
UC Davis
UC Davis Previously Published Works

Title
Assessing probe-specific dye and slide biases in two-color microarray data.

Permalink
https://escholarship.org/uc/item/2kh6d3jb

Journal
BMC bioinformatics, 9

ISSN
1471-2105

Authors
Lu, Ruixiao
Lee, Geun-Cheol
Shultz, Michael
et al.

Publication Date
2008-07-19
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2kh6d3jb
https://escholarship.org/uc/item/2kh6d3jb#author
https://escholarship.org
http://www.cdlib.org/


BioMed CentralBMC Bioinformatics

ss
Open AcceResearch article
Assessing probe-specific dye and slide biases in two-color 
microarray data
Ruixiao Lu1, Geun-Cheol Lee2, Michael Shultz3, Chris Dardick4, 
Kihong Jung4, Jirapa Phetsom4, Yi Jia5, Robert H Rice6, Zelanna Goldberg7, 
Patrick S Schnable5, Pamela Ronald4 and David M Rocke*8

Address: 1Department of Data Analysis and Algorithm, Affymetrix, Inc., Santa Clara, California, USA, 2College of Business Administration, Konkuk 
University, Korea, 3Department of Molecular Biosciences, University of California, Davis, California, USA, 4Department of Plant Pathology, 
University of California, Davis, California, USA, 5Center for Plant Genomics, Iowa State University, Ames, Iowa, USA, 6Department of 
Environmental Toxicology, University of California, Davis, California, USA, 7Department of Radiation Oncology, University of California, Davis, 
Cancer Center, Sacramento, California, USA and 8Division of Biostatistics, University of California, Davis, California, USA

Email: Ruixiao Lu - tinypenguin@gmail.com; Geun-Cheol Lee - geuncheol@gmail.com; Michael Shultz - mashultz@ucdavis.edu; 
Chris Dardick - cddardick@gmail.com; Kihong Jung - kjung@ucdavis.edu; Jirapa Phetsom - phetsom2000@yahoo.com; 
Yi Jia - jiayi@iastate.edu; Robert H Rice - rhrice@ucdavis.edu; Zelanna Goldberg - zgoldbergmd@gmail.com; 
Patrick S Schnable - schnable@iastate.edu; Pamela Ronald - pcronald@ucdavis.edu; David M Rocke* - dmrocke@ucdavis.edu

* Corresponding author    

Abstract
Background: A primary reason for using two-color microarrays is that the use of two samples
labeled with different dyes on the same slide, that bind to probes on the same spot, is supposed to
adjust for many factors that introduce noise and errors into the analysis. Most users assume that
any differences between the dyes can be adjusted out by standard methods of normalization, so
that measures such as log ratios on the same slide are reliable measures of comparative expression.
However, even after the normalization, there are still probe specific dye and slide variation among
the data. We define a method to quantify the amount of the dye-by-probe and slide-by-probe
interaction. This serves as a diagnostic, both visual and numeric, of the existence of probe-specific
dye bias. We show how this improved the performance of two-color array analysis for arrays for
genomic analysis of biological samples ranging from rice to human tissue.

Results: We develop a procedure for quantifying the extent of probe-specific dye and slide bias in
two-color microarrays. The primary output is a graphical diagnostic of the extent of the bias which
called ECDF (Empirical Cumulative Distribution Function), though numerical results are also
obtained.

Conclusion: We show that the dye and slide biases were high for human and rice genomic arrays
in two gene expression facilities, even after the standard intensity-based normalization, and
describe how this diagnostic allowed the problems causing the probe-specific bias to be addressed,
and resulted in important improvements in performance. The R package LMGene which contains
the method described in this paper has been available to download from Bioconductor.
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Background
One of the major tasks in the analysis of high-dimen-
sional biological assay data such as gene expression arrays
is to detect differential expression from a comparative
experiment. Using two-color microarrays is supposed to
adjust for the noise introduced by many factors on the
same slide including spot size and conformation. Stand-
ard data pre-processing methods for two-color data
include the normalization of the differences between two
dye channels, after which most users believe the dye bias
has effectively been removed and that the normalized
measurements are now relatively free of dye bias. How-
ever, probe specific dye-bias and slide-bias can be high
even after standard normalization, which may cause prob-
lems when one expects to identify many statistically sig-
nificantly differentially expressed genes.

