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Abstract 

Human learners ask questions, manipulate objects, and 
perform interventions on their environment. These behaviors 
are true of adults, but even more so for young children. 
Recent studies have demonstrated that adults learn better 
under conditions of selection learning, where they can make 
decisions about the information they wish to acquire, as 
compared to reception learning, where they merely observe 
data that happens to be available to them. Yet to date, it 
remains unclear whether this advantage is available to 
children, and if so, does it arise because children can gather 
data in a non-random way? In the current study, we show that 
7-year-old children show superior learning under conditions 
of selection in a category-learning task, and that their 
information gathering is systematically driven by uncertainty.  

Keywords: self-directed learning; active learning; education 

Introduction 

“You’re speaking too loudly! No, that’s too soft; you have 

to speak up!” What volume do these adults mean exactly? 

As a young child, learning how to modulate our speaking 

volume is an important aspect of learning how to socialize 

with others. However, instructions that adults give can be 

quite opaque at times. What is a child to do?  

One solution might simply be to observe what others are 

doing; taking note of the volumes that they are speaking at. 

Or one might choose to actually collect the necessary data: 

try a variety of different volumes (hopefully spread out 

across time!), and observe how mommy responds.  

Children probably use a mix of strategies to learn the right 

volume to speak with, but as can be seen from the above 

example, there are at least two modes of learning that people 

engage in to refine their knowledge about the world: 

reception learning, in which learners merely observe data 

that happens to be available and attempt to find structure 

within them; and selection learning, in which learners are 

allowed to make decisions about the information they wish 

to acquire (Bruner, Goodnow, & Austin, 1956; Bruner, 

1961). 

Much of cognitive research has focused on the former 

mode of learning. Researchers study category and concept 

learning in experiments where they tightly control the 

exemplars that are presented to the participants (e.g. Medin 

& Schaffer, 1978; Shepard, Hovland, & Jenkins, 1961). 

Language learning has also traditionally been examined in 

the laboratory by presenting infants and young children with 

repetitive sentences, speech streams, or word-object pairings 

(e.g. Saffran, Aslin, & Newport, 1996; Waxman & Gelman, 

2009; Xu & Tenenbaum, 2007). 

Selection learning, in contrast, has found its niche mostly 

in the domain of causal learning, because certain causal 

networks can only be distinguished with data gained from 

intervention, rather than mere observation. In other words, 

the data generated by intervention simply cannot be 

acquired through observation. In such cases, researchers 

have empirically shown that se lection learning has distinct 

advantages over reception learning (Sobel & Kushnir, 2006; 

Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003). For 

example, Sobel and Kushnir (2006) demonstrated that when 

learners observed the data that they generated themselves, 

they were better at learning the underlying causal structure 

than learners who observed data that others generated.  

Recent cognitive research with adults has gone on to 

study this advantage in domains outside of causal learning, 

especially in domains where it is possible to generate the 

same information from both selection and reception learning 

(Gureckis & Markant, 2012). Studies by Castro et al. (2008) 

and Markant and Gureckis (2013) have successfully shown 

that learners benefit from selection in category learning as 

well. In Castro et al. (2008), adults were presented with 

novel 3D shapes that varied continuously only in how spiky 

their edges were. They were told that these shapes were 

alien eggs: spiky eggs would most likely hatch into alien 

snakes, while smooth eggs would most likely hatch into 

alien birds. The task for each participant was therefore to 

find out the precise egg shape (category boundary) for 

which eggs that were any spikier would hatch into snakes, 

while eggs that were any smoother would hatch into birds. 

Critically, participants in a selection condition were allowed 

to choose which eggs they wanted to learn about, while 

participants in a reception condition were presented with 

randomly generated egg shapes. Both groups observed 

whether each egg hatched into a snake or a bird after each 

selection or presentation.  

