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Doping Asymmetry of a 3-orbital CuO2 Hubbard Model

Steven R. White

University of California, Irvine, Irvine, CA 92697, USA

D.J. Scalapino

Department of Physics, University of California,

Santa Barbara, CA 93106-9530, USA

While both the hole and electron doped cuprates can exhibit dx2−y2-wave super-

conductivity, the local distribution of the doped carriers is known to be significantly

different with the doped holes going primarily on the O sites while the doped electrons

go on the Cu sites. Here we report the results of density-matrix-renormalization-

group calculations for a three-orbital model of a CuO2 lattice. In addition to the

asymmetric dependence of the intra-unit-cell occupation of the Cu and O for hole and

electron doping, we find important differences in the longer range spin and charge

correlations. As expected, the pair-field response has a dx2−y2-like structure for both

the hole and electron doped systems.

How well does a 3-orbital Hubbard model describe the properties of the cuprates? These

materials are known to be charge-transfer systems and from the analysis of Zaanan, Sawatzky

and Allen1 one would expect that a minimal model which includes a Cu 3dx2−y2 orbital and

two O 2pσ orbitals per unit cell would be required. Indeed, early on a 3-orbital Hubbard

model was proposed by several groups2,3, and various quantum Monte Carlo4,5 and embedded

cluster calculations6,7 have shown that this model exhibits a number of the basic magnetic

and single particle spectral weight properties that are seen in the cuprates. More recently,

experimental measurements of both the hole and electron doped cuprates have provided new

information on the spatial charge and spin structure which can occur when these materials

are doped8–17. So the question of whether a 3-orbital Hubbard model provides a suitable

framework with which to describe the physics of the cuprates has been enlarged. Here

with the experimental results for hole doped La2−xBaxCuO4 (LBCO) and electron doped

Nd2−xCexCuO4 (NCCO) in mind, we have carried out density matrix renormalization group

(DMRG)18 calculations with the goal of determining whether the 3-orbital Hubbard model
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remains an adequate model for the cuprates.

Neutron scattering studies of the LTT phase of LBCO find that the doped holes form a

striped structure consisting of regions with excess holes separated by π-phase shifted anti-

ferromagnetic regions10. At 1/8 hole doping, superconducting correlations are observed to

onset together with the stripe order11. This pair-density-wave phase is believed to have a

d-wave pair-field which is large in the regions with excess holes and oscillates in sign be-

tween these charged regions12,13. Achkar et al.14 have reported resonant soft x-ray scattering

measurements which show that the charge distribution on the oxygens of LBCO have an

s′-CDW orbital structure in which the charge modulations on the Opx and Opy sites in a

unit cell are in phase. STM Studies of BSCCO (p ∼ 8%) and NaCCOC (p ∼ 12%) find

that these materials have a predominantly d-CDW orbital form factor in which these Opx

and Opy charge modulations are out of phase15. Finally, recent resonant x-ray scattering

measurements of Nd2−xCexCuO4 near optimal doping16 find charge order which occurs with

a similar periodicity and Cu-O bond orientation to that of the charge stripes seen in LBCO.

One-band Hubbard and t–J models have been found, within various approximations, to

exhibit striped charge and spin structures19–24, modulated nematic phases25–27 as well as

pair density wave phases28–30. RPA calculations for the three-band Hubbard model have

also found nematic phases in certain parameter regimes31–33. Earlier DMRG calculations for

a 3-orbital model of a two-leg CuO2 ladder showed the expected local asymmetric charge-

transfer behavior in which doped holes tend to predominantly go on the 2pσ orbitals while

doped electrons go on the Cu 3dx2−y2 orbitals34,35. These calculations also found dx2−y2-like

pairing correlations for both hole and electron doping in which the near neighbor Cu rung

and leg pair-field correlations differ in sign. Here we extend these calculations to an 8 × 4

CuO2 cluster with cylindrical boundary conditions. The cylindrical boundaries reduce the

edge effects associated with the ladder, more reliably representing bulk behavior. The L× 4

geometry is also the minimal size that can contain stripe-like clusters of holes. With the

8 × 4 system we study the tendencies towards striping in the hole densities and whether

doped holes or electrons modulate the phase of the antiferromagnetism. We also study the

hopping kinetic energy associated with added holes or electrons, and the pairing tendencies

in the doped system.

