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Unsupervised Learning for Improved Gamma-ray Spectrometry in

Pixelated Cadmium Zinc Telluride (CZT) Detectors

Machine learning has been found ubiquitously useful across many industries,

presenting an opportunity to improve radiation detection performance using

data-driven algorithms. Improved detector resolution can aid in the detection,

identification, and quantification of radionuclides. In this work, a novel,

data-driven, unsupervised learning approach is developed to improve detector

spectral characteristics by learning, and subsequently rejecting,

poorly-performing regions of the pixelated detector. Feature engineering is used

to fit individual characteristic photopeaks to a Doniach lineshape with a linear

background model. Then, Principal Component Analysis (PCA) is used to learn

a lower-dimension latent space representation of each photopeak where the pixels

are clustered and subsequently ranked based on the cluster mean distance to an

optimal point. Pixels within the worst cluster(s) are rejected to improve the Full

Width Half Max (FWHM) by 10-15% (relative to the bulk detector) at 50% net

efficiency when applied to training data obtained from measurements of a 100

μCi Europium-154 source using an H3D M400i pixelated Cadmium Zinc

Telluride (CZT) detector. These results compare well with, but do not

outperform, a greedy algorithm that accumulates pixels in order of FWHM from

lowest to highest used as a benchmark. In the future, this approach can be

extended to include the detector energy and angular response. Finally, the model

is applied to newly seen natural and enriched uranium spectra relevant for nuclear

safeguard applications.

Keywords: radiation detection, CZT, machine learning, unsupervised learning

1. INTRODUCTION

High-resolution pixelated Cadmium Zinc Telluride (CZT) gamma-ray detector systems

have recently become an attractive technology and are commercially available from

companies such as Michigan-based H3D Inc. In addition to excellent energy resolution

(nominally <1% Full Width Half Max (FWHM) at 662 keV), modern CZT-based

detectors can be operated at room temperature, are compact in size, have low power

requirements, and can maintain good performance in high-flux environments [1]. CZT
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detectors offer the operational benefits of low-resolution NaI(TI) scintillator detectors

but improved performance of high-resolution High Purity Germanium (HPGe)

detectors. These advantages have led to an increased interest in the adoption of CZT

detectors for non-destructive nuclear material assay and gamma-ray spectrometry for

nuclear safeguards applications [2].

The M400 detector system from H3D Inc. [3] now offers a high-resolution

option with <0.65% FWHM at 662 keV for separated coincident interactions. However,

to increase detection efficiency and therefore improve counting statistics, interactions

are combined which ultimately degrades the energy resolution (<0.8% FWHM at 662

keV) due to spatially varying performance within the detector. Although care has been

taken to properly normalize and align the spectra before summation [4], there remains a

capability gap to automatically configure, combine, or cluster the pixelated detector to

optimize the detector system performance. Specifically, poorly-performing pixels can

be rejected to improve the spectral resolution at the cost of lower detector efficiency

(and therefore longer measurement times). Since solving the true optimal detector

segmentation by brute force is computationally intractable (2484 combinations), the use

of machine learning algorithms is explored in this work.

Rapid development of machine learning algorithms has been found useful across

various fields of study presenting an interesting opportunity for radiation detection

performance improvements based on data-driven approaches without the need for

improvements in detection hardware components. The area of unsupervised machine

learning has become increasingly popular for pattern recognition tasks. The objective in

unsupervised learning is to learn natural patterns within the data without the use of

informative labels. One technique, known as dimensionality reduction, seeks to

represent the data in a lower-dimension latent space where patterns are more apparent
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[5]. Clustering is another unsupervised technique which seeks to cluster similar data

into distinct groups to which the analyst can assign contextual meaning. Unsupervised

learning may be useful for learning patterns within pixelated detectors to automatically

cluster, and subsequently reject, poor-performing regions to improve the spectral

performance by trading off lower detector efficiency. Improved spectral performance

can aid in identification and assay of radiological sources in operational environments

of interest for verification of nuclear material under nuclear safeguard applications.

This approach is particularly effective for separating overlapping characteristic

photopeaks where a reduction in detector efficiency with an improvement in resolution

can reduce the peak area uncertainty.