The results of this study were striking. Participants who 

were allowed to actively select samples to learn about had 

more accurate guesses about the category boundary as 

compared to participants who could only observe samples 

that were randomly generated for them. This result was 

successfully replicated in Markant and Gureckis (2013) 

using a slightly modified procedure. However, these results 

do come with some caveats: the selection advantage is only 

present at low noise levels, i.e. when the spiky and smooth 

eggs reliably hatched into snakes and birds respectively 
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(Castro et al., 2008), and in low complexity tasks, e.g. when 

the classification rule is based on only one dimension (e.g. 

spikiness only), rather than multiple dimensions (e.g. a 

combination of spikiness and size). 

The same authors also performed a comprehensive 

analysis aimed at uncovering the psychological processes 

underlying the found selection advantage, concluding that 

learners benefit from selection learning because they can 

gather data in a “non-random, useful way” that maximizes 

their own future learning (Markant & Gureckis, 2013). 

Do these results naturally extend to young children? It is 

indubitable that young children often engage in some forms 

of selection learning; one only needs to recall their incessant 

questions, or their mucking around the house and whatnot. 

Does this effortful form of learning where children have to 

both generate and learn from the data benefit them, as 

compared to the less demanding form of learning where 

they simply observe data that happens to be available to 

them? If so, are the psychological processes underlying the 

selection advantage similar between children and adults? 

When given the opportunity, do children gather data in a 

“non-random, useful way”? Addressing these questions 

would provide insights into the developmental origins of 

selection learning and its underlying mechanisms. 

However, these questions remain mostly unaddressed in 

the literature. At this point, there is still a lack of empirical 

evidence demonstrating that children actually benefit from 

selection, relative to reception. What we do know, though, 

is that young children may be able to gather data in non-

random manner (Cook, Goodman, & Schulz, 2011; Kidd, 

Piantadosi, & Aslin, 2012; Legare, Mills, & Souza, 2013; 

Nelson, Divjak, Gudmundsdottir, Martignon, & Meder, 

2014; Ruggeri & Lombrozo, under review; Schulz & 

Bonawitz, 2007; Sim & Xu, 2014). For example, Schulz and 

Bonawitz (2007) showed that preschoolers prefer to explore 

a toy for which the causal structure remained ambiguous to 

them, over a completely novel toy. Nelson et al. (2014) also 

demonstrated that 10-year-old German children had good 

intuitions about how useful various questions would be in 

sequential search tasks that resembled games such as 

“Guess Who?” Children were also able to search adaptively, 

varying their questions according to the statistical structure 

of the environment they were presented with (e.g. when the 

population in a “Guess Who?” game was modified such that 

asking about gender first would no longer be quite as useful, 

children were less likely to ask about it at the beginning). 

But such evidence does not necessarily imply that 

children will benefit from selection over reception when it 

comes to refining their beliefs about the world. Indeed, it 

would be quite a leap to make the claim that just because 

children are exploring in a systematic way, they are learning 

from that form of exploration.  

Furthermore, although Castro et al. (2008) provides a 

formal proof for the advantage of selection learning over 

reception learning in deterministic (noise = 0) environments, 

there is currently no evidence that children are optimal in 

their information gathering either. Without this evidence, it 

is difficult to support a theoretical argument that selection is 

necessarily more efficient than reception for learning. 

To begin examining selection learning in children, at 

minimum, we need to establish three points within the very 

same task: (1) children can learn successfully under 

conditions of selection, (2) they can gather data in a 

systematic manner, and (3) selection learning has distinct 

advantages over reception learning. We address these points 

in the current study by examining whether children perform 

better at a category-learning task when they can select the 

information they wish to acquire, as compared to when they 

are merely presented with randomly generated data. 

