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A B S T R A C T

Solar modules in utility-scale systems are expected to maintain decades of lifetime to rival conventional energy
sources. However, cyclic thermomechanical loading often degrades their long-term performance, highlighting
the importance of effective design to mitigate thermal expansion mismatches between module materials. Given
the complex composition of solar modules, isolating the impact of individual components on overall durability
remains a challenging task. In this work, we analyze a comprehensive data set that comprises bill-of-materials
(BOM) and thermal cycling power loss from 251 distinct module designs to identify the predominant design
factors and their impacts on the thermomechanical durability of modules. The methodology of our analysis
combines machine learning modeling (random forest) and Shapley additive explanation (SHAP) to correlate
design factors with power loss and interpret the model’s decision-making. The interpretation reveals that
silicon type (monocrystalline or polycrystalline), encapsulant thickness, busbar numbers, and wafer thickness
predominantly influence the degradation. With lower power loss of around 0.6% on average in the SHAP
analysis, monocrystalline cells present better durability than polycrystalline cells. This finding is further
substantiated by statistical testing on our raw data set. The SHAP analysis also demonstrates that while thicker
encapsulants lead to reduced power loss, further increasing their thickness over around 0.6 to 0.7 mm does
not yield additional benefits, particularly for the front side one. In addition, other important BOM features
such as the number of busbars are analyzed. This study provides a blueprint for utilizing explainable machine
learning techniques in a complex material system and can potentially guide future research on optimizing the
design of solar modules.
1. Introduction

Utility-scale photovoltaic (PV) systems are expected to achieve an
extended operating lifetime to be competitive with conventional energy
sources [1]. However, solar modules installed in the field are subject
to multiple environmental stresses such as ultraviolet light, temperature
variation, mechanical loading induced by snow, wind, hail [2]. These
factors introduce multiple pathways of degradation, reducing the dura-
bility of the module. One of the sources of long-term degradation is
the cyclic thermomechanical deformation of solar modules caused by
temperature variation. Over time, thermal cycling can cause the degra-
dation of components within solar modules, such as interconnections,
and lead to a decrease in module power [2,3]. Therefore, it is essential

✩ The project was primarily funded and intellectually led as part of the Durable Modules Consortium (DuraMAT), an Energy Materials Network Consortium
funded under Agreement 32509 by the U.S. Department of Energy (DOE), Office of Energy Efficiency & Renewable Energy, Solar Energy Technologies Office
(EERE, SETO). Lawrence Berkeley National Laboratory is funded by the DOE under award DE-AC02-05CH11231.
∗ Corresponding author.
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to identify the potential problems in the current design of solar modules
and optimize module robustness to thermal cycling degradation.

Fig. 1(a) illustrates an example of a typical glass/backsheet mod-
ule. Its multi-layered construction comprises a front frame, a glass
layer, polymer encapsulant layers commonly made from ethylene vinyl
acetate (EVA) or polyolefin elastomer (POE), a solar cell layer com-
posed of silicon solar cells and copper interconnections, and a backside
polymer backsheet made from layers of Tedlar Polyester Tedlar (TPT).
The copper ribbons are connected to the cell metallization with solder
(SnPb). A defining characteristic of these components is their distinct
thermal expansion coefficients (CTE, 𝛼). This variance in CTEs means
that they expand or contract at different rates in response to daily and
seasonal temperature fluctuations in their operating environment.
https://doi.org/10.1016/j.apenergy.2024.124462
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Nomenclature

PV Photovoltaic
BOM Bill of materials
TC Thermal cycling
CTE Coefficient of thermal expansion
PQP Product qualification program
Encaps Encapsulant
Glass2 Rear glass of glass-glass modules
Mono-c Monocrystalline
Poly-c Polycrystalline
EVA Ethylene vinyl acetate
POE Polyolefin elastomer
TPT Tedlar Polyester Tedlar
ML Machine learning
KNN K-nearest neighbors
SVR Support vector regression
RF Random forest
RMSE Root mean square error
SHAP SHapley Additive exPlanation
𝜙 Shapley value
CI Confidence interval
ANOVA Analysis of variance

Previous research [4] showed that the power loss of different models
f PV modules after extended thermal cycling tests of up to 600 cycles
aried from 0.8% to 14.5%. This degradation is partially due to the
TE mismatch between glass (𝛼glass ≈ 8× 10−6 K−1) and Si cells (𝛼cell ≈

2.5 × 10−6 K−1). The cells adhere to the glass by encapsulants, so the
CTE mismatch causes a non-uniform in-plane displacement of cells and
glass [5]. The gap between cells can vary with different temperatures,
as shown in Fig. 1(b). Such temperature-driven variations over the
lifetime of a module can result in cyclic deformation of the copper
ribbons that connect cells and cause interconnection fatigue [5–7].
Additionally, fragments in cracked cells can shift due to temperature
variation, leading to wear and tear at metal contacts [8]. Another
prevalent degradation mode caused by temperature variation is solder
disconnection. The CTE mismatch between the copper (𝛼Cu ≈ 16.7 ×
10−6 K−1) ribbon and Si cell (𝛼Si ≈ 2.5×10−6 K−1) triggers non-uniform
deformations in these layers [9]. As depicted in Fig. 1(c), at elevated
temperatures, Si and Cu experience tensile and compressive stresses,
and at low temperatures, the stresses are reversed, which causes a
periodic change of shear stress within the solder layer [9]. This cyclic
loading in the solder often culminates in solder disconnection [10–
12]. Solder degradation is one of the failure modes that occurs in the
early stage of module operation, which can be probed by 600 cycles of
thermal cycling accelerated aging tests [4].

