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Abstract
Reasoning about what other people know is an impor-
tant cognitive ability, known as epistemic reasoning, which
has fascinated psychologists, economists, and logicians.
In this paper, we propose a computational model of hu-
mans’ epistemic reasoning, including higher-order epistemic
reasoning—reasoning about what one person knows about an-
other person’s knowledge—that we test in an experiment using
a deductive card game called “Aces and Eights”. Our starting
point is the model of perfect higher-order epistemic reason-
ers given by the framework of dynamic epistemic logic. We
modify this idealized model with bounds on the level of fea-
sible epistemic reasoning and stochastic update of a player’s
space of possibilities in response to new information. These
modifications are crucial for explaining the variation in human
performance across different participants and different games
in the experiment. Our results demonstrate how research on
epistemic logic and cognitive models can inform each other.
Keywords: higher-order theory of mind; deductive reasoning;
epistemic logic; computational modeling

Introduction
During social interactions, people constantly need to reason
about other people’s mental states, an ability known as The-
ory of Mind (ToM) (Premack & Woodruff, 1978; Frith &
Frith, 2005). ToM encompasses a wide range of cognitive
abilities, since people possess many kinds of mental states,
such as beliefs, intentions, and emotions (Apperly, 2010;
Baker, Jara-Ettinger, Saxe, & Tenenbaum, 2017; Ong, Zaki,
& Goodman, 2019). As we reason about other people’s men-
tal states, others may be doing the same. Therefore, the abil-
ity to engage in higher-order reasoning, i.e., to reason about
other people’s reasoning, is also essential and prevalent in ev-
eryday interactions. One type of higher-order reasoning is
higher-order epistemic reasoning, which is reasoning about
what others know about what others know (and so on). For
example, in email exchanges, higher-order epistemic reason-
ing guides the choice of CC vs. BCC: it depends on whether
I want my recipients to know that the other recipients of the
message also know the content of my message.

Much of the prior research on higher-order epistemic rea-
soning focuses on developmental aspects—when and how do
children acquire the ability to think about what others know
(Gopnik & Wellman, 1992)? Through the influential empir-
ical paradigm of the “false-belief task”, where children read
stories about people having asymmetric knowledge about the
location of some object and answer questions about them, re-
searchers found that children around 4 years old can carry

out first-order epistemic reasoning, and they begin to possess
second-order reasoning abilities 2 or 3 years later (Perner &
Wimmer, 1985; Wellman, Cross, & Watson, 2001).

A major area of research studying higher-order epis-
temic reasoning in adults is behavioral game theory, where
economists debate the interpretations of people’s seemingly
irrational reasoning strategies in games that require such rea-
soning (Ho, Camerer, & Weigelt, 1998; Camerer, 2006). A
potential limitation of this area of research is that most games
are humans playing against humans, so the reasoning ability
of their opponents is not controlled. Hence it is hard to assess
to what extent people deviate from rational behaviors due to
their accommodating the cognitive limitations of others.

Closest to the present study is a line of work on for-
mal modeling and epistemic reasoning that combines insights
from logic, game theory, and psychology (e.g., Verbrugge,
2009; van Maanen & Verbrugge, 2010; de Weerd, Verbrugge,
& Verheij, 2015). One notable finding is that an appropri-
ate definition of logical complexity predicts cognitive dif-
ficulty in reasoning games (Szymanik, Meijering, & Ver-
brugge, 2013; Zhao, van de Pol, Raijmakers, & Szymanik,
2018). Our work contributes to this tradition by introduc-
ing new cognitive models directly based on logic and study-
ing reasoning behaviors that are more complicated than those
in previous studies and yet manageable by some people in
a highly controlled experimental setting. Our work is also
related to the “cognitive logics” research program (Ragni,
Kern-Isberner, Beierle, & Sauerwald, 2020), with which we
share the pursuit of bridging logic and the psychology of rea-
soning. However, so far they have mainly focused on non-
monotonic logics as the formalism and classical tasks such as
syllogism and conditional reasoning as the problems of inter-
est (e.g., Ragni, Eichhorn, & Kern-Isberner, 2016; da Costa,
Saldanha, Hölldobler, & Ragni, 2017), which differ from the
focus of the present study.