The lattice structure and the parameters of the three orbital CuO2 model that we will

study are shown in Fig. 1. The model has a CuO2 unit cell consisting of a 3dx2−y2 orbital on
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FIG. 1: The CuO2 lattice with onsite Cu 3dx2−y2 and O 2px and 2py energies εd and εp, near

neighbor Cu–O and O–O hoppings tpd and tpp, onsite Cu and O Coulomb interactions Ud and Up and

near neighbor Cu–O and O–O Coulomb interactions Vpd and Vpp, respectively. The Hamiltonian

for this 3-orbital model is given in a hole representation by Eq. (1). Here we will work with energies

measured in units of tpd, and take as a generic set of parameters tpp = 0.5, ∆pd = εp − εd = 3,

Ud = 8, Up = 3, Vpd = 1 and Vpp = 0.75.

the Cu site and 2px/2py orbitals on the x and y oxygens. In a representation in which the

vacuum of the 3-orbital model has the configuration (d2x2−y2p
2
xp

2
y), d

+
iσ and p+jσ create holes

with spin σ on the ith Cu and jth O sites respectively, and the Hamiltonian has the form

H = ∆pd

∑
iσ

p+iσpiσ − tpd
∑
〈ij〉σ

(d+iσpjσ + p+jσdiσ)

− tpp
∑
〈ij〉σ

(p+iσpjσ + p+jσpiσ)

+ Ud
∑
i

ndi↑n
d
i↓ + Up

∑
i

npi↑n
p
i↓

+ Vpd
∑
〈ij〉

ndin
p
j + Vpp

∑
〈ij〉

npin
p
j (1)

Here ∆ps = εp − εd is the energy difference between having a hole on an O site versus a Cu

site, tpd and tpp are one-hole hopping matrix elements between near-neighbor Cu and O sites

and near-neighbor O sites, respectively. The sums 〈ij〉 in Eq. 1 denote sums over the relevant

nearest-neighbor sites. Ud and Up are the onsite Cu and O Coulomb interactions and Vpd

and Vpp are the nearest-neighbor Cu–O and O–O Coulomb interactions, respectively. The

phases of the orbitals have been fixed such that the signs of the hopping matrix elements
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remain the same throughout the lattice and are positive.

The hopping parameters tpd and tpp found for La2CuO4 and Nb2CuO4 in various cluster

and LDA calculations are relatively close to each other. We will measure energies in units

of tpd and set tpp/tpd = 0.5 for both of these materials9,36. The primary difference in the

one-electron parameters occurs in ∆pd where the absence of the apical oxygens in Nd2CuO4

is expected to lead to a reduction in ∆pd relative to La2CuO4. Indeed this is found in LDA

calculations, however the appropriate bare values of ∆pd to use in the 3-orbital Hamiltonian

Eq. (1) has posed a problem because of double counting corrections6,37. Here we find that

setting ∆pd/tpd = 3 gives reasonable values for the charge gap and exchange interaction.

Thus, working in units of tpd we will take for a canonical set of parameters

tpp = 0.5, ∆pd = εp − εd = 3, Ud = 8, Up = 3, Vpd = 1, Vpp = 0.75 (2)

These parameters are appropriate for a charge transfer system for which Ud > εp− εd = ∆pd

and ∆pd > 2tpd. Using a similar set of parameters for a 2-leg CuO2 ladder we previously

found at half-filling a charge gap ∆c ∼ tpd and a spin gap ∆s ∼ 0.03tpd. For a 2-leg ladder the

effective exchange coupling J ∼ 2∆s ∼ 0.06tpd. For tpd of order 1 to 2 eV, these correspond

to reasonable values for the charge gap and the exchange interaction. Our plan is to use

this same set of parameters for both the hole and electron doped systems and focus on the

differences that arise between them. We will comment on the effect of reducing tpp and, for

the electron doped case, the effect of reducing ∆pd.