As shown above, thermal cycling degradation involves multiple
modes, strongly impacted by the specific bill-of-materials (BOM) of
solar modules. This encompasses the dimensions and material proper-
ties of each module component. Understanding which design factors
predominantly affect thermal cycling power loss is of great significance
in guiding future research on module optimization. Several previous
studies have investigated the impact of various design factors. Bosco
et al. [13] performed a regression analysis to identify design factors
that may influence the degradation of the solder by simulating the
accumulated damage to the solder joints during thermal cycles. The
top sensitive factors are the thickness of the solder layer, Cu ribbon,
and Si wafer layer. Park et al. [9] also confirmed that reducing the
thickness of the Si cell and copper ribbon can increase the lifetime of
the solder in thermal cycling by simulation. Zhu et al. [14] fabricated

different mini-modules and did a simulation to investigate the effect of

2 
viscoelasticity of encapsulant materials on the solder joint fatigue. They
found that modules with encapsulants of higher viscous properties pre-
sented more power loss after the thermal cycling test. Beinert et al. [15]
found that increasing cell size and changing full cells into half-cut
cells could decrease thermal stress on the cell layer using simulation.
They further qualitatively concluded that cell thickness, encapsulant
CTE and glass/backsheet CTE strongly influence the stress in the cell
layer [16]. Hanifi et al. [12] also found that the higher rigidity of
encapsulant materials and changing full cells into half-cut cells could
mitigate ribbon fatigue during temperature variation. As exemplified
by this past research, most sensitivity analysis work in this field relies
on simulated data. Computational constraints often force researchers to
model simplified structures, such as a single cell rather than a full-size
solar module, or ignore the busbars, which may bypass some real-world
effects.

Previous research [13] correlated module design with durability
using a linear model to explore the effects of these design factors. Typ-
ically, the standard regression analysis with linear model imposes pre-
requisites on the data set, such as multivariate normality, homoskedas-
ticity in the data. In addition, the linear model requires the linear
relationship between the independent variables and the target vari-
able; otherwise transformations of the independent variables such as
logarithm and reciprocal transformation [13] are necessary to capture
the non-linear relationship. On the other hand, machine learning (ML)
models are mostly nonparamatric and present an outstanding ability
to discover the underlying pattern in the data. While the enhanced
predictive accuracy of advanced ML models is commendable compared
to linear models, a significant challenge emerges in their interpretabil-
ity. Several methodologies have been proposed to solve this trade-
off between accuracy and interpretability. Noteworthy among these
are Partial Dependence Plot (PDP) [17], Local Interpretable Model-
agnostic Explanations (LIME) [18], and SHapley Additive exPlanations
(SHAP) [19]. In particular, SHAP is able to do both global and local
interpretation, and its adoption across diverse scientific disciplines is a
testament to its efficacy [20–23]. These model-agnostic methodologies
facilitate data inference with more predictive machine learning models
beyond traditional linear models, whilst preserving interpretability.

This study identifies the predominant BOM features that affect the
thermomechanical durability of modules and explores their impacts us-
ing real-world data. Our data set comprises full-size module data from
the industry that includes both BOM features and the corresponding
power loss after 600 standard thermal cycles [24]. Since these are ex-
isting records from the industry rather than from a well-designed data
sampling process, we propose using nonparametric machine learning
models to correlate the BOM features with the power loss and then
applying the model-agnostic method to interpret the black-box models.
By comparing various ML models, we develop a random forest (RF)
model [25] with a testing root mean square error (RMSE) of 1.179%.
Subsequently, we employ the SHAP method to interpret the developed
model, thus identifying the predominant BOM features as Si type, en-
capsulant thickness, number of busbars, and wafer thickness. Also, with
SHAP analysis, we elucidate the impacts of these top important factors
on the thermomechanical durability. In the end, we apply statistical
testing on the original data set to verify our conclusions.

To sum up, the schematic workflow of this project is demonstrated
in Fig. 2(a)–(e). The principal contributions of this study are summa-
rized as follows:

(1) This work identifies that Si type, encapsulant thickness, busbar
numbers and wafer thickness are the predominant BOM features
that influence module’s thermomechanical durability.

(2) We find that using mono-c Si cells presents lower TC power
loss (0.6%) than poly-c Si ones, and thicker encapsulant over

0.6–0.7 mm does not bring additional benefits to the durability.
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Fig. 1. Schematic structure of a glass/backsheet PV module and the mechanism of its thermomechanical degradation. (a) The layered structure of a PV module. (b) Mechanism
of the cyclic deformation of ribbons. (c) Mechanism of cyclic thermal stress in solder layer.
Fig. 2. The workflow of the study and data distribution. (a)–(e) illustrate the steps performed in this study. (a) Data collection. The data set is constructed by manually extracting
information from BOM files and measuring the power loss under thermal cycling tests. (b) Data preprocessing. The data set is then cleaned, and the corresponding features are
selected to build machine learning models. (c) ML model selection. Multiple models such as linear models, support vector regressor (SVR), and tree-based models are fitted and
compared to correlate the BOM features with the TC 600 power loss. The best-performing model is selected for interpretation. (d) SHAP analysis. SHAP method is then used to
interpret this optimal model to determine the predominant design factors and their impacts on the power loss. The uncertainty of Shapley values is quantified using bootstrapping.
(e) Validation of the interpretation. In the end, post hoc statistical testing is used to validate the interpretation. Clustering method is used to regroup the data set and t-testing is
used to test the statistical significance. (f) Distribution of the selected feature values and the power loss of each module. The distribution of other features is shown in the SI.
(3) We propose a novel workflow to the field of understanding the
complex correlations between BOM data and module durability.
The methodologies combine machine learning modeling (RF
model), model-agnostic interpretation method (SHAP), and post
hoc validation with statistical testing.

(4) We publish the processed BOM data and codes in our work.
This data set can be beneficial for future research on improving
3 
the durability of PV modules considering the difficulty in track-
ing the BOM features. Some values in this public data set are
redacted due to non-disclosure agreement.

