
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Characterizing the Fire TV Advertising and Tracking Ecosystem

Permalink
https://escholarship.org/uc/item/2km1c6tn

Author
Le, Hieu

Publication Date
2021
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2km1c6tn
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Characterizing the Fire TV Advertising and Tracking Ecosystem

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Computer Engineering

by

Hieu Le

Thesis Committee:
Professor Athina Markopoulou, Chair
Assistant Professor Salma Elmalaki
Associate Professor Zubair Shafiq

2021



© 2021 Hieu Le



DEDICATION

I dedicate this to my parents, Hong Nguyen and Doan Le, who were immediately
supportive of me going to graduate school. Thank you for always encouraging me to reach

for the stars.

ii



TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES vi

ACKNOWLEDGMENTS vii

ABSTRACT OF THE THESIS viii

1 Introduction 1

2 Background & Related Work 3
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Smart TVs, Platforms, and App Stores . . . . . . . . . . . . . . . . . 3
2.1.2 Fire TV App Store . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Fire TV Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.4 Ads on Fire TV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Desktop, Mobile, and VR ATS Ecosystems . . . . . . . . . . . . . . . 5
2.2.2 Smart TV ATS Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Firetastic Tool 7
3.1 Selecting and Extracting Fire TV Apps . . . . . . . . . . . . . . . . . . . . . 8
3.2 Automated Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Network Traffic Collection with AntMonitor . . . . . . . . . . . . . . 8
3.2.2 App Exploration with Droidbot . . . . . . . . . . . . . . . . . . . . . 9
3.2.3 Firetastic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Evaluation of Firetastic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3.1 Baseline Network Traffic for Evaluation . . . . . . . . . . . . . . . . . 12
3.3.2 Can Firetastic Trigger Video Playback? . . . . . . . . . . . . . . . . . 13
3.3.3 Can Firetastic Capture Domains through Exploration? . . . . . . . . 13

4 Fire TV’s Ads and Tracking Ecosystem 14
4.1 Fire TV Testbed Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1.1 Labeling the Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Fire TV ATS Ecosystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

iii



4.3 Fire TV ATS Ecosystem vs. Other Platforms . . . . . . . . . . . . . . . . . . 19
4.3.1 Compared to Roku . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.2 Compared to Android . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3.3 Compared to Oculus VR . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Effectiveness of Blocklists for Fire TV 21
5.1 What are DNS-based Blocklists? . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Block Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3 Blocking Ads without Breakage . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 PII Exposures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5 Missed by Blocklists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Conclusion 28
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Bibliography 30

iv



LIST OF FIGURES

Page

3.1 Firetastic: Installs Antmonitor [7] on each Fire TV device and uses one laptop
to instrument multiple Fire TV devices. Uses Droidbot [19] to explore apps
in a breadth-first search manner. . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1 CDF of tested apps for distinct domains. . . . . . . . . . . . . . . . . . . . . 15
4.2 CDF of tested apps for distinct ATS domains. . . . . . . . . . . . . . . . . . 17
4.3 (a) Top-30 eSLDs that are prevalent among multiple apps; (b) Top-20 third

party ATS domains prevalent among multiple apps. . . . . . . . . . . . . . . 17
4.4 Parent org. of Top-20 third party ATS . . . . . . . . . . . . . . . . . . . . . 18

v



LIST OF TABLES

Page

3.1 Video playback success for Firetastic, and a comparison of the number of
domains discovered by Firetastic to the number of domains discovered during
manual interaction with the same app, for 15 apps that do not require login.
For each app, we perform approximately 16 minutes of automated (A) and 16
minutes of manual (M) interaction. Not shown on this table: we were able to
play video for all apps manually. . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Summary of the Fire TV testbed dataset. . . . . . . . . . . . . . . . . . . . . 14

5.1 Block rates of the four blocklists when applied to the domains in our Fire TV
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Missed ads and functionality breakage for different blocklists when employed
during manual interaction with 10 Fire TV apps. For “No Ads”, a checkmark
( ) indicates that no ads were shown during the experiment, a cross (✕)
indicates that some ad(s) appeared during the experiment, and a dash (—)
indicates that breakage prevented interaction with the app altogether. For
“No Breakage”, a checkmark ( ) indicates that the app functioned correctly,
a cross (✕) indicates minor breakage, and a bold cross (✖) indicates major
breakage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.3 Applications / eSLDs / % Distinct FQDNs Blocked. Number of apps that
expose PII, number of distinct eSLDs that receive PII from these apps, and
percentage of distinct subdomains of the eSLDs that are blocked by the block-
lists. We further separate by party as defined in Sec. 4.1.1. . . . . . . . . . . 25

5.4 Examples of potential false negatives for the four DNS-based blocklists found
using app penetration analysis and keywords search (“ad”, “ads”, “analy”,
“track”, “hb” (for heartbeat), “score”, “event”, “metrics”, “measure”). . . . 26

vi



ACKNOWLEDGMENTS

I would like to thank my advisor, Athina Markopoulou, for guiding me through my first
published research project. Thank you for being the main reason for me to undertake
graduate school. Your patience and understanding for your students — especially for me —
know no bounds.

Special thanks to Zubair Shafiq, for your advice and instruction on how to approach the
smart TV research space and graduate life in general.

Thank you to my committee member, Salma Elmalaki, for continuous research interactions
on future work.

Thank you to my co-authors, Janus Varmarken and Anastasia Shuba — your positivity,
determination, and strength, inspirit me throughout this project.

This work is supported in part by NSF Awards 1715152, 1750175, 1815131, 1815666, 1956393,
Seed Funding by UCI VCR, and UCI EECS Fellowship.

Thank you to PETS for allowing authors to retain the copyright to their work. Portion
of this thesis’ text is a reprint of the material as it appears in Janus Varmarken, Hieu
Le, Anastasia Shuba, Athina Markopoulou, and Zubair Shafiq: “The TV is Smart and
Full of Trackers: Measuring Smart TV Advertising and Tracking”, Proceedings on Privacy
Enhancing Technologies, 2020.

vii



ABSTRACT OF THE THESIS

Characterizing the Fire TV Advertising and Tracking Ecosystem

By

Hieu Le

Master of Science in Computer Engineering

University of California, Irvine, 2021

Professor Athina Markopoulou, Chair

Popular smart TV platforms present advertising and tracking opportunities for the platform

provider, app developers, and third party organizations. In this thesis, we conduct one

of the first large-scale and systematic study of advertising and tracking services (ATS) on

Amazon’s Fire TV — a platform that is part of 100 million devices sold worldwide. To do

so, we build Firetastic, a tool that can automatically explore and collect network traffic for

Fire TV apps. Through exploration of 1K apps, we identify 512 unique ATS domains —

60% of apps contact three to six of these domains. We conclude that ATS is prevalent on

Fire TV. The ecosystem is dominated by its platform provider, Amazon, with a large third

party presence from Alphabet. It is comparable to Android, sharing many common third

party ATS but is more diverse and mature than the Oculus VR platform. Furthermore, we

consider four state-of-the-art DNS-based blocklists that users can employ to block ATS. We

observe that none of the blocklists are effective at blocking ads without causing some form

of functionality or visual breakage. In addition, they fail to block the majority of personal

identifiable information (PII) exposures such as Device ID and Serial Number to third party.

viii



Chapter 1

Introduction

Smart TVs are commonplace in households worldwide, providing consumers with Internet-

based features through apps for video streaming (e.g. Netflix, Disney Plus), gaming (e.g.