The DMRG calculations will be carried out for an 8× 4 CuO2 lattice which has periodic

boundary conditions in the 4-unit cell y-direction and open ends in the 8-unit cell x-direction.

For the charge and spin studies, we will work with a fixed number of holes 32 + N and a

hole density per CuO2 unit cell x = 1 + N/32 which is 1 for the undoped system. Positive

values of N (x > 1) correspond to hole doping and negative values of N (x < 1) to electron

doping. We typically did 15 DMRG sweeps, keeping up to m = 4000 states on the last

sweep. This led to excellent convergence for the local quantities that we report here. A

typical maximum truncation error was ∼ 10−5; extrapolating the truncation error to zero

gave typical fractional errors in the total energy also about ∼ 10−5. Without extrapolation,

fractional errors in energy were estimated to be less than 10−4, and absolute errors in local

quantities were in the range 10−3 − 10−4. The good overall convergence for this cluster

suggests that wider systems, say up to width 6, will be accessible for near-future studies.
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In Fig. 2 we show the effect of doping on the local charge density and squared spin

moments on the Cu and O sites as a function of the hole density x. As we will discuss

later, there can be inter- and intra-cell spatial structure in the charge and spin. The results

shown in Fig. 2 represent site averages taken over the 8× 4 lattice. For the undoped x = 1

(N = 0) system where there is one hole per CuO2 unit cell, Fig. 2 shows that the hole

occupation is approximately 80% on the Cu site and 10% on each of the two O sites for the

parameters that we have chosen. When additional holes are added they go approximately

75% onto the two O sites and 25% onto the Cu site of the unit cell. Alternatively, under

electron doping, the added electrons go approximately 90% onto the Cu site and only 10%

onto the two O sites. This is of course what one would expect for a charge-transfer system.

The change in the square of the spin moments on the Cu and O sites is seen to vary with

the hole concentration x in a similar manner to that of the charge occupation. For electron

doping (x < 1), an electron added to a Cu site removes the hole spin moment leading to a

decrease in 〈S2〉 averaged over the lattice, while for hole doping the square of the O hole

spin moment increases as holes are primarily added to the O sites.

To study the longer range spin and charge correlations, we have applied a weak staggered

magnetic field to the Cu sites on the left hand edge of the 8 × 4 lattice. The expected

antiferromagnetic response of the undoped system is shown in Fig. 3. Here, the diameters

of the circles are proportional to the density of the holes and the lengths of the arrows are

proportional to the spin moments. One sees, as shown in Fig. 2 that the holes are mainly

on the Cu sites. The applied edge field has broken the spin symmetry and there is a well

formed antiferromagnetic spin pattern.

In Fig. 4 we contrast the results for hole doping on the left with electron doping on the

right. In this figure, the hole density distribution of the undoped lattice shown in Fig. 3 has

been subtracted. The diameters of the circles for hole doping on the left are proportional

to the added hole density while the diameters of the circles on the right are proportional

to the added electron density. In this figure the diameter scale used for the hole density is

0.1 and for the electron density 0.15. In the top left hand lattice shown in Fig. 4, 2 holes

have been added to the 32 holes of the undoped 8×4 lattice giving x = 1.0625. The lattices

shown below this have 4,6 and 8 holes added corresponding to hole concentrations x per

CuO2 unit cell of 1.125, 1.1875 and 1.25, respectively. The lattices on the right hand side

of Fig. 4 show similar results for the case in which electrons are added (or holes removed).
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FIG. 2: The hole density 〈n〉 and the square of the spin moment 〈S2〉 = 3
4〈n↑ + n↓ − 2n↑n↓〉 on

the Cu (black circles) and O (red squares) sites versus the hole density x = 1 + N/32 per CuO2

unit cell. The undoped 8 × 4 CuO2 lattice has 32 holes and x = 1. N > 0 (x > 1) corresponds

to doping additional holes while N < 0 (x < 1) corresponds to electron doping which reduces the

number of holes.