Here we present a computational framework based on epis-
temic logic to model the deductive component of higher-
order epistemic reasoning. We show that our proposed
model is able to explain people’s performance in a card game
that involves sophisticated higher-order epistemic reasoning,
known as “Aces and Eights” (Fagin, Halpern, Moses, &
Vardi, 2003). To our knowledge, our model is the first to
account for people’s performance on third- and fourth-order
epistemic reasoning (cf. van Maanen & Verbrugge, 2010).
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More generally, our research aims to further facilitate inter-
actions between logic and cognitive science: logics beyond
Boolean and first-order logic can also be helpful for model-
ing cognition, and human cognition can inspire new logics.

Epistemic Logic
Our starting point for modeling higher-order epistemic rea-
soning in humans is the model of perfect reasoners pro-
vided by epistemic logic, the main formal model of reasoning
about knowledge in epistemology since the 1960s (Hintikka,
1962). Epistemic logic provides semantic models of ideal
agents’ knowledge about the world and each others’ knowl-
edge, as well as syntactic formalizations of their reasoning
about knowledge, with numerous applications in computer
science (Fagin et al., 2003), game theory (Aumann, 1999),
and philosophy (Holliday, 2018). For contemporary sur-
veys on epistemic logic, see van Ditmarsch, Halpern, van der
Hoek, and Kooi (2015) and Rendsvig and Symons (2021).

The basic semantic models, which we call epistemic struc-
tures, are directed graphs with edges labeled by agents.
Nodes of the graph represent possible states of the world, and
an edge from state w to state v labeled for an agent A indicates
that if the state of the world is w, then agent A cannot rule out
the possibility that the state of the world is v. Thus, edges
between nodes labeled for A represent A’s uncertainty. For
example, the following epistemic structure represents a sce-
nario in which Amy just flipped a coin and saw which side
landed face up, while Ben didn’t see which side landed face
up, but he knows Amy did (throughout this section and in
Figure 2, we assume there is a loop edge between each state
and itself labeled for each agent, but we do not draw them):

H TB

The two possible states of the world are that Amy sees heads
(H) or Amy sees tails (T ); Ben’s uncertainty is represented by
the edges between H and T labeled for B; and Amy’s lack of
uncertainty is represented by there being no edges labeled for
A. By contrast, the following structure represents a scenario
in which Amy just flipped a coin and observed which side
landed face up, and Ben didn’t see which side landed face up,
but also Ben doesn’t know whether Amy saw it:

H T

H ′ T ′

B

A,B

B B
B B

Now there are four possible states: Amy sees heads (H), Amy
sees tails (T ), the coin lands heads but Amy doesn’t see it
(H ′), or the coin lands tails but Amy doesn’t see it (T ′). Ben is
fully uncertain between all states, as represented by the edges
labeled for B between all states, but Amy is only uncertain
in the cases H ′ and T ′ in which she does not see which side
lands face up, as represented by the bottom edges labeled for
A. Since Ben does not know whether the actual state of the

world is among the top two or the bottom two states, Ben has
higher-order uncertainty about Amy’s uncertainty.

Having seen two concrete epistemic structures, one can un-
derstand the formal definition of knowledge in a structure:
where a proposition is a set of states, in state w agent A
knows proposition P if and only if w and all nodes reach-
able from w by a directed edge labeled for A belong to P. For
example, in state H ′ above, Amy does not know the propo-
sition Heads = {H,H ′}, because there is an edge from H ′

to T ′ labeled for A, and T ′ is not in Heads. Also in T and
T ′, Amy does not know Heads, because T and T ′ are not
in Heads. By contrast, in state H, Amy does know Heads,
because there is no edge for A from H to a state outside
of Heads. Thus, Amy knows Heads only in state H. We
may then consider “Amy knows Heads” as a proposition of
its own, denoted KA(Heads), with KA(Heads) = {H}. Simi-
larly, where Tails = {T,T ′}, we have KA(Tails) = {T}. We
can then consider propositions such as “Amy knows which
side landed face up,” i.e., she knows Heads or knows Tails,
which is simply the union KA(Heads)∪KA(Tails) = {H,T}.
Amy’s not knowing which side landed up is then the com-
plement ∼(KA(Heads) ∪ KA(Tails)) = {H ′,T ′}. Ben’s ig-
norance, in every state, about whether Amy knows which
side landed face up can be formalized by saying that in ev-
ery state, Ben knows neither KA(Heads)∪KA(Tails) nor its
complement. That is, KB(KA(Heads)∪KA(Tails)) = /0 and
KB∼(KA(Heads)∪KA(Tails)) = /0.