The rest of this article is organized as follows: Section 2 illustrates
the details of thermal cycling setup and computation methodologies,
including data collection, the feature matrix constructed by feature
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selection, ML modeling, SHAP interpretation and statistical testing. Sec-
tion 3 reports the results derived from the application of these methods.
We first compare the performance of ML models and report the gener-
alization of the optimal RF model. After that we rank the importance of
each BOM features and demonstrate the impact of predominant features
on the durability by interpreting the aforementioned RF model with
SHAP analysis. We further discuss the underlying mechanisms of the
connections between BOM and the module durability. In the end, we
validate the interpretation of the ML model using statistical testing.
Section 4 summarizes this paper and provides further insight into the
current module design and the durability of modules.

2. Methodology

All experimental data were collected at PVEL [26]. All codes and
models compiled in this research were written in Python3 [27] and
executed on a MacBook Pro (Apple M2 Pro chip, 16 GB memory).

2.1. BOM data collection

The data comes from PVEL’s product qualification program (PQP)
[28]. 275 full-size commercial solar modules of different designs were
collected from 47 different manufacturers by PVEL. These modules are
estimated to cover around 70% various types of designs in the market
by the date of collection. The BOM data were extracted manually
from the document files provided by these manufacturers and yielded
over 100 features, including supplier information, dimensions and con-
figurations, materials of PV components such as cells, connections,
encapsulants, backsheets and glasses. In this study, we select certain
features that are essential for machine learning modeling based on the
steps described in the following Section 2.3.

2.2. Thermal cycling test

The thermal cycling test is carried out at PVEL according to the
standard outlined in IEC 61215-2:2016 [24]. Each module is placed in
an environmental chamber and subjected to temperature cycles from
−40 ◦C to +85 ◦C. There are 600 thermal cycles, and each cycle contains
a maximum 100 ◦C∕hr ramp rate and a minimum dwell time of 10 min.
ach complete cycle takes around 6 h. A current–voltage (IV) flash
est (Pasan SunSim 3B) is performed under standard test conditions
ollowing IEC 60904-1:2006 [29] before the aging test and after every
00 cycles to measure the IV curve of the modules.

.3. Data preprocessing and feature selection

The final feature matrix 𝐗 we constructed to train the machine
earning models contains 251 modules with 22 BOM feature columns
nd the target variable 𝐘 is the power loss (%) after 600 thermal cycles.
he distribution of some selected BOM features, along with the power

oss after 600 cycles of thermal cycling test (TC 600), is plotted in
ig. 2(b). The complete distribution of the 22 features can be found in
he SI Section ‘‘Feature Selection’’. The power loss is defined in Eq. (1).

𝑃 (%) =
𝑃𝑚𝑎𝑥
𝑖𝑛𝑖𝑡 − 𝑃𝑚𝑎𝑥

𝑎𝑓𝑡𝑒𝑟

𝑃𝑚𝑎𝑥
𝑖𝑛𝑖𝑡

× 100% (1)

where 𝑃𝑚𝑎𝑥
𝑖𝑛𝑖𝑡 is the module’s maximum output power before the aging

test and 𝑃𝑚𝑎𝑥
𝑎𝑓𝑡𝑒𝑟 is the maximum output power after 600 thermal cycles.

To construct this feature matrix (i.e., the input X), we preprocess
the raw data by data cleaning and feature selection. Data cleaning
includes outlier detection using residual analysis, data type casting, and
missing data handling using a K-nearest neighbors (KNN) imputer [30].
The outlier detection step removes 24 modules that do not have TC
600 power loss data or have large residuals (over 97% quantile) in
the residual analysis, as demonstrated in the Supporting Information
4 
(SI) section titled ‘‘Data Preprocessing’’. Detailed descriptions of these
preprocessing steps are also included in this SI section.

Subsequent to the data cleaning process, we select features from
more than 100 BOM attributes in the raw data set. The goal of feature
selection is to identify features with potential correlations to the target
variable among other BOM features in the original data set and reduce
inter-feature dependencies because high correlation among features
makes the interpretation of feature importance less accurate and less
stable. This selection is primarily guided by domain-specific knowledge.
According to previous research [13,15,16], the features that influence
the stress distribution in solar modules include the thickness, width,
and length of each layer and the interconnection thickness, so these
features are included in the feature matrix. Mechanical properties such
as viscoelasticity of the polymer encapsulant may also influence the
durability of the module, but these properties are difficult to track in
the BOM data and are not discussed in this work. We also perform
exploratory data analysis using a correlation matrix to further test the
association among features and between features and power loss. These
associations are calculated using the Python package Pingouin [31] and
Scipy [32].

We employ different statistics to measure the associations for dif-
ferent types of variables. We use Spearman correlation to test the
correlation between two numerical variables 𝑋 and 𝑌 . For instance,
Fig. 3(a) is a correlation matrix that shows some highly dependent
features related to module dimensions, so these features apart from
glass length and width are excluded from the feature matrix to mitigate
multicollinearity. We explain the impact of dependent features on
feature importance in the SI section ‘‘Feature Selection’’. Furthermore,
we select features that may not be explored in previous regression
analyses [9,13,16] but still show correlation with thermal cycling
degradation based on the correlation matrix in Fig. 3(b). For example,
the number of busbars was not considered in the previous simula-
tion [13] to save computation time, but we still include this feature
in our models because this feature shows a high Spearman correlation
in this data exploration process. It should be noted that the Spear-
man correlation is applicable to numerical variables. Regarding other
types of variables, we use the Chi-square test [33] to test the statisti-
cal association among categorical features, and Analysis of Variance
(ANOVA) [33] to test the statistical association between numerical
features and categorical features as detailed in the SI Section ‘‘Feature
Selection’’. We note that the dependence computed here is only used
to help construct the feature matrix and does not necessarily reflect
the true correlation between features and power loss due to the inter-
action of features. Therefore, further analysis like statistical analysis
or machine learning modeling is required to determine correlations or
feature importance.

