10 (1) 10 (1) 133K
Age at Menopause [33] MP BCAC 6 (0) 6 (0) 70K

We list the total number of traits with significant non-zero genome-wide genetic correlation
(two-tailed p ă 0.05{630) and the total number of traits outside the consortium with signif-
icant non-zero genome-wide genetic correlation in the fourth and fifth column, respectively.
Number of traits for which the magnitude of genetic correlation is both significantly non-zero
and greater than 0.2 is shown in parentheses.
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Table 4.2: Loci that show significant local genetic covariance (two-tailed p ă
0.05{1703{630) and local SNP heritability (one-tailed p ă 0.05{1703{36) for both
traits.

Trait1 Trait2 Locus h2
g,local,trait1 h2

g,local,trait2 rg,local

AM HEIGHT chr9:107-109M 0.15 (0.02) 0.05 (0.01) 0.61 ([0.34,0.87])
BMI HIP chr16:53-55M 0.22 (0.02) 0.19 (0.03) 0.99 ([0.76,1.00])
BMI HIP chr18:57-59M 0.14 (0.02) 0.13 (0.02) 0.99 ([0.71,1.00])
BMI WC chr16:53-55M 0.22 (0.02) 0.21 (0.03) 1.00 ([0.78,1.00])
BMI WC chr18:57-59M 0.14 (0.02) 0.13 (0.02) 1.00 ([0.72,1.00])
BW HEIGHT chr12:65-67M 0.14 (0.02) 0.23 (0.02) 0.93 ([0.70,1.00])
HDL TG chr2:21-23M 0.16 (0.03) 0.22 (0.03) -0.94 ([-1.00,-0.65])
HDL TG chr8:19-20M 0.65 (0.04) 0.82 (0.04) -1.00 ([-1.00,-0.91])
HDL TG chr11:116-117M 0.40 (0.04) 1.27 (0.06) -0.82 ([-0.95,-0.69])
HDL TG chr15:58-59M 1.18 (0.06) 0.18 (0.03) 0.89 ([0.68,1.00])
HEIGHT HIP chr16:4-5M 0.06 (0.01) 0.10 (0.02) 0.73 ([0.41,1.00])
HIP WC chr16:53-55M 0.19 (0.03) 0.21 (0.03) 0.99 ([0.73,1.00])
HIP WC chr18:57-59M 0.13 (0.02) 0.13 (0.02) 1.00 ([0.69,1.00])
LDL TG chr1:61-63M 0.14 (0.03) 0.28 (0.03) 0.98 ([0.67,1.00])
LDL TG chr2:21-23M 0.84 (0.05) 0.22 (0.03) 0.62 ([0.46,0.78])
LDL TG chr8:126-128M 0.16 (0.03) 0.32 (0.04) 0.94 ([0.63,1.00])
LDL TG chr19:18-19M 0.18 (0.03) 0.21 (0.03) 0.99 ([0.72,1.00])
PLT RBC chr6:134-136M 0.26 (0.05) 0.66 (0.09) -0.99 ([-1.00,-0.69])
HDL HEIGHT chr11:47-49M 0.17 (0.02) 0.07 (0.01) 0.61 ([0.42,0.80])
HDL LDL chr2:21-23M 0.16 (0.03) 0.84 (0.05) -0.56 ([-0.74,-0.39])
HDL LDL chr8:9-9M 0.14 (0.02) 0.12 (0.02) 0.99 ([0.70,1.00])
MCH MCV chr6:24-25M 0.49 (0.07) 0.37 (0.06) 0.97 ([0.67,1.00])
MCH MCV chr6:134-136M 0.86 (0.09) 0.70 (0.08) 0.98 ([0.76,1.00])
MCH PLT chr6:134-136M 0.86 (0.09) 0.26 (0.05) 1.00 ([0.72,1.00])
MCH RBC chr6:134-136M 0.86 (0.09) 0.66 (0.09) -0.98 ([-1.00,-0.75])
MCV PLT chr6:134-136M 0.70 (0.08) 0.26 (0.05) 1.00 ([0.72,1.00])
MCV RBC chr6:134-136M 0.70 (0.08) 0.66 (0.09) -0.98 ([-1.00,-0.74])
MP HEIGHT chr5:175-177M 0.31 (0.04) 0.10 (0.01) -0.63 ([-0.82,-0.45])
URATE MCH chr6:24-25M 0.13 (0.02) 0.53 (0.07) 0.56 ([0.33,0.79])
URATE MCV chr6:24-25M 0.13 (0.02) 0.41 (0.06) 0.66 ([0.39,0.92])

We list pairs of traits for which the genome-wide genetic correlation is significant (two-tailed
p ă 0.05{630) and negligible in top and bottom half of this table, respectively. Here, we
focus only on the pairs of traits excluding TC (see Table 4.3 for pairs of traits involving
TC). Numbers in parentheses represent standard errors for local SNP heritability estimates
and 95% confidence intervals for local genetic correlation estimates.
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Table 4.3: Loci that show significant local genetic covariance (two-tailed p ă
0.05{1703{630) and local SNP heritability (one-tailed p ă 0.05{1703{36) for both
traits.

Trait1 Trait2 Locus h2
g,local,trait1 h2

g,local,trait2 rg,local

HDL TC chr2:21-23M 0.16 (0.03) 0.63 (0.04) -0.50 ([-0.67,-0.33])
HDL TC chr8:9-9M 0.14 (0.02) 0.16 (0.02) 0.98 ([0.74,1.00])
HDL TC chr9:107-109M 0.28 (0.03) 0.19 (0.03) 0.90 ([0.65,1.00])
HDL TC chr11:116-117M 0.40 (0.04) 0.27 (0.03) -0.41 ([-0.55,-0.27])
HDL TC chr15:58-59M 1.18 (0.06) 0.31 (0.03) 0.98 ([0.83,1.00])
LDL TC chr1:61-63M 0.14 (0.03) 0.28 (0.03) 0.97 ([0.67,1.00])
LDL TC chr1:108-110M 0.74 (0.05) 0.52 (0.04) 1.00 ([0.88,1.00])
LDL TC chr2:21-23M 0.84 (0.05) 0.63 (0.04) 1.00 ([0.87,1.00])
LDL TC chr2:43-44M 0.31 (0.03) 0.31 (0.03) 1.00 ([0.91,1.00])
LDL TC chr5:73-75M 0.28 (0.03) 0.24 (0.03) 1.00 ([0.76,1.00])
LDL TC chr5:155-156M 0.11 (0.02) 0.13 (0.02) 0.98 ([0.58,1.00])
LDL TC chr8:9-9M 0.12 (0.02) 0.16 (0.02) 1.00 ([0.72,1.00])
LDL TC chr8:126-128M 0.16 (0.03) 0.19 (0.03) 0.98 ([0.61,1.00])
LDL TC chr16:71-72M 0.19 (0.03) 0.19 (0.03) 0.99 ([0.70,1.00])
LDL TC chr19:9-11M 0.49 (0.04) 0.33 (0.03) 1.00 ([0.81,1.00])
LDL TC chr19:18-19M 0.18 (0.03) 0.26 (0.03) 0.99 ([0.74,1.00])
LDL TC chr19:44-46M 0.77 (0.05) 0.43 (0.04) 1.00 ([0.86,1.00])
TC TG chr1:61-63M 0.28 (0.03) 0.28 (0.03) 0.99 ([0.77,1.00])
TC TG chr2:21-23M 0.63 (0.04) 0.22 (0.03) 0.60 ([0.43,0.76])
TC TG chr8:126-128M 0.19 (0.03) 0.32 (0.04) 0.96 ([0.69,1.00])
TC TG chr11:116-117M 0.27 (0.03) 1.27 (0.06) 0.89 ([0.73,1.00])
TC TG chr15:58-59M 0.31 (0.03) 0.18 (0.03) 0.97 ([0.69,1.00])
TC TG chr19:18-19M 0.26 (0.03) 0.21 (0.03) 0.98 ([0.75,1.00])

Here, we focus only on the pairs of traits involving TC. The genome-wide genetic correlation
of each pair of traits is also significant (two-tailed p ă 0.05{630). Numbers in parentheses
represent standard errors for local SNP heritability estimates and 95% confidence intervals
for local genetic correlation estimates.
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Table 4.4: Bi-directional analysis of local genetic correlation identifies 40 pairs of
traits for which one is likely a causal factor of the other.

