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Machine learning-led semi-automated
medium optimization reveals salt as key
for flaviolin production in Pseudomonas
putida
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Apostolos Zournas 1,2,3,8, Matthew R. Incha1,2,3,8, Tijana Radivojevic1,2,3, Vincent Blay 1,3,
Jose Manuel Martí 1,2,3, Zak Costello1,2,3, Matthias Schimdt 1,3, Tan Chung1,3,4,
Mitchell G. Thompson 1,3, Allison Pearson1,3, Patrick C. Kinnunen 1,2,3, Thomas Eng 1,3,
Christopher E. Lawson1,3, Stephen Tan1,2,3, Tadeusz Ogorzalek1,2,3, Nurgul Kaplan1,2,3, Mark Forrer2,3,5,
Tyler Backman 1,3, Aindrila Mukhopadhyay1,3, Nathan J. Hillson 1,2,3, Jay D. Keasling 1,3,4,6 &
Hector Garcia Martin 1,2,3,7

Although synthetic biology can produce valuable chemicals in a renewablemanner, its progress is still
hindered by a lack of predictive capabilities. Media optimization is a critical, and often overlooked,
process which is essential to obtain the titers, rates and yields needed for commercial viability. Here,
we present a molecule- and host-agnostic active learning process for media optimization that is
enabled by a fast and highly repeatable semi-automated pipeline. Its application yielded 60% and
70% increases in titer, and 350% increase in process yield in three different campaigns for flaviolin
production in Pseudomonas putida KT2440. Explainable Artificial Intelligence techniques pinpointed
that, surprisingly, common salt (NaCl) is the most important component influencing production. The
optimal salt concentration is very high, comparable to seawater and close to the limits that P. putida
can tolerate. The availability of fast Design-Build-Test-Learn (DBTL) cycles allowed us to show that
performance improvements for active learning are rarely monotonous. This work illustrates how
machine learning and automation can change the paradigm of current synthetic biology research to
make it more effective and informative, and suggests a cost-effective and underexploited strategy to
facilitate the high titers, rates and yields essential for commercial viability.

Although synthetic biology can produce valuable chemicals in a renewable
manner, its progress is still hindered by a lack of predictive capabilities1–3.
Synthetic biology has allowed us to produce, e.g., synthetic silk for clothing4,
meat-tasting meatless burgers using bioengineered heme5, and antimalarial
and anticancer drugs6,7. Furthermore, it has thepotential to play a significant
role in tackling climate change by enabling a circular bioeconomy8–11, and in
producing novel therapeutic drugs12. Its prospects are auspicious thanks to
the availability of new tools for genetic editing, high-throughput phenotypic

data generation13, and a growing demand for renewable products14. How-
ever, our inability to predict the outcome of engineering interventions often
pushes synthetic biologists to an arduous and time consuming trial-and-
error search for the optimal strain and cultivation conditions1,15.

Media optimization is a critical step in the synthetic biology process
that could significantly benefit from predictive capabilities16,17. Media
optimization involves finding the optimal media providing the largest
production levels, and is essential to obtain the high titers, rates, and
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yields (TRY) that are often required for commercial viability18. This step
is often relegated to the process optimization phase at scale-up (e.g., from
1–2ml to 1–2 L), when all genome engineering is considered finished,
because it can be very cumbersome. Indeed, the traditional and most
popular approach to optimize media involves experimentally changing
one component at a time, often based on biological knowledge of the
host. This approach can be very time consuming for a typical media if
testing all components: e.g., traditionally 10 components at 5 levels of
concentration would require 50 experiments when tested one component
at a time. Testing the combination of these would require 510 experi-
ments. It can also be ineffective if only testing a few components and our
biological knowledge does not pinpoint relevant media components, and
fails to consider non-linear effects (e.g., the optimal concentration of
component X may be different once component Y is changed). More-
over, this traditional approach overlooks the opportunity for co-
optimization of pathway, host, and media, which can significantly
improve TRY results. Indeed, it has been shown that the optimal media
for one clone can be very different than for another clone, producing
differences in production as large as 70%16,19.

Because of the limitations of the traditional approach to media
optimization, more sophisticated approaches have been used, although
sparsely: these include Design of Experiment (DoE) and machine
learning (ML). DoE approaches16, fitting the response to second degree
polynomials using Response Surface Methodology (RSM), have been
used on P. putida to improve phenazine-1-carboxylic acid production20,
siderophore production21, biosurfactant production22 as well as arginine
deaminase activity23, with varying degrees of success. RSM has also been
used for media optimization in other organisms, such as to increase
2,3,5,6-Tetramethylpyrazine in Corynebacterium glutamicum24. Neural
networks have been shown to outperform RSM in similar tasks25,26. ML
has also been used to predict production of a metabolite of interest from
media composition: the optimal media for the production of tyrosine and
4-aminophenylalanine in E. coli was found not to be optimal for
growth27, and production of rifamycin B in Amycolatopsis mediterranei28

was increased by 25% testing a hundred different media compositions.
These efforts show the effectiveness of machine learning models to
predict performance based on media composition, yet the need for large
datasets to train these models makes it prohibitive for fields where access
to materials is limited or experiments are costly.

The significant cost of the large data sets needed to trainMLalgorithms
prompts the use of active learning processes, in whichML algorithms select
which data to collect. Active learning29 uses ML in an iterative process in
which the algorithm chooses the next set of experiments to be performed
(i.e., the next set of instances to be “labeled”). This approach increases data
efficiency dramatically,minimizing the number of experiments that need to
be performed to reach the desired goal (e.g., increase production). To date,
we only know of two pioneering studies that use active learning to optimize
media, and neither attempted to improve synthesis of a product. Zhang et
al.30 tried to improve growth rate and growth yield in Escherichia coli and
Lactobacillus plantarum, and Hashizume et al.31 optimized cell viability for
mammalian HeLa-S3 cells using the cellular abundance of NAD(P)H as a
proxy. However, both of these studies required a supercomputer to handle
the approximately 10 million candidate media combinations considered,
making it inaccessible to most researchers with no access to large compu-
tational resources.

Flaviolin and Pseudomonas putida are an interesting target metabolite
and host pair for production because of themetabolite’s nature as precursor
to a very diverse family of compounds, and the organism’s versatile meta-
bolism. Flaviolin has numerous applications in the biomanufacturing space.
In general terms, flaviolin can be used as a proxy for malonyl-CoA, a
precursor to polyketides and fatty acids, which have applications in the
synthesis of fuels32, materials33, and pharmaceuticals34. Flaviolin is also used
directly in the chemical synthesis of the napyradiomycins35, known for their
antimicrobial and anticancer activities36,37. Furthermore, it can be easily
quantified through absorbance measurements: we have previously
demonstrated its utility as a reporter for assaying the effect of glucose on
Type-III polyketide biosynthesis38. P. putida displays strong tolerance to
solvents and the ability todegrade aromatic compounds fromlignocellulosic
materials39, a potentially very large source of carbon40.

Here, we present a semi-automated active learning process able to
optimize the culture media for production of a desired metabolite (Fig. 1),
which we demonstrated on P. putida producing flaviolin. The approach,
however, is agnostic to themolecule and host, so it is applicable to any other
organisms and products. To feed the machine learning algorithm (the
Automated Recommendation Tool, ART41) the data it needs, we created a
highly repeatable, semi-automated pipeline able to test up to fifteen media
combinations in just three days, requiring less than four hours hands-on
time. The active learning process guided byARTproduced increases of 60%
and 70% in titer, and 350% in process yield in three different campaigns.
Furthermore, the use of explainable Artificial Intelligence (AI) techniques
pinpointed that only five of the media components strongly influenced
production and, surprisingly, common salt (NaCl) was themost important.
Interestingly, the optimal salt concentration for flaviolin production is very
high, comparable to seawater and close to the limits that P. putida can
tolerate. Leveraging the fast Design-Build-Test-Learn (DBTL3,42) cycles
provided by the semi-automated pipeline, we were able to explore the
behavior of active learning processes when multiple DBTL cycles are
available, and showed that improvements in performance are rarely
monotonous. By using synthetic data, we also showed that ART outper-
forms other state of the art approaches when leading the active learning
process, embodying thehighly-effectivemachine learning algorithmneeded
to effectively explore very large phase spaces. This work provides an illus-
trative example of how machine learning can be productively leveraged to
accelerate and improve the biological engineering process, and suggests a
cost-effective and underexploited strategy to facilitate the high TRYs
essential for commercial viability.