2.4. ML models

In this study we compare multiple regression models, including
linear (Lasso and ridge regression), support vector regression, and tree-
based (RF and XGBoost) models to find the model that minimizes
prediction error. Linear models act as a baseline for model comparison.
We use k-fold (𝑘 = 5) cross-validation to test the robustness. The
hyperparameters of these models are tuned by using grid search, as
described in the SI. In all cases, the model performance is assessed using
root mean square error (RMSE) between the measured values and the
predicted values. We build ML models using toolkits from the Scikit-
learn package [34] to model the correlation between BOM features and
the power loss. The XGBoost model is not originally included in Scikit-
learn and is constructed using the open source XGBoost package [35].
The split of the development set, the model evaluation metric, and the
description of model architectures are illustrated as follows:

2.4.1. Data splitting and model evaluation
The data set is split into the training set and the testing set with
a splitting ratio of 8:2. The training set is further divided into five
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Fig. 3. The Spearman correlation between numerical features and the target variable is calculated to assist the construction of the feature matrix in combination with domain
knowledge. The correlations shown here are solely used as a reference for feature selection and do not necessarily reflect the true correlations or importance since multiple variables
may be entangled. (a) Correlation matrix of numerical features related to module dimensions. (b) Spearman correlation score between selected features and power loss. Features
with high correlation coefficient such as the number of busbars are used to construct the feature matrix, although they were not explored in some previous analyses [13,16]. The
full correlation matrices of numerical features as well as categorical features are shown in the SI.
parts for 5-fold cross-validation to compare models and do hyperpa-
rameter tuning. In each validation iteration, four parts are used for
training and the rest part is used for validation. The performance after
cross-validation is the average performance from each iteration. Fur-
thermore, the hold-out testing set is used to evaluate the generalization
of the optimal model picked from the cross-validation process. The root
mean squared error (RMSE) used to evaluate model performance is
defined in Eq. (2).

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1

(

�̂�𝑖 − 𝑦𝑖
)2 (2)

where 𝑛 is the number of data points, �̂�𝑖 is the prediction for the data
point 𝑖 and 𝑦𝑖 is the ground truth of 𝑖. The RMSE shares the same unit
(%) as the power loss.

2.4.2. Linear model
The generalized formula of a linear model follows Eq. (3):

𝐲 = 𝐗𝐰 (3)

where 𝐲 ∈ R𝑛 is the target vector, 𝐗 ∈ R𝑛×𝑑 is the feature matrix, and
𝐰 ∈ R𝑑 is the model weight. 𝑛 is the number of measurements and 𝑑 is
the number of features. The training aims to find the 𝐰 that minimizes
the loss between the measured values and the predicted values, as
shown in Eq. (4).

�̂� = argmin𝐰 ‖𝐲 − 𝐗𝐰‖22 + 𝜆𝑅 (4)

where 𝜆𝑅 is the regularization term with the hyperparameter 𝜆 to pre-
vent overfitting. Lasso regression [36] with 𝐿1 regularization (𝜆‖𝐰‖1)
and Ridge regression [37] with 𝐿2 regularization (𝜆‖𝐰‖22) were trained.
The equations for these regularization terms are shown in the SI Section
‘‘ML Modeling’’.
5 
2.4.3. SVR
Support vector regression [38] finds a hyperplane with margins that

minimize the error between the true value and predicted values. The
equations for SVR is shown in the SI Section ‘‘ML Modeling’’.

2.4.4. Tree-based model
Random forest and XGBoost are trained in this research. Random

forest regression builds an ensemble of decision trees on different
subsets of the original data using bootstrapping and splits nodes on a
random subset of features, helping to increase robustness and prevent
overfitting. The final prediction result is the average of the predictions
of each decision tree. XGBoost uses boosting method by building deci-
sion trees sequentially, each trained to correct its predecessor’s errors.
Both tree-based models can be regularized by limiting the depth of trees
or the number of nodes. XGBoost can also be regularized using 𝐿1 or
𝐿2 regularization in gradient boosting.

2.5. SHAP analysis

To interpret ML models and understand the correlation between
BOM features and power loss, we use SHAP method to explain the
ML models and apply bootstrapping to quantify the uncertainty of this
method. SHAP analysis reveals the impact of a certain feature on model
prediction while marginalizing the effect of other features. A prediction
(i.e., power loss) of the model can be considered as the sum of the
contributions (i.e., Shapley values) of each BOM feature. The average
contributions of each BOM feature represent the feature importance,
and the dependence between feature values and Shapley values reflects
the feature impacts on the power loss.

2.5.1. SHapley additive explanations
SHAP is a model-agnostic method that interprets each feature’s

marginal contribution to a specific prediction of the machine learning
model. It can interpret both local prediction and global contributions
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of each feature via the additive method. SHAP measures the marginal
contribution by computing the Shapley value of each feature (𝜙𝑗),
defined as:

𝜙𝑗 =
∑

𝑆⊆{1,…,𝑝}∖{𝑗}

|𝑆|!(𝑝 − |𝑆| − 1)!
𝑝!

(Val(𝑆 ∪ {𝑗}) − Val(𝑆)) (5)

where 𝑆 is a subset of the features used in the model, and 𝑝 is the
umber of features. {1,… , 𝑝}∖{𝑗} represents the set without feature 𝑗.
al(𝑆) is the prediction for feature values in set 𝑆 that are marginalized
ver features not included in set 𝑆.

A prediction can be interpreted as the sum of Shapley values of each
eature, as shown in Eq. (6), where 𝑓 (𝒙) is the prediction, 𝐸𝑋 [𝑓 (𝑋)]

is the expectation of the prediction, 𝜙𝑗 is the Shapley value (i.e.,
contribution) of the feature 𝑗, 𝒙 is a feature vector that contains feature
values in this prediction. Eq. (6) illustrates that each Shapley value is
correlated with the prediction, so the impact of a feature on its Shapley
value also reflects its impact on the target variable.

𝑓 (𝒙) = 𝐸𝑋 [𝑓 (𝑋)] +
𝑝
∑

𝑗=1
𝜙𝑗 (6)

2.5.2. Bootstrapping
The uncertainty of the Shapley value is determined by using Boot-

strapping [39], which randomly sampled with replacement from the
original data set 1,000 times and Shapley values of each feature are
computed in each iteration. This results in the distribution of the
Shapley value of each feature. The confidence interval (CI) of the
Shapley value is quantified by using a 95% confidence level.