Trait1 r̂g,local,trait1 No. loci Trait2 r̂g,local,trait2 No. loci Direction Ratio
AM -0.47 (0.06) 54 BMI -0.49 (0.07) 51 BMI Ó AM 0.00e+00
AM 0.26 (0.05) 39 HEIGHT 0.09 (0.02) 429 AM Ò HEIGHT 0.00e+00
AM -0.18 (0.05) 60 HIP -0.26 (0.08) 36 HIP Ó AM 7.00e-05
AM -0.23 (0.05) 58 WC -0.36 (0.09) 28 WC Ó AM 1.09e-04
BMI -0.25 (0.06) 60 EY -0.35 (0.04) 133 EY Ó BMI 0.00e+00
BMI -0.47 (0.05) 57 HDL -0.18 (0.04) 81 BMI Ó HDL 0.00e+00
BMI -0.02 (0.04) 39 HEIGHT -0.16 (0.02) 432 HEIGHT Ó BMI 0.00e+00
BMI 0.95 (0.02) 32 HIP 0.77 (0.11) 11 BMI Ò HIP 0.00e+00
BMI 0.47 (0.05) 59 TG -0.02 (0.06) 60 BMI Ò TG 0.00e+00
URATE 0.07 (0.08) 28 BMI 0.55 (0.05) 64 BMI Ó URATE 1.80e-05
BMI 0.69 (0.03) 58 WHR 0.13 (0.13) 22 BMI Ò WHR 0.00e+00
BW -0.22 (0.05) 41 URATE -0.08 (0.09) 28 URATE Ó BW 0.00e+00
URATE -0.13 (0.05) 22 CRN -0.36 (0.08) 36 URATE Ó CRN 1.00e-06
CRN 0.04 (0.06) 41 WHR 0.07 (0.09) 27 CRN Ó WHR 2.06e-04
EY -0.19 (0.05) 138 HB -0.05 (0.10) 15 EY Ó HB 1.00e-06
EY 0.22 (0.03) 134 HDL 0.08 (0.03) 85 EY Ò HDL 3.91e-04
EY 0.16 (0.03) 100 HEIGHT 0.16 (0.02) 420 HEIGHT Ò EY 0.00e+00
EY -0.24 (0.04) 133 NEURO -0.14 (0.11) 11 EY Ó NEURO 0.00e+00
EY -0.20 (0.03) 134 TG -0.05 (0.05) 62 EY Ó TG 0.00e+00
EY -0.30 (0.03) 134 WC -0.25 (0.08) 34 EY Ó WC 0.00e+00
EY -0.34 (0.03) 136 WHR -0.17 (0.06) 27 EY Ó WHR 0.00e+00
HDL -0.12 (0.04) 81 HIP -0.50 (0.05) 36 HIP Ó HDL 2.00e-06
HDL -0.51 (0.07) 52 TG -0.48 (0.10) 29 HDL Ó TG 1.00e-06
HDL -0.25 (0.04) 82 WC -0.64 (0.05) 31 WC Ó HDL 0.00e+00
HDL -0.27 (0.06) 79 WHR -0.59 (0.12) 19 WHR Ó HDL 6.82e-04
HEIGHT 0.44 (0.01) 432 HIP 0.25 (0.06) 18 HEIGHT Ò HIP 0.00e+00
HEIGHT -0.09 (0.02) 420 LDL -0.01 (0.04) 30 HEIGHT Ó LDL 0.00e+00
HEIGHT -0.14 (0.02) 446 PLT -0.08 (0.13) 17 HEIGHT Ó PLT 0.00e+00
HEIGHT -0.12 (0.02) 415 TC -0.05 (0.05) 40 HEIGHT Ó TC 0.00e+00
HEIGHT -0.08 (0.02) 429 TG -0.05 (0.05) 37 HEIGHT Ó TG 1.00e-06
HEIGHT 0.30 (0.02) 443 WC 0.17 (0.05) 23 HEIGHT Ò WC 0.00e+00
HIP 0.26 (0.07) 41 TG -0.09 (0.06) 63 HIP Ò TG 4.59e-04
HIP 0.44 (0.08) 37 WHR -0.14 (0.09) 22 HIP Ò WHR 7.00e-06
LDL 0.93 (0.03) 11 TC 0.80 (0.08) 26 TC Ò LDL 0.00e+00
URATE 0.05 (0.05) 29 MP -0.02 (0.05) 62 URATE Ò MP 1.33e-04
NEURO 0.08 (0.11) 17 PLT -0.04 (0.07) 30 NEURO Ò PLT 4.00e-06
TG 0.09 (0.05) 62 WC 0.56 (0.06) 34 WC Ò TG 0.00e+00
TG 0.28 (0.05) 59 WHR 0.57 (0.10) 22 WHR Ò TG 6.67e-04
URATE 0.07 (0.05) 30 WC 0.69 (0.06) 39 WC Ó URATE 9.70e-05
WC 0.80 (0.02) 29 WHR 0.60 (0.07) 20 WC Ò WHR 0.00e+00

Here, “Trait 1” and “Trait 2” refer to the trait for which the GWAS hit loci were ascertained
in the bi-directional analysis. Traits that are likely a causal factor of the other are marked
with stars. Numbers in parentheses represent standard errors of the local genetic correlation
estimates.
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4.7 Figures
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Figure 4.1: Examples of two different distributions of local genetic covariances
(shown at the top of each bar) that result in the same total genetic covariance
(ρg,total = 0.05). In the left example, the total genetic covariance is a summation of a
large positive local genetic covariance at Region1 and two smaller negative local genetic
covariances at Region2 and Region3 (e.g, Regions 2 and 3 impact traits through a different
pathway than Region1). In the right example, the total genetic covariance is a summation
of small positive local genetic covariances (e.g., all three regions impact both traits through
the same pathway). Positive local genetic covariance can be interpreted as a locus driving a
pathway that regulates two traits in the same direction, and negative local genetic covariance
the opposite direction.
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Figure 4.2: Distribution of simulated genetic covariance and causal effect covari-
ance across 100 LD-independent regions on chromosome 1 binned by average LD
between causal variants. The red lines represent the average local genetic covariance in
each bin. For each region, we simulated 2 traits, each with 3 causal variants with effect sizes
set to 0.01, and with no shared causal variants (see Figure 4.3 for the case where the two
traits share causal variants). Genetic covariance varies with respect to LD whereas causal
effect covariance is always 0 (horizontal dotted line). Since genetic covariance can be thought
as an upper bound of prediction accuracy using causal effects from one trait to another, a
positive genetic covariance indicates that non-zero prediction accuracy could be attained by
virtue of LD tagging.
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Figure 4.3: Distribution of simulated local genetic covariance and causal effect co-
variance across 100 LD-independent regions on chromosome 1 binned by average
LD between causal variants. The red lines represent the average local genetic covariance
in each bin. Both traits each have 3 causal variants with effect size set to 0.01, and share all
the causal variants. Here, local genetic covariance varies with respect to LD whereas local
causal effect covariance is fixed at 0.0003.
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Figure 4.4: Performance of ρ-HESS and cross-trait LDSC using external reference
LD across 100 LD-independent regions, with each region having 1000 simula-
tions. Here, each dot represents the mean (over 100 regions) of the average performance
(over 1000 simulations per region), with error bars representing 1.96 times the standard error
on both sides. Overall, ρ-HESS provides approximately unbiased estimates of local genetic
covariance (see Figure 4.4a) and correlation (see Figure 4.4b), and is not sensitive to the
underlying genetic architectures (see Figure 4.4c for covariance and 4.4d for correlation).
We also observe that ρ-HESS is less biased, more consistent, and has smaller standard error
than cross-trait LDSC.
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Figure 4.5: Genetic correlation across the 36 complex traits obtained by ρ-HESS
(top half) and cross-trait LDSC [18] (bottom half). The magnitude of the correlation
is represented by the color and the size of the square. Among the 630 pairs of traits, ρ-HESS
(cross-trait LDSC) identified 298 (115) pairs showing significant genetic correlation (marked
with dots)
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Figure 4.6: Distribution of standardized local genetic covariance (local genetic
covariance standardized by the square roots of total SNP-heritability of two
traits) for the pairs of traits BMI and TG, NEURO and RBC, AM and BMI.
Pairs of traits with positive (negative) genome-wide genetic correlation show a shift in the
distribution of standardized local genetic covariance away from 0.
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Figure 4.7: Manhattan-style plots showing the estimates of local genetic covariance
for the pairs of traits HDL and LDL. Although the genome-wide genetic correlation
between HDL and LDL does not reach the significance level (p ă 0.05{630), 11 loci exhibit
significant local genetic covariance.
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Figure 4.8: Manhattan-style plots showing the estimates of local genetic covariance
for the pairs of traits BMI and TG. That the local genetic covariance between BMI
and TG is mostly one-sided implies plausible causal relationship between the two traits
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Figure 4.9: Estimates of local genetic correlation at loci ascertained for GWAS
risk variants for 8 examples pairs of traits that show plausible causal relationship.
We obtained standard error using a jackknife approach. Error bars represent 1.96 times the
standard error on each side.
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CHAPTER 5