Non-negative Matrix Factorization (NMF) [6] has been used to model

gamma-ray spectra due to its ability to enforce non-negativity while remaining

consistent with Poisson statistics. The NMF components, learned directly from

measured gamma-ray data, are additive and physically interpretable. For example,

NMF has proven successful in discovering physically relevant spectral structure from

known sources such as terrestrial KUT and cosmic in gamma-ray background data [7].

Principal Component Analysis (PCA) [8] has been used for pulse-shape discrimination

(PSD) of scintillation radiation detectors [9] and for anomaly detection of nuclear

material [10]. PCA aims to find new principal components from the dataset in order of

highest variation.

This work aims to utilize feature engineering (i.e., creating new information

from the existing dataset) along with PCA and various clustering algorithms to cluster

and subsequently reject detector pixels based on spectral performance. The approach is

designed to be detector-agnostic and applicable to other pixelated detector systems such

as segmented HPGe. The product of this effort will enable end users to span the
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efficiency-resolution tradeoff in real-time in the field, ultimately improving the

efficiency of routine nuclear safeguards techniques. The current work presents results

for several single energy models. In the future, the feasibility of a single

energy-agnostic model will be studied.

2. METHODOLOGY

2.1 Data Collection

Data was required to train the unsupervised learning algorithms to perform

dimensionality reduction and clustering. Long-dwell (8 hour) measurements of a

100 μCi Eu-154 check source were obtained using the M400i1 pixelated CZT detector

[3] manufactured by H3D Inc. This source was chosen as it has several prominent

photopeaks on the scale relevant to nuclear safeguard applications (in particular, 123

keV, 248 keV, 723 keV, and 1274 keV). The pixelated detector response is known to be

energy dependent [4]. Thus, in future work, the wide range of energies could potentially

be included as a higher dimensional input feature towards a single model. The check

source was placed 40 cm from the detector at 12 locations chosen using the Hierarchical

Equal Area isoLatitude Pixelization (HEALPix) library [11] to discretize the unit sphere

into pixels with equal area. Measurements were obtained using a custom-built scanning

system, illustrated in Fig. 1, capable of source placement anywhere in 4π with standoffs

ranging from 30 – 160 cm. This experimental setup enabled the detector response to be

characterized as a function of source energy and direction. However, in this work, the

spectra from each source were averaged over the directional response of the detector

before use in the unsupervised learning algorithm to simplify the problem by reducing

1 The M400i detector includes a firmware update provided by H3D Inc. to enable full list-mode

data including timestamped 3D position and energy event reconstruction.
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the dimensionality. In future work, the 12 measurements can be used together to create

a richer input feature to the model. Doing can enable either a direction-agnostic model

or a model that can optimize the detector segmentation by incorporating the

measurement direction. Although Eu-154 is used to train the algorithm, this model

should be applicable to other isotopes relevant to nuclear safeguard applications. We

utilize the model with never-before-seen uranium data to assert whether the model can

generalize to new sources.

Figure 1. Experimental setup using Berkeley Lab scanning system capable of source

placement anywhere in 4π with standoffs ranging from 30 – 160 cm.

The spectrum was collected in list mode, including 3D event position, and converted

into binmode. Only single-site events were included in this analysis (which were

estimated to cover >90% of all events). The M400i CZT detector contains 4 discrete

crystals each with an 11x11 grid of pixels for a total of 484 pixels. The XY binning (1.9

mm) was determined by analyzing position differences in distinct horizontal and

vertical lines of the collected data. Each pixel was also discretized into 50 virtual depth

bins (0.2 mm) between the anode and cathode for a total of 24, 200 (484x50) voxels.
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2.2 Feature Engineering

In this work, the CZT detector was discretized at the pixel level (i.e., the sum of virtual

depth voxels). The spectral features for each pixel were obtained by fitting the counts

in each of the four photopeaks of interest to a Doniach [12] lineshape parameterized by:

(1)𝐷 𝐸( ) =
𝐴𝑐𝑜𝑠 πγ

2 + 1−γ( ) 𝐸−µ+ν
σ( ) ⎡⎣ ⎤⎦

σ2+ 𝐸−µ+ν( )2( )
1−γ

2

(2)ν = 2.3548σ
2𝑡𝑎𝑛 π

2−γ( ) 

where A is the height (counts), μ is the centroid energy (keV), γ is the asymmetry (i.e.,

tailing) parameter (unitless), σ is the characteristic width parameter (keV) and E is the

energy (keV). A linear background model was also included, resulting in a 6-parameter

fit to each photopeak (Fig. 2).
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Figure 2. Feature engineering to map pixel counts to a 6-parameter fit that includes a

Doniach lineshape plus a linear background (for a 1274 keV photopeak). The top

sub-plot shows the raw counts with the best fit in red. The Doniach and background

components of the best fit are shown in green and blue respectively. The bottom

sub-plot shows the residuals between the raw counts and best fit.