2.6. Post hoc statistical analysis

Utilizing SHAP analysis allows us to understand the most influential
BOM features and their impacts on power loss. However, the validity
of SHAP interpretation is contingent upon the performance of the
machine learning models, necessitating supplementary investigations.
The straightforward method of validation is to conduct an independent
post hoc statistical testing on the power loss in the original data set. For
instance, we can directly compare the power loss of poly-c Si modules
and mono-c Si modules to test which Si type is more durable. However,
since our data set comprises modules from various manufacturers, other
BOM features are not controlled when we compare different Si types.
Therefore, we need to reorganize the original data set. The steps include
regrouping the original data set to generate control groups using the
clustering method and subsequent statistical testing.

2.6.1. Clustering
K-means [40] implemented with Scikit-learn is used to do the clus-

tering, which partitions the data into a predefined number of clusters
(𝐾) by iteratively assigning each data point to the nearest centroid,
and then recalculating the centroids as the mean of all the points
in the cluster until the centroids stabilize or a maximum number of
iterations is reached. The ‘‘elbow’’ method is used to determine the
optimal number of clusters to be used. Before clustering, the feature
matrix is standardized following Eq. (7) and weights are assigned to
each feature based on their importance following Eq. (8)

𝑍 =
𝑋 − 𝜇

𝜎
(7)

where 𝑍 is the standardized feature matrix, 𝑋 is the training feature
atrix, 𝜇 and 𝜎 are the training samples’ mean and standard deviation.

eature∗𝑖 = feature𝑖 ×
SHAP𝑖

∑

𝑗 SHAP𝑗
(8)

where feature𝑖 is the standardized value of feature 𝑖 and SHAP𝑖 is the
mean absolute Shapley value of feature 𝑖.
 t

6 
Table 1
Mean value and standard deviation of RMSE of each model during the 5-fold cross
validation.

Model RMSE_mean (%) RMSE_std (%)

Lasso (Linear) 1.614 0.156
Ridge (Linear) 1.631 0.159
SVR 1.657 0.195
RF (Tree-based) 1.427 0.247
XGBoost (Tree-based) 1.491 0.133

2.6.2. T-test
T-test is conducted using the Pingouin package [31]. The 𝑡-value

for the group 𝑎 and 𝑏 is defined in the SI Section ‘‘Post hoc Statistical
Analysis’’.

3. Results and discussion

3.1. ML modeling

In this work, we train a random forest model by taking the con-
structed BOM feature matrix as input and the TC 600 power loss as
target variable. This model shows a validation RMSE of 1.427% which
outperforms other models in our study and a testing RMSE of 1.179%,
which illustrates the generalization of this model. It should be noted
that the unit (%) of RMSE is the same as the power loss. Before
selecting this model, we compare several ML models as illustrated in
Section 2. Table 1 and Fig. 4(a) compare the mean value and standard
deviation of RMSE of each model during the 5-fold cross-validation.
In general, tree-based models outperform other models, with RMSE
validation of 1.427%(±0.247%) for RF and 1.491%(±0.133%) for XGBoost.
This is unsurprising because linear models do not capture the nonlinear
relationships between the BOM features and the power loss, and SVR
tends to develop severe overfitting as shown in Fig. 4(b). Considering
the low mean error and simpler implementation, we select RF as the
optimal model for subsequent SHAP analysis. It should be noted that
although the difference in RMSE values between tree-based models
and other models may seem marginal in Table 1, given the low target
variable values, even minor RMSE variations can signify substantial
prediction performance disparities. This significant difference in perfor-
mance among models can be visualized in the scatter plots of predicted
values vs. measured values. For example, the plot for Lasso model in
Fig. 4(b) clearly shows underfitting since the scatter points are not
distributing along the ‘‘Measured=Predicted’’ line (the diagonal dash
line). The scatter plots for all the models are demonstrated in the SI
Section ‘‘ML Modeling’’. In addition, to mitigate the influence of large
differences in ranges of features in the linear model, especially when
these features have different units, we also train linear models on a
standardized data set following the standardization equation (Eq. (7)).
However, the performance of the linear model is not varied (details
included in SI). We note that tree-based models are not influenced by
this difference between feature ranges and do not require standardized
data set.

After comparing the RF model with other models, we further test
its generalization on the hold-out 20% of the data set (i.e., testing
et), as shown in Fig. 4(c). The RMSE (1.179%) of the hold-out testing
ata is not drastically higher than the training error, as opposed to
he overfitted SVR model. This indicates that the fitted RF model is
ble to capture the underlying correlation between the BOM data and
he degradation and has generalization to new data. Following model
election, we retrain the optimal RF model on the combined data set of
oth training and testing set, achieving a RMSE of 0.558%, and proceed

o interpret this model using the SHAP method.
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Fig. 4. Comparison of machine learning models and generalization test of the optimal model. (a) The 5-fold cross-validation RMSE score for each model. The error bar shows
the standard deviation of scores in each fold. Tree-based models (RF and XGBoost) present the best performance. (b) The performance of the Lasso and SVR on the training and
testing set, which present underfitting and overfitting. (c) Performance of the selected RF model in the hold-out testing set. Relatively low testing RMSE compared to the training
score shows that the RF model is not severely overfitted and generalized well on the new data set.
3.2. SHAP analysis for ranking BOM feature importance

To investigate the importance of features related to power loss, we
use the SHAP method to interpret the RF model demonstrated in Sec-
tion 3.1. With this method, we find that BOM features such as Si type,
encapsulant thickness, busbar numbers and wafer thickness remain the
top important factors, as shown in Fig. 5(a) which ranks the average
impact of each feature on the prediction in the order of decreasing
mean absolute Shapley values. In general, Fig. 5 demonstrates that
‘‘Si type (poly=1)’’, which represents whether the solar cell is mono-
c (denoted as 0) or poly-c (denoted as 1) Si, is listed as the most
important feature. Also, this feature still remains the most important
even when the lower bound of the confidence interval (shown as
the error bars) is considered. This indicates that the Si type is the
predominant design factor that impacts thermal cycling power loss.
The subsequent influential features are ‘‘Number of busbars’’, ‘‘Wafer
thickness’’, ‘‘Front encaps thickness’’ and ‘‘Rear encaps thickness’’. If
we consider the thickness of the front and rear encapsulant together
due to their similarity and add up their Shapley values, the encapsulant
thickness is the next important BOM feature other than the Si type as
shown in the red dashed line in Fig. 5(a).