While epistemic logic provides a way of representing the
knowledge of multiple agents at a single time, dynamic epis-
temic logic (DEL) provides a way of modeling how their
knowledge changes in response to new information (van Dit-
marsch, van der Hoek, & Kooi, 2008; van Benthem, 2011).
In the case of a public announcement to all agents of some
proposition P, we model their knowledge acquisition by sim-
ply deleting from the initial epistemic structure all states out-
side of P. For example, if Amy announces to Ben, “I don’t
know which side landed face up,” represented by the propo-
sition ∼(KA(Heads)∪KA(Tails)) = {H ′,T ′}, then we delete
states H and T from the previous structure, resulting in:

H ′ T ′A,B

In both states of this updated epistemic structure, Ben
knows that Amy does not know which side landed face up:
KB∼(KA(Heads)∪KA(Tails))= {H ′,T ′}. In this case, Amy’s
announcement of her ignorance did not give Ben further in-
formation about the non-epistemic or “ontic” fact of whether
the coin landed heads or tails. But sometimes an announce-
ment of ignorance or knowledge on the part of one agent can
give another agent knowledge of ontic facts, such as how a
coin landed or how cards were distributed in a game. This is
precisely the phenomenon that occurs in the Aces and Eights
game used in the main task of our experiment.
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(a) Game flow (b) Game layout

Figure 1: Example game. Each game has at most 3 rounds. If the participant announces “I know my cards” (by pressing Y) or
makes an incorrect announcement, the game ends immediately. The correct announcements for this game are “I don’t know”.

Experiment
Participants
We recruited 306 participants on the Prolific platform. Only
participants between 18–60 years old who resided in the US,
had an approval rate of 95%+, and completed at least 10 stud-
ies were eligible to sign up. Participants received $5 of base
payment (aimed at $10/hr) and could earn substantial bonuses
based on their performance (see details below). Three partici-
pants were excluded due to data recording errors (two missing
and one incomplete). Ninety-two participants were excluded
for failing more than 20% of our attention checks, giving im-
possible responses according to the rules, or spending more
than 87 minutes (maximum time set by Prolific). This set of
exclusion criteria left us with 211 participants (Mage = 30.1,
95 females) for analysis and modeling. The experimental pro-
tocol was approved by the local IRB.

Procedure
After accepting our ad on Prolific, participants proceeded to
a new browser window. They were told they were about to
play a card game called “Aces and Eights” with two computer
agents, Amy and Ben. They would play 10 such games, and
their main goal was to win as many games as possible.

An Aces and Eights game is a 3-player card game using 4
Aces and 4 Eights. The cards are shuffled and each player
is dealt 2 cards. The remaining 2 cards are put facing down
on the “table”. Each player cannot see her own cards but the
other 2 players can. Then, following a predetermined order,
the players take turns announcing whether they know their
cards. Because information can be obtained from knowing
whether other players know, at least one player should even-
tually know her own cards no matter how the cards were dealt.
In the context of our task, Amy, Ben, and the participant were
the players. The participant won a game if all her announce-
ments in the game were correct, i.e., she announced “I don’t
know” when there was not enough information to know her

cards and announced “I know” while correctly reporting her
cards when there was enough information. Since Amy and
Ben were computer agents, they would always announce cor-
rectly, and participants knew this.

The task had three phases: practice, main games, and post-
games survey. First, the participants read detailed instructions
about how to play the game and then completed 3 practice
games similar but different from the ones in the main-game
phase. After each practice game, explanations were provided
to make sure participants understood the objectives. The 10
main games followed the practice phase, and following each
game was a feedback page where the participants learned
whether they had won the previous game and responded to
an attention check question. Participants earned $0.5 bonus
for each game they won. After finishing all 10 games, the
participants were asked to type a whole number between 1
and 100 and told that whoever’s number is closest to half
of the average number across all participants would receive
an additional $5. This is the classic “p-beauty contest” task
(Camerer, 2006), included to check the construct validity of
our task. The experiment ended with a demographic survey.