Candy Crush Saga), and utility (e.g. calculator, alarm clock). They come in various plat-

forms such as Amazon’s Fire TV, Roku, Apple TV, etc... With large consumer bases, these

platforms provide advertising opportunities within apps, streaming video content, and even

in the dashboard itself [2]. In addition, platform providers get a share of the ad revenue; e.g.

Amazon gets a 30% cut for Fire TV [36]. However, these ads and tracking services (ATS),

on popular smart TV platforms, are not well understood by users and researchers.

Amazon’s Fire TV, in particular, has sold over 100 million devices with 50 million active

users and is among the leaders in ad requests [1, 2, 16] . By 2021, the platform comes as

either external dongles (with five variations of Fire TV dongles ranging from $18 – $80) or

built into the TV itself (with 18 smart TV listings on Amazon with Fire TV ranging from

$170 – $1500) [3, 4]. Due to its prevalence, we focus on Amazon’s Fire TV, and provide one of

the first large-scale and systematic study of its ATS ecosystem with two main contributions:

1. Tool for Automatic Data Collection. We create Firetastic [18], an open-sourced tool

1



that automatically explores Fire TV apps and collect network traffic. It is scalable by using

one machine to instrument multiple Fire TV devices. With Firetastic, we explore 1010 apps

in a testbed setting and provide this large network traffic dataset to the public [11].

2. Evaluation of Fire TV ATS Ecosystem. We investigate Fire TV’s ATS ecosystem at

different vantage points to answer whether ATS is prevalent on the platform. In particular,

we consider: (1) which personal identifiable information (PII) are exposed to ATS (e.g.

Advertising ID, Serial Number, Device ID); (2) in which context is information being exposed

(first party, third party, and platform-specific party); and (3) the parent organization that

owns these ATS. We find that PII are exposed to all parties, but especially to third parties.

The ecosystem is dominated by Amazon (the platform provider), and has Alphabet as the

main third party. We conclude that ATS is prevalent on Fire TV — 60% of apps contact

three to six different ATS, while 10% of apps contact 10–20 different ATS. Furthermore, we

evaluate whether users can protect their privacy by blocking ATS without affecting their

user experience. We consider four popular DNS-based blocklists that users can utilize and

observe that they only block 33% and 36% of Serial Number and Device ID exposures to third

party, respectively. In addition, we rely on breakage analysis (i.e. whether the app is still

functional or visually intact) to determine whether the blocklists disrupt the user experience.

Our findings show that blocklists were unable to block the majority of ads without causing

some breakage, motivating the need for smart TV specific blocklists. Thus, we leverage our

large dataset to recommend ways to identify ATS based on keywords.

Overview. In Chapter 2, we provide an overview of the Fire TV platform and app store,

and discuss related work. Chapter 3 details the design of Firetastic, including how it collects

network traffic and explores apps automatically. Next, Chapter 4 provides our evaluation of

Fire TV’s ATS ecosystem and how it compares against other platforms. Chapter 5 evaluates

the effectiveness of DNS-based blocklists in blocking ads without breakage and preventing

PII exposures. Lastly, Chapter 6 concludes and provides future directions.

2



Chapter 2

Background & Related Work

2.1 Background

2.1.1 Smart TVs, Platforms, and App Stores

Smart TVs are basically TVs that can be connected to the internet. They come in two forms:

(1) external dongles that plug into any TVs that have HDMI inputs (Apple TV); and/or

(2) built directly into the TV (Roku TV). They have their own platform, such as Roku OS

for Roku, Fire OS for Fire TV, and tvOS for Apple TV. In addition, smart TVs, like ones

from Samsung, can rely on open-sourced platforms like Android. The platforms coincide

with their own app stores that provide apps for various purposes such as video streaming,

gaming, utility apps. Moreover, they provide advertising and tracking opportunities for app

developers and the platform provider.

3



2.1.2 Fire TV App Store

Amazon’s app store offers around 4K free apps during the time of our experiments (2019).

Its app store is available through using the Fire TV device and a web version at amazon.com.

We find a wide range of categories of apps — Fire TV is not just a streaming device, but

can also be used for utility (e.g. calculators, alarm clocks) and games. By exploring the web

version, we find that we can also install apps to any Fire TV device that is registered under

our account. We use this knowledge later in Sec. 3.1 to scale the installation of apps across

six different Fire TV devices.

2.1.3 Fire TV Platform

Although Fire TV is made by Amazon, its underlying operating system, Fire OS, is a mod-

ified version of Android. This allows apps for Fire TV to be developed in a similar fashion

to Android apps. Therefore, all third-party libraries that are available for Android apps can

also be integrated into Fire TV apps. Similarly, application sandboxing and permissions in

Fire TV are analogous to those of Android, and any permission requested by the app is in-

herited by all libraries that the app includes. This allows third party libraries to track users

across apps using a variety of identifiers, such as Advertising ID, Serial Number, and Device

ID, etc. We use the fact that Fire OS is based off Android to explore whether VPN-based

tools like AntMonitor [7] can be used for network traffic collection, described in Sec. 3.2.1.

2.1.4 Ads on Fire TV

As a first step to exploring ads on Fire TV, we looked at where ads are displayed on the

device. Through navigating the Fire TV dashboard, we notice ads can be displayed on the

dashboard itself in between list of featured apps. Next, when utilizing a sample of Fire TV

4

amazon.com


apps, we find ads in between streaming videos. Given these insights, we know that our

automated tool, Firetastic, should capture network traffic that belongs to the platform (in

addition to the traffic caused by apps) and trigger videos, so that ads can be played.

2.2 Related Work

2.2.1 Desktop, Mobile, and VR ATS Ecosystems

The desktop [21, 12, 10] and mobile [31, 33, 35] ATS ecosystems have been extensively

studied. Englehardt et al. [10] crawled 1-million sites on desktop and utilized desktop-specific

blocklists such as EasyList and EasyPrivacy [37] to identify ATS — Google, Facebook,

Amazon, and Twitter, dominated tracking on the web. Razaghpanah et al. [31] explored

Android apps and collected network measurements. They found that ATS are similar to ones

on desktop and concluded that cross-tracking between desktop and mobile were widespread.

Shuba et al. [35] looked beyond just ATS for Android by building decision tree classifiers to

block ATS across apps. For the Oculus VR platform (owned by Facebook), Trimananda et

al. [38] observed that the ATS ecosystem is in its infancy, with only a few major players for

tracking like Unity and Google, while ad services were completely missing.

2.2.2 Smart TV ATS Ecosystem

The smart TV ATS ecosystem has not been extensively studied. However, concurrent with

this work, three other works also studied smart TVs [32, 14, 24]. Ren et al. [32] investigated

smart TVs and IoT devices. They concluded that these devices contacted third parties more

than any other device, motivating our Fire TV study (and the published version [39]). Huang

et al. [14] collected network traffic of smart TVs that were utilized by real users, as opposed

5



to testing apps in a testbed setting like our study. Most similar to our work, Moghaddam et

al. [24] instrumented the Fire TV platform and studied ATS and PII exposures. Our work

corroborate the findings of these works — that ATS is prevalent on Fire TV. However, [24]

utilizes a heuristic approach to exploring apps on Fire TV by simulating predetermined

sequences of button presses. Conversely, Firetastic explores apps using breadth-first search.