To quantify the uncertainty of Shapley values, the 95% confidence
intervals are shown as the error bars in Fig. 5(a). The narrow interval
indicates the robustness of this method to random selection in the
training data. It should be noted that Si type and encapsulant thickness
are the two top important features with robustness, but the importance
rank of other features can vary according to the confidence interval in
Fig. 5(a). Fig. 5(b) shows an example of the bootstrapping distribution
of the Shapley value of the ‘‘Number of busbars’’, which follows a
normal distribution consistent with the central limit theorem [33].

3.3. SHAP analysis for interpreting impacts of BOM features on power loss

To understand the impact of varying a specific BOM feature on the
power loss, we also examine the Shapley value of each feature in each
measurement, as shown in Fig. 5(c). We will separately discuss the
detailed interpretation of the impacts of each top important feature and
7 
possible mechanisms in the next few paragraphs. Due to the additive
property of the SHAP formula shown in Section 2, the power loss of a
module can be considered as the sum of Shapley values of each feature,
and thus the dependence between the feature value and the Shapley
value reflects the relation between the BOM feature and the power loss.
For instance, the ‘‘Si type’’ row in Fig. 5(c) illustrates that poly-c Si
modules (red clusters) possess positive Shapley values, which implies a
tendency towards higher power loss for such modules.

The dependence between BOM features and power loss is clear for
categorical variables such as ‘‘Si type’’ in Fig. 5(c), but it becomes
challenging to understand this dependence for other numerical features
in this plot. To better visualize this dependence between BOM features
and power loss for numerical features, we also construct Fig. 6 based
on Fig. 5(c) to illustrate the relationship between the feature values
and their corresponding Shapley values. The Shapley values (< 0.1)
of other features are not significant compared to these primary ones
and are not discussed in detail in this paper. Fig. 6(a)–(d) show the
dependence plot of the top five important features besides the Si type
and Fig. 6(e)(f) demonstrate two features that were investigated in
previous studies [9,13].

3.3.1. Impact of Si type
Based on the SHAP interpretation, Si type is the predominant design

factor regarding the module’s thermomechanical durability and poly-c
Si modules present higher power loss. Fig. 5(a) illustrates that using
poly-c Si instead of mono-c Si increases the Shapley value by around
0.6 on average, which indicates an increase of 0.6% in the power loss.
We note that this value only quantifies the impact of using poly-c
Si, but because of the noises in our data set and model, the change
in power loss after replacing mono-c Si with poly-c Si may vary in
reality. To the best of our knowledge, this difference in durability
between mono-c and poly-c Si modules was not reported previously.
Since mono-c and poly-c Si have similar CTE [41], the variance of
power loss may not be caused by the difference in thermal expansion.
One plausible reason involves the grain boundary in poly-c Si that
serves as the initiation sites of micro-cracks [42]. These micro-cracks
can propagate with successive thermal cycles, leading to a degradation
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Fig. 5. SHAP interpretation of the machine learning model and uncertainty determination. (a) The rank of importance of the BOM features. The mean absolute Shapley value is
calculated over all the modules in the original data set. The error bar shows the uncertainty with 95% confidence level using bootstrapping (random sampling from the original
data set). The red dashed line shows the sum of Shapley values of both front and rear encapsulant thickness, indicating that the encapsulant thickness is also a very important
feature other than the Si type. (b) An example of the bootstrapping distribution of the number of busbars using 1000 sampling. The Shapley value computed from the original
data is indicated by the red dashed line, and the boundaries of the 95% CI computed from the bootstrapping are indicated by the orange dashed line. (c) The beeswarm plot
of Shapley values. It shows the dependent relation between each feature and the power loss. The color of each point denotes the feature values. The red color denotes a larger
feature value, and the blue color denotes a smaller feature. The 𝑥-axis is the Shapley value (i.e., impact on degradation) of each feature. For example, the blue dots (lower feature
value) in the row ‘‘Wafer thickness’’ with positive Shapley values (higher power loss) suggest that a lower wafer thickness tends to increase power loss.
in the performance of the solar module over time even before the crack
length reaches the threshold of a catastrophic breakage. In addition,
different cutting methods for processing the silicon ingot can influence
the fracture toughness of Si wafers [43], so this manufacturing step
can be a potential confounding variable that causes this phenomenon.
We note that the impact of micro-cracks on module electric power
and the evolution of micro-cracks in long-term cyclic loading remain
a topic of ongoing research [2,44,45], so other factors may also cause
the difference in power loss here. Another possible reason is that the
current data set may be influenced by other confounding variables.
The mitigation of the influence of confounding variables will be il-
lustrated in the following subsection ‘‘Statistical Validation of SHAP
Interpretation’’. We note that the solar industry is phasing down the
usage of poly-c Si cells primarily because of the lowered cost and higher
efficiency of mono-c Si cells. The findings from this analysis can provide
another motivation for the switch from poly-c to mono-c Si cells.