Results and Discussion
Development of a semi-automated data generation pipeline
provided the data quality required for machine learning to be
effective
Since abundant high-quality data is critical formachine learningmethods to
be fully predictive1, we invested time in developing a semi-automated
pipeline able to test up to 15 media designs in triplicate/quadruplicate in a

Fig. 1 |Media optimization by combiningmachine learning and automation into
an active learning process. Given a strain and a media formulation (with [A], [B],
[C]… concentrations for components A, B, C…) that results in a certain production
of a desired metabolite, our semi-automated pipeline leverages automation, DoE,
and machine learning to find the combination of media component concentrations
(i.e., media design) that optimizes final production. Hence, this pipeline facilitates
and automates one of the most cumbersome processes in synthetic biology. More-
over, the pipeline is generally applicable to any strain and metabolite, and can be
easily translated to a cloud lab or fully automated to create a self-driving lab because
of the standard hardware used and the detailed protocol provided in this paper. For
this case, our media was composed of fifteen components (based onMOPSminimal
medium, Table S1), out of which three components were held fixed (glucose, MOPS
and Tricine), except for the yield improvement case (when glucose was uncon-
strained).We optimized themedia to increase production of flaviolin, a precursor to
a very diverse family of compounds, in P. putida., an organism of versatile meta-
bolism. Figure created using Biorender80.
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period of three days (Fig. 2, S1). Toward this goal, we automatedmost steps
of the media optimization process. To begin with, an automated liquid
handler combinedstocksolutions for eachof the15media components (2–3
fixed, 12–13 variables, Fig. 1) to create media with the desired concentra-
tions for each (i.e., a media design). Then, these media designs were dis-
pensed in three or four wells of a 48-well plate, inoculated with the
engineered P. putida strain, and cultivated in an automated cultivation
platform.After a48 hour cultivation,flaviolin in the culture supernatantwas
measured in a microplate reader using absorbance at 340 nm as a proxy.
These flaviolin production data and the media designs were stored in the
Experiment Data Depot (EDD43). ART collected these data from EDD and
used them to recommend improved media designs. These media designs,
combined with the stock concentrations, were used to generate the liquid
handler instructions for media preparation through a Jupyter notebook.
These instructions were provided to the liquid handler along with stock
solutions to build the desired media design, starting a new cycle. The Bio-
Lector was chosen for cultivation because of its automated nature, the
reproducibility of its data through tight control of culture conditions (O2

transfer, shake speed, humidity), and its ability to produce results that scale
to higher volumes44. In the end, media optimization in small wells is of
limited use unless the results can be scaled to the higher volumes where

production will take place. The microplate reader was used because our
product, flaviolin, has light absorption properties that can be measured
optically, accelerating phenotype acquisition with respect to other methods
(HPLC, GC-MS, etc). In this way, we used the Abs340 as a high-throughput
assay to effectively guide the active learning process, and we used theHPLC
assay to validate the increaseswith an authoritative assay. This approachhas
been reported previously in Yang et al.45, where flaviolin was used as a
Malonyl-CoA biosensor and the optimal wavelength for measurement was
determined to be λ = 340 nm, even though maximum absorbance is at
λ = ~300 nm. Final results were confirmed with HPLC (Fig. S2). To enable
reproducibility through a standardized protocol description and transfer,
the full protocol has been stored in protocols.io46.

This semi-automated pipeline could be fully automated and converted
into a self-driving lab47, or transferred to a cloud lab48,49, because it has been
designed with that purpose in mind. The human labor required in this
process involved the transport of strains and samples, preparation of
inoculum culture, preparation of concentrated media component stock
solutions, and centrifugation of cultures after production. Media prepara-
tion, inoculation, and arraying of culture supernatant into a 48-well plate
were all carried out using the automated liquid handler. A fully automated
platform could employ a powder handler to automate the preparation of

Fig. 2 | Our semi-automated pipeline provides the
abundant high quality data that machine learning
needs in order to effectively guide the engineering
process. A Media is synthesized in a BioMek NXP
(Beckman Coulter) liquid handler, and is used to
culture a flaviolin-producing P. putida strain in the
Biolector Pro (Beckman) automated cultivation
platform. The amount of flaviolin is assayed through
its absorbance (Abs340) in a microplate reader
(Spectramax M2), and the corresponding data is
uploaded to the Experiment Data Depot (EDD).
ARTpulls the data fromEDD, trains on these data to
develop a predictive model for flaviolin production
(response) from the media component concentra-
tions (input), and uses thatmodel to recommend the
media design (concentrations for all 12-13 variable
components of the media) for the next cultivation.
ART’s media design recommendations are trans-
formed into instructions for the BioMek liquid
handler through a Jupyter notebook (See Supple-
mentary Fig. S1 for amore detailed description). The
48wells in the Biolector were used to test either 15 or
11 media designs per DBTL cycle. If using three
replicates, 15 media designs and one control could
be tested (48/3 = 16 = 15+1 control); if using four
replicates, 11 media designs and one control could
be tested (48/4 = 12 = 11+1 control). Each DBTL
cycle takes three days to run (1 day for sample prep
+ 2 day cultivations), providing a convenient setup
to test the effect of multiple DBTL cycles. B ART
takes as input the concentrations of media compo-
nents and as response the flaviolin titer (or yield),
creates a model to predict response from inputs, and
uses it to produce recommendations. Figure gener-
ated using Biorender80.
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stock solutions, and other automated liquid handlers could perform the
centrifugation. An automated robotic arm50 could transport strains and
samples from one station to another. Complementarily, the whole process
could be deployed in a cloud lab, eliminating all hands-on labor for the
researcher. Furthermore, this method could be further expanded to enable
quantification of metabolites requiringmore sophisticated preparation, like
extractions or lyophilization.

Repeatability is a key element for ML to be effective, and was tested in
threeways:withina cycle (Fig. 3), betweencycles (Fig. 4B) andbetweenusers
(Fig. S3). For each cycle andmedia design, we built three to four replicates of
the samemedia (Fig. 2).We arrived at this number after building a full plate
of 48 replicates for a test media, and finding that 3-4 replicates produced an
error (coefficient of variation) typically less than 10% (Fig. 3, S4). To check
repeatability between cycles, we added a control to eachDBTLcycle (with its
corresponding replicates) representing the initial media formulation
(MOPS minimal medium). We purposefully added 10% noise to the
replicates of these controls’ media designs to ensure the robustness of the

model, and to test the sensitivity of flaviolin production to each component
concentration. As evidence of the repeatability that automation enabled, we
observed that, afterfive to six cycles, the controlmediumshowednochanges
inflaviolin production above the 10%base noise level (black dots in Fig. 4B).
Lastly, toensure robustness of the automatedpipeline touserdifferences (i.e.
reproducibility), different users repeated the exact same protocol with the
same media designs using freshly made stocks after a full year. The results
were quite reproducible (Fig. S3), indicating that this process could be
transferred to a different environment and maintain reproducibility.

Applying the pipeline produced significant improvements in fla-
violin production
We leveraged the semi-automated platform to perform three campaigns
(C1, C2, C3, with 5-6 DBTL cycles each) and improve the titers and process
yields of flaviolin production by 60% (148% as measured by Abs340), 70%
(170% in Abs340) and 350% (300% in Abs340) respectively (Fig. 4, Fig. S5).
The first two campaigns, C1 and C2, aimed to increase the flaviolin titer

Fig. 3 | The semi-automated pipeline produces
replicable data. The figures represent the 48 wells in
a Biolector for DBTL cycles 1 and 2 in the first
campaign. In each row (A–F) the columns 1–4
contain the same media design (technical repli-
cates), and so do columns 5–8. The four wells in the
lower right part of the plate (F 5-8) always contain
the same control medium (plus a 10% added noise),
to ensure that results can be replicated for different
DBTL cycles. Notice how the production levels for
replicates are very similar, typically with less than
10% error (Fig. S4). This repeatability is essential for
machine learning methods to be effective. Any
spurious deviation can produce significant devia-
tions in predictions and recommendations.