In an experimental design inspired by Castro et al. (2008) 

and Markant and Gureckis (2013), 7-year-old children were 

presented with a row of identical worms that were ascending 

in size, and told that the worms live in either a green house 

or a blue house. The house that each worm lives in 

depended on its size, so the goal of the game was to figure 

out the category boundary as quickly as possible in order to 

bring them home before a thunderstorm arrives. Each child 

was randomly assigned to one of two conditions: selection, 

where they could choose sequentially which worms to learn 

about, or reception, where they were presented with 

randomly generated worms one after the other. There were 4 

test blocks, and within each block, children learned about 2 

worms and then were given a classification task. The design 

of this task allowed us to examine the children’s learning 

performance and their information gathering strategy (for 

example, were children taking advantage of feedback 

generated by previously selected worms?) when they are 

given the opportunity to actively make decisions about the 

information they wish to acquire. 

Method 

Participants 

Sixty-four English-speaking 7-year-olds (23 boys and 42 

girls) with a mean age of 88.4 months (range = 74.6 to 

104.3 months) were tested. All were recruited from schools 

and museums in Berkeley, California, and its surrounding 

communities. An additional 8 children were tested but 

excluded due to difficulties in following task instructions 

(e.g. indicating that a worm, which had a little blue reminder 

house beneath it, lived in the green house; N = 6), technical 

error (N = 1), and experimenter error (N = 1). Each child 

was randomly assigned to a Selection condition or a 

Reception condition. 

Materials 

The experiment was presented in the form of an interactive 

PowerPoint presentation. Each presentation sequentially 

showed 3 sets of animals, with each set consisting of 13 

identical animal images that varied only in their size, i.e. 

their heights and widths. 

These animals were arranged from smallest to largest (left 

to right). The animals lived in either a green house or a blue 

house, and these houses were represented by colored images 
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placed on the top left and top right of the screen respectively 

(Figure 1). When an animal image was clicked on, it would 

move across the screen towards its designated house, 

disappearing upon arrival. A “reminder house,” which is a 

scaled down version of its house, would then appear in the 

space below where the animal was located previously. 

 

 

 
 

Figure 1: Thirteen worms that can be categorized into the 

green house or the blue house. 

Procedure 

Children were tested individually in our laboratory, a quiet 

room in their elementary school, or in a quiet area at a 

museum. An experimenter sat next to the child to control the 

slide show. The procedure for both the Selection and 

Reception conditions consisted of a demonstration phase, 

and 4 test blocks (each with 2 sampling trials). Each block 

consisted of a sampling phase, followed by a classification 

phase. The experiment lasted about 10 minutes. 

 

Demonstration Phase The demonstration phase consisted 

of two practice trials. These practice trials were to establish 

to the child that (1) the displayed animals lived in one of the 

two houses, (2) the house that each animal lived in was 

determined by an invisible category boundary that divided 

the animals into two groups, and (3) that the boundary 

location was different for each set of animals. 

In the first practice trial, the participant was shown a row 

of 13 spiders that increased in size, together with a green 

house and a blue house placed at the top corners of the 

screen. When the experimenter clicked on each house, a 

flashing box surrounding the spiders that lived in the 

selected house appeared. The experimenter subsequently 

pointed at two spiders, one at a time, asking the child “Does 

this spider live in the green house or the blue house?” The 

experimenter praised the child if he/she answered accurately 

(“Good job!”), and corrected the child otherwise (“No, that 

spider actually lives in the green house!”). 

The second practice trial that followed was identical to 

the first, except that we used a row of frogs instead, and a 

new category boundary. 

 

Test Block: Sampling Phase Children were presented with 

a row of 13 worms. 12 category boundaries were possible, 

but only the 3rd through the 10th boundary were used in this 

experiment. This step was taken to ensure that there was at 

least a small number of worms that lived in each house. For 

each participant, a boundary location was randomly 

generated, and this location was used for all test blocks. 

To begin the sampling phase, the experimenter informed 

the child that she would be asked to figure out which house 

each worm lived in. The experimenter then clicked on the 1
st
 

and 13
th

 worm, showing that they lived in the green house 

and the blue house respectively. As mentioned above, an 

appropriately colored “reminder house” subsequently 

appeared below the worm that had just been selected. 