From top to bottom these lattices have 30, 28, 26 and 24 holes, respectively, corresponding

to x = 0.9375, 0.875, 0.8125 and 0.75. As in Fig. 3, a staggered magnetic field (h = 0.1)

was applied to the Cu sites on the left-hand edge of the lattice.

As shown in Fig. 2, the additional holes tend on average to go onto the O sites, but as

seen in Fig. 4 their distribution is not uniform. For hole doping there is a tendency for

stripe formation separated by π-phase shifts in the antiferromagnetic correlations. For x =

1.125 there are two, approximately Cu-site centered, stripes separated by a π-phase shifted

antiferromagnetic region similar to the well known behavior of La1.48Nd0.4Sr0.12CuO4
10. For

x = 1.0625 there is a single stripe and for x = 1.1875, corresponding to the addition of 6

holes on the 8×4 lattice, one can see the remnants of a three stripe structure. This structure
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0.35

0.8

FIG. 3: The hole occupation 〈n〉 and spin structure 〈Sz〉 for the undoped (32 hole) 8 × 4 CuO2

lattice. The hole occupation is proportional to the diameter of the circles. A staggered magnetic

field of magnitude h = 0.1 was applied to the Cu sites along the left-hand edge of the 8× 4 CuO2

lattice which has periodic boundary conditions in the y direction and open end boundary conditions

in the x-direction.

vanishes for the strongly overdoped x = 1.25 case. The stripe spacing for the three lower

hole dopings is consistent with the relation d−1 = 2(x−1) and the well known spin δspin and

charge δcharge incommensurability relation δcharge = 2δspin found in the La-based cuprates8,10.

A closer look at the structure of the charge and spin distributions for the 1/8 (x = 1.125) hole

doped lattice is shown in Fig. 5(a). Here a weak staggered magnetic field has been applied

to both ends of the 8 × 4 lattice. In this case, the x = 1.125 hole doped system exhibits

bond centered charged stripes separated by π-phase shifted antiferromagnetic regions. The

charge modulations on the Opx and Opy sites are in phase leading to what was called an

s′–CDW–SDW phase in Ref. 14. There may be an additional small admixture of d-CDW.

Of course the 8× 4 lattice already breaks C4 symmetry so one expects differences in the x

and y oxygen hole occupations. Increasing Vpp leads to an increase in these differences38 but

the s′ symmetry remains dominant.

For the electron doped system, one sees on the right hand side of Fig. 4 that the spin

and charge structure appears quite different from the hole doped case. Of course the doped
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0.2

0.1

0.2

0.15

FIG. 4: Charge and spin structure for the hole (left) and electron (right) doped lattices for the

parameters given in Eq. (2). Here the hole density distribution for the undoped lattice shown in

Fig. 3 has been subtracted. The added hole density on a site is proportional to the diameter of the

red circles shown on the left. Similarly, the diameter of the blue circles on the right is proportional

to the added electron density. Note the difference in the diameter scales for the hole and electron

doped figures. The small ∼ 5% of the additional electron density that goes onto an O site is not

visible on this scale. For the 8× 4 lattice, the left hand figures (top to bottom) correspond to the

addition of 2,4,6 and 8 holes respectively, while the right hand figures correspond to the addition

of a corresponding number of electrons. A staggered magnetic field of magnitude h = 0.1 has been

applied to the Cu sites on the left-hand edge of the lattice.
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electrons go dominantly on to the Cu sites and initially the small concentration of added elec-

trons are repelled from the open edge boundaries by the “infinite” edge potential. However,

for these parameters, by the time the electron doping reaches 0.125, a relatively uniform

density of the added electrons is spread over the Cu sites and the antiferromagnetic or-

der remains. A closer look at the 1/8 electron doped lattice is shown in Fig. 5(b). Here

one can see that there are two charge stripes but the antiferromagnetic correlations remain

commensurate. Thus for these parameters we find charge stripes with incommensurate an-

tiferromagnetism for hole doping and commensurate antiferromagnetic spin correlations for

electron doping. This remains the case for the electron doped system when ∆pd is reduced

as is expected in the T ′ structure where the apical oxygens are absent. Another important

parameter is tpp which determines the effective hopping t′ between next-near neighbor Cu

sites. In Hubbard and t − t′ − J models it is known that t′ affects the stripe stability12,24.