In what follows, we call one Aces and Eights game a game,
each rotation of announcement-making by all 3 players a
round, the order of player announcements the order of a
game, the assignment of cards to players the state of a game,
and the state-order pair a configuration of a game. We de-
note each state by a string of 6 letters where the first two
letters encode the participant’s cards, the second two encode
Amy’s, and the last two encode Ben’s. Within the two letters,
“A” always precedes “8” by our convention. For example,
AAA888 is the state where the participant holds AA, Amy
holds A8, and Ben holds 88. When designing the experi-
ment, we considered some orders and states to be equivalent
to each other. For example, the order “Amy, Participant, Ben”
is equivalent to “Ben, Participant, Amy,” assuming no effect
of the computer agents’ names. We stipulated that Amy al-
ways announces after the participant, resulting in 3 distinct
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Figure 2: Initial epistemic structure. Nodes represent game
states and edges indicate a player’s uncertainty. States with
the same color are states considered equivalent in our task.

orders denoted by the acronyms “ABP”, “BPA”, and “PAB”.
Also note that “A” and “8” are dummy card symbols, so swap-
ping them does not change what announcements are correct.
For example, AAA888 is equivalent to 88A8AA. For each
pair of equivalent states (having the same color in Figure 2),
we randomly selected one for a participant to play.1

Modeling
The Epistemic Structure
The knowledge states of ideal players in an Aces and Eights
game can be determined by the epistemic structure in Fig-
ure 2. The nodes represent game states. The edges labeled
for a player indicate the player’s uncertainty between states,
as previously explained. Suppose the actual game state is
AAAA88, and the announcement order is ABP. For Round 1,
Amy should announce “I don’t know my cards” because the
AAAA88 node has outgoing A edges connecting to AA8888
and AAAA88, indicating that Amy cannot rule them out.
After Amy announces “I don’t know”, the graph is updated
by eliminating all nodes that do not have any outgoing A
edges, namely 88AA88 and AA88AA, because Amy would
have known her cards had those states been the actual state.
Then Ben’s correct announcement is determined in the up-
dated structure in the same fashion as for Amy; the structure
is further reduced by eliminating all nodes incompatible with
Ben’s announcement; and finally the participant’s correct an-
nouncement is computed in the same way.

Though updating the epistemic structure tells us how ideal
players play, it is not a plausible model for how humans rea-
son in this game, because they do not always announce cor-
rectly. We therefore designed and compared four computa-
tional models to better account for human performance.

1Data and code for this work are available at https://github
.com/HuangHam/CogSci2021-Epistemic-Reasoning.

A8A8A8

AA8888

AAA888 A8AA88

AAAA88

A8A888

A8A8AA

AAA8A8

B

B

B

A

A

AP

Figure 3: The bounded epistemic structure for the game state
AAA888 (red) with `= 1. Interior states are shaded in gray.

Computational Models
Noisy DEL As our baseline, this model is based on DEL,
introduced above, plus a noise ∈ [0,1] parameter. For each
response, the model has a noise probability of guessing and a
1−noise chance of answering correctly according to DEL.

Stochastic update with epistemic bound (SUWEB) This
is the target model we propose. The three parameters are epis-
temic level ∈ {0,1,2,3,4}, update prob ∈ [0,1], and noise.

The epistemic level (`) determines a bounded version of
the epistemic structure in Figure 2 for a given game state w.
This is used to compute the SUWEB model’s predictions of
how the participant will respond to questions. To construct
the structure, given w, let R(w) be the set containing w and all
states reachable from w in 1 step along P edges. Thus, R(w) is
the set of the participant’s initial epistemic possibilities, i.e.,
the states she initially considers possible based on what she
sees at the beginning of the game. Because the participant
may also reason about what other players know (if ` > 0),
next we add the states that the other players consider possible
starting from states in R(w): for k≥ 0, let Rk(w) be the set of
all states reachable from R(w) in at most k steps from states
in R(w) along edges labeled for any agent (we stipulate that
R−1(w) = R0(w) = R(w)). The bounded epistemic structure
is obtained from the graph in Figure 2 by restricting the set of
nodes to R`(w) and retaining only those directed edges whose
source belongs to R`−1(w). We call R`−1(w) the set of inte-
rior states and R`(w)\R`−1(w) the set of peripheral states.
Peripheral states have no outgoing edges in the bounded epis-
temic structure. We think of these states as being silent about
what players know or don’t know, providing information only
about the assignment of the player’s cards. Yet the presence
of peripheral states in the structure helps determine the extent
of the players’ knowledge in interior states. Figure 3 shows
an example of a bounded epistemic structure.