The spectral features of the Eu-154 measurements were used as training data to

the unsupervised learning algorithm to identify strongly- and poorly-performing regions

of the detector. The amplitude feature was dropped to ignore rate differences between

pixels (i.e., focus on lineshape). The centroid feature was also dropped as these spectra

were recalibrated to have a consistent centroid (i.e., the detector can be calibrated). The

remaining features were standardized to have a mean of zero and standard deviation of

one. A separate single energy model was learnt for each of the four photopeaks of

interest. Therefore, the input feature vector, X, used in the unsupervised learning model

is with rows (pixels) and columns (features).𝑋∈𝑅𝑚 𝑥 𝑛 𝑚 = 484 𝑛 = 4

2.3 Unsupervised Learning Model

The unsupervised learning model consists of two steps. First, PCA was used to project

the spectral features into a lower-dimension latent space. Then, pixels were clustered

using various clustering algorithms within the scikit-learn python package [13]

including Birch [14], Agglomerative Clustering [15], K-Means [16], DBSCAN [17],

OPTICS [18], Gaussian Mixture [19], AffinityPropagation [20], SpectralClustering

[21], and MeanShift [22]. Although both NMF and PCA can be used for clustering,

several other clustering algorithms that can perform better based on the distribution of

the data and underlying patterns [23].
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Although the input feature for a single energy model has low order, PCA was

used to decompose the spectral features into a lower-dimension space to form the basis

for future, multi-energy and/or multi-directional models of higher order. PCA aims to

linearly transform the data into a set of the top uncorrelated, orthogonal variables𝑘

where . These principal components are ranked in order of the highest variation.𝑘 < 𝑛

PCA diagonalizes the covariance vector, , of input vector, , to obtain the top𝐶 𝑋 𝑘 

eigenvectors in used to estimate in lower order using Singular Value Decomposition𝑉 𝑋

(SVD):

(3)𝐶 = 𝑋𝑇𝑋
𝑛−1

(4)𝐶 = 𝑉𝐿𝑉𝑇

(5)𝑋≈𝑋
𝑘

= 𝑈
𝑘
𝑆

𝑘
𝑉

𝑘
𝑇

Next, the lower order representation of spectral features, , was used to cluster pixels𝑋
𝑘

using various algorithms. In general, clustering algorithms seek to assign a cluster label

to each data point typically grouping based on a distance or density metric or through

expectation–maximization. For example, spectral clustering first performs an

embedding on the dataset using a radial basis function (RBF) kernel and Gaussian

Mixture clustering attempts to learn a mixed Gaussian Mixture Model from the dataset

using an expectation-maximization algorithm to fit the models. In many cases, the

number of clusters must be specified, motivating the need for a hyperparameter search.

2.3.1 Hyperparameters

The number of PCA latent features, , was varied from for each single energy𝑘 2≤𝑘≤4
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model. The number of clusters, , was varied from . The default parameters𝑛 2≤𝑛≤10

(as per the scikit-learn package) were used for PCA and the following parameters were

used for clustering: {'random_state': 42, 'max_iter': 500, 'tol': 1e-06, 'min_cluster_size':

250}. A grid search was used to find the optimal model hyperparameters from each of

the 243 single energy models (3 lower dimension spaces ( * 9 clustering algorithms *𝑘)

9 number of clusters ( )).𝑛

2.4 Cluster Ranking

The Euclidean distance from the cluster mean to an ‘optimal’ location in the latent space

was used to rank the clusters. This heuristic was chosen given that nearby pixels in the

latent space should share key characteristics. The optimal location was chosen as the

point in the latent space which produces the lowest Doniach sigma parameter ( )σ > 0

which, under a gaussian assumption, is proportional to the FWHM (

). The latent space was sampled with ten equally spaced points𝐹𝑊𝐻𝑀 = 2 2𝑙𝑜𝑔 (2)σ

across each axis within the training data to locate the optimal point. Clusters were then

ranked based on their Euclidean distance to this point.