6



Chapter 3

Firetastic Tool

Figure 3.1: Firetastic: Installs Antmonitor [7] on each Fire TV device and uses one laptop to
instrument multiple Fire TV devices. Uses Droidbot [19] to explore apps in a breadth-first
search manner.

In this chapter, we describe the design and evaluation of Firetastic. In Sec. 3.1 we detail our

app selection and extraction process. In Sec. 3.2, we explain how Firetastic can automatically

explore and collect network traffic using AntMonitor and DroidBot. Lastly, in Sec. 3.3, we

evaluate Firetastic against a baseline dataset through manually testing apps.

7



3.1 Selecting and Extracting Fire TV Apps

App Selection. To test the most relevant apps, we pick the top-1K apps from Amazon’s

curated list of “Top Featured” apps. We ignore apps that use a local VPN (as they would

conflict with AntMonitor), that could not be installed manually, and utility apps that can

change the device settings (which would affect the test environment). As a result, we ignore

around 200 apps while including 1010 testable applications. Our dataset covers approxi-

mately 25% of the total free apps (out of 4K).

Extracting Apps. Since we use a lower end model of Fire TV, the device cannot hold

a large number of apps at once. As a result, we do data collection in batches of 50 apps

at a time. First, we use the web version of the app store to install apps concurrently on

six different devices; each device having a different set of 50 apps. We wait for the apps to

download and install, then extract the apps using a python script. Once we have the apps,

we move to our automated process of data collection, described in the next section.

3.2 Automated Data Collection

3.2.1 Network Traffic Collection with AntMonitor

Collecting Network Traffic. Since Fire TV is based on Android, we can use existing

Android tools to capture network traffic. Although there are various methods for capturing

traffic on Android on the device itself (e.g. androidtcpdump [5]), most of them require a

rooted device. While it is possible to root a Fire TV, it may make applications behave

differently if they detect root. Thus, to collect measurements that are representative of an

average user, we use a VPN-based traffic interception method, Antmonitor [34, 7], that does

not require rooting the device . We discard incoming traffic because video content results in

8



huge PCAP files that slow down the experiments significantly, due to a technical limitation

of ADB (e.g. slow transfer speeds for large files). The outgoing traffic is sufficient for analysis

of the ATS ecosystem.

Modifications to AntMonitor. We make modifications to AntMonitor to have it work

well on Fire TV. First, since AntMonitor outputs PCAPS that are each 10MB, we double it

to 20MB to reduce the overhead of closing and opening a new PCAP during data collection

for streaming video. This allows videos to stream with less interruption. Next, we make

the setup of AntMonitor during the first launch more streamlined. For instance, on stock

AntMonitor, the user would need to choose which apps AntMonitor would collect traffic

for. Instead, we automatically choose all apps. Next, AntMonitor relies on the user to

interact with the app to start the data collection. To have it work with Firetastic, we make

it listen to a broadcast intent, so that Firetastic can start and stop the VPN automatically.

Furthermore, AntMonitor hashes PII to obfuscate it. Here, we turn off this feature. We

also make sure that TLS decryption is toggled on automatically. Lastly, we make minor UI

changes such as changing TextViews into Buttons so that the user can navigate AntMonitor

UI easily with the Fire TV remote.

3.2.2 App Exploration with Droidbot

In order to characterize the ATS ecosystem of Fire TV apps, we must explore (i.e. use) the

app in a way that triggers network requests, especially ones that retrieve ad content. To

scale it to thousands of apps, automatic exploration of apps is necessary.

App Exploration. To automatically explore each Fire TV application, we utilize Droid-

bot [19]. It treats each app as a tree of possible paths to explore instead of randomly

generating events, which results in higher test coverage of the application. For app explo-

ration, we deduce that developers would minimize the necessary clicks in order to reach the

9



core content of their apps, especially for playing video content. Thus, we configure DroidBot

to utilize its breadth-first search (BFS) algorithm to explore each application. The intuition

is that this should cover more distinct UI paths of the app, thus increasing the chance of

content playback (in contrast, the depth-frst Search [DFS] algorithm may cause the automa-

tion to deep end into a path that we do not care about, such as an About view). With some

trial and error, we select the input command interval as three seconds which leaves enough

time for applications to handle the command and load the next view during app exploration.

Modifications to Droidbot. We apply additional modifications to Droidbot to make it

work on Fire TV devices. First, we make sure it launches the app by using the activity meant

for a TV. To do so, Droidbot looks at the manifest file within the APK. Our modification

causes Droidbot to choose the activity that contains the string “tv.”. This ensures that the

app is started as a TV app. Second, for apps that cannot be reinstalled on the device, we

introduce a timeout parameter so that it does not wait forever during installation. Lastly,

since the lower end Fire TV device that we use is slow when starting larger apps, we make

sure Droidbot waits for 15 seconds after the launching the app.

3.2.3 Firetastic Algorithm

We summarize Firetastic’s automation algorithm in Listing 3.1. For each app, Firetastic

first starts the local VPN to capture (and decrypt) traffic. Next, it invokes DroidBot, which

launches the app and explores it using BFS. When the 15-minute exploration completes,

Firetastic stops the local VPN and extracts the .pcapng files that were generated during

testing. Then, it uninstalls the app and continues to the next app. Testing one app at a

time allows us to attribute the collected network traffic to the current app and the platform.

10



device = "10.0.1.xx:5555"

pcapng dir = "/some/path/to/store/pcapng"

apk dir = "/some/path/to/apk/batch"

for app in apk dir:
# Start AntMonitor on Fire TV

start antmonitor(device)

# Ensure VPN connection up

ensure antmonitor connected(device)

# Run DroidBot command

params = { duration: 15min,
policy: "bfs naive",

install timeout: 5min,
interval: 3sec }

run droidbot(app, params, device)

# Stop AntMonitor on Fire TV

stop antmonitor vpn(device)

# Extract the pcap files

extract pcapng files(app, pcapng dir ,

device)

# Clean up before testing next app

remove pcapng files(device)

Listing 3.1: Algorithm for exercising FireTV apps.

3.3 Evaluation of Firetastic

We evaluate Firetastic in two ways. First, we look at whether it can automatically cause

video to be displayed (e.g. for streaming apps). This tells us whether we are capturing video

ad content during our data collection. Second, we look at whether it has good coverage

of ATS domains (following the labeling methodology in Sec. 4.1.1). To do so, we rely on

manual analysis of a sample of apps and treat it as a baseline against our Fire TV dataset.