Fig. 4 | The semi-automated active learning process generated a 148% increase in
titer during campaign 1. A The first 2 DBTL cycles were designed using Latin
Hypercube Sampling (LHS) to explore as much of the phase space as possible. These
were followed by 3 DBTL cycles, where in each cycle ART was trained on the data of
the previous cycles, and generated recommendations which either maximized the
variance of the output of the probabilistic model to find regions with the highest
prediction uncertainty (exploration), or maximized the mean of the output of the
probabilistic model to find media designs with the highest predicted flaviolin titer
(exploitation).DBTL 1-2 contained eachmedia design in four replicates. Due to high
reproducibility, we decreased the number of replicates to 3 for DBTL 3-5, enabling
more experiments to fit on the plate. B The cross-validated predictions for the first

two DBTL cycles showed limited predictive power (R2 = 0.32). However, recom-
mendations produced from this data improved the titer proxy (Abs340) by 148% in
DBTL 3. DBTL 4 and 5 did not show any improvement, but the model predictive
power increased significantly in DBTL 4 with a coefficient of determination (R2)
reaching as high as 0.83. The fraction of exploitation (red) vs exploration (orange)
recommendations increased as DBTL cycles progressed. Results for the control
media (in black) for all previous DBTL cycles are included for each DBTL cycle,
showing that they stay within 10% of each other (coefficient of variation = 0.067),
and demonstrating repeatability between cycles. The same information for cam-
paigns 2 and 3 can be found in Fig. S5.
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proxy (Abs340) while keeping the glucose concentration at the same level as
our baseline media. For the third campaign, C3, we aimed to increase the
process yield proxy (i.e., ratio of flaviolin proxy divided by the initial glucose
concentration, seeMaterials andMethods) after unconstraining the glucose
concentration. All three campaigns converged to similar regions of the
media phase space, even though the explored trajectory was different
(Fig. 5). Indeed, the most successful media designs for each campaign were
very similar, and displayed unexpectedly high levels of NaCl (close to the
limits that P. putida can tolerate, Fig. S6). We evaluated the predictive
accuracy of the model by using the coefficient of determination R2, which
represents the fraction of the response data variance explained by the
model51. A value close to one indicates very good predictions (almost all
response data explained by the model), and values close to zero or negative
indicate nopredictive power.Hence, a higher value ofR2 is desirable because
it implies a higher capability to predict flaviolin production from the media
component concentrations, which is critical to find the media component
concentrations that maximize production.

All three campaigns were performed similarly: two DBTL cycles using
DoE approaches, followed by three to four DBTL cycles of active learning
guided by ART (Fig. 4, Fig. S5). DBTL cycles 1-2 were used to accumulate
sufficient trainingdata tomakeARTeffective in predictingproduction from
media composition. For this purpose, we used a DoE approach called Latin
Hypercube Sampling (LHS), included in ART41. LHS does not leverage any
prior biological knowledge other than the components used and their upper
and lower bounds, and is a purely statistical approach producing recom-
mendations meant to span as much phase space as possible, since ML
algorithms are typically much more effective for interpolating than extra-
polating.AfterDBTL1and2, anactive learningprocess ensued, inwhichwe
used all the previously generated data from the prior DBTL cycles to train

ART (e.g. training for DBTL 4 of C1 used the data from DBTL 1-3 of C1),
and generated recommendations for the next DBTL cycle (Fig. 2). These
initial 23-31 datapoints were enough to generate effective recommenda-
tions. For example, in C1 the highest performing media designs was sug-
gested in DBTL3, from a model trained only on 23 media designs. In this
active learning process we progressively shifted from an emphasis in
exploration to exploitation. Explorative recommendations focused on
investigating parts of the media phase space where ART’s predictive power
was most limited, whereas exploitative recommendations focused on sug-
gesting new media designs that were predicted to yield the highest
response41.We expected that ARTwould be able to identify high-producing
media designs more accurately as a larger fraction of the media phase space
was experimentally explored. As an example of this progressive shift from
exploration to exploitation, in DBTL 3 from C2, 66% of the recommen-
dations were explorative and 33% exploitative. In DBTL 4, however, 46%
were explorative and54%exploitative, and inDBTL5, 33%were explorative
and 66% exploitative (Table S2). Due to the time and monetary cost of
biological experiments we limited the number of DBTL cycles performed in
this study to numbers that are practical. Hence, we aimed to conduct 5
DBTL cycles per campaign. However, if we saw improvements at DBTL5,
wewould conduct further experiments until therewas no further increase in
the maximization objective for that campaign.

The first campaign (C1, Fig. 4) generatedmedia designs that improved
titer by 148%, as measured by the proxy, and 70% when measured directly
(through HPLC), starting at a production of ~95mg/l flaviolin. The active
learning process in C1 started with limited predictive power at the end of
DBTL cycle 2 (R2 = 0.32), but was able to provide recommendations that
produced in DBTL 3 the highest titer increase for the whole campaign.
Predictive power increased significantly for DBTL 4 and 5 (R2 = 0.83 and

Fig. 5 | All three active learning campaigns con-
verged to similar regions of themedia phase space.
The media phase space is a multidimensional space
in which each possible media design corresponds to
one unique point in the phase space. Eachmetabolite
concentration corresponds to a coordinate axis. Due
to the inherent difficulty of visualizing high
dimensional spaces, we used Principal Component
Analysis (PCA) to visualize the most important
dimensions (along which there is maximum varia-
tion). This PCA shows that high performing media,
recommended in the final DBTL cycles, lie in the
same region of the phase space (red rectangle), pri-
marily along the same value for PC1. Panels
A, B, and C show compositions colored by DBTL
cycle, while Panels D, E, and F show compositions
colored by flaviolin production levels. Each cam-
paign is represented by a pair of panels: (A, D):
Campaign 1, titer maximization, (B, E): Campaign
2, titer maximization, and (C, F): Campaign 3,
process yield maximization. The two first principal
components explain 43% of the total variance. A 3D
PCA is shown in Fig. S7, capturing 52% of the total
variance.
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0.75, resp.), but no further titer increases were found.DBTL cycles 1-2 of C1
used four replicates for eachmediadesign, insteadof three used inDBTL3-5
(Fig. 4), reducing thenumber ofmedia designs (instances) produced relative
to the initial DBTL cycles, and limiting the starting predictive power. As in
the other campaigns, the repeatable titer results for all controls in all DBTL
cycles (Fig. 4B) are a testament to the pipeline’s excellent repeat-
ability (Fig. 2).

Campaign two (C2, Fig. S5) produced a higher improvement than C1,
increasing titer by 170%, as measured by the proxy, and 60% when mea-
sured directly, starting at a production of ~95mg/l flaviolin. This campaign
was performed to check the reproducibility of our results when a key
member of the team left the institution, a common occurrence in research
environments. C2 mimicked C1 except in the number of replicates used:
three for all cycles instead of four for the initial two DBTL cycles in C1. The
results in C1 had shown that three replicates were enough to capture the
variability, and this change increased the number of media designs per
DBTL cycle: from12 (11 designs+ 1 control) to 16 (15 designs+ 1 control).
We expected this increase in instances to improve the predictive ability of
ART at each cycle. Indeed, the active learning process started with a much
strongerpredictivepower than inC1 (R2 = 0.64), butprovidedno increase in
titer inDBTL cycles 3 and 4. It was only inDBTL 5 that the 170% increase in
titer proxy was observed, along with slowly increasing predictive power
(R2 = 0.70). A DBTL 5 was performed with no further increase in titer, and
the campaign was considered finished. However, the fact that predictive
power decreased and remained aroundR2 = 0.68 indicates thatART still did
not yet have a thorough knowledge of the full phase space, and theremay be
areas of improved performance.

