
Lawrence Berkeley National Laboratory
Recent Work

Title
Framework for Control System Development

Permalink
https://escholarship.org/uc/item/2kp6j884

Authors
Cork, C.P.
Nishimura, H.

Publication Date
1991-11-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2kp6j884
https://escholarship.org
http://www.cdlib.org/

..
J
~

l ,.

LBL-31580
UC-406

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Accelerator & Fusion
Research Division

Presented at the International Conference on Accelerator and Large
Experimental Physics Control Systems, Tsuk:uba, Japan,
November 11-15, 1991, and to be published in the Proceedings

Framework for Control System Development

C. Cork and H. Nishimura

November 1991

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

~-+.n
0 r
'i 'i 0

n >
~~ :z:

.....
:(Ill n
I'D r+O
I'D I'D .,
"[1) -<
[1) ---
til
0.
(Q .
(J1
lSI

r
1-'·
trn
'i 0
lll't:i
'i"<
"< . N

r
til
r
I
w
(J1
co
('9

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

' , ..

\,./

FRAMEWORK FOR CONTROL SYSTEM DEVELOPMENT*

C. Cork and H. Nishimura

Advanced Ught Source
Accelerator and Fusion Research Division

Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94720

November 1991

LBL-31580

Paper presented at the International Conference on Accelerator and Large Experimental Physics Control
Systems, Tsukuba, Japan, November 11-15, 1991

"This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences
Division of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098

Framework for Control System Development*

Carl Cork and Hiroshi Nishimura
Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720

Abstract
Control systems being developed for the present generation

of accelerators will need to adapt to changing machine and
operating state conditions. Such systems must also .be capab~e
of evolving over the life of the accelerator operation. In this
paper we present a framewoik for the development of adaptive
control systems.

L INTRODUCTION
Several of the new generation of control systems hardware

being developed today have the capability of fast. sophisticated
control at all levels in the control hierarchy[1][2]. These sys­
tems are typically hierarchical and highly distributed with
extremely high 1/0 throughput. _

We have initiated the design of a framewoik for control sys­
tem development which can accommodate the new architec­
tures. This paper will present requirements, design decisions,
and specifications that we have devised for this framework.

ll. REQUIREMENTS

A. Adaptive
The control system must be adaptive. It must be capable of

growth, evolution, and learning (supervised and self-taught).
The software for these systems is complex and generally in

continuous development. The control system must be capable
of growth during both commissioning and operational phases.

Many new control system algorithms such as model-based
control, expert systems, neural networks, and fuzzy logic are
emerging which look very promising in the accelerator control
environment.[3][4][5][6]. A mechanism is required which is
capable of evolution to accommodate these new control theo­
ries. The system must also be capable of arbitrarily complex
combinations of these algorithms.

Most of these new control system algorithms are capable of
either supervised or self-taught learning. This should prove to
be extremely useful as an aide to finding 'golden orbits' in stor­
age rings or as a means of reducing the complexity of data pre­
sented to the operator. The control system must facilitate this
mechanism.

B. Hierarchical
The control system must support a hierarchical control

structure. It must be capable not only of supporting the 'stan­
dard • supervisor-cell-local type of hierarchical control[7], but
also each layer must be divisible into local subhierarchies. This

• This wolk was supported by the US DOE under Contract No.

DE-A0}3-76SRXX>98

latter requirement facilitates the incorporation of cascaded and
adaptive control algorithms. ·

C. Distributed
The control system must support the underlying distributed

hardware.
Many computer systems provide basic netwoiking support.

The control system must also incorporate mechanisms for the
registration of computing services, the automated association of
client and server, and the uniform representation of data trans­
mitted between heterogeneous systems.

The control system must be designed to accommodate the
known features of distributed control - such as error detection
and recovery, virtual time synchronization, nondeterministic
networks, concurrency, resource protection, and bandwidth­
limited messaging.

D. Operational Continuity
The control system must support operational continuity. It

must provide for dynamic, and transparent switching between
compatible modules without interrupting operation.

Transparent switching is required to permit the excbang~ of
control modules in the event where the system operation
exceeds the bounds of the previous controller. This should be
possible without bringing the system down and without leaving
the machine uncontrolled. Sufficient machine state information
should be transferrable to provide for 'bumpless' switching.