Here we find that when the oxygen-oxygen hopping tpp is reduced, the amplitude of the

charge stripes is increased and the spin structure for the electron doped system also be-

comes incommensurate as shown in Fig. 5(c) for tpp = 0. The effect of reducing tpp acts to

increase the frustration associated with the antiferromagnetic background and gives rise to

the π-phase shifted antiferromagnetic regions separating the charge stripes. We find that

when tpp is reduced (below <∼ 0.25), striping can occur for both the electron and hole doped

system. However, the tendency for striping is stronger in the hole doped system.

The addition of holes to the filled band vacuum configuration (d2x2−y2p
2
xp

2
y) lowers the

kinetic energy. For the hole Hamiltonian, Eq. (1), with positive hopping parameters this

means that one expects the Cu-O and O-O hole hopping strengths
∑
s〈d+ispjs + p+jsdis〉 and∑

s〈p+ispjs + p+jspis〉 to be positive for the 32 hole doped system as illustrated in Fig. 6(a).

The Cu-O hopping strength is larger than the O-O hopping strength reflecting the fact

that the doped holes are of order 80% on the Cu sites. When additional holes are added,

the hopping strength increases further. The difference in the hopping strengths between the

36 hole doped lattice and the undoped 32 hole lattice are illustrated in Fig. 6(b). In the

case of hole doping, the holes are distributed to both the Cu and O sites (∼ 25% to the Cu

and ∼ 37.5% to each of the O sites) leading to the enhancement of both the Cu-O and O-O

hopping strengths shown in Fig. 6(b). In addition, one sees evidence of the charge stripe

structure.

For the case of electron doping, the electrons go dominantly on the Cu sites. This
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(c)

(b)

(a)

0.35

0.1

FIG. 5: (a) The charge and spin structure of the 1/8 (x = 1.125) hole doped system with a weak

staggered magnetic field h = 0.1 applied to both ends of the 8 × 4 lattice. Here an s′-CDW–

SDW structure is seen. (b) The charge and spin structure of the 1/8 (x = 0.875) electron doped

system with tpp = 0.5. Here we find only a weak charge modulation and a commensurate spin

antiferromagnetic structure. (c) Similar to the x = 0.875 electron doped system shown in (b) but

with tpp = 0.0. In this case there is an incommensurate antiferromagnetic spin structure similar to

that of the hole doped system.

reduction of the average number of holes on the Cu sites leads to the reduction in the Cu-O

hole hopping strength as shown in Fig. 6(c). Although the reduction of the average hole

occupation on each O is only of order 5%, one might have expected that this would also

reduce the strength of the O-O hole hopping. However, as shown in Fig. 6(c), the O-O

hopping strength is in fact slightly increased. The overall change in hopping strength is

significantly smaller for the electron doped system. The total change in the kinetic energy

measured in units of tpd per added hole is of order −3.2 while per added electron it is only



11

(c)

(b)

(a)

 0.0

 0.45

 0.1

-0.1

 0.1

-0.1

FIG. 6: (a) The hopping strength on each bond for the undoped system. (b) The difference in the

hopping strength relative to the undoped system for the hole doped system with x = 1.125. (c)

The same as (b), but for the electron doped system, x = 0.875
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+0.7. This is consistent with the notion that the doped holes will enter a region of the band

between Γ and M where there is significant dispersion while the electrons will enter near X

where the dispersion is flat.