Optimizing for flaviolin process yield instead of titer generated an
impressive 300% improvement of the proxy in campaign three (C3), and a
350% increase indirectflaviolin yield, starting fromayield of 0.025 (flaviolin
(g) / glucose (g)) in the initial media (Fig. S5). This campaign used three
replicates as well, providing good predictive power (R2 = 0.63) to start the
active learning process. There were no increases in DBTL 3, but DBTL 4
brought an increase of proxy yield of 300%, and the predictive power rose to
the highest observed in this project, R2 = 0.89. A final DBTL 5 provided no
further increases and the campaign was finished, showcasing a very
respectableR2 = 0.86 for predicting yield. A trade-off between titer and yield
is common in production strains, and a similar one between titer and
process yield was found in this case (Fig. 6A): higher initial glucose con-
centrations improved titer and decreased yield, and vice versa. Further, a
more unusual strong positive correlation of yield and titer on NaCl con-
centrationwas observed (Fig. 6B), in agreementwith our observations inC1
andC2. Using these dependencies, it is possible to efficiently select yield and
titer by choosing the right initial glucose and NaCl concentrations. While
performing active learning to increase yieldwe observed amedia design that

shows a good compromise between titer and yield (shaded square area in
Fig. 6B).Thismediadesignwas recommendedbyARTforDBTL4, showing
an 80% increase in titer and an 100% increase in yield from the con-
trol media.

All three campaigns converged to the same region of phase space
(Fig. 5, Fig. S7), which displayed surprisingly high levels of NaCl (Fig. S6).
Principal Component Analysis (PCA) showed that the active learning
process in C1 and C3 followed a very similar trajectory in all cycles
(Fig. 5A,C), despite different objectives. A divergence occurred in C2 after
DBTL 3, however, that led to a different trajectory. Despite this difference,
the best media designs were found in the same region of phase space at the
end of the active learning process. The media corresponding to the highest
production generally displayed concentrations of most media components
2-16 times higher than for the base media, with the NaCl concentration ten
times higher (Fig. S6). This NaCl concentration (at 460mM) is close to the
limit of what P. putida can tolerate52–54. Whereas other components (e.g.,
(NH4)6Mo7O24) also displayed large concentration increases in the optimal
media for all three campaigns, their impact in theproductionofflaviolinwas
minor, as evidenced by the feature importance analysis described in the next
section.

The improvements in titer and process yield during the active learning
process seem to be abrupt and unpredictable, rather than gradual. These
improvementsmay happenwhen the predictive power is high (C3,DBTL5,
R2 = 0.63, Fig. S5) or low (C1, DBTL 3, R2 = 0.32, Fig. 4B), and they may
happenwith few instances (C1, DBTL 3, 23 instances, Fig. 4B) ormany (C2,
DBTL 5, 61 instances, Fig. S5). Hence, the lack of increased production in a
given cycle does not, in any way, mean that those increases would not occur
in future cycles. For this reason, it is difficult to categorically affirm that any
of these titers or yields cannot be improved in the future. Indeed, the good,
but not ideal, nature of our predictions at the end of the campaigns
(R2 = 0.75, 0.68, 0.86 for C1, C3, and C3), indicates that ART does not yet
have a perfect predictive knowledge of titer or yield, and there could be
remaining phase space pockets where they could be increased.

Feature importance analysis shows that salt stress is the main
driver of enhanced production
Only five out of the twelve variable components (thirteen for C3, including
glucose concentration) of the media were found to play important roles in
flaviolin production (Fig. 7, S8, S9): NaCl, K2HPO4, K2SO4, FeSO4, and
NH4Cl. K2HPO4 is the sole source of phosphate in our starting medium
(MOPSminimalmedium),while buffering is doneusingMOPSandTricine
buffers. K2SO4 and FeSO4 are the sulfate and iron sources, while NH4Cl is
the solenitrogen source inourmedia composition.NaClprovides sodiumto
the bacteria and also strongly regulatesmetabolism. Feature importancewas
determined through SHapley Additive exPlanations (SHAP) analysis55,

Fig. 6 | Glucose concentration controls the tradeoff between titer and process
yield, while salt determines the performance of themedia designs in campaign 3.
A The media designs with the highest yield showed low titer, and vice-versa. B In

either case, titer and yield were generally positively affected by higher salt con-
centration. Shaded square area represents a media design that shows a good com-
promise between titer and yield. Abs340 is a proxy for flaviolin titer.
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which compares the model output when a given feature is included or
excluded (i.e., setting its value to the average of all observations). This
process is performed for all possible features and feature combinations, with
the final SHAP value being the sum of all individual feature contributions.

Surprisingly, the salt NaCl emerged as the most critical feature overall
influencing flaviolin production (Fig. 7, S8, S9). NaCl ranked first in feature
importance for campaigns C1 and C2, and second for C3 (with glucose
being the most important, as expected). In all three campaigns, the best-
performing media contained 8-9.2 times the concentration in the starting
media (400-460mM NaCl, Fig. S6). The consistency between the final
results of three independent campaigns (Fig. 5), the feature importance
analysis (Fig. 7), and the distinct effect of NaCl on flaviolin production
(Fig. 6B) underscore the importance of NaCl for increased flaviolin pro-
duction. Similar, but much smaller, increases in titer by NaCl addition have
been reported in other organisms and for diverse products. For example,
NaCl has been shown to improve growth as well as isoprenol production in
E. coli in the presence of ionic liquids56. Increased salinity (120mM NaCl)
also improved bioinsecticide production by Baccilus thurigiensis combined
with heat-shock57. Squalene accumulation in the marine protist Thraus-
tochytrium sp. peaked at a NaCl concentration of 85mM58. Poly-
hydroxyalkanoate production was boosted in NaCl concentrations of up to
154mM in Cuprividus necator59. Lastly, in activated sludge microbial
communities, high NaCl was shown to increase protease activity and
decrease glucosidase activity, while reducing the microbial diversity in the
process60.However,most of these have been adhoc observations rather than
the product of a systematic study as we do here. When a systematic
approach was followed, in the case of squalene production, NaCl and glu-
cose were found as the most important drivers of production increase58.
However, this was a marine protist, for which the relevance of NaCl is less
surprising, and only threemedia components were tested. Even in this case,
the optimal NaCl concentration was not nearly as extreme as the one found
in this study (400–460mMNaCl) for the putative biomanufacturing host P.
putida. Indeed, these levels are comparable with those of seawater
(600mM), and higher than the concentration used in medium for marine
microalgae (308mM NaCl), prompting the consideration of production
environments as very different from growth environments.

In all three campaigns, K2HPO4 and FeSO4 were in the top five most
influential components for high flaviolin production. Interestingly, FeSO4
showed negative impact for most of its highest concentrations in C1, which

is the opposite trend to what we saw in C2 and C3 (Fig. 7, S8, S9). Similarly,
K2HPO4 showed positive impact in the higher concentrations explored in
C1,while inC2 thehighest importancewasobserved in a “goldilocks region”
within the explored concentrations, and in C3 it showed a much smaller
importance. These apparent incongruencies likely resulted from the active
learning algorithmexploring different parts of the phase space, changing the
average explored concentration of each component, which is used to cal-
culate a positive or negative effect (SHAP value) for each observation. In
addition, given that the concentration of K2HPO4 was significantly smaller
in the media providing the highest process yield, it seems likely that the
phosphate demands in low glucose conditions are significantly diminished
due to lower growth.

Certain components were only significant in some campaigns. For
example, K2SO4 was very important in C1, H3BO3 only in C2, NH4Cl in C1
andC2, andMgCl2 inC2andC3.This variability is againdue to thedifferent
trajectories the algorithm explored in the phase space. The remaining
components showed minimal importance throughout all three campaigns,
indicating that they are either unnecessary or required only in minimal
concentrations, without adverse effects at higher levels.