An image of a storm then appeared. In the Selection 

condition, the experimenter told the child that there was 

only time left to tap on one worm, and asked the child to 

choose one worm to “figure out which worms live in the 

green house, and which worms live in the blue house”. The 

experimenter clicked on the chosen worm, which moved to 

its given house as determined by the category boundary. 

The child was then told that the storm had not arrived yet, 

so there was still time to learn about another worm. After 

the child made this second selection, the experimenter 

clicked on the worm to show where it lived. Reminder 

houses appeared after each worm was selected. The key 

feature in the Selection condition was thus that the child was 

allowed to independently generate data about the worms in 

order to learn about their category structure. 

In the Reception condition, a program was ran such that 

one worm would be randomly selected at appropriate time 

points. Based on information obtained about children’s 

choices during pilot testing of the Selection condition, the 

script was constrained such that 1) a single worm cannot be 

selected twice within each critical block, and 2) a previously 

selected worm can be reselected in a later critical block. 

Within each test block, two worms were randomly selected 

one after another. Upon being selected, the worm wiggled to 

attract the child’s attention before moving to the house that 

it lived in. Again, reminder houses appeared to provide a 

visual memory aid of where the selected worms lived. The 

key feature in the Reception condition was therefore that the 

child could only observe, but not generate, data about the 

worms to learn about their category structure. 

 

Test Block: Classification Phase After the sampling phase, 

the experimenter informed the child that the storm was 

almost here, so they had to take the rest of the worms home. 

The child was asked to point to all the worms that lived in 

the green house, as well as all the worms that lived in the 

blue house. If the child skipped the classification of some 

worms, the experimenter pointed to each of these skipped 

worms and asked, “Which house does this worm live in?” 

The children’s answers allowed us to determine where they 

believed the boundary was located. After all the worms had 

been classified, they disappeared and the experimenter told 

the child, “Phew, all the worms are safe! But we don’t know 

if they went to their correct houses.” 
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The test blocks were repeated until the child had 

classified all the worms correctly, or when the child had 

engaged in 4 test blocks (i.e. viewed a maximum of 8 

worms), whichever occurred first. 

Coding 

In the Selection condition, we recorded the worms that each 

child selected during the sampling phase. We then measured 

the sampling distance, i.e. the distance between each of their 

selections and the true category boundary. For example, if 

the child selected a worm that was adjacent to the category 

boundary (left and right), the sampling distance was 0. The 

sampling distances allowed us to examine how children 

were sampling across time. This measure was recorded in 

the Reception condition as well, although note that these 

“selected” worms were randomly generated. 

For each child, we also obtained a classification accuracy 

score for all test blocks. Each correctly classified worm was 

scored as 1 point, so the maximum score in each block was 

13. The children’s scores were then converted into a 

percentage of classification accuracy. 

Results 

An alpha level of 0.05 was used in all statistical analyses. 

Preliminary analyses found no effects of gender or location 

of boundary on children’s accuracy on classification trials. 

Subsequent analyses were collapsed over these variables. 

 

 

 
 

Figure 2: Sampling distance from the category boundary in 

the two conditions. Dashed line indicates average sampling 

distance expected by a random-sampling strategy.  

Error bars show standard error. 

Information Sampling 

After learners have acquired some data in a category 

learning task, they would easily classify items that are far 

from the true category boundary, but are more uncertain 

about items that are near the boundary. Following the 

analyses in Markant & Gureckis (2013), we thus examined 

children’s sampling distances, i.e. the distance between the 

children’s selections and the true category boundary, as a 

general measure of uncertainty-driven information selection. 