When a player announces “I know my cards” (resp.“I don’t
know my cards”) we formalize the announced proposition as
the set of interior states in which the player knows (resp. does
not know) their cards. For each interior state w that is not in
that set, we delete w (and thus all edges connecting to w) with
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probability update prob. The result of this stochastic deletion
of states is the updated epistemic structure. Define R′(w) in
the same way as R(w) above but in the updated structure, so
R′(w) is the participant’s new set of epistemic possibilities af-
ter the announcement. The participant announces she knows
her cards if R′(w) is a singleton set, which means she has no
uncertainty. We repeat this updating process if there is an-
other announcement before the participant’s turn.

The noise parameter aims to capture participants’ guessing
behavior. If the participant’s current set of epistemic possi-
bilities is a singleton, she never guesses; if it is empty, she
guesses “know” or “don’t know” with equal probability, and
when asked what her cards are, she randomly chooses a state
from the initial R(w); otherwise she guesses “know” with
probability noise and reports her cards by randomly choos-
ing a state from her current set of epistemic possibilities.

As an example of the SUWEB model in action, suppose
we start with the game state AAA888 (red in Figure 3),
the announcement order BPA, ` = 1, update prob = 1, and
noise = 0. First, Ben will announce “I don’t know,” due
to his uncertainty between AAA888 and AAA8A8 (brown).
If the participant were a perfect logician, she would delete
AAAA88 (blue) in response to Ben’s announcement, since in
the full epistemic structure in Figure 2, Ben knows his cards
in AAAA88. However, in the bounded epistemic structure
in Figure 3, AAAA88 is a peripheral state, so it cannot be
deleted. Thus, while the perfect logician gains information
from Ben announcing “I don’t know,” the level 1 player does
not. By contrast, in a bounded epistemic structure with `= 2,
AAAA88 is an interior state, so it is deleted in response to
Ben’s announcement. Thus, a level 2 player also gains infor-
mation from Ben’s announcement. Of course, if update prob
< 1, then even a level 2 player may fail to delete AAAA88.

After Ben’s announcement, the participant will announce
“I don’t know.” At this point, Amy knows her cards (since
she operates as a perfect DEL agent) and announces “I know.”
This contradicts what the participant believed about Amy,
since in both interior states of the bounded epistemic struc-
ture, Amy does not know her cards. This inconsistency is
modelled by both of the participant’s interior states being
deleted (assuming update prob = 1). When the participant
is next asked to make an announcement, she has to guess. By
contrast, a level 2 player can solve this game correctly.

Stochastic intake with epistemic bound (SIWEB) This
model differs from SUWEB only in the mechanism of updat-
ing the bounded epistemic structure. After each announce-
ment, SIWEB either ignores the announcement or reacts to it.
The probability of reaction is a parameter intake prob. If it
does react, it updates like SUWEB with update prob = 1.

Stochastic update with no epistemic bound (SUWNB)
This model is obtained by removing the epistemic level pa-
rameter from the SUWEB model. In other words, it assumes
that everyone starts a game with the full epistemic structure.

Results
On average out of 10 games, the participants won 4.16 games
and spent 28.19 minutes completing the experiment. The av-
erage of numbers guessed by the participants in the p-beauty
contest was 32.39. Moreover, the performance of the Aces
and Eights task was negatively correlated with the number
guessed in the p-beauty contest, where a lower number sug-
gests greater capability for higher-order reasoning (Camerer,
2006), supporting the construct validity of our task (r =
−.27, p < 10−4). All computational models were fitted using
maximum likelihood estimation, by minimizing the negative
log-likelihood using the SciPy function minimize with 20 ran-
dom starting points from the parameter space. Due to the size
of the combinatorial space, the likelihood of SUWEB and
SUWNB models was estimated through samples obtained by
simulating the model 200 times. We were able to construct
Bayesian networks to calculate the exact likelihood of Noisy
DEL and SIWEB.

To evaluate how well our models capture human perfor-
mance, we plotted the predicted accuracy against participant
accuracy for all game configurations except those with states
filled by yellow in Figure 2. Because participants who learned
the rules would know their cards immediately in those states,
our exclusion criteria dropped everyone who did not. The
baseline Noisy DEL model does not correlate well with hu-
man performance; among the other three models, SUWEB
fits the data best, as suggested by RMSE, and best explains
the variance in performance across games, as suggested by
the R2 adjusted for model complexity (Figure 4).