3.3.2. Impact of encapsulant thickness
The encapsulant thickness remains another important design factor.

From Fig. 6(a)(b), both front and rear encapsulant thickness exhibit
negative relationship with the Shapley value when the thickness is
lower than around 0.6–0.7 mm, suggesting that thinner encapsulant
might result in higher power loss. Particularly, when the encapsu-
lant thickness is reduced to around 0.4 mm, the influence becomes
pronounced, with the front encapsulant increasing the power loss by
approximately 0.2% and the rear encapsulant by approximately 0.6%.
8 
This corresponds to previously simulated results [13] that thicker en-
capsulant decreases the accumulated thermal stress in the solder layer.
Also, as a soft embedding of silicon solar cells, the encapsulant can
compensate for the strain coming from the glass during deflection [46].
Interestingly, when the front encapsulant thickness is greater than
0.7 mm, the power loss increases, especially for the front encapsu-
lant. This opposite trend was not reported by previous regression
analysis [9,13]. A possible cause for this trend is a change in the
mechanical properties of the polymer at lower temperature. At high
temperature, the encapsulant layer is soft and acts as a compensation
layer for the strain difference between the glass and Si layer. However,
lower temperature, especially approaching or below the glass transition
temperature (∼ −33 ◦C [47] for EVA and ∼ −25 ◦C [48] for POE),
limits the mobility of polymer chains and thus increases the stiffness of
the encapsulant. This transition transforms the laminated structure of
solar module into so-called glass-encapsulant-Si ‘‘sandwich’’ structure
and more strain is conducted to the cell layer by the stiff encapsulant
as the module bends during thermal cycling [46,49]. In this structure
at low temperature, thicker encapsulant between the glass and Si layer,
which is the front encapsulant, can increase the tensile stress in the Si
layer and lead to higher Si fracture probability. Such a phenomenon
was previously reported by Dietrich et al. [46] that, at −40 ◦C, thicker
encapsulant leads to higher probability of failure. Therefore, in our
BOM data set, the power loss first decreased with thicker encapsulant
and then increased as the failure at lower temperature dominates.
The hypothesis here can also explain that front encapsulant presents
steeper increase at tail region (> 0.7 mm) in Fig. 6(a) than the rear
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Fig. 6. Dependence plot of the relation between numerical features and Shapley value. In these dependence plots, the mean Shapley value corresponding to each feature value is
displayed as one dot and the standard deviation is used for the error bar. The bottom rug plot in each sub-figure shows the distribution of the data. A smooth spline interpretation
with 95% prediction interval is used to illustrate the trend of the relationship. Due to the additive property of the SHAP formula, the Shapley value is related to the power loss
so the dependence plot also reflects the relation between the power loss and the BOM features. (a)–(d) shows the impacts of the top five features apart from the Si cell type. (e)
and (f) examine the impact of the two features that were considered in the previous literature.
encapsulant in Fig. 6(b) since the front encapsulant locates between the
glass and Si layer conduct more strain. However, we note that since the
measurements at the tail region are sparse, this trend of increase may
also be influenced by noise. Further testing with more controlled data
sets may be needed to validate the hypothesis.

3.3.3. Impact of busbar number
Fig. 6(c) demonstrates that the power loss decreases about 0.6%

as the number of busbars increases from 4 to around 7 and then
increases slightly or remains unchanged with more busbars soldered
on solar cells. This is reasonable because increasing the number of
busbars can increase the probability of current connection between
cells and external circuits even when the solder layer beneath some
busbars got cracked due to thermal stress. However, too many busbars
soldered on the Si wafer can yield more residual thermal stress during
the fabrication process, which causes solder disconnection and even
wafer fracture during operation [50,51]. Therefore, the accumulated
residual stress counteracts the benefit of increasing busbar number.
We also notice the drop of Shapley value at 12 busbars but since
the measurements are sparse, it cannot represent the general trend of
impacts. The relationship between busbar number and power loss in
this analysis should attract attention because multi-busbar design is
9 
becoming prevalent in recent module manufacturing, but its long-term
durability needs further study [52].

3.3.4. Impact of wafer thickness
The wafer thickness was considered as a top important factor in

previous studies [9,13] and also remains an important feature in our
data set. However, the impact of wafer thickness in our real-world data
set shows a different trend to previously simulated results. Fig. 6(d)
indicates that a thinner wafer thickness (from 180 μm to 160 μm) can
increase power loss by over 0.7%, contrary to previous studies that rec-
ommended thinner wafers. However, when the thickness is greater than
180 μm, thinner wafer is beneficial for durability. This discrepancy may
arise because earlier simulations primarily focused on damage within
the solder layer. However, as a brittle material, silicon wafers are more
likely to experience catastrophic fractures if the thickness is excessively
reduced. This potentially offsets the advantages of reduced damage in
the solder layer. This trend aligns with another study showing that
higher wafer thickness is important in module design [16].

3.3.5. Impact of other features
Furthermore, Fig. 6(e) and (f) demonstrate the impacts of the cell

interconnection (i.e., copper ribbon) thickness and backsheet thickness,
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Fig. 7. Statistical testing to verify the impact of the Si cell type. Sample data is first extracted from the raw data set using the clustering method to guarantee that features other
than Si cell type are randomized. Then the t-test is used to test the statistical significance of the impact of the Si cell type. (a) The distribution of several top important features
in the same cluster. The similar distribution comparison between mono-c Si cells and poly-c Si cells indicates the randomization of these features. (b) The distribution of power
loss between mono-c Si cells and poly-c Si cells in the same cluster. The 𝑝-value smaller than 5% indicates that poly-c Si modules have a statistically significant increase in the
thermal cycling power loss. (c) The distribution of Si type in each year. The higher power loss of poly-c Si modules indicates that the manufacturing year is not the confounding
variable.
which were explored in previous simulations [9,13]. From Fig. 6(e), it
can be seen that modules with lower ribbon thickness have lower power
loss because of lower thermal stress in the solder layer [9]. However,
we consider this trend to be unreliable because the data points in the
region over 0.35 mm and lower than 0.20 mm are sparse and may skew
this trend. Fig. 6(f) suggests that the power loss is expected to increase
as the backsheet thickness increases. This increase corresponds to the
conclusion of the previous investigation [13] that thicker backsheet
leads to more accumulated damage in the solder layer.