11



App Name Playback? eSLDs ATS domains
(A) A M A

M A M A
M

F
ir
e
T
V

T
op

-1
0

Pluto TV - It’s Free TV 15 30 50% 13 35 37%
ABC 14 13 108% 5 6 83%
Fox Now 22 24 92% 18 18 100%
AMC ✕ 18 28 64% 8 19 42%
Fox Sports GO ✕ 12 19 63.16% 7 17 41%
Kids for Youtube 16 19 84% 7 5 140%
PBS Kids 12 15 80% 7 9 78%
CNN Go 31 34 91% 41 34 121%
Sundance TV ✕ 13 23 57% 5 11 45%
MTV ✕ 56 38 147% 38 54 70%

R
an

d
o
m

Vimeo 12 11 109% 5 3 167%
Dog TV Online 10 14 71% 2 5 40%
WCSC Live 5 News ✕ 13 12 108% 5 5 100%
WFXG FOX 54 18 18 100% 8 7 114%
13abc WTVG Toledo, OH 12 11 109% 5 2 250%

Total 10 of 15 (67%) 125 117 107% 115 138 83%

Table 3.1: Video playback success for Firetastic, and a comparison of the number of domains
discovered by Firetastic to the number of domains discovered during manual interaction with
the same app, for 15 apps that do not require login. For each app, we perform approximately
16 minutes of automated (A) and 16 minutes of manual (M) interaction. Not shown on this
table: we were able to play video for all apps manually.

3.3.1 Baseline Network Traffic for Evaluation

To get a baseline of network traffic that corresponds to a real user, we run additional experi-

ments for 15 apps. We select apps based on the top-10 apps and then randomly sampled five

additional apps. For each app, we follow two different scenarios. For the first scenario, we

use the app as a real user, this is denoted as the manual interaction (i.e. no automation).

For consistency, we follow a protocol in which we attempt to play seven different videos for

approximately two minutes each, leaving a few minutes to navigate between videos. For

the second scenario, we run Firetastic while manually monitoring what is displayed on the

TV screen, this is denoted as the automated interaction. For both scenarios, we run the

experiment for approximately 16 minutes. Table 3.1 presents the overview of our results.

12



3.3.2 Can Firetastic Trigger Video Playback?

We find that Firetastic is able to trigger video playback for 10 out of the 15 apps (i.e.

67%), 60% for the top-10 apps and 80% for the random apps. Firetastic fails to trigger video

playback for apps that have content that is locked and the free content is not easily accessible

(i.e. the user needs to do more clicks to get to the free content). This is not surprising as

Firetastic relies on a BFS approach to exploring the apps because it expects apps to have

good UI design — minimizing the number of clicks necessary for users to get to the actual

content. We can improve on this in future work by mixing BFS and DFS exploration: the

automation can explore each level up to a certain threshold before drilling down into the

next nested view.

3.3.3 Can Firetastic Capture Domains through Exploration?

Firetastic’s exploration approach is effective to collect the majority of the domain space for

an app. We find that 10 out of 15 apps (67%), Firetastic uncovers 0.8 times the number of

eSLDs, and 0.7 times the number of ATS domains when compared to the manual experi-

ments. Interestingly, Fire TV collects more eSLDs for six apps and more ATS for seven apps,

than the manual experiments. Importantly, this highlights the fact that video playback is

not the sole trigger for eSLDs and ATS domains — usage of the app through other features,

such as exploring all menus, can just be as worthwhile in discovering more domains. An

improvement to Firetastic (as well as motivation for future tools) would be to make sure it

balances between triggering video playback and exploring the other menus of the app.

13



Chapter 4

Fire TV’s Ads and Tracking

Ecosystem

In this chapter, we analyze our Fire TV dataset to characterize the ATS ecosystem. Sec. 4.1

gives an overview of our dataset and how we label domains as ATS. In Sec. 4.2, we detail how

prevalent ATS is for the Fire TV platform. In Sec. 4.3, we compare it to other platforms:

Roku, Android, and Oculus VR.

4.1 Fire TV Testbed Dataset

Number of Fire TV

Apps exercised 1010
Fully qualified domain names (FQDN) 1734
FQDNs accessed by multiple apps 603
URL paths 240713

Table 4.1: Summary of the Fire TV testbed dataset.

The dataset collected using Firetastic are summarized in Table 4.1. For Fire TV, we discover

1734 distinct FQDNs, 603 of which are contacted by multiple apps. Firetastic uncovers

14



0 10 20 30 40 50
Number of Distinct Domains

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F 
of

 T
es

te
d 

A
pp

s

Fire TV

Figure 4.1: CDF of tested apps for distinct domains.

approximately twice as many FQDNs as [24], possibly due to longer experiments (e.g. 15 vs. 5

minutes, respectively) and different app exploration goals (e.g. exploring the views of each

app vs. attempting to play video ads). Furthermore, Fig 4.1 reveals that the majority of

apps contact many distinct FQDNs — 60% of apps contact between 15–25 distinct FQDNs.

4.1.1 Labeling the Dataset

To study the ads and tracking ecosystem on Fire TV, we focus on analyzing the domains

that we collected during our data collection. As a result, we employ three different labeling

approaches onto our dataset to identify ads and tracking domains, the parent organization

that is associated with the domain, and whether the domain is first party, third party or

platform-specific party w.r.t. the app that contacts it.

Ads and Tracking. For figures that denote top domains, we check if the FQDN is labeled

as ATS by VirusTotal, McAfee, OpenDNS [40, 22, 26], or if it is blocked by any of the four

blocklists considered in Sec. 5. For figures and tables that involve the entire dataset, we only

utilize the blocklists for ATS labeling.

Parent Organization. To understand the presence of different organizations on smart TV

15



platforms, we map each FQDN to its effective second level domain (eSLD) using Mozilla’s

Public Suffix List [25, 15], and use Crunchbase [8] to identify the parent company of the

eSLD. For example, youtube.com belongs to Alphabet.

App-Level Party Categorization. To provide further context into the relationship be-

tween the app and the destination it contacts, we consider a destination as first party (i.e.

the app or developer), third party, and platform-specific party (i.e. Amazon).

1. We first tokenize app identifiers and the eSLD of the contacted FQDN (we obtain

the eSLD using Mozilla’s Public Suffix List [25, 15]). For Fire TV, we tokenize the

package names and developer names. For app/package tokens, we ignore common and

platform-specific strings like “com”, “firetv”, etc., while retaining all tokens from the

developer names. We then match the resulting identifiers with the tokenized eSLD.

2. If the tokens match, we label the destination as first party.

3. Otherwise, we label a destination as platform-specific party if it originated from plat-

form activity rather than app activity. For Fire TV, we rely on AntMonitor’s [34]

ability to label each connection with the responsible process.

4. Otherwise, if the destination is contacted by at least two different apps from different

developers, we label it as third party.

5. Finally, if the destination does not fall into any of the other categories, we resort to

labeling it as other, which thus captures domains that are only contacted by a single

app and are not identified as a first party nor platform-specific party.

16

youtube.com


0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of Distinct ATS Domains

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F 
of

 T
es

te
d 

A
pp

s

Fire TV

Figure 4.2: CDF of tested apps for distinct ATS domains.

0 500 1000

Number of Apps

titantv.com
adobe.com

moatads.com
googlevideo.com

akamaihd.net
unity3d.com

serving-sys.com
ytimg.com

uplynk.com
youtube.com

gstatic.com
ifood.tv

scorecardresearch.com
flurry.com

google.com
facebook.com

ssl-images-amazon.com
googlesyndication.com

google-analytics.com
amazonalexa.com

googleapis.com
crashlytics.com

cloudfront.net
amazon-dss.com

doubleclick.net
media-amazon.com

amazonvideo.com
amazon-adsystem.com

amazonaws.com
amazon.com

Platform Party
Third Party
First Party

(a) Top-30 eSLDs

0 50 100

Number of Apps
e.crashlytics.com

pubads.g.doubleclick.net
ssl.google-analytics.com

pagead2.googlesyndication.com
googleads.g.doubleclick.net

imasdk.googleapis.com
settings.crashlytics.com

data.flurry.com
graph.facebook.com

b.scorecardresearch.com
reports.crashlytics.com

csi.gstatic.com
www.google-analytics.com

config.uca.cloud.unity3d.com
applab-sdk.amazon.com

ad.doubleclick.net
z.moatads.com

ade.googlesyndication.com
cdp.cloud.unity3d.com

dpm.demdex.net

142
120

88
88
82
79

70
70
67

48
46
42
38
32
28
26
25
23
22
20

(b) Top-20 third party ATS domains

Figure 4.3: (a) Top-30 eSLDs that are prevalent among multiple apps; (b) Top-20 third
party ATS domains prevalent among multiple apps.