This dye bias has received some recent attention [1-8].
These papers generally provide computational methods to
detect and correct for dye bias, at least in some circum-
stances. Correction can include use of gene-specific dye
bias terms in an ANOVA, for example. Even when this is
done, dye bias may still cause significant harm by intro-
ducing large amounts of noise that prevent identification
of significantly differentially expressed genes. We present
a graphical method of assessing this problem that can be
used for process improvement and to compare array plat-
forms.

Standard normalization methods are based on the entire
set of probe intensities of the arrays, while the conclusions
of comparative experiments are made for specific probes.
One of the common approaches for the analysis is gene-
by-gene linear models, which uses the normalized log or
glog [9] intensity data and is fitted for each probe. In the
routine gene-by-gene linear model, the mean square (MS)
of each factor is the measurement of the variance contri-
bution from the factor, which is also the base of the con-
struction of F-statistic for testing the factor effect. So, for
each probe, the relative sizes of the mean squares can
serve as comparison measures of the contributions of the
specific factors to the overall variation.

For the standard F statistic, we consider the ratios of each
mean square to an appropriate error term, which is usu-
ally also a mean square. We propose instead as a diagnos-
tic to consider the ratio of each mean square to the sum of
all the mean squares, so that we obtain for each gene a set
of mean-square ratios that sum to 1, which are thus free of
scaling specific to a given probe. To assess the overall mag-
nitudes of these quantities, we plot the empirical cumula-
tive distribution functions (ECDF) of the variability
proportion of each factor across the whole set of probes in
a single plot, serving as the diagnostic graphic tool for
showing the relative magnitude of the probe specific dye-

bias after normalization. Since the linear model is on a
probe-by-probe basis, the dye bias we are measuring is in
fact the dye-by-probe interaction. Similarly, including
slide as one of the factors could also provide an assess-
ment of the relative size of the slide-by-probe interaction
effect. The lower a line is in the plot, the larger the effect's
mean square is stochastically across probes.

Results and methods
In most cases being shown in this paper, the linear model,
including factors of interest dye, slide, treatment and sam-
ple replicates, can be written as:

yijkl = α + dyei + slidej + treatk + samplel + ijkl, (1)

where the index i refers to different channels (dyes), the
index j to arrays, the index k to treatment levels and the
index l to the sample replicates within each treatment
level [10].

Consider as a first example an experiment conducted on
slides spotted and hybridized at a UC Davis array facility.
The experimental objective was to study the effects of oxy-
gen concentration on gene expression before and at con-
fluence in human keratinocyte cell cultures. There were
three different oxygen concentrations used, with two rep-
licates in each condition. Labeled sample was hybridized
with common reference for each condition. In each case,
in one of the replicates the sample was labeled with Cy3
and the reference with Cy5, and in the other replicate the
reverse labeling was used.

The MA plot [11,12], where M is the difference between
the probe or probe set log intensity in Cy3 and Cy5 chan-
nels, and A is the average of the probe or probe set log
intensity in the two channels, could demonstrate if the
data set has intensity-dependent log ratios. From the MA
plot in Figure 1, we can see that, after the normalization,
most of the dye bias has been removed. However, when
we look at the average mean squares of ANOVA model on
a probe-by-probe base, the probe-specific dye factor by far
contributes the most variation in the model, as shown in
the Table 1, either before normalization or after normali-
zation. The ECDF plot, which defined in Background sec-
tion and in which lower line demonstrates larger effect,
shows that the probe specific dye effect, after normaliza-
tion, is also the largest factor, same as shown by the aver-
age mean squares from ANOVA, and is much larger than
the treatment effects of oxygen and culture conditions
(Figure 2). The substantial probe-dye bias is an obstacle to
detection of significantly expressed genes, and not surpris-
ingly, few of the probes show significant differential
expression for different oxygen and culture levels. In this
case, we have used a model in which the log ratio of sam-
ple to reference is given by a linear model involving dye,
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oxygen, culture, and the oxygen-by-culture interaction.
Note that, due to the reference design used, the slide effect
cannot be estimated here. This would, given the character-
istics of the experiment, be slide nested within oxygen and
culture, and this is confounded with dye nested in the
same way.