Dissecting genetic architectures of complex traits

specific to and shared by East Asian and European

populations

5.1 Introduction

Most genome-wide association studies (GWASs) to date are based on samples of European

descent [127, 135, 161, 120]. The lack of GWAS in other continental populations, such as

African and Asians, limits the transferability of GWAS findings in Europeans into other pop-

ulations due to factors including heterogeneity in genetic architectures, linkage disequilibrium

(LD), minor allele frequencies, and environmental background [100, 102, 135, 144, 15]. The

recent increase in the number of GWASs in non-European populations creates immense op-

portunities for trans-ethnic genetic studies [114, 21, 87, 71]. Indeed, analyzing GWAS results

obtained from different continental populations has been shown to greatly improve power

of disease mapping [108, 87, 114], resolution of fine-mapping [167, 5, 72, 173], and accuracy

of risk prediction [101]. A fundamental quantity of interest in trans-ethnic genetic studies

is the similarity of genetic architectures of a complex trait in two continental populations,

and has been measured through trans-ethnic genetic correlation [170, 97, 15]. Methods for

estimating trans-ethnic genetic correlation typically rely on the infinitesimal model, assum-

ing every genetic variant contributes a small effect to the complex trait in both populations

[170, 15], and thus do not explicitly model polygenicity of the complex trait. While previous

study suggests that most common causal variants are shared across continental populations
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[100], what the proportion of shared causal variants is and which genetic variants [44, 43, 56]

are shared / population-specific remain unclear.

Here, we introduce POSC, a method to dissect genetic variants that are causal only in a

single continental population (i.e. population-specific) and those that are causal in both

continental populations (i.e. shared) from GWAS summary statistics data. POSC employs

a Bayesian approach to explicitly model polygenicity of a complex trait and linkage disequi-

librium in both continental populations. POSC yields as output estimates of genome-wide

proportions of population-specific and shared causal variants. These estimates constitute

prior probabilities in an empirical Bayes framework to quantify posterior probability of each

SNP to be population-specific or shared. Further, we define enrichment of population-specific

/ shared causal variants in a functional category as the ratio between the posterior expecta-

tion and prior expectation of the number of population-specific / shared causal variants in

the functional category.

Through extensive simulations, we show that POSC yields accurate estimates of proportion

of population-specific / shared causal variants and well-calibrated statistics for testing en-

richment using either in-sample or external reference LD matrices. We applied POSC on

summary associations statistics of 18 large-scale GWASs of 9 complex traits and diseases

in East Asian and European populations (average NEAS “ 94, 621 NEUR “ 103, 507) using

1000 Genomes Project [28] as the external reference panel. First, we estimated genome-wide

proportion of population-specific and shared causal variants. Next, we quantified posterior

probability for each SNP to be population-specific / shared, and estimated expected number

of population-specific / shared causal variants at GWAS risk regions. Finally, we estimated

enrichment of population-specific / shared causal variants in specifically expressed genes in

53 GTEx tissues [43]. We found that all the traits analyzed were highly polygenic in both

populations, that while a large proportion of causal variants of these traits and diseases

were shared by both populations, each population also possessed a substantial proportion

of population-specific causal variants, and that regions of genes expressed in trait-relevant

tissues harbor both population-specific and shared causal variants.
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5.2 Methods

5.2.1 Overview of methods

We introduce POSC, a method for dissecting population-specific and shared causal variants

from GWAS summary statistics data, while accounting for linkage disequilibrium in two

continental populations. POSC explicitly models the SNP causal status vectors in two

continental populations (see Figure 5.1), and imposes a mixture of zero and normal prior on

SNP effect sizes [73, 10, 64]. POSC yields estimates of numbers of population-specific and

shared causal variants using a expectation maximization (EM) algorithm [37] coupled with

Markov Chain Monte Carlo (MCMC) sampling. These estimates are subsequently used to

quantify posterior probability of each SNP to be population-specific or shared in an empirical

Bayes framework. We also provides method to quantify enrichment of population-specific /

shared causal variants in a functional category, analogous to but conceptually different from

definitions of enrichment of SNP-heritability [44, 149].

5.2.2 The multivariate Bernoulli (MVB) distribution

The multivariate Bernoulli (MVB) is a generalization of the Bernoulli for modeling distribu-

tion of binary vectors of arbitrary size [30, 141]. Let B P t0, 1up represent a random binary

vector of size p, then the distribution of B under MVB can be described by 2p probabilities,

namely PrpB “ 0, ¨ ¨ ¨ , 0q ¨ ¨ ¨PrpB “ 1, ¨ ¨ ¨ , 1q, one for each of the 2p possible realizations of

B [30, 141]. Alternatively, one can adopt an index set representation of the binary vector

B, A “ ti : Bi “ 1u, a set of indices of 1’s in B, and represent the distribution of B as the

ratio,

PrpBq “ PrpAq “
exp

`
ř

CĎA fC
˘

ř

D exp
`
ř

CĎD fC
˘ “

exp pSAq
ř

D exp pSDq
, (5.1)

where fC ’s are the natural parameters of the MVB [30, 141], and SA “
ř

CĎA fC .

We use the convention that the right-most bit in the binary vector is the first bit, and the
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left-most bit is the last bit. For the sake of convenience, we use binary string and index set

representation of binary vectors interchangeably (e.g. both the binary string 011 and the

index set t1, 2u represent the binary vector p0, 1, 1q).