For each model, pixels were accumulated by the best cluster and the average

FWHM (normalized to the bulk detector) was computed to rank the models. The best

model has the lowest average FWHM. This approach was chosen because the detector

operator can trade off efficiency for resolution. However, there is likely an optimal

efficiency-resolution trade off.

3. RESULTS & DISCUSSION

3.1 Detector Characterization

The FWHM varies considerably across pixels, shown in Fig. 3 and Fig. 4, motivating us
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to remove poorly performing pixels to improve the detector resolution for some loss in

detector efficiency. These plots reveal some trends across different energies: FWHM is

worse around the edges of the detector for lower energies and in the center for higher

energies, the bottom right crystal tends to perform worse across most energies, and

FWHM is worse in general for lower energies. Characterization also revealed

performance degradation as the source moved to the sides and behind the detector

(likely due to self-shielding). This represents an opportunity for future work to include

the source direction features as input to the unsupervised learning algorithm.

Figure 3. Distributions for four Eu-154 photopeaks (123 keV, 248 keV, 723 keV, and

1274 keV) by energy showing the variation in FWHM (%).
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Figure 4. Distributions for four Eu-154 photopeaks (123, 248, 723. and 1274 keV) by

pixel showing the variation in FWHM (%).

3.2 Pixel Latent Space, Clustering & Ranking

For each single energy photopeak, the spectral features were decomposed into a latent

space and subsequently clustered using several algorithms. Clusters were ranked

according to the Euclidean distance between the cluster mean and the optimal point

within the latent space (see Fig. 5). Models were ranked according to the lowest cluster

average FWHM (normalized to the bulk detector). The optimal hyperparameters were
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found via grid search and are shown in Table 1.

Figure 5. Two-component decomposition of individual pixel spectra fit-parameters

(248 keV), shown as circles colored by cluster (left). The ranking metric (sigma) was

sampled at the points marked by a small, grey x. The optimal point, based on the

optimal sigma, is marked with a large, black X. The small, grey points were

reconstructed back to the spectral space to show the Doniach lineshape (right).

Table 1. Optimal hyperparameters.

Energy (kev) PCA Components, 𝑘 Clustering

Algorithm

# of Clusters, 𝑛

123 4 Gaussian Mixture 3

248 2 Gaussian Mixture 3

723 4 Spectral 4

1274 3 Spectral 10

The worst clusters were subsequently removed and the FWHM for the remaining

spectra was recalculated to quantify the performance improvement as a Figure of Merit

(FoM) to the approach. For the best model, the ranking process was also completed at

the pixel level by ranking pixels by distance to the optimal point in the latent space.

Finally, as a baseline comparison, a greedy algorithm was used which ordered pixels
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based on the individual FWHM. The relative FWHM vs net detector efficiency (i.e.,

with background subtraction) is shown in Fig. 6.
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Figure 6. Relative FWHM for clusters (points) and pixels (solid line) ranked based on

distance to optimal point in latent space compared to the greedy algorithm (dashed line).

The clustering approach is well aligned with the greedy algorithm demonstrating that

the unsupervised learning approach can learn a latent representation of the data and

cluster the pixels based on spectral performance. However, the top pixels, based on

distance to the optimal point in the latent space, are very poor for 248 and 723 keV

scenarios. This was determined to be partially explained by the anisotropic nature of
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the Doniach sigma within the latent space (Fig. 7). An improved approach is to use a

ratio of cluster sigma to optimal sigma or to simply rank based on the lowest cluster

sigma. Moreover, a new resolvability metric [24] has been constructed to better

quantify the separability of overlapping peaks. Additional comparative analysis is

recommended to study the stability and applicability of different clustering algorithms.

Figure 7. Distribution of sigma within a 2-PCA latent space (248 keV) showing the

anisotropic behavior with larger gradients in the component1-direction. The optimal

point is marked with a large, red X.