E. Dynamic Association
The control system must support the dynamic association of

applications. Links between the control system and the applica­
tion should be redirectable during normal operations. This is
essential to provide for independent development of associated
modules and also to provide support for the adaptive and opera­
tional continuity requirements listed above.

Dynamic association permits both application and control
modules to be constructed without prior availability of the asso­
ciated modules. Moreover, for client-server associations, the
link process should not require specific knowledge of the server
module (capability-based binding). It should be sufficient to
specify the type of module and its interface, leaving the associa­
tion mechanism to a third intermediate process.

F. Universal Graphical API
The control system must support a universal graphical appli­

cation programming interface (API). Regardless of the operat­
ing system, windowing system, or window manager, the
graphical application programming interface should be identi-

1 of 4

cal. All that should be required is a recompilation for each
graphical display wolkstation.

ID.DESIGN
Based on the requirements listed in the previous section

we have established the following design specifications.

A. Virtual Control Modules
The control system shall accommodate the adaptability,

hierarchy, and continuity requirements by incorporating a
recursive architecture. This may be expressed using the modi­
fied Backus-Naur Form (BNF) formalism which is often used
to specify computer language syntax:

logical clocks to support virtual synchronization between
coordinating processes across the netw01k[8][9].

A multitasking environment shall be incorporated to pro­
vide synchronous and concurrent behavior on a single system.
Task synchronization can be performed using any of the typi­
cal real-time mechanisms (e.g. semaphores, message queues,
mailboxes).

C. Distributed Computing Services
A peer-to-peer message passing mechanism shall be

implemented to satisfy the distributed communications
requirements. This mechanism should have a programming
interface which is independent of the network: transport layer
implementation. The design should be efficient enough to
consider using it equally for local or remote task-to-task com­

VirtualControlModule = ControlModlde + [VirtualMachine]+

VirtualMachine =Machine I VirtualControlModuk

(1) munications.

(2)

The VirtualControlModule is the control subsystem con­
sisting of a controller (ControlModule) and one or more con­
trolled objects (VirtualMachine). The VirtualMachine may
consist either of the bare Machine or, recursively, of an addi­
tional VirtualControlModule subsystem.

The Machine represents the accelerator and its associated
instrumentation. This system may be represented by a set of n
measures (state variables) and its development over time may
be expressed by trajectories of the state variables in state
space. During the development and testing phases, the
Machine might be replaced by a simulator which emulates all
command and response characteristics of the real machine.

The ControlModule is required to counteract any motion
of the machine system away form the stable operating point.
The combined subsystem (ControlModule + VirtualMachine)
should be asymptotically stable. In the adaptive control sys­
tem the ControlM odule is a mutable element. Its state parame­
ters are dynamically adjustable, it might be layered,
parallelized, or self-adaptive. It shall also be dynamically
replaceable by an alternative ControlModule with synchro­
nized exchange of control between the Contro/Modules.

This model can describe all of the standard control sys­
tems in use today. The following expressions represent a few
such systems.

RemoteC ontrolSystem = C ontrolM odule +Machine

SupervisedControl = ControlModule

The control system should also support both message­
based and remote procedure-based communication mecha­
nisms. Message-based mechanisms will probably be best
suited for event-driven processes which would normally be
looping on an input message queue. Remote procedure-based
communications will be best suited to transparent migration
of library modules from local to remote configurations.

D. Object Communications Manager
An object communications manager shall be implemented

to satisfy the dynamic task association requirement. The
object communications manager will coordinate the interac­
tion between applications and all other elements of the control
system. The control system elements will be composed of
software objects which interact to perform their assigned
functions. Some of these objects will "advertise" their pres­
ence to external applications by registering with the object
manager. External applications will query the object manager
to select and associate with the advertised interfaces. The
object communication manager permits the association to be
dynamic and transparent. New control system objects can be
substituted without requiring a restart of either the user appli­
cations or the control system modules. Moreover, the user
application need not know whether or not the control system
modules are operating locally or remotely - the interface is the
same for both (the mechanism is similar to the X-windows
byte-stream implementation). The operator interface applica­
tions are specific examples of applications which will use the
object communication manager to interact with the control

+ (ControlModule+Machine) (3) system.