3.4. Statistical validation of SHAP interpretation

To validate the results of the aforementioned interpretation, we
directly examine the power loss in the original data set. As explained in
Section 2, the original data set is not well controlled, so we re-sample a
controlled subset derived from the original one. To determine whether
Si type is indeed impactful, we construct this subset using k-means
clustering method so that feature values in this subset are similar apart
from the Si type. Then we conduct a t-test on this subset and illustrate
that poly-c Si modules have a statistically significant increase in the
power loss. In this section we select the Si type for this analysis because
not only is it the most impactful factor, but it is a categorical variable
which makes the control process easier. The example of clustering other
numerical features is included in the SI Section ‘‘Post hoc Statistical
Analysis’’, which shows that the control group is hard to obtain for
other variables.
10 
In this controlled subset to test the impact of the Si type, the
distribution of the top ten important BOM features other than Si type
is shown in Fig. 7(a). It can be seen that the boxplots of most features
for these cells are similar but contain differences in Si type, which
means that these features are randomized between mono-c and poly-c
Si. We notice that poly-c Si cells tend to have fewer busbars, which
may cause a slight correlation between ‘‘Si type’’ and ‘‘number of
busbars’’. This potential correlation may influence the importance of
these two features. However, after checking the original data set, we
find that the difference of median value of the number of busbars is not
large between mono-c (median = 5) and poly-c Si cells (median=4),
so the influence of this difference may not be significant since the
difference of Shapley value in 4 and 5 busbars is around 0.1. More
details of constructing this cluster is shown in the SI section ‘‘Post
hoc Statistical Analysis’’. We also check the normality of the power
loss using the quantile–quantile (Q-Q) plots, which is a prerequisite for
further parametric statistical testing. The details are included in the SI.

With all prerequisite processing of the data set, we conduct a t-test
to compare the mean power loss of poly-c Si modules and mono-c Si
modules in this controlled subset. Fig. 7(b) compares the distribution
of the power loss of mono-c and poly-c Si modules from the selected
cluster, which displays that poly-c Si modules have more power loss on
average. The null hypothesis of our t-test is:

𝐇𝟎 ∶ 𝑃𝑜𝑙𝑦-𝑐 𝑆𝑖 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 𝑑𝑜𝑛’𝑡 𝑒𝑥ℎ𝑖𝑏𝑖𝑡 ℎ𝑖𝑔ℎ𝑒𝑟 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑦𝑐𝑙𝑖𝑛𝑔 𝑝𝑜𝑤𝑒𝑟

𝑙𝑜𝑠𝑠 𝑡ℎ𝑎𝑛 𝑚𝑜𝑛𝑜-𝑐 𝑆𝑖 𝑚𝑜𝑑𝑢𝑙𝑒𝑠.
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The test result illustrates that the power loss of poly-c Si modules
is greater than that of mono-c Si modules and this result is statistically
significant (p-value = 1.4×10−8 < 5%). This validates the interpretation
f the SHAP analysis.

Although the clustering can mitigate the influence of uncontrolled
ariables, some other variables that are not included in the ML mod-
ling may still impact our interpretation. One of the most potential
onfounding variables is the manufacturing process. To mitigate the
ias towards a specific supplier, this data set collects modules from
arious manufacturers. Also in Fig. 7(c), we compare the power loss
f the two types of modules from the same cluster in each manufac-
uring year. It reveals that poly-c Si modules still have a higher power
oss each year, which means that the manufacturing year is not the
nderlying reason for the difference. Despite these efforts, there is still
chance that some unrecorded manufacturing conditions during the

abrication of poly-c and mono-c Si modules may vary and influence
he thermomechanical durability rather than the Si type itself. As in
ll such cases, data analysis can point the direction to highly plausible
ypotheses, but careful and dedicated experiments would be needed to
onfirm each trend.

. Conclusion

In this work, we identify that the predominant BOM features re-
ated to module’s thermomechanical durability in the current module
esign are Si type, encapsulant thickness, busbar numbers, and wafer
hickness. Our analysis is based on a unique data set that includes the
OM features of full-size modules from various manufacturers and their
ower loss after 600 thermal cycles. To analyze this data set, we first
orrelate the BOM features with the power loss using machine learning
odeling. By comparing with other models, we develop a RF model
ith a testing RMSE of 1.179% as the optimal model and a RMSE
f 0.558% on the whole data set for further SHAP interpretation. We
ubsequently apply SHAP analysis to the fitted RF model to interpret
he whole data set and used statistical testing to verify the conclusion.

Overall, we find that the Si type (i.e., whether the module is com-
osed of poly-c or mono-c Si cells) is the most influential factor. The
eplacement of poly-c Si with mono-c Si decreases the power loss by
pproximately 0.6% in the SHAP analysis. The next most important
eature is the thickness of the front and rear encapsulant; a higher
hickness can reduce power loss, but further increases in thickness
over around 0.6− 0.7 mm) present an opposite impact, particularly for
he front encapsulant. We also analyze the impacts of other features.
n particular, we find that increasing the number of busbars initially
educes power loss but subsequently increases it after the number
xceeds around 7. The wafer thickness displays an opposite trend to
he previous findings [9,13]. In our data set, too low wafer thickness
< 180 μm) is not beneficial for the durability. We further find that
he power loss is reduced when the ribbon thickness is decreased and
hinner backsheet layer is beneficial for durability.

Finally, it is important to acknowledge the limitations of our study.
lthough our data set covers a breadth of BOM features, certain areas,
uch as the solder thickness or various CTEs of encapsulants, remained
ncharted due to the difficulty of tracking this information from man-
facturers. Furthermore, the use of commercially available modules as
pposed to carefully controlled modules means that conclusions might
till be influenced by confounding variables, underscoring the need
or further investigation. Despite these constraints, we hope this study
an reveal the potential application of machine learning and model-
gnostic interpretation methods in examining BOM effects on reliability
nd provide insight into the direction of future module optimization.
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