In order to study the pairing response, we have applied a proximity singlet pair-field that

couples to near neighbor Cu sites along the x direction,

∆0

2

∑
(`x,`y)

(
∆+
x (`x, `y) + ∆x(`x, `y)

)
(3)

with ∆x(`x, `y) =
(
d`x+1,`y↑d`x,`y↓ − d`x+1,`y↓d`x,`y↑

)
/
√

2. The Cu-O near neighbor responses

in the x-direction 〈∆x(`x, `y) + ∆+
x (`x, `y)〉/2 has a negative sign and is shown as the dashed

lines in Fig. 7. The solid lines, which indicate a positive value, show the pair-field response

〈∆y(`x, `y) + ∆+
y (`x, `y)〉/2 between near neighbor Cu-O sites in the y direction. For these

calculations the average hole number was set by a chemical potential µ. In the top panel,

Fig. 7(a), µ = −1.0, giving an average hole number 〈N〉 = 36.05 (x ∼ 1.125) while for the

lower panel, Fig. 7(b), µ = −3.2 giving 〈N〉 = 28.14 (x ∼ 0.875). Both the hole doped

pair-field response shown in Fig. 7(a) and the electron doped case shown in Fig. 7(b) have

the expected d-wave-like sign change.

If the proximity pair-field is applied only between the horizontal Cu-Cu sites on the left

edge of the lattice, the induced pair-field decays rapidly in the x-direction for the hole doped

system and somewhat more slowly for the electron doped case. The longer range pair-field

correlations are suppressed by finite size effects. These are particularly severe for the periodic

in y (tube-like) geometry of our CuO2 lattice. As seen in Fig. 4 for the hole doped lattice,

a stripe appears each time a pair of holes is added for 2, 4 and 6 holes. This is consistent

with previous 2-leg ladder studies where it was found that the preferred filling was 2 holes

per 4 rungs23,24. Thus for an 8× 4 CuO2 tube a low-energy fluctuation of ±2 holes involves

the creation or destruction of a stripe, leading to a high energy spin configuration with a

domain wall without holes. Alternatively, one could consider a configuration which has 4

holes in a stripe, but this is also energetically unfavorable. While this effect is less severe for

the electron doped system shown in Fig. 7(b) and the pair-field response is stronger because

it lacks the antiferromagnetic domain walls, we expect that the small 8×4 size of the lattice

still acts to suppress the hole number fluctuations. Properly comparing the pairing between

the electron doped and hole doped systems will require larger systems, and if there are

stripes they should be long, running lengthwise down the cylinder, either horizontally or
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(b)

(a)

 0.005

-0.005

FIG. 7: The pair-field induced by the proximity pair-field, Eq. (3), for the hole x ≈ 1.125 (a)

and electron x ≈ 0.875 (b) doped systems. Here the dashed lines denote a negative pair-field

amplitude between near neighbor Cu-O pairs of sites while the solid lines denote a positive pair-

field amplitude. The applied proximity pair-field is between near neighbor Cu-Cu pairs of sites in

the x-direction with magnitude ∆0 = 0.2, and the response shows the expected dx2−y2-like behavior

for both the hole and electron doped systems.

spiraling.

In summary, we have studied an 8 × 4 three orbital Hubbard model for CuO2 with pa-

rameters chosen to give a realistic charge gap and exchange coupling. With one hole per

CuO2 unit, the hole occupation is approximately 80% on the Cu dx2−y2 orbital and in the

presence of a weak staggered edge magnetic field commensurate antiferromagnetic corre-

lations are found to extend across the lattice. When additional holes are added they go

∼ 75% onto the O sites and charge stripes separated by π-phase shifted antiferromagnetic

regions appear. The O hole occupation and the Cu spin structure has an s′-CDW-SDW
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like structure14. When additional electrons are added, they go approximately 90% onto

the Cu dx2−y2 orbitals. For our small cluster, there is a weak tendency for charge modu-

lations but the antiferromagnetic spin correlations remain commensurate. However, when

the oxygen-oxygen one electron hopping tpp is reduced, a clear striped structure appears

with incommensurate antiferromagnetic correlations. For both the hole and electron doped

systems, the response of the y-near-neighbor Cu-Cu pair-field is out of phase (d-wave like)

with respect to the x-near neighbor Cu-Cu pair-field induced by an applied x-near-neighbor

proximity pair-field. These pair-field correlations are short range reflecting the finite size

and geometric restrictions of the CuO2 cluster studied.
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