Conventional wisdom based on mass-action kinetics (i.e., the need to
maximize theAcCoApool) andprevious transcriptomics analyses is at odds
with the result of high flaviolin production under high salinity conditions.
Previous transcriptomics have shown that high salinity concentrations
significantly affect the central carbon metabolism in Pseudomonas species.
In these transcriptomics studies the followingwas observed: flaggela-related
proteinswere down-regulated, indicating a tendency to generate a biofilm in
order to respond to osmotic stress; N-acetylglutamylglutamine amide
(NAGGN) biosynthesis was upregulated, as this metabolite is one of the
most prominent osmoprotectants; membrane compositionwas changed by
overexpression of cardiolipin; and the expression of siderophores was
upregulated as iron-carrying proteins are used to combat Reactive Oxygen
Species (ROS) stress (a common side-effect of osmotic stress)61. Similar
results were found inP. aeruginosa, whereNAGGNbiosynthesis knockouts
lost their ability to grow in NaCl concentrations of 500mM, but this phe-
notype was rescued by adding betaine in the growth media62. However,
cardiolipin requires glutamine and G3P to be synthesized, and NAGGN
requires AcCoA and Glutamine. Glutamine consumption would pull car-
bon away from the production of flaviolin, which requires malonyl-CoA,
and similar effects would be expected by pulling carbon from G3P and

Fig. 7 | Feature importance for Campaign 1 shows
that salts concentrations are the main drivers of
production improvement. SHAP values, indicating
impact of the feature on the response, indicate that
the top five of the components are the most
important (SHAP values for other components are
much lower). NaCl concentration in particular has
the highest impact on the predicted production.
High SHAP values indicate high impact in increas-
ing response, whereas low SHAP values indicate
high impact in decreasing response. Colors indicate
the value of the feature for the corresponding SHAP
value. Hence high values of NaCl concentration
produce high values of flaviolin titer, whereas high
values of K2SO4 produce low values of flaviolin titer.
Similar SHAP analyses for campaigns 2 and 3 can be
found in Figs. S8 and S9. SHAP values are in units of
the response (Abs340, Fig. 2).
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AcCoA. Hence, one would expect the production of flaviolin to decrease,
rather than increase under high-salinity conditions, because carbon is being
pulled away from the production of the precursors to flaviolin. This high-
lights how utilizing a purely data-driven approach can produce results and
insights that are not obtainable through standard metabolic engineering
approaches.

ART outperforms other state-of-the-art approaches for guiding
the optimization process
Because the challengingly wide phase space targeted in this project
demanded the most efficient algorithm, we used synthetic data to compare
ART’s performance with two state-of-the-art alternatives: JMP63 and
gpCAM64 (Fig. 8). JMP implements the RSM, which relies on a second
degree polynomial, to design and augment experimental datasets, and it has
been the default choice for process optimization through DoE. gpCAM
implements gaussian processes tomodel the data and a global optimization
algorithmtogenerate recommendations, and it has beenused for automated
experimentation in a synchrotron facility65. We also compared a new
approach for generating ART recommendations: differential evolution,
which is an evolutionary algorithm used for global optimization, and a part
of the scipy.optimize suite66,67. We used synthetic data for this comparison
because full experimental tests are expensive and time consuming, and these
comparisons give a good estimate of the relative efficiency of methods. For
each algorithm we simulated 10 DBTL cycles mimicking the experimental
process used in this study: we started with 16 instances with 15 input
variables, and known response values. For each cycle, each of the algorithms
was trained with the data collected so far and was used to provide 16
recommendations. These recommendations were used to generate
responses using three functions of different difficulty to learn: an easy, a
medium and a difficult one (Fig. 8), similarly to our previous work (Fig. 4 in
Radivojevic et al.41). For each algorithm and difficulty level, the process was
performed 10 times and averaged, so as to eliminate the effects of
stochasticity.

ARTperformsoverall better thanboth JMPandgpCAMwhenguiding
an active learning process simulated through three functions of varying
complexity (easy,medium, and difficult) (Fig. 8). For the easy function, JMP
outperformed both ART and gpCAM, and is the only algorithm to predict
the exact variable values for optimal production (with ART a very close
second). This is probably due to the fact that the RSM used in JMP assumes
quadratic interactions between terms, which is a very good approximation
of the easy function. gpCAMperformed theworst of the three algorithms for
the easy function. In both the medium and difficult functions, ART out-
performed both gpCAM and JMP. For the medium case, JMP struggled to
even reachpositive responses, and gpCAM improved response only linearly

and very slowly. For thedifficult case, JMP’s performance improved, butwas
not able to reach better responses than gpCAM or ART. As previously, in
this case gpCAM only saw a very slow increase in response as more DBTL
cycles accrued. Since JMP uses a quadratic approximation, when functions
deviate from that form its performance is limited. On the other hand,
gaussian processes are able to handle functions of arbitrary form, allowing
for higher versatility and hence outperforming JMP in the medium and
difficult cases. Lastly, ART uses an ensemble model, which includes a
gaussian process among other algorithms. Since the ensemble performs as
well or better than any of its constitutingmodels, ART performs better than
gpCAM.Wealso tested anewapproach to select recommendations through
ART that uses an evolutionary algorithm67, instead of parallel tempering41,
to recommend the next set ofmedia designs. The improved results from the
evolutionary algorithm approach relative to parallel tempering warrant the
inclusion of this method as part of the ART package from now on.

In summary, ART required fewer data points for similar outcomes, or
achieved better outcomes altogether, enabling the ambitious active learning
approach taken here. These advantages are very important for applications
in which data is expensive to acquire (such as synthetic biology). The
availability of a very effective predictive algorithm enables the approach
taken in this project, in which we explored a very large phase space with 12-
13 variable components spanning 1-2 orders of magnitude each.

Conclusion
Wehave shown that active learning can optimizemedia in a systematic way
that is agnostic to host, product, andpathway (Fig. 1), and can both generate
surprising increases in production and identify unexpected key media
components. To enable this active learning approach, high quality data are
required, which we generated by creating a semi-automated pipeline
(Fig. 2). This semi-automated pipeline enabled us to test up to 15 newmedia
designs in triplicates within 3 days of experimentation (including a 48 h
cultivation) with high repeatability within the same DBTL cycle (Fig. 3),
between DBTL cycles (Fig. 4B) and between users and preparations
(Fig. S3). Applying active learning to this pipeline produced 148%and170%
increases in titer and a 300% increase in process yield in three different
campaigns (Fig. 4). When measured directly, without relying on the proxy
used to guide the active learning process, titer increases were 70% and 60%,
respectively, and the yield increase 350%. The active learning algorithm
converged to similar regions of the phase space in all three campaigns even
though the explored trajectories were different (Fig. 5), finding that media
composition for maximal production differed significantly from the one
traditionally used for assaying growth phenotypes. When we allowed the
glucose concentration to change and optimized for process yield, we found
that there is a tradeoff between titer and yield. This tradeoff was less

Fig. 8 | ART outperforms other state-of-the-art algorithms (JMP and gpCAM).
We used ART, JMP, gpCAM to guide three corresponding simulated active learning
processes where the 15 input variables (media designs) and responses (flaviolin pro-
duction) were used to recommend the next set of media designs. Response was
simulated through three different functions that present different levels of difficulty to

being “learnt”. These functions of increasing difficulty are:A FEasy ¼ 1
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starting media designs were the same for all algorithms and each process was run for

10 DBTL cycles. Each process was run ten different times, and the lines and shaded
areas represent the mean and standard deviation of the highest production for each
cycle. Individual traces for each run are shown in Fig. S10. Y* represents the maximum
production at each cycle normalized by the true optimum of each function. We also
tested a new recommendation algorithm for ART that improves on its original parallel
tempering approach (ART_DE). ART and ART_DE reached the highest productions
after 10 DBTL cycles, except in the case of FEasy, where the difference with the best
algorithm (JMP) is minimal.
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prominent when using high NaCl concentrations (Fig. 6). Only five out of
the twelve (or thirteen) media components strongly influenced production
and, unexpectedly,NaClwas themost important (Fig. 7).The concentration
of NaCl had been previously known to affect production levels in other
cases, but not shown to be the most important driver, and optimal values
were not nearly as extreme as the one found in this study. We also showed,
using synthetic data, that ART outperforms a widely used DoE approach
(JMP) and other machine learning approaches (gpCAM) when leading the
active learning process using synthetic data. ART requires fewer data points
for similar outcomes or achieving better outcomes altogether (Fig. 8). These
advantages are critical in cases where the cost of and time for data acqui-
sition is high, such as in synthetic biology. The novelty of this approach
resides not somuch in the amount of data beingproduced, but rather inhow
the data being produced is very efficiently leveraged by ART to guide an
active learning process that effectively improves production by optimizing
media, a problem that every bioengineer faces.