4.2 Fire TV ATS Ecosystem

Overview. To study the prevalence of ATS on Fire TV, we apply our labeling methodology,

as described in Sec. 4.1.1 to our dataset and highlight insights from different vantage points.

Overall, we find 512 distinct ATS FQDNs and 238 distinct eSLDs from our dataset of 1010

17



Figure 4.4: Parent org. of Top-20 third party ATS

apps — suggesting the prevalence of ads and tracking on Fire TV. Fig. 4.2 reveals that 60%

of apps contact three to six distinct ATS domains, while 10% of apps contact 10–20 distinct

ATS domains.

Prevalence by Number of Apps. We look at the prevalence of destinations based on the

number of apps that contact it. In particular, Fig. 4.3a shows that Amazon, the platform

provider, dominates the ads and tracking ecosystem on Fire TV — amazon-adsystem.com

has close to 1K apps contacting it. Interestingly, we observe that first party eSLDs are rare

and suggests that app developers rely on ATS libraries from third party and platform-specific

party providers.

Next, we focus on third party ATS and their prevalence, as illustrated by Fig. 4.3b. Al-

phabet has a strong presence in the ATS space for Fire TV, with *.doubleclick.net and

pageads2.google-syndication domains. Its analytic services, google-analytics.com and

crashlytics.com, also rank high. Smaller ATS domains include b.scorecardresearch.com

(tracking service) and dpm.demdex.net (audience data provider).

18



Parent Organizations. Fig. 4.4 shows the connections between third party ATS to their

parent organizations. We use Crunchbase to determine this information in Sec. 4.1.1. Alpha-

bet dominates the third party ATS ecosystem. Other notable organizations include Numitas

from flurry.com, Unity Tech from unity3d.com, and Facebook from facebook.com

4.3 Fire TV ATS Ecosystem vs. Other Platforms

In this section, we compare the Fire TV ATS ecosystem with other platforms.

4.3.1 Compared to Roku

In the published version of this work [39], we also characterize Roku’s ATS ecosystem. We

find that both platform providers, Roku and Amazon, dominate their respective ATS ecosys-

tem. When considering ATS based on eSLDs, we find an overlap of only 32%, suggesting

that the ecosystems differ. When focusing on third party ATS organizations, Roku has some

that are not prevalent on Fire TV, such as comScore, The Trade Desk, and RTL Group.

Conversely, organizations found on Fire TV such as Unity Tech, Facebook, and Numitas,

are not popular on Roku.

4.3.2 Compared to Android

We do a direct comparison of Fig. 4.3b to Razaghpanah et al. [31] findings on Android,

focusing on third party only. Fire TV is similar to Android with an overlap of nine ATS

FQDNs, seven of which are owned by Alphabet. This is expected, given that Fire TV

is based off of Android and natively supports the ATS libraries of Android. Facebook

(graph.facebook.com) and Verizon (data.flurry.com) both have a strong presence on

19

flurry.com
unity3d.com
facebook.com


Fire TV and Android. Notably, third party ATS observed for Fire TV only include Adobe

(dpm.demdex.net) and Amazon (applab-sdk.amazon.com).

4.3.3 Compared to Oculus VR

We do a direct comparison of Fig. 4.3 to Trimananda et al. [38] findings on Oculus VR.

Both platforms dominate the ATS ecosystem — Amazon for Fire TV and Facebook for

Oculus. For third party ATS, we observe that they share Unity (unity3d.com) and Alphabet

(google-analytics.com). However, noticeably different is that Oculus does not contain ad

related services like Fire TV (doubleclick.net, moatads.com). As noted by [38], this is not

surprising because there are currently no on-device ads for the Oculus. Overall, Fire TV’s

ATS ecosystem is more diverse and mature than on Oculus.

20



Chapter 5

Effectiveness of Blocklists for Fire TV

In this chapter, we evaluate whether users can utilize DNS-based blocklists to preserve their

privacy by blocking ATS. In Sec. 5.1, we explain what blocklists are and describe the four

that we have chosen to evaluate. Sec. 5.2, we reveal the block rate of each blocklists when

applied on our Fire TV dataset. In Sec. 5.3, we evaluate their effectiveness at blocking ads

without breakage. Sec. 5.4 illustrates how much PII exposures are stopped by employing the

them. Lastly, Sec. 5.5 recommends how to improve the blocklists for Fire TV.

5.1 What are DNS-based Blocklists?

In 2019, there are no viable commercial applications that can be installed on the Fire TV to

block ads across all apps on the device. As a result, we use DNS-based blocking solutions,

such as Pi-hole [28], that can monitor all DNS traffic from in-home devices and block them

based on blocklists. Notably, this is a state-of-the-art solution that many users have deployed

for free. Second, blocklists, lists that contain hostname syntax, are manually curated by

domain experts or crowdsourced by users.

21



Specifically, Pi-hole acts as a DNS server and the user can configure their router to use this

DNS server to monitor and block network traffic that matches blocklists. For instance, if the

domain name is found in one of the blocklists, it is typically mapped to 0.0.0.0 or 127.0.0.1

to prevent outbound traffic to that domain [29].

For our work, we select popular DNS-based blocklists, while also considering their relevance

to smart TVs. Specifically, we look at the following blocklists:

1. Pi-hole Default (PD): We test blocklists included in Pi-hole’s default configuration

[27] to imitate the experience of a typical Pi-hole user. This set has seven hosts files

including Disconnect.me ads and tracking, hpHosts, CAMELEON, MalwareDomains,

StevenBlack, and Zeustracker. PD contains a total of about 133K entries.

2. The Firebog (TF): We test nine advertising and five tracking blocklists recommended

by “The Big Blocklist Collection” [41], to emulate the experience of an advanced Pi-

hole user. This includes: Disconnect.me ads, hpHosts, a dedicated smart TV blocklist,

and hosts versions of EasyList and EasyPrivacy. TF contains 162K entries total.

3. Mother of all Ad-Blocking (MoaAB): We test this curated hosts file [23] that tar-

gets a wide-range of unwanted services including advertising, tracking, (cookies, page

counters, web bugs), and malware (phishing, spyware) to again imitate the experience

of an advanced Pi-hole user. MoaAB contains a total of about 255K entries.

4. StopAd (SATV): We test a commercial smart TV focused blocklist by StopAd [17].

This list particularly targets Android based smart TV platforms such as Fire TV. We

extract StopAd’s list by analyzing its APK using Android Studio’s APK Analyzer [13].

SATV contains a total of about 3K entries.