A second example shows a comparison of the analysis of
the same RNA on two different two-color array platforms.
The samples were from human skin biopsies exposed in
vivo to controlled radiation doses incidental to radiation
therapy, but with accurate dosimetry [13,14]. Patients
were treated in a standard fashion for their localized pros-
tate cancer and the areas of their abdominal wall skin
which would receive 1, 10, 100 cGy of radiation exposure
respectively were marked at the time of the patient's first
radiation treatment. Prior to any radiation therapy,
patients had a control biopsy, at 0 dose. In this compo-
nent of the study, there were 8 patients, and the data for
the array comparison are the four samples from patient 5.
The samples were run on two different array platforms:
arrays spotted by a UC Davis array facility and Agilent
Human Whole Genome arrays run by Icoria's Paradigm
Array Labs. The model used had log intensity as a linear
function of dose, or else of modified log dose, which was
-1, 0, 1, and 2 for the doses 0, 1, 10, and 100. This is log10
dose except that the 0 dose is treated as if it were 0.1 cGy.
We call this modified log dose or mld.

For the arrays from the UC Davis facility, we used a design
in which each dose was hybridized against each other
dose. With dye swaps, this would have required 12 arrays,
but we instead used a partial balance of the dyes against
the treatments. The exact design is given in Table 2. For the
Agilent arrays, we used the design in Table 3.

Some care must be taken in the analysis of these data.
Unlike a reference design study, we are not analyzing the
log ratios. Instead, we analyze the separate values for each
gene on each array and each dye channel. There is only
one biological sample for each dose, and the variation
between replicate measurements of the same RNA is not
an appropriate denominator for a test of significance of
the regression. We could specify this as a mixed model,
with separate random effects for the sample (with 4 lev-
els) and replicates within sample, but fitting such models
by maximum likelihood results in many estimation fail-
ures using standard software because the model must be
fitted for each gene of thousands. Instead, we first fit a
model with dose or mld as a quantitative variable, then fit
another model with dose or mld as a factor. Then we use

Empirical CDF Plot of oxygen concentration experiment, run by UCD array facilityFigure 2
Empirical CDF Plot of oxygen concentration experiment, run 
by UCD array facility.

MA Plot of oxygen concentration experiment, run by UCD array facilityFigure 1
MA Plot of oxygen concentration experiment, run by UCD 
array facility.
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Table 1: Average Mean Squares from ANOVA for Oxygen Experiment

Dye Oxygen Culture Oxy:Cul Interaction Residual

Before Normalization 16.58 0.0358 0.0836 0.0256 0.0938
After Normalization 1.730 0.0246 0.0565 0.0196 0.0209
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the decrease in the residuals sum of squares of the first
model to that of the second model. We quantify the
within-sample variation in this alternative way and this
gives us two degrees of freedom.

After an empirical Bayes adjustment of the denominators
and based on the FDR p-values (Rocke 2004), we
obtained the numbers of significant genes from the two
platforms as shown in Table 4. We can see that the
number of significant genes is much larger for the Agilent
platform even though the number of arrays is smaller.
Since the RNA is the same and the technology is similar,
there must be a quality issue explaining the difference. We
show the diagnostic plots for dye and slide bias for the
two platforms in Figures 3 and 4 for the UC Davis spotted
arrays, and Figures 5 and 6 for the Agilent arrays, with the
two plots being for the regression on dose and mld respec-
tively. The ECDF plots for the custom arrays tell that even
after lowess normalization, the differences between two
dye channels per probe base still contributes the most var-
iability among all the factors, for both linear dose and log-
linear dose cases. Slide-by-probe interactions are also
rather large. For the Agilent arrays, the slide-by-probe
interaction has the largest variance. The dose effect is the
second, yet comparable to the first, and larger than the
probe specific dye bias. This is the likely reason why we
obtained more significantly differentially expressed
probes from the Agilent arrays. These examples suggested
that there were problems in the UC Davis array facility,
and this guided improvements in the process that greatly
reduced the probe-dye bias problem, as subsequent exam-
ples show.