The differences between Abs340 and analytical quantification through
HPLC indicate that, contrary towhat has been previously reported45, Abs340
is not a very accurate proxy for flaviolin, especially when the cells are grown
in significantly different physiological conditions. However, the linear
correlation between theAbs340 proxy and theHPLC (Fig. S2) shows that the
use of Abs340 can help identify better media designs. While using HPLC for
all measurements would have resulted in more accurate measurements, it
would have also slowed down the experimental work and it is not clear that
wewouldhavebeenable to identifymedia compositions that enabled almost
double flaviolin production. Hence, a proxy, even if imperfect, can be more
desirable than amore exactmeasurement if it accelerates the active learning
process and the ML algorithm can manage the noise.

The ability to leverage fastDBTLcycles throughautomation allowedus
to explore how active learning processes behave when several cycles are
available. In our three campaigns, we have seen that the response does not
improve in a monotonous fashion. Rather, improvements in the response
happened in bursts and in a rather unpredictable fashion (Fig. S10): they
may happenwhenwe have collectedmany instances or a few, andwhen our
predictive power is either high or low. This behavior is in agreement with
other active learning studies published recently68,69. Hence, it is not trivial to
decide when to finish a campaign. Due to the inherent stochasticity of this
process, similar active learning processes (e.g. C1 andC2)will not follow the
same trajectory in phase space, even if they end up converging on the same
region. Experimental repeatability between biological replicates and DBTL
cycles is critical for active learning to work properly: different responses for
the same input can seriously diminish the predictive power of the algorithm
and compromise the quality of the recommendations for the next cycle.
When performed manually by a researcher, this active learning process is
both time consuming and error prone: the preparation of 48wells including
15 media designs with 12 variable components used here requires
approximately 800 liquid transfers of varying volumes. Our carefully
designed semi-automatedpipeline (Fig. 2) provided the repeatabilityneeded
inside each cycle (Fig. 3), between cycles (Fig. 4B), and between users and
preparations (Fig. S3). Moreover, it minimized hands-on time (approxi-
mately 1 hour for sample prep, 30minutes formeasuringOD600 andAbs340
and 2 hours for data analysis). In the midst of the repeatability crisis70, such
repeatability and reproducibility tests are crucial for biological research,
especially in the context of machine learning. Furthermore, the low
experimental noise providedby automation allowed for a smaller number of
replicates, increasing the number of instances available for training and,
eventually, increasing the predictive power. Finally, active learning can
produce quite unexpected results if the phase space is made as wide as
possible. However, a powerful predictive algorithm is required to efficiently
search through this large phase space. In this case, the high predictive power
and versatility of ART (Fig. 8), provided by the ensemblemodel design, and
the quality of its recommendations, allowed us to explore a very large phase
space with 12 (13 in campaign 3) variable components spanning 1-2 orders
of magnitude each, even when starting from a very small training dataset
(e.g. at DBTL3 of C1). This approach not only allowedus to optimizemedia

whileminimizing the number of (relatively expensive) experiments, but also
to identify media designs that would not have been accessible using less
powerful approaches, which might have required fully constraining some
media components not expected to be important (e.g., NaCl). In this study,
optical measurements (Abs340) correlated well with analytical measure-
ments (HPLC), showing a coefficient of determination (R2) equal to 0.74
(Fig. S2). Even though this correlation is not perfect, performing optical
measurements allowed us to perform fast DBTL cycles, enabling rapid
improvements in titer and yield, which were confirmed through the HPLC
measurements (the golden standard). More accurate measurements might
enable higher or faster improvements. Solutions like the Agilent RapidFire-
MS or (ultra)-high-performance liquid chromatography (UHPLC) could
bridge the gap between fast and accurate and fastmeasurements that enable
machine learning in biology.

The use of machine learning to optimize media generated interesting
insights about P. putida metabolism. The optimal media for flaviolin pro-
duction was very different from traditionally used growth media. Surpris-
ingly, high salinity was consistently the most important factor increasing
flaviolin production, with the optimal media designs containing concentra-
tions of NaCl higher than 400mM. The other two consistently important
factors, K2HPO4 and FeSO4, were the iron and phosphate sources in the
media.All thesemedia components represent inexpensive additions tomedia
that improve flaviolin production. The optimal salt concentration is com-
parable to seawater, opening up the possibility of considering brackish water
for biomanufacturing using P. putida as a host, significantly decreasing the
cost and environmental impact of biomanufacturing processes. Interestingly,
we did not see a significant growth penalty with an increase in Abs340
(Fig. S11), showing that P. putida grows reasonably well in high NaCl con-
centrations. The study of flaviolin itself offers interesting clues to P. putida
metabolism because it is a proxy for its precursor, malonyl-CoA. Malonyl-
CoA is central to metabolism and enables the biosynthesis of several
industrially significant bioproducts, such as fatty acids. Indeed, the optimal
salt concentration recommended by the machine learning approach runs
counter to what traditional reasoning based on mass-action kinetics and
available transcriptomics data would suggest to increase flux through
malonyl-CoA toflaviolin. Themain osmoprotectants generated requireG3P,
AcCoA, and glutamate and glutamine to pull carbon away from central
metabolism, limiting the supply available for malonyl-CoA synthesis.

This work provides an illustrative example of how machine learning
can be used to accelerate and improve the biological engineering process.
The traditional approach formedia optimizationwould require producing a
hypothesis from empirical biological knowledge or the literature (e.g.,
phosphate is an important part of biomass, which can impact production)
and then performing experiments to test the hypothesis (e.g., measure
production under five different levels of K2HPO4). The ML-guided
approach used here is different: it aims to check the impact of media on
production by generating a high-throughput pipeline that explores a wide
phase space of all possible chemical concentrations (even for components
that we do not expect will make a large difference). The generated data is
thenused to guide an active learningprocess that pinpointswhich inputs are
most important and, ultimately, the bestmedia design. Both approaches use
the scientificmethod of hypothesis generation and experimental testing, but
the hypothesis used in the ML-guided approach is more general and wide,
and ultimately produces better outcomes, and even unexpected results. The
use of this approach for synthetic biology in general (e.g., pathway opti-
mization or host engineering through gene interference) can significantly
accelerate its timelines. This work also goes beyond previous applications of
active learning to media optimization31 by showing that this approach can
significantly improve production of valuable chemicals, that the most
important production drivers can be inexpensive and unexpected compo-
nents, that automation can significantly improve the active learning process,
and that efficient recommender and prediction algorithms can make this
active learning process run on a laptop instead of a supercomputer.

Several possibilities for future work are suggested by this study. This
media optimization process is fast and effective enough that it can be
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performed simultaneously with pathway or host optimization, leading to
different optimal media for different production strains. Also, it would be
desirable to use AI approaches to expand the phase space: i.e. suggest new
components for the media to increase production, based on extant litera-
ture. In addition, due to the process being easy to learn, repeatable, and low
cost, it can be either used as a teaching template for machine learning and
automation, or as a testbed for self-driving labs (SDLs).

In sum, this work illustrates how ML and automation can change the
paradigmof current synthetic biology research tomake itmore effective and
informative, and provides a cost-effective and underexploited strategy to
facilitate the high TRYs essential for commercial success.

Materials and Methods
Chemicals, media, and culture conditions
Standard inoculum cultures of Pseudomonas putida KT2440 and Escher-
ichia coli strains were conducted in LB medium at 30 °C and 37 °C
respectively with the addition of appropriate antibiotics. Antibiotics
employedwere carbenicillin (100mg/L), kanamycin (50mg/L), gentamicin
(30mg/L), and chloramphenicol (25mg/L) all sourced in concentrated
solution fromTeknova.MOPSminimalmedia components:MOPS, tricine,
FeSO4•7H2O,NH4Cl,K2SO4,MgCl2,NaCl, (NH4)6Mo7O24•4H2O,H3BO3,
CoCl2, CuSO4, MnSO4, ZnSO4 were all sourced from Millipore Sigma.
MOPS and tricine solutions were brought to pH 7.5 by the addition of 5M
or solid KOH. The flaviolin standard was prepared via preparative thin-
layer chromatography (TLC) from P. putida KT2440 pBADT-rppA-NT
extract as described previously38.