22



Block Rate (%)
Platform # Domains PD TF MoaAB SATV

Fire TV 1734 22% 27% 22% 9%

Table 5.1: Block rates of the four blocklists when applied to the domains in our Fire TV
dataset.

5.2 Block Rates

Table 5.1 shows the block rate of each blocklist across our dataset. We see that the the first

three blocklists provide similar coverage, around 22–27% of FQDNs were blocked. Surpris-

ingly, the smart TV specific block list “StopAd” had the lowest block rate. However, this

does not mean that “StopAd” is not effective in terms of blocking ads. As a result, we look

at whether the number of rules really matter in the next section.

5.3 Blocking Ads without Breakage

To evaluate whether blocklists are effective at blocking ads without causing functionality

and visual breakage, we employ manual analysis.

Setup. We select 10 apps, six are top apps and three are randomly selected from our dataset.

We then run five experiments per app, one experiment with no blocklist (i.e. No List), and

the other four corresponds to each of our blocklists (applied using Pi-hole). During each

experiment, we attempt to trigger ads by playing multiple videos and/or live TV channels

and fast-forwarding through video content. We take note of any functionality breakage and

visually observable missed ads. We differentiate between minor and major functionality

breakage as follows: minor breakage when the app’s main content remains available but

the application suffers from minor user interface glitches or occasional freezes; and major

breakage when the app’s content becomes completely unavailable or the app fails to launch.

23



App Name No List PD TF MoaAB SATV
No
Ads

No
Break-
age

No
Ads

No
Break-
age

No
Ads

No
Break-
age

No
Ads

No
Break-
age

No
Ads

No
Break-
age

F
ir
e
T
V T
o
p

Pluto TV ✕ ✕ ✕ ✕ ✕ ✕ ✖

iFood.tv ✕ — ✖ — ✖

Tubi

Downloader

The CW for Fire
TV

✕ — ✖ — ✖ — ✖ ✕

FoxNow ✕ — ✖ — ✖ ✕ ✕

Watch TNT

R
an

d
om KCRA3 Sacra-

mento
✕ — ✖ — ✖ ✕ ✕

Watch the
Weather Channel

✕ ✕

Jackpot Pokers by
PokerStars

✕

Table 5.2: Missed ads and functionality breakage for different blocklists when employed dur-
ing manual interaction with 10 Fire TV apps. For “No Ads”, a checkmark ( ) indicates
that no ads were shown during the experiment, a cross (✕) indicates that some ad(s) ap-
peared during the experiment, and a dash (—) indicates that breakage prevented interaction
with the app altogether. For “No Breakage”, a checkmark ( ) indicates that the app func-
tioned correctly, a cross (✕) indicates minor breakage, and a bold cross (✖) indicates major
breakage.

Results. Table 5.2 summarizes our results. We find that none of the blocklists were able to

block all ads without causing some kind of breakage. PD was the most successful at blocking

ads for seven out of the 10 apps (70%). However, it did cause two instances of major

breakage. Notably, TF, which had the highest block rate of 27% (see Table 5.1), caused

the most major breakage for four of the 10 apps (40%). Conversely, SATV, which had the

lowest block rate of 9%, actually blocked more ads and caused only one major breakage,

when compared to TF. Thus, the block rate may not be an indicator of the effectiveness of

the blocklist, but rather whether the list was curated for smart TV devices.

24



PII Fire TV Testbed Dataset (Apps & eSLDs)
1st Party 3rd Party Platform Party Other Total

Advertising ID 17/7/25% 53/31/78% 715/4/71% 5/5/40% 725/39/71%
Serial Number 10/3/0% 51/4/33% 867/4/9% 2/2/0% 881/9/12%
Device ID 19/8/0% 153/27/36% 819/5/14% 10/11/21% 856/43/31%
Username 1/2/0% 2/2/100% 1/1/100% - 4/5/40%
MAC - 2/2/100% - - 2/2/100%
Location - 27/7/90% 2/2/100% - 28/7/90%

Table 5.3: Applications / eSLDs / % Distinct FQDNs Blocked. Number of apps that expose
PII, number of distinct eSLDs that receive PII from these apps, and percentage of distinct
subdomains of the eSLDs that are blocked by the blocklists. We further separate by party
as defined in Sec. 4.1.1.

5.4 PII Exposures

We evaluate whether the four blocklists can adequately prevent PII exposures from Fire TV

devices. We consider PII such as Advertising ID, Serial Number, and Location. If any of the

four blocklists can block the exposure, then we consider that as blocked. Table 5.3 provides

our results broken down by the number of applications receiving the PII, the number of eSLDs

and the number of FQDNs that are blocked by any of the four blocklists. We further break

down the PII exposures by first party, third party, and platform-specific party, following the

labeling methodology of Sec. 4.1.1. This is necessary because it helps us infer the purpose

of the exposure.

Extracting PII. To find PII, we use the Fire TV setting menus and the user account that

we used to log into the device. Since trackers are known to encode or hash PII [9], we

compute the MD5 and SHA1 hashes for each of the PII values. We then search for these PII

values in the HTTP header fields and URI path. Recall from Sec. 3.2.1 that we can analyze

HTTP information even for encrypted flows in the Fire TV dataset due to AntMonitor’s

TLS decryption [34, 7].

First Party PII Exposures. The majority of first party exposures are not blocked. This

25



Hostname PD TF MoaAB SATV

myhouseofads.firebaseio.com ✕ ✕ ✕ ✕

mads.amazon.com ✕ ✕ ✕ ✕

ads.aimitv.com.s3.amazonaws.com ✕ ✕ ✕ ✕

analytics.mobitv.com ✕ ✕ ✕ ✕

events.brightline.tv ✕ ✕ ✕ ✕

adplatform-static.s3-us-west-1.amazonaws.com ✕ ✕ ✕ ✕

kraken-measurements.s3-external-1.amazonaws.com ✕ ✕ ✕ ✕

kinstruments-measurements.s3-external-1.amazonaws.com ✕ ✕ ✕ ✕

venezia-measurements.s3-external-1.amazonaws.com ✕ ✕ ✕ ✕

ad-playlistserver.aws.syncbak.com ✕ ✕ ✕ ✕

Table 5.4: Examples of potential false negatives for the four DNS-based blocklists found
using app penetration analysis and keywords search (“ad”, “ads”, “analy”, “track”, “hb”
(for heartbeat), “score”, “event”, “metrics”, “measure”).

may be because they are necessary for functionality, personalization, or improving the ap-

plication based on app usage. Interestingly, 17 apps receive the Advertising ID and only

25% of the FQDNs are blocked. We note that blocklists generally avoid blocking first party

because it reduces the chance of breakage.

Third and Platform-specific Party PII Exposures. PII exposures to third party

and platform-specific party domains can be for ATS purposes. Our blocklists capture the

majority of PII exposures to third party domains, having high coverage for Username, MAC,

Location and Advertising ID exposures. However, the most prevalent PII, Device ID is

sent by 153 apps and only 36% of the FQDNs are blocked. For platform-specific party,

we see high exposures of Advertising, Serial Number, and Device ID. For example, 697

apps send the Serial Number and Device ID (and Advertising ID) to the platform endpoint

aviary.amazon.com with a URI path of “/GetAds”, and 53 apps send the Serial Number to

dna.amazon.com, with a URI path of “/GetSponsoredTileAds”. On the other hand, some

exposures seem to serve a functional purpose. For instance, 67 apps send the serial number

to atv-ext.amazon.com, with varying URI paths containing “/cdp/”. We surmise that this

domain serves as “Content Delivery Platform(s)” [6], allowing apps to personalize content

without user login. Specifically, we see paths such as “/cdp/playback/GetDefaultSettings”

26

aviary.amazon.com
dna.amazon.com
atv-ext.amazon.com


coupled with an “x-atv-session-id” HTTP header field.