A control system which accommodates VirtualControlM­
odules will permit the control system to be modularly adjust­
able and to incorporate growth (and scalability) and
evolution.

B. Distributed Task Synchronization

All potential ControlModule and VirtualMachine modules
must satisfy uniform interface requirements with respect to
the object communications manager. This permits the mod­
ules to be dynamically replaced during operation and without
requiring the reconfiguration of existing modules.

E. Network-Based GUI
A synchronization mechanism shall exist to coordinate A network-based graphical user interface (GUI) shall be

interaction with the machine elements and peer subsystems. incorporated to satisfy both the universal graphics application
The distributed machines shall incorporate partially ordered programming interface and the distributed control require-

2of4

/. .

'

Q
I

\ •

ments. The graphical display will be presentable on any can­
didate workstation on the network. The display application
may reside either within the workstation or else on some
remote compute~ The interface must function in a heteroge­
neous environment and should function on a variety of plat­
forms.

IV. FRAMEWORK
The following framework: was established to implement

the design specifications from the previous section. The
framework: is based on existing technology and/or standanls.
This was done not only to take advantage of commercial
products and community efforts but also to guarantee a more
timely implementation of the composite system. We
attempted to select a minimal framework: to avoid an overly
restrictive development environment

A. Ei.ffel Object-Oriented Environment
The Eiffel object-oriented programming language and

application environment will be implemented to satisfy the
virtual control module design specification[lO].

Object-oriented environments support modular software
development, data abstraction, polymorphism, and dynamic
binding - all of which are required to satisfy the virtual control
module specification. Eiffel in particular also supports auto­
matic memory management, multiple inheritance, enhanced
reusability, and a special reliability feature (assertions) which
supports a 'software by contract' design methodology. The
language specification is now in the public domain and has a
strong international and educational backing which should
assure its continual evolution.

B. POSIX 1003.1 Operating System
The standard multitasking operating system will be a real­

time operating system which is compliant with the IEEE spec­
ifications for a portable operating system interface (POSIX
1003.1). It will also support the real-time extensions (IEEE
1003.4) which are presently awaiting finalization.

At the higher machine architecture level we will select
either the LynxOS or else the Cllorus real-time operating sys­
tem[11][12]. Both of these are network-based, POSIX com­
pliant, and support real-time computing features.

At the lower machine control level we will use the
VxWorks operating system[13]. This is a network-based,
embeddable real-time operating system with a wide support
base in the VME environment. VxWork:s will provide a
POSIX compliant interface when the real-time extensions are
finalized.

C. Distributed Computing Environment
The distributed computing environment (DCE) will be

implemented using the OSF/DCE utilities from the Open
Software Foundation (0SF)[14]. These utilities will provide
basic services for remote procedure calls, network security,
and distributed file systems. The OSF/DCE is layered upon

any POSIX compliant interface and is composed of elements
which are available commercially today.

These utilities will soon be available on all major variants
of the UNIX operating system. Initially, it will be available
from OSF on their POSIX compliant operating system, and
later it will be available from the Unix Software Laboratory
(USL) on their SVR4 UNIX base. The Open Network: Com­
puting (ONC) utility set which is the dominant remote proce­
dure call facility in use today will probably adapt to
incorporate DCE compatibility.

D. Object Request Broker
The object communication manager facility will be pro­

vided by the Object Request Broker (OMG/ORB) which is
being specified by the Object Management Group in colla~»
ration with several large computer companies[15]. Early ver­
sions of this facility will be available from Hewlett-Packard
and from Sun Microsystems.

A working example of this facility, ToolTalk, is currently
available from Sun Microsystems for use on their worksta­
tions[16]. Our first ORB compliant applications will probably
be based on this toolkit

E. X-Windows, Motif, and IEEE 1201.1
The network-based graphical user interface will be pro­

vided by the MITX-Wmdow system, the Motif graphical user
interface, and the evolving IEEE 1201.1 universal application
programming interface libraries.

The only universal, network-based, window environment
available today is the X-Wmdow system. The latest release
(X11R5) is fast, supports scalable fonts, and runs on every
major UNIX workstation. A large amount of public domain
software is available for this windowing environment.