An example showing this improvement comes from an
experiment using a newly developed rice genome array in
which rice plants grown in the dark were compared with
those grown under normal lighting conditions. This rela-
tively extreme treatment was used specifically to evaluate

the dye and slide bias, given that the expression changes
to the treatments should be large. There are two sets of
experiments used here, one was done in February 2005 to
evaluate the effect of different scanners and different scan-
ner settings on dye and slide bias and the other was in
October 2005 to assess the effects of temperature on the
biases. The experiments in February were run on two dif-
ferent scanners with two different PMT (Photo Multiplier
Tube) levels. Figure 7, 8, 9 and 10 clearly show that after
the normalization, the factors dye and slide do not exceed
the influence from the factor treatment per probe, which
means that these biases are not likely to interfere with
detection of significant differential expression. The exper-
iments in October were done at three different culture
temperature levels. From the ECDF plots (Figure 11 and
12) for the first two lower temperature (42C and 46C), we
can see that the factor treatment is the most influential 

Empirical CDF Plot of Low Dose Radiation study with linear dose, run by UCD array facilityFigure 3
Empirical CDF Plot of Low Dose Radiation study with linear 
dose, run by UCD array facility.

Table 3: Experimental Design for IR Study with Agilent Arrays

Channel Array1 Array2 Array3 Array4

Red A D C B
Green D A B C

A = 0 cGy, B = 1 cGy, C = 10 cGy, D = 100 cGy

Table 2: Experimental Design for IR Study with UC Davis 
Arrays

Channel Array1 Array2 Array3 Array4 Array5 Array6

Red A A D B B C
Green B C A C D D

A = 0 cGy, B = 1 cGy, C = 10 cGy, D = 100 cGy

Table 4: Significant Genes from Two Platforms

Facility 30% FDR 20% FDR 10% FDR 5% FDR

UC Davis 0 0 0 0
UC Davis 38 4 0 0
Agilent 4445 3119 1912 1367
Agilent 1553 1018 0 0

In either case in UC Davis or Agilent, the numbers on the first row 
are the number of significant genes for the regression on dose and the 
numbers on the second row are for the regression on modified log 
dose.
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Empirical CDF Plot of Low Dose Radiation study with modi-fied log-linear dose, run by IcoriaFigure 6
Empirical CDF Plot of Low Dose Radiation study with modi-
fied log-linear dose, run by Icoria.

Empirical CDF Plot of Low Dose Radiation study with modi-fied log-linear dose, run by UCD array facilityFigure 4
Empirical CDF Plot of Low Dose Radiation study with modi-
fied log-linear dose, run by UCD array facility.

Empirical CDF Plot of Low Dose Radiation study with linear dose, run by IcoriaFigure 5
Empirical CDF Plot of Low Dose Radiation study with linear 
dose, run by Icoria.

Empirical CDF Plot of rice genome light and dark experiment run in Feb., using ScanArray scanner with low PMT, run by UCD array facilityFigure 7
Empirical CDF Plot of rice genome light and dark experiment 
run in Feb., using ScanArray scanner with low PMT, run by 
UCD array facility.
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Empirical CDF Plot of rice genome light and dark experiment run in Oct., at temperature of 42, run by UCD array facilityFigure 11
Empirical CDF Plot of rice genome light and dark experiment 
run in Oct., at temperature of 42, run by UCD array facility.

Empirical CDF Plot of rice genome light and dark experiment run in Feb., using Axon scanner with low PMT, run by UCD array facilityFigure 9
Empirical CDF Plot of rice genome light and dark experiment 
run in Feb., using Axon scanner with low PMT, run by UCD 
array facility.

Empirical CDF Plot of rice genome light and dark experiment run in Feb., using ScanArray scanner with high PMT, run by UCD array facilityFigure 8
Empirical CDF Plot of rice genome light and dark experiment 
run in Feb., using ScanArray scanner with high PMT, run by 
UCD array facility.

Empirical CDF Plot of rice genome light and dark experiment run in Feb., using Axon scanner with high PMT, run by UCD array facilityFigure 10
Empirical CDF Plot of rice genome light and dark experiment 
run in Feb., using Axon scanner with high PMT, run by UCD 
array facility.
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one, while the factor dye and slide become the biggest
ones in the case of 50C (Figure 13), suggesting that the
lower temperatures are likely to be superior.

Conclusion
Most microarray users assume that any differences
between the dyes that may cause problems in an analysis
can be handled by standard methods of normalization.
However, there are still probe specific dye bias and slide
bias afterwards in two-color microarray data. We devel-
oped a procedure for quantifying the extent of them. The
primary graphical diagnostic was used to show the probe-
specific dye and slide bias exist and can be quite large after
normalization in arrays from rice and humans, in two
facilities. This tool guided improvements in the array facil-
ity at UC Davis that essentially eliminated the problem-
atic dye bias behavior.
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