As a concrete example, consider binary vectors of size 2. The probabilities of each possible

realization of binary vectors of size 2 under the MVB are

Prp00q “ Prpφq “
exppf00q

exppf00q ` exppf00 ` f01q ` exppf00 ` f10q ` exppf00 ` f01 ` f10 ` f11q

Prp01q “ Prpt1uq “
exppf00 ` f01q

exppf00q ` exppf00 ` f01q ` exppf00 ` f10q ` exppf00 ` f01 ` f10 ` f11q

Prp10q “ Prpt2uq “
exppf00 ` f10q

exppf00q ` exppf00 ` f01q ` exppf00 ` f10q ` exppf00 ` f01 ` f10 ` f11q

Prp11q “ Prpt1, 2uq “
exppf00 ` f01 ` f10 ` f11q

exppf00q ` exppf00 ` f01q ` exppf00 ` f10q ` exppf00 ` f01 ` f10 ` f11q

.

(5.2)

5.2.3 Modeling GWAS summary statistics in two ancestral populations

5.2.3.1 MVB prior for SNP causal status in two ancestral populations

We use binary vector of size 2, Ci “ pci1, ci2q, to model the causal statuses of SNP i in two

ancestral populations. In total, there are 4 possible binary vectors of size 2: (1) Ci “ 00,

the SNP is causal for none of the population; (2) Ci “ 01, the SNP is causal in population

1; (3) Ci “ 10, the SNP is causal in population 2; (4) Ci “ 11, the SNP is causal in both

populations.

Ci can be modeled using a multinomial distribution, Multpp00, p01, p10, p11q, where p00, p01,

p10, and p11 represent the probability of each possible binary vector of size 2. Equivalently,

one can model Ci through the MVB as,

PrpCi “ 00q “
exppf00q

η
, PrpCi “ 01q “

exppf01 ` f00q

η

PrpCi “ 10q “
exppf10 ` f00q

η
, PrpCi “ 11q “

exppf11 ` f10 ` f01 ` f00q

η
,

(5.3)
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where η “ exppf00q ` exppf01 ` f00q ` exppf10 ` f00q ` exppf11 ` f10 ` f01 ` f00q is the

normalization constant, and f “ pf00, f01, f10, f11q parameters of the MVB (see Equation

(5.2)).

The MVB distribution is invariant with respect to the parameter f00, and we enforce f00 to

be 0 as a convention [30]. The parameters, f01 and f10, govern the probability of a SNP being

specific to a population, and f11, the dependence of causal status between two populations

– a zero f11 indicates independence, and a non-zero f11, dependence [30, 141]. Each MVB

parameter is a real number (i.e. f P R4), one can apply unconstrained optimization to

estimate the MVB parameters.

5.2.3.2 Joint distribution of GWAS summary statistics in two ancestral popu-

lations

We model phenotypes in two ancestral populations, Y 1 and Y 2, using the linear model,

Y 1 “ X1β1 ` ε1 and Y 2 “ X2β2 ` ε2, where Y 1 P Rn1 and Y 2 P Rn2 are the phenotype

measurements of the phenotype in the two populations, with sample size n1 and n2, X1 P

Rn1ˆp and X2 P Rn2ˆp column-standardized genotype matrix at p SNPs, β1 P Rp and

β2 P Rp standardized effect size of SNPs on the phenotype in two populations, and ε1 P Rn1

and ε P Rn2 environmental effect. We further assume that each row of X1 and X2 is

drawn from a distribution where the covariance structure is V 1 and V 2, the LD matrix of

each population, respectively, and that ε1i „ N p0, σ2
e1q, β2i „ N p0, σ2

e2q, where σ2
e1 and σ2

e2

represent variance of the environmental effects.

In typical GWASs, one obtains association statistics (Z-scores) of every SNP as

Z1 “
1
?
n1

Xᵀ
1Y 1,

Z2 “
1
?
n2

Xᵀ
2Y 2,

(5.4)
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and have been shown to follow a multivariate normal distribution [140],

Z1|β1 „ N
`?

n1V 1β1, σ
2
e1V 1

˘

,

Z2|β2 „ N
`?

n2V 1β2, σ
2
e2V

˘

.
(5.5)

Further, given causal status vectors, c1 and c2, of every SNP in each population, one obtains

the conditional distribution Z1|β1, c1 and Z2|β2, c2 as

Z1|β1, c1 „ N
`?

n1V 1pβ1 ˝ c1q, σ
2
e1V 1

˘

,

Z2|β2, c2 „ N
`?

n2V 2pβ2 ˝ c2q, σ
2
e2V 2

˘

,
(5.6)

where ˝ denotes the Hadamard product [74].

Following Equation (5.6), one can evaluate the likelihood of Z1 and Z2 given the true causal

effect size vectors β1 and β2. However, in reality the true causal effect size vectors are not

given, and estimating these parameters from data will likely lead to over-fit. Instead, we

impose a normal prior on the causal SNPs in β1 and β2,

β1|c1 „ N

ˆ

0,
h2
g1

|c1|
diagpc1q

˙

,

β2|c2 „ N

ˆ

0,
h2
g2

|c2|
diagpc2q

˙

,

(5.7)

where h2
g1, h2

g2 are the SNP-heritability of the phenotype in the two populations, and |c1|,

|c2| denote the number of 1’s (i.e. number of causal SNPs) in the binary vectors [73, 10, 64].

With the normal prior on β1 and β2, the conditional distribution, Z1|c1 and Z2|c2, is then

Z1|c1 „ N
`

0,V 1 ` σ
2
1V 1 diagpc1qV 1

˘

,

Z2|c2 „ N
`

0,V 2 ` σ
2
2V 2 diagpc2qV 2

˘

,
(5.8)

where σ2
1 “

n1h2g1
|c1|

and σ2
2 “

n2h2g2
|c2|

.

Incorporating the MVB prior on the causal status vectors, one obtains the distribution of
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Z1 and Z2, parameterized by the MVB parameters, f “ pf00, f01, f10, f11q,

PrpZ1,Z2;fq “
ÿ

c1

ÿ

c2

PrpZ1,Z2, c1, c2;fq “
ÿ

c1

ÿ

c2

PrpZ1|c1qPrpZ2|c2qPrpc1, c2;fq

“
ÿ

c1

ÿ

c2

»

–

NpZ1; 0,V 1 ` σ
2
1V 1 diagpc1qV 1qˆ

NpZ2; 0,V 2 ` σ
2
2V 2 diagpc2qV 2q ˆ

śp
i“1

exppSCi
q

ř

B exppSBq

fi

fl

(5.9)

To model joint distribution of GWAS summary statistics across L LD-independent loci, we

take the product of the probability of Z-scores at each loci,

PrpZ1t1,¨¨¨ ,Lu,Z2t1,¨¨¨ ,Luu;fq “
L
ź

l“1

PrpZ1l,Z2l;fq

“

L
ź

l“1

$

&

%

ÿ

c1l

ÿ

c2l

»

–

NpZ1l; 0,V 1l ` σ
2
1lV 1l diagpc1lqV 1lqˆ

NpZ2l; 0,V 2l ` σ
2
2lV 2l diagpc2lqV 2lq ˆ

śpl
i“1

exppSCli
q

ř

B exppSBq

fi

fl

,

.

-

.

(5.10)

5.2.4 Model fitting using Expectation Maximization

5.2.4.1 Expectation step

We use expectation-maximization (EM) to estimate the model parameters f . First, we

derive the complete log-likelihood of the data

`
`

f |Z1t1,¨¨¨ ,Lu,Z2t1,¨¨¨ ,Lu, c1t1,¨¨¨ ,Lu, c2t1,¨¨¨ ,Lu

˘

“ log

$

&

%

L
ź

l“1

»

–

NpZ1l; 0,V 1l ` σ
2
1lV 1l diagpc1lqV 1lqˆ

NpZ2l; 0,V 2l ` σ
2
2lV 2l diagpc2lqV 2lq ˆ

śpl
i“1

exppSCli
q

ř

B exppSBq

fi

fl

,

.