Strain and plasmid construction
Plasmids and primers were designed using the Device Editor and Vector
Editor implementation of J571,72. PCR products were amplified using Q5
polymerase following the supplier’s instructions (NEB). All plasmids were
constructed using NEB-HiFi reaction mix following the supplier’s instruc-
tions using either purified PCR product or 0.5 µL of each PCR reaction
directly following DpnI digest (NEB). NEB-HiFi assembly mixtures were
then transformed via heat shock into E. coli XL1-Blue chemical competent
cells (Agilent). Plasmids were purified from E. coli via Qiaprep Spin Mini-
prep kit (Qiagen) and sequenced (Azenta Life Sciences). E. coli S17 was
transformed via electroporation of purified plasmid DNA73.

Construction of the PP_5404-5406::PhiC31attB strain (sART1) was
conducted in the samemanner as has been described previously for genetic
knockouts in P. putidaKT2440 except with the PhiC31attB site between the
homology arms74. Briefly, P. putidaKT2440 was conjugated with E. coli S17
carrying the knockout plasmid (pMQ30-gentR-PP_5404-06::PhiC31attB).
SacB/sucrose counterselection then was used to select for removal of the
plasmid backbone and integrants were screened via PCR and the PCR
products sequenced (Azenta Life Sciences). For integration of a constitutive

rppA expression cassette, we constructed pColE1-ampR-Ptac-phiC31 (pIS1)
and pColE1-kanR-PhiC31attP-PJ23100-rppA (pIS100). Plasmids pIS100 and
pIS1 weremixed (100 ng each) and co-transformed via electroporation into
sART1 yielding the constitutive flaviolin producing strain, sART275. Again,
transformantswere screenedvia PCRandPCRproducts sequenced (Azenta
Life Sciences).

All strains and plasmids are listed in Table 1 and are available through
the JBEI public registry (https://public-registry.jbei.org/folders/874).

Development and use of an automated platform for media
preparation
In order to enhance reproducibility, the full protocol can be found in
protocols.io46: https://doi.org/10.17504/protocols.io.81wgbx7eylpk/v2 includes
the protocol to run the experiment and https://doi.org/10.17504/protocols.io.
x54v9pr51g3e/v2 includes the protocol formeasurement of Abs340 andOD600.

The first step in using the active learning pipeline (Fig. 2, S1) involves
deciding on the strain to be used, the media components and, importantly,
the lower and upper bounds for each component. In this case, we selected a
flaviolin-producing P. putida strain (see above) and the widely used, well-
definedMOPSminimalmedia, inwhichwe varied 12 components inC1 and
C2 and 13 components in C3 (Table S1). In preparation for the media
optimization processes, we used the media compiler library (https://github.
com/JBEI/media_compiler) to calculate the stock concentrations to be
mixed to build the media designs. This library takes into account the
solubility and concentration bounds for each component, as well as
physical limitations of the equipment (e.g. minimum transfer volume), and
calculates two stock concentrations (a high and low concentration) for each
component. Following this, based on each recommended media design, the
pipeline outputs the required volume of each stock concentration for each
component, as well as the required files to perform the transfers using the
Biomek NX-S8.

In the initial Design phase of the DBTL cycle, we generated 22 initial
media designs in C1 and 30 initial designs in C2 and C3 generated using
Latin Hypercube Sampling, and split these in 2 DBTL cycles, DBTL 1 and
DBTL 2 (Fig. 4, Fig. S5). The media designs, along with the stock con-
centrations, were used to calculate the required volume from each stock
using themedia compiler, and generate the liquid handler instructions. The
Create_Transfers.ipynb notebook in the media compiler library creates the
liquid handler instructions as follows: first, the amounts of each stock
solution required for eachmedia design are computed. Then, the source and
destination wells are provided in a .csv file along with the volumes for each
transfer. Different liquid handlers will require different formatting, the
current output is designed for use in a BioMek NXS8. The controls in each
DBTL cycle were based on theMOPSminimalmedia with random changes
(up to ±10%, uniformly distributed) in the concentration of each of the
variable components (12 for C1 and C2 and 13 for C3).

Table 1 | Strains and plasmids used in this work

Strains & Plasmids Genotype Source JBEI Part ID

Strains

E. coli XL1-Blue K12 recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F ́ proAB lacIqZΔM15 Tn10 (tetR)] Agilent

E. coli S17-1 K12 F- RP4-2(Km::Tn7,Tc::Mu-1) λpir+ recA1 endA1 thiE1 hsdR17 creC510 ATCC 47055

P. putida KT2440 wildtype ATCC 47054

P. putida sART1 P. putida KT2440 PP_5404-06::PhiC31attB This work JPUB_025894

P. putida sART2 P. putida KT2440 PP_5404-06::PhiC31attB::pIS100 This work JPUB_025892

Plasmids

pBADT-rppA-NT pBADT-kanR-ParaBAD-rppA(NT) Incha et al.38 JPUB_016949

pMQ30 gentR sacB Shanks et al.79

pMQ30-attB pMQ30-gentR-PP_5404-06::PhiC31attB This work JPUB_025898

pIS1 pColE1-ampR-Ptac-phiC31 This work JPUB_025896

pIS100 pColE1-kanR-PhiC31attP-PJ23100-rppA This work JPUB_025895
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In the Build step of the DBTL cycle, the stock plates were loaded onto
the liquid handler (BiomekNX-S8) along with the culture inoculum and an
empty Biolector 48-well flower plate, and 1.5 mL of media+ inoculumwas
dispensed directly in the Biolector plate. The inoculum was prepared from
anovernight culture, whichwas grownat 30 oC.Kanamycin (50 µg/mL)was
used both for the overnight culture and the Biolector cultivation.

In the Test step of the DBTL cycle, the strain cultivation took place in
the Biolector Pro (Beckman) for 48 h at 30 oC, 800 rpm, and 80% relative
humidity according to the manufacturer’s instruction for optimal oxygen
transfer. Immediately post-cultivation, the liquid handler was used to pre-
pare plates for absorbance measurements. For supernatant analysis, the
liquid handler aliquoted 1mL of culture into a 96 deep-well plate and spun
at 3200 x g in a centrifuge (Eppendorf 5810 R). 200 μL of remaining culture
and 200 μL of culture supernatant from the deepwell plate were aliquoted
into black-sided, clear-bottom 96 well plates. Abs340 and OD600 were
measured as a proxy for flaviolin and cell density, respectively, using a
SpectramaxM2microplate reader (Fig. 2). In campaign 3, the yield used as
optimization target was the effective process yield (or process yield): i.e., the
ratio of flaviolin divided by the initial glucose concentration. We used
effective process yield because it is more amenable to high-throughput
assays, and we believe it is most relevant to biomanufacturing purposes: it is
the process yield that is typically used in technoeconomic analyses. The data,
along with the media design information was then uploaded to the EDD43.
In eachcycle,we identified two typesof outliers, likely stemming fromerrors
by the liquid handler: 1) cases where one of three replicates did not produce
any biomass or flaviolin, possibly due to an error when inoculating the well,
and 2) cases where one triplicate had significantly higher Abs340 than the
others, possibly due to transferring cells along with the supernatant. In both
of these cases thesemedia designswere removed from the pipeline andwere
not used to train ART. Creating the EDD study and data files is described in
the notebooks “DBTLX_Create_EDD_Study_Files.ipynb”.

In the Learn step of the DBTL cycle, the data from DBTL 1 and
DBTL 2 were retrieved from the EDD and fed into ART to train its
probabilistic model41. In the Design step for the next cycle, the phase
space was sampled using parallel tempering41,76 (C1 and C2 DBTL 3) or
differential evolution66,67 (C2 DBLT4-6 and C3), to recommend media
designs that maximize either flaviolin production (exploitation) or model
uncertainty (exploration). The number of exploration and exploitation
recommendations generated by ART in each DBTL cycle is shown in
Table S2. The notebooks “DBTLX_C_ART_Media_Designs.ipynb”
describes training ART and generating recommendations. Generating
the instructions for the liquid handler is shown in the notebooks
“DBTLX_D_Create_Transfers.ipynb”.