As Figure 2 indicates, children in the Selection condition 

were sampling closer to the true category boundary over 

time. Using the children’s average sampling distance for 

each test block, we performed a 2x4 repeated measures 

analysis of variance (ANOVA) with Condition (Selection 

vs. Reception) as a between-subjects factor and Test Block 

(1–4) as a within-subjects factor. There were significant 

main effects of Condition, F(1, 62) = 15.2, p < .001, η2
 
= 

.197, and Test Block, F(3, 60) = 10.77, p < .001, η2
 
= .350. 

There was also a significant interaction between the two 

factors, F(3, 61) = 8.58, p < .001, η2
 
= .30. 

Planned comparisons showed that average sampling 

distance in the Selection condition was significantly smaller 

than expected by a random-sampling strategy by the second 

test block, t(31) = 2.34, p = .026, d = .413, while the average 

sampling distance of the randomly generated data points in 

the Reception condition never differed from chance, e.g. in 

the fourth test block, t(31) = .684, p = .50, d = .121.  

 
 

Figure 3: Classification accuracy in the Selection and 

Reception conditions. Error bars show standard error. 

Classification 

Using children’s average classification accuracy across the 

four blocks, we then performed a 2x4 repeated measures 

analysis of variance (ANOVA) with Condition (Selection 

vs. Reception) as a between-subjects factor and Test Block 

(1–4) as a within-subjects factor. There was only a main 

effect of Test Block, F(3, 60) = 14.5, p < .001, η2
 
= .42. No 

other main effects or interaction was found. 

Planned comparisons revealed that the overall 

classification accuracy for children in both the Selection (M 

= .935, SD = .064) and Reception conditions (M = .924, SD 

= .059) was significantly different from chance (0.689). For 

the Selection condition, t(31) = 21.8, p < 0.01, d = 3.85. For 

the Reception condition, t(31) = 22.7, p < 0.01, d = 4.01. 

Although children’s classification accuracy did increase 

steadily in both conditions, their classification accuracy 

diverged over time. By the final block, children in the 

Selection condition were significantly more likely to 

classify the worms correctly (M = .986, SD = .046) than 
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children in the Reception condition (M = .954, SD = .064), 

t(62) = 2.24, p = .029, d = .574.  

Discussion 

The present study examined whether 7-year-old children 

had the capacity to engage in and benefit from selection 

learning. Using a category learning task, we demonstrate 

that young children can learn successfully under conditions 

of selection, that they can gather data in a systematic 

manner, and that selection learning has distinct advantages 

over reception learning. 

First, our results indicate that children can learn 

successfully when they are allowed to make decisions about 

what information they wish to gather. The overall 

classification accuracy in the Selection condition was very 

high, suggesting that children are perfectly capable of 

learning from the data they generate by themselves. Their 

performance was comparable to that of children in the 

Reception condition, the latter of which should not be 

surprising given previous research showing that children are 

proficient at learning categories using randomly-generated 

exemplars when the classification rule is based only on a 

single dimension (i.e. rule-based category structure) similar 

to that used in our experiment (Huang-Pollock, Maddox, & 

Karalunas, 2011; Minda, Desroches, & Church, 2008).  It 

should also be noted that the task may have been too easy 

for children, resulting in near-ceiling performance in both 

conditions. Ongoing work improves the current design by 

increasing the number of classification items and removing 

the “reminder houses.” 

Second, 7-year-olds are able to gather data in a systematic 

way. As our results show, children sampled closer to the 

true category boundary over time. This result suggests that 

the children’s information gathering was informed by 

uncertainty and previous feedback, leading them to sample 

items that were near the true category boundary. Such a 

strategy would allow children to avoid generating redundant 

information, and focus on collecting data that is expected to 

help them learn effectively and efficiently.  

Third, and most importantly, children showed better 

learning under conditions of selection as compared to 

reception over time. By the final block, the classification 

accuracy obtained by children in the Selection condition 

was reliably higher than that of children in the Reception 

condition. Given the extremely small amount of information 

observed by the children over four blocks (as compared to 

previous adult studies), we found this measure to be more 

revealing of children’s learning under different modes of 

information gathering than that of average classification 

accuracy, which unduly weighs children’s early guesses. 