-

“

L
ÿ

l“1

“

logNpZ1l; 0,V 1l ` σ
2
1lV 1l diagpc1lqV 1lq ` logNpZ2l; 0,V 2l ` σ

2
2lV 2l diagpc2lqV 2lq

‰

`

L
ÿ

l“1

pl
ÿ

i“1

SCli ´ log

˜

ÿ

B

exppSBq

¸

L
ÿ

l“1

pl.

(5.11)
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In the expectation step of the EM algorithm, one finds the expectation of the log likelihood

with respect to the causal status vectors c1t1,¨¨¨ ,Lu, c2t1,¨¨¨ ,Lu, conditioned on the current

estimate of the model parameter f ptq,

Q
´

f |f ptq
¯

“ E
“

`
`

f |Z1t1,¨¨¨ ,Lu,Z2t1,¨¨¨ ,Lu, c1t1,¨¨¨ ,Lu, c2t1,¨¨¨ ,Lu

˘‰

“

L
ÿ

l“1

ÿ

c1l,c2l

Pr
´

c1l, c2l|f
ptq,Z1l,Z2l

¯

»

–

logNpZ1l; 0,V 1l ` σ
2
1lV 1l diagpc1lqV 1lq

` logNpZ2l; 0,V 2l ` σ
2
2lV 2l diagpc2lqV 2lq

fi

fl

`

L
ÿ

l“1

ÿ

c1l,c2l

Pr
´

c1l, c2l|f
ptq,Z1l,Z2l

¯

˜

pl
ÿ

i“1

SCli

¸

´ log

˜

ÿ

B

exppSBq

¸

L
ÿ

l“1

pl,

(5.12)

where Pr
´

c1l, c2l|f
ptq,Z1l,Z2l

¯

can be found as,

Pr
´

c1l, c2l|f
ptq,Z1l,Z2l

¯

“

Pr
´

c1l, c2l,Z1l,Z2l|f
ptq
¯

ř

b1l,b2l
Pr

´

b1l, b2l,Z1l,Z2l|f
ptq
¯ . (5.13)

5.2.4.2 Maximization step

In the maximization step, one finds

f pt`1q
“ argmaxf Q

´

f |f ptq
¯

“ argmaxf gpfq, (5.14)

where

gpfq “
L
ÿ

l“1

ÿ

c1l,c2l

Pr
´

c1l, c2l|f
ptq,Z1l,Z2l

¯

˜

pl
ÿ

i“1

SCli

¸

´ log

˜

ÿ

B

exppSBq

¸

L
ÿ

l“1

pl, (5.15)

removing the irrelevant constant in Qpf |f ptqq.

Evaluating gpfq involves a summation over all possible causal status vectors, which has time
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complexity on the order of Op22plq and is intractable. Instead we recognize that

gpfq “
L
ÿ

l“1

ÿ

c1l,c2l

E

«

pl
ÿ

i“1

SCli

ff

´ log

˜

ÿ

B

exppSBq

¸

L
ÿ

l“1

pl

« hpfq “
L
ÿ

l“1

«

1

J

J
ÿ

j“1

˜

pl
ÿ

i“1

S
C
pjq
li

¸ff

´ log

˜

ÿ

B

exppSBq

¸

L
ÿ

l“1

pl,

(5.16)

where C
pjq
li “

´

c
pjq
1i , c

pjq
2i

¯

represents the causal status of the i-th SNP at locus l in the two

populations, from the causal status vectors, c
pjq
1 , c

pjq
2 , sampled from the posterior distribution

Pr pc1l, c2l|Z1l,Z2l,f
˚
q. We use Gibbs sampling to efficiently sample causal status vectors

from the posterior (see Section 5.2.5).

It can be shown that the following parameter updates maximizes hpfq,

f
pt`1q
00 “ 0,

f
pt`1q
01 “ log q̄01 ´ log q̄00,

f
pt`1q
10 “ log q̄10 ´ log q̄00,

f
pt`1q
11 “ log q̄11 ´ log q̄01 ´ log q̄10 ` log q̄00,

(5.17)

where q̄00, q̄01, q̄10, and q̄11 represent the average count of 01, 10, and 11 causal status at a

single SNP in two ancestral populations across MCMC samples from the Gibbs sampler (see

Section 5.2.5).

5.2.5 Sampling causal status vectors from posterior distribution

We use Gibbs sampling to sample C “ pc1, c2q from the posterior distribution,

C „ Pr pC|f ,Z1,Z2q9Pr pZ1,Z2,C|fq . (5.18)

For notational simplicity, here, we drop the index l, representing different loci. To advance

the Markov chain from step j to step j`1 in Gibbs sampling, at step j we select SNP k and
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evaluate the probability of the four possible cross-population causal configurations at that

SNP,

Pr
´

Z1,Z2,Ck “ 00,C
pjq
 j|f

¯

Pr
´

Z1,Z2,Ck “ 01,C
pjq
 j|f

¯

Pr
´

Z1,Z2,Ck “ 10,C
pjq
 j|f

¯

Pr
´

Z1,Z2,Ck “ 11,C
pjq
 j|f

¯

,
(5.19)

where C
pjq
 j denotes the rest of the causal configurations excluding that of SNP k in the j-th

step. Then we sample Cpj`1q based on the following probability

Pr
´

Cpt`1q
“

´

Ck “ b
1,C

pjq
 j

¯¯

“

Pr
´

Z1,Z2,Ck “ b
1,C

pjq
 j|f

¯

ř

b Pr
´

Z1,Z2,Ck “ b,C
pjq
 j|f

¯ . (5.20)

To evaluate PrpZ1,Z2, c1, c2|fq “ PrpZ1|c1qPrpZ2|c2qPrpc1, c2|fq, we note that previous

work has shown that

PrpZ1|c1q “ N
`

Z1|0,V 1 ` σ
2
1V

2
1

˘

9
N
`

Z1c1 |0,V 1c1 ` σ
2
1V

2
1c1

˘

N pZ1c1 |0,V 1c1q
, (5.21)

where BF1 “
NpZ1c1 |0,V 1c1`σ

2
1V

2
1c1
q

NpZ1c1 |0,V 1c1q
is the Bayes factor at only the causal SNPs, reducing the

time complexity of evaluating the probability from p3 to p3
causal. Let V 1c1 “

řpcausal
i“1 wiuiu

ᵀ
i be

the eigenvalue decomposition of V 1c1 , where wi and ui are the eigenvalues and eigenvectors

of V 1c1 , we further note that BF1 can be expressed as

BF1 “
detpV 1c1 ` σ

2
1V

2
1c1
q´

1
2 exp

“

´1
2
Zᵀ

1c1
pV 1c1 ` σ

2
1V

2
1c1
q´1Z1c1

‰

detpV 1c1q
´ 1

2 exp
`

´1
2
Zᵀ

1c1
V ´1

1c1
Z1c1

˘

9

˜
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(5.22)

avoiding numerical instability introduced by small eigenvalues. The Bayes factor for Z2c2

can be obtained using the same approach.
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5.2.6 Posterior probability of each SNP to be ancestry-specific or shared

We use posterior probability of each SNP to be ancestry-specific or shared to assess evidence

of specific or shared genetic architecture at single-SNP resolution. Specifically, we evaluate

PrpCi “ b|Z1,Z2,f
˚
q (5.23)

for b P t01, 10, 11u at each SNP i, where f˚ denotes the estimated MVB parameter. We

show below that the per SNP posterior probability in Equation (5.23) can be evaluated using

the Gibbs sampling procedure outlined in Section 5.2.5. First, we note that

PrpCi “ b|Z1,Z2,f
˚
q “

ÿ

C i

PrpCi “ b,C i|Z1,Z2f
˚
q

“
ÿ

C i

PrpCi “ b|C i,Z1,Z2f
˚
qPrpC i|Z1,Z2f

˚
q

“ E rPrpCi “ b|C i,Z1,Z2f
˚
qs “ E

“

Er1tCi“bu|C i,Z1,Z2f
˚
s
‰

“ Er1tCi“bu|Z1,Z2f
˚
s «

řJ
j“1 1tC

pjq
i “bu

J
,

(5.24)

where Cpjq is the j-th causal status vectors (out of a total of J samples) sampled from the

posterior distribution PrpC|Z1,Z2,f
˚
q (see Section 5.2.5). To ensure stable estimates of the

posterior probability, we run the Gibbs sampling procedure 20 times and report the average

posterior probability.