We further compared the models using average AIC and
BIC (Akaike and Bayesian information criteria). While AIC
clearly finds SUWEB the best fitting model, BIC does not
find SUWEB significantly better than SUWNB (Figure 5a).
For model validation, we divided all 30 game configurations
into 5 conditions according to the epistemic level required.
The epistemic level required by a game configuration is the
smallest `r such that for all ` ≥ `r, the SUWEB model with
epistemic level = `, update prob = 1, and noise = 0 can guar-
antee winning. We then plotted the average accuracy ad-
justed for the difference in expected accuracy of pure guess-
ing for each condition (Figure 5b). We observe that for hu-
mans, the accuracy of games that require level 0 or level 1
is significantly higher than games that require higher levels
(ps < 10−14). However, the accuracy of games that require
level 2, 3, and 4 are not significantly different from each other
(ps > 0.08). By this behavioral measure, our SUWEB model
captures human performance reasonably well. In contrast, the
SUWNB model fails to validate despite its low BIC.

Finally, we examined how our modeling paradigm com-
pares to the Cognitive Hierarchy Model, which predicts that
the distribution of higher-order reasoning levels in a popu-
lation follows roughly a Poisson distribution with λ = 1.5
(Camerer, 2006). We plotted the empirical distribution of
SUWEB’s fitted epistemic level parameters and compared it
with a Poisson distribution whose λ is estimated from these
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Figure 4: Model performance. Each state in the legend represents its equivalent states. Error bars represent s.e.m.

parameters using maximum likelihood estimation with the R
function optim (Figure 5c). We observe that the two distribu-
tions are shaped similarly and the estimated λ = 1.87 is close
to 1.5, where the difference may be due to a higher quality of
our sample. Nonetheless, the SUWEB model predicts many
more level 1 reasoners, suggesting a Poisson distribution may
only be an approximation of the true population distribution
which concentrates much more at level 1.

Discussion
In this paper, we proposed the SUWEB model of higher-
order deductive epistemic reasoning and showed that in cap-
turing human behavior it outperforms alternative models that
either lack a restriction on epistemic bound (SUWNB) or lack
stochasticity in eliminating possibilities (SIWEB). Moreover,
SUWEB is capable of validating the trend that people sig-
nificantly underperform in games that require more than first-
order reasoning. These logic-inspired models suggest that the
constraint on the epistemic level at which one reasons is a
dissociable factor from the mere stochasticity of cognition in
explaining why and how much people underperform. In addi-
tion to using ideas from logic to inspire our cognitive models,
we believe the cognitive models may inspire new directions in
logic, such as stochastic versions of DEL for formalizing the
probability that a bounded agent will know some proposition
after a stochastic update with an announcement.

We identify three limitations of our work. First, the
estimate of our models’ likelihoods may not have come
from a sufficiently large sample, potentially biasing AIC and
BIC. In the future, we will explore other model comparison
schemes such as Bayesian fitting and cross-validation. Sec-
ond, SUWEB did not validate human performance on games
that require level 1 reasoning as well as SIWEB. We will ex-
plore the possibility of improving SUWEB by combining fea-
tures in SIWEB or incorporating psychological biases such
as the conformity effect. The third limitation is the lack
of ecological validity. Our experimental paradigm can only
examine deductive aspects of higher-order reasoning, as the
game used had unique correct answers. It would be an inter-

(a) Model comparison (b) Qualitative validation

(c) Parameter distribution

Figure 5: Error bars represent s.e.m. (a) The AIC/BIC score
of each model is subtracted by that of SUWEB. (b) Accuracy
is adjusted by subtracting the average accuracy of guessing.
(c) Poisson samples with values ≥ 4 were revalued as 4.

esting future direction to generalize our framework to cases
where participants cannot rely on others’ announcements and
to connect with other models built for game-theoretic tasks.

More broadly, we hope to explore how our work can ex-
pand to other domains of ToM and shed light on how much
of social cognition can be explained by non-social cognitive
faculties (Apperly, 2010). Also, building on classic work in
pragmatics (Clark & Marshall, 1981; Smith, 1982), we hope
to explore how higher-order epistemic reasoning, by which
mutual and common knowledge is formed, is related to norms
of linguistic behaviors such as writing and conversation.
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