Establishing these findings within a single task suggests 

that children benefit from selection learning over reception 

learning partly because they are able to gather data in a 

systematic, non-random fashion. Researchers have 

previously examined the systematicity and optimality of 

children’s exploration strategies, but few have shown that 

these strategies have consequences on children’s learning. 

The current study thus adds an important piece to the puzzle 

by demonstrating that when given the opportunity, children 

can gather data in a systematic manner, and this uncertainty-

driven data generation is associated with superior 

performance during category learning. 

One notable difference between the selection and the 

reception conditions is that the learners observed different 

data points.  Thus, to further establish the advantages of 

self-directed data generation, ongoing work in our lab 

examines how children perform in a “yoked” condition 

(Gureckis & Markant, 2012). In such a condition, each child 

will be presented with the same sequence of worms that was 

generated by another child in the Selection condition. If the 

learners in the Selection and the Yoked condition perform 

differently despite having observed the same data, this result 

would provide additional evidence that being able to gather 

data that systematically addresses one’s own regions of 

uncertainty is crucial for selection to result in more effective 

and more efficient learning (Markant & Gureckis, 2013). 

Our discussion above offers a cognitive explanation for 

the selection advantage. Children performed better under 

conditions of selection because they generated data that was 

informative for them. However, the present results cannot 

speak directly to other psychological processes that may 

also drive the advantage found for selection learning. A 

variety of different psychological factors have been posited 

to account for such an advantage: enhanced memory 

encoding (Metcalfe & Kornell, 2005); deeper processing of 

the problem structure (Sobel & Kushnir, 2006); attention 

and motivation (Corno & Mandinach, 1983; Kersh, 1962), 

etc. Given the design of our experiment in which children in 

both conditions were provided with visual reminders of the 

house that each worm lives in, we are inclined to believe 

that the advantage found for selection over reception 

learning cannot be attributed to enhanced encoding of the 

presented information. As for other psychological factors, 

we do not think that they run contrary to our arguments – 

after all, those processes could have certainly been recruited 

when children were deciding which items to learn about. 

Another important note is that even though we have 

demonstrated that children learn better in the Selection 

condition as compared to the Reception condition, it is 

highly unlikely that the children’s information gathering 

was normatively optimal. In this two-category learning task, 

the optimal strategy is to engage in a binary search, such 

that the learner should always sample the item that is in the 

middle of the region of uncertainty (e.g. the space between 

the worm that one is certain lives in the green house, and the 

worm that one is certain lives in the blue house). By using 

such a strategy, the learner’s error in estimating the category 

boundary should exponentially converge (Castro et al., 

2008). In our task, optimal learners need to sequentially 

sample at least 3 worms, but at most 4 worms, to discover 

the category boundary. However, most of the children in the 

Selection condition did not appear to have used such a 

strategy, as only 7 out of 32 children successfully classified 

all the worms in Test Block 2 (having sampled 4 worms). 

2198



Thus, like adults (Castro et al. 2008), children were not able 

to take full advantage of being able to select their own data.    

Self-directed learning has been a hugely influential and 

long-standing debate in education. While educators have 

consistently encouraged their young students to engage in 

hypothesis testing and self-directed exploration in order to 

boost learning, there has been a relative dearth of empirical 

evidence supporting such a belief. Our results provide 

strong evidence that in a simple two-category learning task, 

children do perform better under conditions of selection, 

and this phenomenon stems from them being able to gather 

information in a systematic, non-random way. That being 

said, we believe that self-directed learning might not 

necessarily be beneficial at all developmental levels, or in 

all situations (Castro et al., 2008; Markant & Gureckis, 

2013). More research is thus necessary to plug these gaps 

before work in this field can properly guide educators.  
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