5.2.7 Defining approximately independent LD blocks in both ancestral popu-

lations

We adapted LDetect [12] to define blocks of SNPs that are approximately independent

in both East Asian and European populations. Briefly, LDetect is a method to define

approximately independent blocks of SNPs in a single population [12]. It involves estimating

a regularized LD matrix of a single population and identifying block structures in the LD
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matrix, which constitute the approximately independent LD blocks[12].

To define approximately independent blocks of SNPs for two populations, we first com-

pute regularized LD matrices of both populations (V EAS and V EUR), following the LDetect

procedure[12]. Then we construct a new matrix (V trans) by taking the maximum LD in East

Asian and European LD matrices for each pair of SNPs,

V trasn,ij “

$

’

&

’

%

V EAS,ij if|V EAS,ij| ą |V EUR,ij|

V EUR,ij if|V EUR,ij| ą |V EAS,ij|

. (5.25)

The matrix V trans is block diagonal due to shared recombination hot spots in both popula-

tions. We then applied LDetect procedure [12] to identify block structure in V trans.

Using the above procedure, we identified 1,368 approximately independent LD blocks (2Mb

wide on average) in both East Asian and European populations.

5.2.8 Simulation framework

We used genotype data of chromosome 22 from CONVERGE [21] and UK Biobank [151]

to simulate GWAS summary statistics for East Asian and European populations. We used

genotype data from 1000 Genomes Project [2] as the reference panel. Since SNPs in perfect

LD have identical Z-scores, we performed minimal LD pruning (at R2 threshold of 0.95) on

reference LD matrix using PLINK 1.9 [132], to remove perfectly correlated SNPs. We also

removed strand-ambiguous SNPs and SNPs with minor allele frequency (MAF) less than 1%

in either population, resulting in a total of 8,599 SNPs on chromosome 22.

We simulated phenotypes based on the linear model Y 1 “ X1β1 ` ε1,Y 2 “ X2β2 ` ε2,

where effects of causal SNPs, β1c1 and β2c1 , in each population, were drawn from

β1c1 „ N

ˆ

0,
h2
g1

|c1|
I

˙

,β2c2 „ N

ˆ

0,
h2
g2

|c2|
I

˙

, (5.26)
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and effects of non-causal SNPs were set to 0. Here, c1 and c2 are the index set of causal

SNPs in each population. We simulated environmental effect of each individual i, ε1i and

ε2i, from ε1i „ Np0, 1 ´ h2
g1q and ε2i „ Np0, 1 ´ h2

g2q. We then simulated Z-scores for the

entire chromosome 22.

5.2.8.1 Specifically expressed genes annotation

We obtained SNP annotations for genes specifically expressed in a tissue across 53 GTEx

tissues from Finucane et al. [43]

5.3 Results

5.3.1 Performance of POSC in simulations

We assessed the performance of POSC through extensive simulations. First, we evaluated

the computation efficiency of POSC. The EM-MCMC algorithm for estimating the number of

population-specific / shared causal variants typically converged in 200 iterations (see Figure

5.2), with run time increasing with total number of causal SNPs (see Figure 5.2). For exam-

ple, in simulations where we randomly drew 20 causal variants for each population, POSC

terminated in 90 minutes on average, increasing to 360 minutes in simulations involving 100

causal variants. We note, however, that the EM-MCMC procedure can be parallelized to

decrease run time. Evaluating per-SNP posterior probability to be population-specific or

shared using the estimated prior took on average 5 minutes in simulations where 20 causal

variants were drawn for each population, and 28 minutes in simulations involving 100 causal

variants (see Figure 5.3).

Next, we evaluated the accuracy of POSC in estimating the number of population-specific

and shared causal variants. When in-sample LD was used, POSC yielded approximately

unbiased estimates of the number of population-specific and shared causal variants (see
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Figure 5.4). And when external reference LD obtained from 1000 Genomes Project [28]

was used, POSC yielded slightly upwardly biased estimates (see Figure 5.4 bottom panel).

For example, in simulations where we randomly chose (out of a total of 8,599 SNPs) 50

East Asian-specific, 50 European-specific, and 50 shared causal variants, POSC yielded an

estimates of 37.8 (S.E. 4.5), 40.3 (S.E. 4.9), and 64.9 (S.E. 6.3), respectively, when in-sample

LD was used, and an estimates of 48.0 (S.E. 5.9), 53.7 (S.E. 7.44), and 78.8 (S.E. 7.6),

respectively, when external reference LD was used.

We also assessed the effect of SNP-heritability of the trait and sample size of the GWAS

on the estimates of POSC. We saw a slight decrease in accuracy as the product between

SNP-heritability and sample size decreases (see Figure 5.5). This is not unexpected since the

likelihood of GWAS summary statistics is a function of the product between SNP-heritability

of the trait and sample size of the GWAS – as the product decreases to zero, Z-scores give

little information regarding the causal status, leading to inaccurate estimates.

Finally, we obtained statistics testing enrichment of population-specific and shared causal

variants in annotations defined by specifically expressed genes in 53 GTEx tissues [43] in

simulations. Since we drew causal variants at random, the simulations constituted null

simulations with no enrichment in any functional annotation. Overall, the statistics were

conservative with either in-sample LD or external reference LD (see Figure 5.10), at different

levels of polygenicity, or with different power (product between SNP-heritability and sample

size) of the GWAS.

5.3.2 Number of population-specific and shared causal variants in complex

traits

We analyzed 18 publicly available summary association statistics of GWAS of 9 complex

traits in East Asian (EAS) and European (EUR) populations (see Table 5.1). For computa-

tional efficiency, we first estimated number of population-specific and shared causal variants

on each chromosome separately in parallel, with 500 EM iterations for each chromosome
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to ensure convergence. The EM algorithm converged after 200 iterates for all traits except

BMI, which didn’t converge until after 300 iteration, likely due to its high polygenicity.

Next, we aggregated the chromosomal estimates to obtain genome-wide number of population-

specific and shared causal variants. The complex traits we analyzed displayed a wide range

of degrees of polygenicity, with number of causal variants ranging from 877 (S.E. 8) and

1,228 (S.E. 11) in EAS and EUR for rheumatoid arthritis (RA), to 25,296 (S.E. 85) and

26,206 (S.E. 66) in EAS and EUR for BMI (see Table 5.2). Notably, we highlight that our

estimated proportion of causal variants for BMI in EUR, 10.1%, was consistent with an

estimate obtained by a recent method using individual-level data [175].

As expected, in all analyzed traits, a large fraction of causal variants in each population

were shared with the other population (see Table 5.2), consistent with similar conclusions

reached a by previous study [100]. For example, we estimated that among the 25,296 (S.E.

85) and 26,206 (S.E. 66) (EUR) causal variants for BMI in EAS and EUR, 22,664 (S.E. 141)

were shared by both populations, comprising 90% and 86% of the total causal variants of

BMI in each population, respectively. However, for some complex traits, each population

also possessed a substantial proportion of population-specific causal variants. For example,

out of the estimated total of 6,356 (S.E. 19) and 5,892 (S.E. 27) causal variants for total

cholesterol (TC) in East Asians and Europeans, 2,467 (S.E. 22) and 2,003 (S.E. 16) were

specific to each population, comprising 39% and 34% of the estimated total number of causal

variants in each population, respectively (see Table 5.2).