Unfortunately, there are several competing, incompatible,
graphical user interfaces available for the X-Wmdow system.
The OpenLoolc GUI is being promoted by AT&T and Sun
Microsystems, while the MotifGUI is being promoted by the
Open Software Foundation (OSF) and most of the other work­
station vendors. However, to our knowledge the Motif win­
dow manager and application programming interface is also
the only environment which runs universally on all present
Posix compliant systems. Moreover, a number of Motif com­
pliant GUI tools are available for most of these platforms.

The IEEE 1201.1 committee is developing a specification
for a standard GUI programming interface which can be used
with any of the X-Wmdow GUis in use today. We will adopt
this standard when it becomes available, but in the meantime
we will use the Xm-based toolkit from OSF for their Motif
GUI. Wherever possible, we will also be using the Eiffel­
based graphics toolkit from Interactive Software Engineer­
ing[17].

V. PROJECT STATUS
We have developed several prototype components to test

some elements of this framework.

3of4

A class library for accelerator modeling and simulation
has been constructed w;iog Eiffel. Another Eiffel class library
for the hardware database access is also being developed
which interfaces with the LBIJALS control system. Using
these class libraries, one can create accelerator models
dynamically with on-line and real-time access.

Several network-based, object-oriented device handlers
have been written running under the VxWorks operating sys­
tem on a VME target system. 1bese handlers are being rewrit­
ten in Eiffel. An object management broker for VxWorks is
also in progress.

VL REFERENCES
[1] S.A. Lewis, A.K.Biocca, R.D.Dwineli,1.R.Guggemoa,

L.L.Shalz, W.L.Brown, G.S.Boyle, K.Fowler, and D.L.Meany,
Progress on a New Control System for the BeveW:,IEEE Part.
Accel Conf., Vol 89012669..()(1989)1645.

[2] S.Magyary, M.CUn, C.Colk, M.Fahmie, H.Lancaster, P.Moli­
nary, A.Ritchie, A.Robb, and C.Timosai, Advanced Light
Source Control System, IEEE Part. Accel. Conf., Vol.
89012669..()(1989)74.

[3] M.Lee, S.Clearwater, E.Thiel, and V.Paxson, Modern
Approaches to Accelerator Simulation and On-Line Control,
IEEE Part. Accel Conf., Vol. 87CH2387-9(1987)611.

[4] S.H.Cearwater, and M.Lee, Prototype Development of a Beam
Line Expert System, IEEE Part. Aced. Conf., '\bl. 87CH2387-
9(1987)532.

[S] 1.E.Spencer, Accelerator Diagnosis and Control by Neural Nets,
IEEE Part. Accel Conf., Vol. 89CH2669-0 (1989) 1642.

[6] Bart Kosko, Neural Networks and Fuzzy Systems. A Dynam­
ical Systems Approach to Machine. Intelligence, Prentice
Hall, Englewood Cliffs, N1, 1992.

[7] B.Lip~ and K. Venxzel, Instrument Engineers' Handbook,
Process Control, Chilton, Radnor, PA, (1985) 713.

[8] C.Fidge, Logical TUDe in Distributed Computing Systems,
IEEE Computer, Vol.24,No.8(1991)28.

[9] Isis-A Distributed Programming Environment, Version 1.0
user's guide and reference manual, Cornell University (April
1990).

[10] Bertrand Meyer, Object-Oriented Software Construction,
Prentice Hall, Englewood Cliffs, N1, 1988.

[11] LynxOS, Lynx Real-Tune Systems, Inc., Los Gatos, CA, USA.
[12] CHORUS/MIX, Chorus Systems, Beaverton, OR. USA.
[13] VxWorks, Wmd River Systems, Inc., Alameda, CA, USA.
[14] Distributed Computing Environment, Open Software Foun­

dation, Cambridge, MA, USA.
[IS] Object Request Broker, Object Management Group, San Fran­

cisco, CA, USA.
[16] ToolTalk (Beta) Programmer's Guide. Part No: 800-6093-0S,

Sun Microsystems, Inc., Mountain View, CA, USA.
[17] EifTel Graphics Library, Interactive Software Engineering,

Inc., Goleta, CA, USA.

4of4

f .. -

~"·"~!.!"'

LA~NCEBERKELEYLABORATORY

UNIVERSITY OF CALIFORNIA
TECHNICAL INFORMATION DEPARTMENT

BERKELEY, CALIFORNIA 94720

..... ~