5.5 Missed by Blocklists

Since there are not many smart TV specific blocklists, we leverage our Fire TV dataset to

identify domains that should be blocked. First, a simple approach is to utilize PII exposures.

For example, Table 5.3 reveals many FQDNs are still receiving the Advertising ID and are

not blocked. A second approach is to use common keywords found from our dataset such as

“ads”, “track”, and “metric”. By relying on keywords, we are able to identify at least ten

domains that are not captured by any of the four blocklists, as shown in Table 5.4.

27



Chapter 6

Conclusion

6.1 Summary

In this thesis, we provide one of the first large-scale studies of Amazon’s Fire TV ATS

ecosystem. To that end, we build Firetastic, a tool that can automatically explore and collect

network traffic for Fire TV apps. Using Firetastic, we explore 1010 app, identify ATS using

DNS-based blocklists and online URL classifying services. We observe that ads and tracking

are prevalent on the Fire TV platform. First, we note that the platform provider (Amazon)

dominates the ad ecosystem, as hundreds of apps contact Amazon related ATS. For third

party, parent organizations such as Alphabet, Facebook, Numitas, are prevalent. Fire TV

ATS ecosystem is similar to Android’s but is more diverse when compared to Oculus VR.

Furthermore, we find that DNS-based blocklists fail to block the majority of PII exposures

for Device ID and Serial Number to third party destinations. Notably, the blocklists are not

effective at blocking ads without causing some breakage.

This work was published in PETS 2020 [39]. In addition, we open source Firetastic [18] and

make the dataset of 1010 apps available to the public. Since the publication of [39], it has

28



garnered attention from Consumer Reports and featured at FTC’s PrivacyCon 2021 [30].

6.2 Future Directions

We can improve Firetastic to trigger more video ads by first using additional information

like the app category (e.g. free streaming app, games) to select the appropriate exploration

algorithm (e.g. BFS vs. DFS vs. others). Since we did not conduct studies using various

Fire TV devices, another study for higher-end Fire TV devices and TVs with built-in Fire TV

would serve as a good comparative analysis study.

We also have shown that there is a need to have curated blocklists for Fire TV to not only

block ads but prevent breakage. Future work can look at how to automatically identify

hostnames to block. Similar work has since been published in 2021 to identify non-essential

traffic on IoT devices [20], which may serve as a guide to improve blocklists. Futhermore,

future work can focus on improving the blocking capability for smart TVs. For example, use

AntMonitor as a on-device app to block ads on Fire TV [35], which provides more granular

blocking capabilities beyond hostnames (e.g. blocking based on URL paths, HTTP headers).

29



Bibliography

[1] Amazon VP shares how Fire TV is reimagining the largest screen
in your home. https://www.aboutamazon.com/news/devices/

amazon-vp-shares-how-fire-tv-is-reimagining-the-largest-screen-in-your-home,
Sep 2021.

[2] Amazon Advertisers can now reach up to 50M monthly ac-
tive users on Fire TV. https://advertising.amazon.com/blog/

amazon-advertisers-can-now-reach-up-to-50m-monthly-active-users-on-fire-tv,
Nov 2021.

[3] Amazon.com: Buyers Guide: Amazon Devices & Accessories. https://www.amazon.

com/b?ie=UTF8&node=23477577011, Nov 2021.

[4] Amazon.com: TV with Fire TV. https://www.amazon.com/s?k=tv+with+fire+tv&

i=amazon-devices&bbn=8521791011&rh=n%3A16333372011%2Cn%3A2102313011%2Cn%

3A8521791011%2Cn%3A21579968011&dc, Nov 2021.

[5] Android tcpdump. https://www.androidtcpdump.com/.

[6] Antidot. Content Delivery Platform. https://www.antidot.net/

content-delivery-platform/, 2019.

[7] AntMonitor open-source. https://github.com/UCI-Networking-Group/AntMonitor.

[8] Crunchbase. https://www.crunchbase.com/.

[9] S. Englehardt, J. Han, and A. Narayanan. I never signed up for this! privacy implications
of email tracking. Proceedings on Privacy Enhancing Technologies, 2018(1):109–126,
2018.

[10] S. Englehardt and A. Narayanan. Online Tracking: A 1-million-site Measurement and
Analysis. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’16, pages 1388–1401, New York, NY, USA, 2016. ACM.

[11] UCI Rokustic and Firetastic Dataset | UCI Networking Group. https://athinagroup.
eng.uci.edu/projects/smarttv/data.

30

https://www.aboutamazon.com/news/devices/amazon-vp-shares-how-fire-tv-is-reimagining-the-largest-screen-in-your-home
https://www.aboutamazon.com/news/devices/amazon-vp-shares-how-fire-tv-is-reimagining-the-largest-screen-in-your-home
https://advertising.amazon.com/blog/amazon-advertisers-can-now-reach-up-to-50m-monthly-active-users-on-fire-tv
https://advertising.amazon.com/blog/amazon-advertisers-can-now-reach-up-to-50m-monthly-active-users-on-fire-tv
https://www.amazon.com/b?ie=UTF8&node=23477577011
https://www.amazon.com/b?ie=UTF8&node=23477577011
https://www.amazon.com/s?k=tv+with+fire+tv&i=amazon-devices&bbn=8521791011&rh=n%3A16333372011%2Cn%3A2102313011%2Cn%3A8521791011%2Cn%3A21579968011&dc
https://www.amazon.com/s?k=tv+with+fire+tv&i=amazon-devices&bbn=8521791011&rh=n%3A16333372011%2Cn%3A2102313011%2Cn%3A8521791011%2Cn%3A21579968011&dc
https://www.amazon.com/s?k=tv+with+fire+tv&i=amazon-devices&bbn=8521791011&rh=n%3A16333372011%2Cn%3A2102313011%2Cn%3A8521791011%2Cn%3A21579968011&dc
https://www.androidtcpdump.com/
https://www.antidot.net/content-delivery-platform/
https://www.antidot.net/content-delivery-platform/
https://github.com/UCI-Networking-Group/AntMonitor
https://www.crunchbase.com/
https://athinagroup.eng.uci.edu/projects/smarttv/data
https://athinagroup.eng.uci.edu/projects/smarttv/data


[12] P. Gill, V. Erramilli, A. Chaintreau, B. Krishnamurthy, K. Papagiannaki, and P. Ro-
driguez. Follow the Money: Understanding Economics of Online Aggregation and Ad-
vertising. In Proceedings of the 2013 conference on Internet measurement conference,
pages 141–148. ACM, 2013.

[13] Google LLC. apkanalyzer. https://developer.android.com/studio/command-line/
apkanalyzer, 2019.

[14] D. Y. Huang, N. Apthorpe, G. Acar, F. Li, and N. Feamster. IoT Inspector: Crowd-
sourcing Labeled Network Traffic from Smart Home Devices at Scale, 2019.