5.3.3 Causal variants of complex traits are spread across the entire genome

We divided the estimated number of population-specific / shared causal variants by the total

number of SNPs in each GWAS study to obtain proportion estimates, and used them as prior

probabilities in an empirical Bayes framework to evaluate posterior probability of each SNP

to be population-specific / shared (see Figure 5.7). We aggregated the posterior probabilities

of SNPs in each defined approximately LD-independent regions to obtain expected number
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of population-specific / shared causal variants at each region. For most analyzed traits,

both population-specific and shared causal variants were widely spread across the entire

genome (see Figure 5.8). As an example, mean corpuscular hemoglobin (MCH) harbored

0.68 (S.D. 0.42) EAS-specific, 0.53 (S.D. 0.40) EUR-specific, and 2.19 (S.D. 1.46) shared

causal variants, per LD-independent region (see Figure 5.8). Interestingly, we found that for

rheumatoid arthritis (RA), nearly all the population-specific causal variants concentrated in

the MHC (chr6:25M–35M) region. Indeed, selection at MCH region may give rise to different

causal variants in each population [105], although we caution that complex LD structures

around the MHC region might introduced bias our estimates. Next, we aggregated the

posterior probabilities by chromosome to obtain the expected number of population-specific

/ shared causal variants on each chromosome. The expected number of both population-

specific and shared causal variants was highly proportional to the size of the chromosome,

recapitulating similar findings using local SNP-heritability [91, 140].

5.3.4 GWAS risk regions contain multiple causal variants in both populations

We investigated whether genomic regions harboring significant associations (GWAS risk re-

gions) in only one population contained causal variants that are shared by both populations.

We quantified the expected number of shared as well as population-specific causal variants in

regions that contained GWAS-significant associations in only the East Asian (EAS) GWAS

or European (EUR) GWAS. First, regions with GWAS-significant associations in both EAS

and EUR GWAS harbored multiple causal variants that were shared across the two popu-

lations (see Figure 5.9), recapitulating previous findings on allelic heterogeneity of complex

traits [65, 140, 54]. Second, regions with GWAS-significant associations only in EAS or EUR

GWAS contained causal variants shared by both populations (see Figure 5.9). For exam-

ple, regions with GWAS-significant associations for mean corpuscular volume (MCV) only

in the EAS / EUR GWAS harbored 3.0 (S.D. 1.7) / 3.3 (S.D. 1.5) shared causal variants

on average, respectively (see Figure 5.9), consistent with previous study suggesting that

the lack of shared GWAS associations in two continental populations is likely in part due
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to heterogeneity in LD structures of the two populations [100]. In addition, we didn’t ob-

serve a noticeable difference in the expected number of EAS-specific and EUR-specific causal

variants at regions harboring GWAS-significant associations only in East Asian / European

GWAS (see Figure 5.9). Finally, regions that contained no GWAS-significant association in

either population also harbored multiple causal variants shared (see Figure 5.9), suggesting

that a large fraction of causal variants of complex traits resided in sub-GWAS regions.

5.3.5 Enrichment analysis of population-specific and shared causal variants

Recent work has found enrichment of SNP-heritability in regions of specifically expressed

genes (SEG) in trait-relevant tissues and cell types [43, 44]. Here, we investigated whether

genetic architectures of complex traits were consistent in SEG in trait-relevant tissues across

East Asians (EAS) and Europeans (EUR). First, we estimated enrichments of population-

specific and shared causal variants for each analyzed trait in SEG across 53 GTEx tissues

using SNP annotations described in [43], and tested for significance with a stringent Bon-

ferroni corrected threshold of 0.05/53 (see Figure 5.10). All analyzed traits except major

depressive disorder (MDD) exhibited significant enrichment of shared causal variants in at

least one SEG in a trait-relevant tissue (see Figure 5.10), suggesting that in regions of genes

that are expressed in trait-relevant tissues, there were more shared causal variants across

EAS and EUR than the rest of the genome.

Next, we investigated whether there was heterogeneity in genetic architectures in SEG across

EAS and EUR. Out of the 9 analyzed traits, 7 traits showed significant enrichment of

population-specific causal variants in at least one SEG (see Figure 5.10). We highlight the

two hematological traits, mean corpuscular hemoglobin (MCH) and mean corpuscular vol-

ume (MCV), which displayed significant enrichments of both population-specific and shared

causal variants in SEG in multiple tissues (see Figure 5.10). For example, MCV showed a

1.3x (S.E. 0.0041, p=5.3 ˆ 10´14) enrichment of shared causal variants in SEG in blood,

and also a 1.1x (S.E. 0.0031, p=2.0ˆ 10´4) and 1.3x (S.E. 0.0062, p=3.6ˆ 10´6) enrichment

of EAS-specific and EUR-specific causal variants in SEG in whole blood (see Figure 5.11),
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respectively, suggesting that regions of genes that are expressed in whole blood harbor both

more population-specific and shared causal variants across EAS and EUR than the rest of

the genome.

5.4 Discussion

We have presented POSC, a method to dissect population-specific and shared causal vari-

ants of complex traits across two continental populations from GWAS summary association

statistics data. POSC employs a Bayesian approach to explicitly model polygenicity of a

trait and LD structures in both populations. In extensive simulations using either in-sample

or external reference LD, POSC yielded accurate and robust estimates of proportion of

population-specific / shared causal variants and well-calibrated statistics for testing enrich-

ment in functional annotations. We applied POSC on 18 summary association statistics

data of 9 complex traits obtained from samples of East Asian (EAS) and European (EUR)

descent to glean insights into the underlying genetic architectures of complex traits in both

populations.

First, we showed that while East Asian and European populations shared a large proportion

of causal variants for multiple complex traits, each population also possessed a substantial

proportion of population-specific causal variants. Second, our results suggested that regions

that harbor GWAS risk variants for one population was enriched for causal variants in the

other population, indicating that the lack of GWAS signal was likely attributable to differ-

ences in LD structure and power of GWAS. Third, our analysis of enrichment of population-

specific / shared causal variants in SEG annotations [43] demonstrated that regions of genes

expressed in trait-relevant tissues harbored an excess of both shared and population-specific

causal variants for multiple complex traits. Overall, our analysis provides valuable insights

into the underlying genetic architectures of complex traits in different populations, and high-

lights the importance of performing GWAS in non-European populations.

We conclude by highlighting caveats and limitations of our analysis. First, we note that the
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estimates of proportion of population-specific and shared causal variants can be influenced

by gene-environment interactions, and that one should exercise caution when interpreting

these results. For example, if a SNP has effect on a trait only under the East Asian envi-

ronment, then POSC will interpret that SNP as an EAS-specific causal variant, even though

the SNP may still be biologically causal in Europeans. Second, our analysis only included

genetic variants with minor allele frequency (MAF) greater than 1% in both populations for

the sake of numerical stability. Therefore, our estimates of proportion of population-specific

and shared causal variants will be an underestimate if there is a substantial proportion of

rare variants contributing to the trait. We note however that a large fraction of trait vari-

ance can be attributable to common variants [168, 100]. Third, POSC relies on LD blocks

that are approximately independent in both populations for computational efficiency, and

will result in biased estimates in case of LD leakage. Thus, we recommend that LD blocks

are specifically defined for each pair of population one analyzes. Fourth, we observed that

performance of POSC decreases as the product between trait SNP-heritability and GWAS

sample size decreases. Therefore, we recommend that POSC is applied only on highly herita-

ble traits and (or) GWAS with large sample size. In light of the global efforts on developing

biobanks [151, 111], we anticipate that future GWASs will have sufficient power to study

traits with wide range of heritability. Fifth, POSC doesn’t explicitly model correlation of

the effect sizes of shared causal variants across two populations for computational efficiency.