Removing detector voxels prior to detector pixels may improve the performance

of the unsupervised learning algorithm because poor performing voxels degrade the

pixel performance as they are accumulated. An adjacent study under this project shows

clear patterns around the anode and edges of the detector [24] which can be removed

prior to clustering the detector voxels. Moreover, the data in this work was averaged

over measurements preformed at various angles around the source which could be

hiding angular response patterns of the detector.

The worst clusters were successively removed until the relative detector net

efficiency (with background subtracted) was below 50% demonstrating how an

Inspector can trade-off detector efficiency for improved resolution in the field. Figure 8
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shows the resulting pixel masks with bright pixels ‘on’ and dark pixels ‘off’ for each of

the four photopeaks. The resulting net efficiency was 33.43%, 43.74%, 16.07%, and

13.07% respectively. The large variation is due to differences in the number of pixels

per cluster and the total detector counts per cluster. For lower energies, the edges of the

detector are low performing potentially due to shielding effects where the edges are

preferred for the higher energy photopeaks.

123 keV 248 keV

723 keV 1274 keV
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Figure 8. Pixel masks with the worst clusters removed for 123 keV/248 keV (top left,

top right) and 723 keV/1274 keV (bottom left, bottom right).

3.3 Application on Uranium Standards

The 123 keV model was applied to spectra data obtained from U3O8 standards

measurements at Lawrence Berkeley National Laboratory to demonstrate that the model

can generalize on newly seen spectra (Fig. 9). Here, the worst 100 and 200 pixels were

removed resulting in 78% and 59% detector efficiency. The photopeaks demonstrate

better visual spectral characteristics (background reduced and narrower peaks).

However, quantification of the improvement is still ongoing.
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Figure 9. Pixel removal using a 4-PCA-component model on a 4% enriched U3O8

standard. (Top) spectra are normalized to their maxima, to show the changes in shape

as the worst pixels are removed.

It is possible that differences between the measurement configuration for the Eu-154

training data and U3O8 resulted in an overfitted model. The uranium measurement was

conducted at a 1 cm standoff distance to accommodate the shielding of the container.

The detector response as a function of energy and measurement time should be constant.

However, shielding and attenuation through air may contribute to individual pixel

performance. Averaging spectra over several angular measurements when training the

model may have also contributed to overfitting since the uranium measurements were

taken head-on only.

4. CONCLUSIONS & FUTUREWORK

Unsupervised learning algorithms show promise to improve detector resolution by

learning and rejecting poorly performing regions of the detector. By reducing the net
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efficiency by 50%, the FWHM can be improved by 10-15%. This technique is

particularly useful when analyzing peaks that are not well-separated, as improvements

in FWHM are, in this case, often more valuable for reducing peak area uncertainties

than the corresponding loss in efficiency.

The proposed approach provides a new solution, that is detector agnostic, to

cluster and subsequently remove poor performing pixels to improve spectral

performance. Operators can span the efficiency-resolution tradeoff in real-time in the

field giving them the required flexibility for different safeguard related inspections.

These capabilities will be released as a software package, including the ability to use

other unsupervised learning algorithms and customize the ranking process [24], in the

near future.

The preliminary evaluation in this work uses a Figure of Merit to compare the

results of PCA and clustering against a greedy algorithm to assert whether the formed

clusters pertain to spectral performance as intended. The current approach aligns well

with, but does not outperform, the greedy algorithm which accumulates pixels based on

best spectral performance. By removing the “worst” clusters, based on distance to

optimal point in the latent space, the FWHM was incrementally improved. In future

work, characterization of the clusters (based on, for example, FWHM or other spectral

characteristics) should be conducted to develop a deeper interpretation of the results.

The approach presented in this work can be extended to include features from

multiple photopeaks and source directions to better understand the capabilities of

unsupervised learning for this application. Initial prototyping has shown promise in a

multi-energy model that can in fact outperform the greedy algorithm. However,

additional hyperparameters and model feature combinations need to be explored,

compared, and evaluated. The clustering ranking based on distance to an optimal point
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in the learned latent space was problematic due to the anisotropic nature of the ranking

metric. Instead, the cluster accumulated metric (FWHM or resolvability) can be used to

rank the clusters. Finally, clustering can be conducted at the voxel level for improved

discretization of the detector [24].
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