[15] John Kurkowsi. tldextract. https://github.com/john-kurkowski/tldextract.

[16] Jump PR. Beachfront Releases 2018 CTV Ad Data, Roku Still Leads, Ama-
zon Growing Quickly. https://www.broadcastingcable.com/post-type-the-wire/
2018-ctv-ad-data-realeased-by-beachfront, 2018. [Online; accessed 2019-05-10].

[17] Kromtech Alliance Corp. Stopad for tv. https://stopad.io/tv, 2019.

[18] H. Le. Firetastic. https://github.com/UCI-Networking-Group/firetastic.

[19] Y. Li, Z. Yang, Y. Guo, and X. Chen. DroidBot: a Lightweight UI-guided Test Input
Generator for Android. In 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), pages 23–26. IEEE, 2017.

[20] A. M. Mandalari, D. J. Dubois, R. Kolcun, M. T. Paracha, H. Haddadi, and D. Choffnes.
Blocking without Breaking: Identification and Mitigation of Non-Essential IoT Traffic.
In Proc. of the Privacy Enhancing Technologies Symposium (PETS), 2021.

[21] J. R. Mayer and J. C. Mitchell. Third-Party Web Tracking: Policy and Technology. In
2012 IEEE Symposium on Security and Privacy, pages 413–427, May 2012.

[22] McAfee, LLC. Customer URL Ticketing System. https://www.trustedsource.org/.

[23] MoaAB: Mother of All Ad-Blocking. https://forum.xda-developers.com/

showthread.php?t=1916098.

[24] H. Mohajeri Moghaddam, G. Acar, B. Burgess, A. Mathur, D. Y. Huang, N. Feamster,
E. W. Felten, P. Mittal, and A. Narayanan. Watching You Watch: The Tracking
Ecosystem of Over-the-Top TV Streaming Devices. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’19, pages 131–
147, New York, NY, USA, 2019. ACM.

[25] Mozilla Foundation. Public Suffix List. https://publicsuffix.org/.

[26] OpenDNS Domain Tagging. https://community.opendns.com/domaintagging/.

[27] Customising Sources for Ad Lists. https://github.com/pi-hole/pi-hole/wiki/

Customising-Sources-for-Ad-Lists.

31

https://developer.android.com/studio/command-line/apkanalyzer
https://developer.android.com/studio/command-line/apkanalyzer
https://github.com/john-kurkowski/tldextract
https://www.broadcastingcable.com/post-type-the-wire/2018-ctv-ad-data-realeased-by-beachfront
https://www.broadcastingcable.com/post-type-the-wire/2018-ctv-ad-data-realeased-by-beachfront
https://stopad.io/tv
https://github.com/UCI-Networking-Group/firetastic
https://www.trustedsource.org/
https://forum.xda-developers.com/showthread.php?t=1916098
https://forum.xda-developers.com/showthread.php?t=1916098
https://publicsuffix.org/
https://community.opendns.com/domaintagging/
https://github.com/pi-hole/pi-hole/wiki/Customising-Sources-for-Ad-Lists
https://github.com/pi-hole/pi-hole/wiki/Customising-Sources-for-Ad-Lists


[28] Pi-Hole: A black hole for Internet advertisements. https://pi-hole.net/.

[29] Pi-hole LLC. Blocking Mode. https://docs.pi-hole.net/ftldns/blockingmode.

[30] PrivacyCon 2021. https://www.ftc.gov/news-events/events-calendar/

privacycon-2021.

[31] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundaresan, M. Allman,
C. Kreibich, and P. Gill. Apps, Trackers, Privacy, and Regulators: A Global Study of
the Mobile Tracking Ecosystem. NDSS, 2018.

[32] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari, R. Kolcun, and H. Haddadi. Infor-
mation Exposure From Consumer IoT Devices: A Multidimensional, Network-Informed
Measurement Approach. In Proceedings of the Internet Measurement Conference, IMC
’19, pages 267–279, New York, NY, USA, 2019. ACM.

[33] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes. ReCon: Revealing and
Controlling PII Leaks in Mobile Network Traffic. In Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Services, pages 361–
374. ACM, 2016.

[34] A. Shuba, A. Le, E. Alimpertis, M. Gjoka, and A. Markopoulou. AntMonitor: A
System for On-Device Mobile Network Monitoring and its Applications. arXiv preprint
arXiv:1611.04268, 2016.

[35] A. Shuba, A. Markopoulou, and Z. Shafiq. NoMoAds: Effective and Efficient Cross-App
Mobile Ad-Blocking. Proceedings on Privacy Enhancing Technologies, 2018(4):125–140,
2018.

[36] G. Sloane. Amazon is now taking a 30 percent cut of ad sales from Fire TV. https:

//adage.com/article/design/amazon-taking-30-percent-ad-sales-fire-tv/

315678, 2018.

[37] The EasyList Authors. EasyList. https://easylist.to/.

[38] R. Trimananda, H. Le, H. Cui, J. Tran Ho, A. Shuba, and A. Markopoulou. OVRseen:
Auditing Network Traffic and Privacy Policies in Oculus VR. In 31st {USENIX} security
symposium ({USENIX} security 22), 2022.

[39] J. Varmarken, H. Le, A. Shuba, A. Markopoulou, and Z. Shafiq. The TV is Smart
and Full of Trackers: Measuring Smart TV Advertising and Tracking. Proceedings on
Privacy Enhancing Technologies, 2020(2), 2020.

[40] VirusTotal. https://www.virustotal.com/.

[41] WaLLy3K. The Big Blocklist Collection. https://firebog.net.

32

https://pi-hole.net/
https://docs.pi-hole.net/ftldns/blockingmode
https://www.ftc.gov/news-events/events-calendar/privacycon-2021
https://www.ftc.gov/news-events/events-calendar/privacycon-2021
https://adage.com/article/design/amazon-taking-30-percent-ad-sales-fire-tv/315678
https://adage.com/article/design/amazon-taking-30-percent-ad-sales-fire-tv/315678
https://adage.com/article/design/amazon-taking-30-percent-ad-sales-fire-tv/315678
https://easylist.to/
https://www.virustotal.com/
https://firebog.net

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Background & Related Work
	Background
	Smart TVs, Platforms, and App Stores
	Fire TV App Store
	Fire TV Platform
	Ads on Fire TV

	Related Work
	Desktop, Mobile, and VR ATS Ecosystems
	Smart TV ATS Ecosystem


	Firetastic Tool
	Selecting and Extracting Fire TV Apps
	Automated Data Collection
	Network Traffic Collection with AntMonitor
	App Exploration with Droidbot
	Firetastic Algorithm

	Evaluation of Firetastic
	Baseline Network Traffic for Evaluation
	Can Firetastic Trigger Video Playback?
	Can Firetastic Capture Domains through Exploration?


	Fire TV's Ads and Tracking Ecosystem
	Fire TV Testbed Dataset
	Labeling the Dataset

	Fire TV ATS Ecosystem
	Fire TV ATS Ecosystem vs. Other Platforms
	Compared to Roku
	Compared to Android
	Compared to Oculus VR


	Effectiveness of Blocklists for Fire TV
	What are DNS-based Blocklists?
	Block Rates
	Blocking Ads without Breakage
	PII Exposures
	Missed by Blocklists

	Conclusion
	Summary
	Future Directions

	Bibliography