And we conjecture that explicitly modeling correlation of the trans-ethnic SNP effect sizes

can further improve accuracy of POSC.
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5.5 Tables

Trait name Population SNP-heritability (S.E.) % Sample size Reference

Body Mass Index (BMI)
EAS 19.8 (0.67) 224,698 [90]
EUR 20.6 (0.91) 158,284 [1]

Mean Corpuscular Hemoglobin (MCH)
EAS 18.6 (2.2) 108,054 [71]
EUR 22.7 (3.2) 172,332 [6]

Mean Corpuscular Volume (MCV)
EAS 21.0 (2.13) 108,256 [71]
EUR 23.6 (3.1) 172,433 [6]

High Density Lipoprotein (HDL)
EAS 20.7 (3.03) 70,657 [71]
EUR 16.4 (2.2) 89,614 [154]

Low Density Lipoprotein (LDL)
EAS 9.5 (1.3) 72,866 [71]
EUR 13.6 (1.93) 85,491 [154]

Total Cholesterol (TC)
EAS 8.1 (0.84) 128,305 [71]
EUR 22.5 (2.1) 89,865 [154]

Triglyceride (TG)
EAS 13.5 (3.3) 105,597 [71]
EUR 13.6 (2.2) 86,502 [154]

Major Depressive Disorder (MDD)
EAS 35.6 (3.4) 10,640 [21]
EUR 19.0 (1.8) 18,759 [166]

Rheumatoid Arthritis (RA)
EAS 28.9 (18.3) 22,515 [114]
EUR 9.5 (1.9) 58,284 [114]

Table 5.1: A list of GWAS summary statistics data set analyzed. We obtain genome-
wide SNP-heritability estimates of these traits using LD score regression [19], with intercept
term constrained to 1.
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Trait name Total no.
of SNPs

Estimated
no. of

EAS-specific
causal SNPs

(S.E.)

Estimated
no. of

EUR-specific
causal SNPs

(S.E.)

Estimated
no. of shared
causal SNPs

(S.E.)

Estimated
total no. of
causal SNPs

in EAS
(S.E.)

Estimated
total no. of
causal SNPs

in EUR
(S.E.)

BMI 258,536 2,632 (58) 3,542 (79) 22,664 (141) 25,296 (85) 26,206 (66)
MCH 481,402 993 (13) 784 (11) 2,805 (14) 3,799 (22) 3,589 (12)
MCV 481,396 933 (10) 739 (5) 3,055 (14) 3,989 (16) 3,795 (16)
HDL 268,673 4,016 (19) 1,309 (39) 4,099 (16) 8,115 (14) 5,408 (30)
LDL 268,676 1,434 (19) 927 (23) 2,681 (22) 4,116 (23) 3,608 (13)
TC 268,672 2,467 (22) 2,003 (16) 3,889 (36) 6,356 (19) 5,892 (27)
TG 268,673 2,689 (10) 756 (12) 3,193 (11) 5,882 (12) 3,949 (12)
MDD 96,863 324 (15) 4,897 (24) 5,519 (51) 5,844 (41) 10,417 (53)
RA 529,404 187 (3) 539 (8) 689 (7) 877 (8) 1,228 (11)

Table 5.2: Total number of SNPs, estimated number of population-specific and
shared causal variants for BMI, MCH, and MCV. We estimated the standard errors
of the numbers of population-specific and shared causal variants using the last 25 iterations
of the EM-MCMC algorithm for estimating the prior proportion of population-specific and
shared causal variants.
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5.6 Figures
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Figure 5.1: Example of how differences in genetic architectures and LD pattern
between East Asians and Europeans affect observed GWAS associations. a) We
use filled and unfilled circles to represent SNPs causal and not causal in each ancestral
population. b) Four possible causal statuses of a SNP in the two ancestral populations.
Namely, the SNP is not causal in either ancestral populations; the SNP is only causal in
East Asians; the SNP is only causal in Europeans; the SNP is causal in both ancestral
populations. c) and d) LD pattern in East Asian and European population, respectively.
e) and f) Manhattan plots of GWASs in East Asians and Europeans, respectively. SNPs
passing the significance threshold are marked in black.
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Figure 5.2: Estimated number of population-specific and shared causal variants
across iterations of the EM algorithm. We randomly selected 60 causal SNPs (out of
8,599) in both populations, and set the product between SNP-heritability and GWAS sample
size in both populations to 500. Each curve represents the average across 25 simulations.
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Figure 5.3: Average run time for estimating the prior (MVB parameters) and
evaluating per-SNP posterior probability to be population-specific and shared.
Each dot represents the average run time across all simulations with total causal variants in
each population specified on the x-axis. Error bars represent 1.96 times the standard error
on each side.

114



20 40 60 80 100
0

20

40

60

80

100

120

20 40 60 80 100
0

10
20
30
40
50
60
70
80

using in-sample LD

20 40 60 80 100
0

20

40

60

80

100

120

20 40 60 80 100
0

20

40

60

80

100

120

140

20 40 60 80 100
0

20

40

60

80

using 1000 Genomes Project reference LD

20 40 60 80 100
0

20

40

60

80

100

120

simulated EAS specific EUR specific shared

simulated total number of causal SNPs

es
tim

at
ed

 n
um

be
r o

f c
au

sa
l S

NP
s

Figure 5.4: Performance of POSC in simulations. POSC yielded approximately unbi-
ased estimates of the number of population-specific and shared causal variants in simulations
when in-sample LD was used (top panel), and slightly upwardly biased estimates when ex-
ternal reference LD was used (bottom panel). We set the product of SNP-heritability of the
trait and sample size of the GWAS to 500 in both populations. Mean and standard error
were obtained across 25 simulations. Error bars represent 1.96 times the standard error on
each side.
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Figure 5.5: Performance of POSC in simulations. We simulated 20 to 100 causal vari-
ants for each population, where 75% of these causal variants were shared by both populations.
We set the product between SNP-heritability of the trait and sample size of the GWAS to
500 (left column), 375 (middle column), and 250 (right column). Each dot represents the
mean across 25 simulations, and errorbars represent 1.96 times the standard error on each
side.
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Figure 5.6: Q-Q plot for p-values testing enrichment of population-specific and
shared causal variants in SEG annotations [43]. We obtained of p-values for SEG
annotations across 53 GTEx tissues from 25 null simulation, where we drew 25 EAS-specific,
25 EUR-specific, and 75 shared causal variants at random. In all simulations, we set the
product of SNP-heritability of the trait and sample size of the GWAS to 500 in both pop-
ulations. The top and bottom three figures represent results obtained using in-sample and
1000 Genomes Project reference LD matrix, respectively.
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Figure 5.7: Manhattan-style plots for posterior probability of each SNP to
population-specific or shared for MCH.
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Figure 5.8: Distribution of number of population-specific and shared causal vari-
ants per region. Each violin plot shows the distribution of population-specific and shared
causal variants across the genome, where the dark line represents the mean of the distribu-
tion. We sort the traits based on the average regional number of shared causal variants.
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Figure 5.9: Distribution of regional number of causal variants at GWAS risk re-
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the European GWAS only, in both GWASs, and in neither GWAS. The dark line represents
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Figure 5.10: Enrichment of population-specific and shared causal variants for BMI,
MCH, and MCV in specifically expressed genes (SEG) annotations across 53
GTEx tissues. We used a consistent significance threshold of 0.05 / 53 (´ log10 P “ ´3.03)
as represented by the dotted line to test for enrichment across all traits. We represent
annotations passing the significance threshold using larger dots.
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Figure 5.11: Enrichment of population-specific and shared causal variants in specif-
ically expressed genes annotation across 53 GTEx tissues. Error bars represent 1.96
times the standard error on each side. The darker the color, the more significant an enrich-
ment is. We mark enrichment with p-value less than 0.05{53 with a star.
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