In everyDBTLcycle afterDBTL2, themodelwas trainedonall thedata
generated fromearlierDBTL cycles in its respective campaign (e.g. inDBTL
4 ofC2, themodelwas trained using the data generated inDBTL1 -DBTL3
of C2). We then proceed to the Build step and iterate for the next DBTL
cycles (5 DBTL cycles for C1 and C3 and 6 DBTL cycles for C2).

HPLCmethod for flaviolin quantification
Supernatants from 48-well flower-plate cultivation were diluted in an equal
volume of methanol with 15mg/L bisdemethoxycurcumin as an internal
standard. Analysis was conducted on an HPLC (Agilent 1200 series) with a
diode array detector (Agilent Technologies, USA). A Kinetex C-18 column
was used for separating the analytes with no temperature control (approx.
20 °C) (2.6 μm diameter, 100 Å particle size, dimensions 100 × 3.00mm,
Phenomenex, USA). Water+ 0.1% formic acid (A) and methanol+ 0.1%
formic acid (B) were used as the mobile phase. 5 µL injection volume and a
constant flow of 0.4 mL/minwere used. The following gradient was used: 0-
1min 70% A, 1–10min 70–30% A, 10–20min 30–17.5% A, 20–21min
17.5–70%A, 21–26min 70%A. Flaviolin wasmeasured at 300 and 320 nm,
and bisdemethoxycurcumin internal standard was measured at 440 nm.
Flaviolin eluted at approximately 7.9 min, and bisdemethoxycurcumin
eluted at approximately 13.7min. Discrepancies in the increases in flaviolin
concentration compared to the plate reader absorbance measurements are

due to the linearfit of the comparison of these data sources having anonzero
y intercept (Fig. S2). This is likely the result of differences in the limits of
detection between the twomeasurements. Indeed, the good but not too high
correlation between Abs340 in our culture supernatant and HPLC mea-
surements (R2 = 0.74), indicate that Abs340 is, at best, a semi-quantitative
proxy for flaviolin. This is especially true when cells are grown in very
diverse physiological conditions, since there is background Abs340,
(Fig. S145)

Feature importance to elucidate factors with large effects on
bioproduction using Shapley analysis
Feature importancewas calculatedusing the SHAPpythonpackage55. SHAP
uses the trained model to calculate the most important components of the
media for flaviolin production. Themodel used for this analysis was trained
on all 6 DBTL cycles, predicting flaviolin production based on the con-
centration of themedia components. SHAP values were calculated based on
the trainedmodel and the training dataset. The Explainer class of the SHAP
package was used as this was the most appropriate mode for an ensemble
model. SHAP analysis is shown in the “DBTL1-5_Analysis.ipynb”/
“DBTL1-6_Analysis.ipynb” found in the repository of each campaign.

Comparison with other algorithms
For each algorithm, we performed 10 learning cycles, starting from 16
observations with known function values, replicating the physical pipeline
used in the rest of this work (Fig. 2). In each cycle we produced 16 new
recommendations, used them as input in the benchmarking functions
(Fig. 8), and used the responses obtained as the observations for the next
cycle. To address the intrinsic stochasticity of the algorithms, we performed
this process 10 times starting from the same initial observations, and cal-
culated the mean and standard deviation of the highest suggested perfor-
mance in each cycle.

When benchmarking ART and gpCAM, we used an exploration-
exploitation tradeoff when generating recommendations. The objective
function maximized to select the recommendations was:

GðxÞ ¼ ð1� αÞEðyÞ þ αVarðyÞ ð1Þ

Where x is the vector of input variables, y = y(x) is the response variable, and
E(y) and Var(y) denote the expected value and variance of the probabilistic
model output41. The exploration-exploitation trade-off parameter
α = 0.1*N, with N being the number of the DBTL cycle. Hence, in the
first cycle, the objective function was

GðxÞ ¼ VarðyÞ ð2Þ

While in the 10th cycle the objective function was

GðxÞ ¼ EðyÞ ð3Þ

JMP does not support this tradeoff, and the maximum predicted
production is reported for each cycle.

ART is based on an ensemble method, which combines multiple
models, out of which 2 of them were TPOT models77. gpCAM was trained
using the default gaussian kernel and JMP was trained using the Response
Surface Methodology, which is a quadratic approximation of the response
surface. gpCAM training is shown in the notebook “gpcam_benchmark_-
funcs.ipynb”, and ART using parallel tempering training was performed
using the “ART_benchmark_runs.py”. Differential evolution training is
shown in the notebook “ART_DE_benchmark_runs.ipynb” included in the
repository for C1.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Data availability
The experimental data can be found in the corresponding repository for
each study named “DBTL1-5.csv” for C1 and C3 or “DBTL1-6.csv” for
C2. The data can also be accessed through the JBEI instance of the
Experiment Data Depot43 (public-edd.jbei.org), in the following
studies:

Campaign, DBTL cycle, Link
Campaign 1, DBTL1, https://public-edd.jbei.org/s/flav_c1_dbtl1
DBTL2, https://public-edd.jbei.org/s/flav_c1_dbtl2
DBTL3, https://public-edd.jbei.org/s/flav_c1_dbtl3
DBTL4, https://public-edd.jbei.org/s/flav_c1_dbtl4
DBTL5, https://public-edd.jbei.org/s/flav_c1_dbtl5
Campaign 2, DBTL1, https://public-edd.jbei.org/s/flav_c2_dbtl1
DBTL2, https://public-edd.jbei.org/s/flav_c2_dbtl2
DBTL3, https://public-edd.jbei.org/s/flav_c2_dbtl3
DBTL4, https://public-edd.jbei.org/s/flav_c2_dbtl4
DBTL5, https://public-edd.jbei.org/s/flav_c2_dbtl5
DBTL6, https://public-edd.jbei.org/s/flav_c2_dbtl6
Campaign 3, DBTL1, https://public-edd.jbei.org/s/flav_c3_dbtl1
DBTL2, https://public-edd.jbei.org/s/flav_c3_dbtl2
DBTL3, https://public-edd.jbei.org/s/flav_c3_dbtl3
DBTL4vhttps://public-edd.jbei.org/s/flav_c3_dbtl4
DBTL5, https://public-edd.jbei.org/s/flav_c3_dbtl5
Freely available accounts on public-edd.jbei.org are required to view

and download these studies.

Code availability
The media compiler and notebooks included require Python 3.10 and the
following packages: scipy 1.13.0, numpy 1.26.4, pandas 2.2.2. Jupyter
notebooks are available at https://github.com/JBEI/Flaviolin_media_opt_
C1, https://github.com/JBEI/Flaviolin_media_opt_C2, https://github.com/
JBEI/Flaviolin_media_opt_C3 (for campaigns C1, C2 and C3) and https://
github.com/JBEI/media_compiler for themedia compiler, under the LBNL
open source license. In order to run the notebooks of each campaign, a
functional ART installation is required. ART is free for academic use and a
license can be requested as explained in https://github.com/JBEI/ART#
license. Static versions of these repositories can be found in the following
Zenodo78 links:

Media compiler: https://doi.org/10.5281/zenodo.15093709
Campaign 1: https://doi.org/10.5281/zenodo.15093357
Campaign 2: https://doi.org/10.5281/zenodo.15093361
Campaign 3: https://doi.org/10.5281/zenodo.15093363
For each campaign, the following notebooks are included:
In order to calculate the required stock concentrations and create

the stock plate templates for the liquid handler, the first two
notebooks need to be run before the first DBTL cycle:
“DBTL0_A_Find_Stock_Concentrations.ipynb”

“DBTL0_B_Create_Stock_Plates.ipynb”
For the first two DBTL cycles the initial recommendations were gen-

erated using the notebook “DBTL1_2_Initial_Media_Designs.ipynb”while
for the next DBTL cycles the recommendations were generated using the
notebooks “DBTLX_C_ART_Media_designs.ipynb”.

Liquid handler instructions, files to upload to EDD and analysis was
performed for each cycle using the notebooks:

“DBTLX_D_Create_Transfers.ipynb”
“DBTLX_E_Create_EDD_Study_Files.ipynb”
“DBTLX_F_Analysis.ipynb”
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